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Hybrid interface: Integrating BCI
in Multimodal Human-Machine Interfaces

Emmanuel K. Kalunga1,2, Sylvain Chevallier1, Olivier Rabreau1, Eric Monacelli1

Abstract— In the context of assistive technologies, it is impor-
tant to design systems that adapt to the user specificities, and
to rely as much as possible on the residual capacities of each
user. We define a new methodology in the context of assistive
robotics: it is an hybrid approach where a physical interface
is complemented by a Brain-Computer Interface (BCI). An
implementation of such methodology is proposed, using a 3D
touchless interface for continuous control and a steady-state
visually evoked potential (SSVEP)-based BCI for triggering
specific actions. We describe a novel algorithm for classification
of SSVEP signals based on Canonical Correlation Analysis
(CCA) and Support Vector Machines (SVM). Its reliability
and robustness are assessed in an online setup and its results
are compared to existing algorithms. Finally, an experimental
evaluation of the proposed system is performed with a 3D
navigation task in a Virtual Environment (VE). The system
is also embedded on an assistive robotic arm exoskeleton to
validate its feasibility.

I. INTRODUCTION

Rehabilitation and assistive technologies aim at developing
solutions adapted to the subjects’ disabilities. A crucial
aspect is to take into account the specificities of each person
and to propose technical solutions which make use of their
residual motor capabilities. Hence in this work, we propose
a new methodology for disabled people, using an hybrid
approach where a physical interface is complemented by
a Brain-Computer Interface (BCI). BCI do not rely on
subjects’ residual motor capabilities but current system have
shown limited performances. To overcome these limitations,
we design a system that allows the users to use both their
brain signals and their residual motor abilities for control
tasks. Our contribution are threefold : we define a new
methodology for a hybrid control system, we introduce a
new learning scheme for SSVEP-based BCI and we propose
an implementation of the whole system in two applications
of rehabilitation robotics.

BCI endows a system with communication capability
through non-muscular channels, relying on brain signals [1],
[2]. A recent trend focuses on the extension of BCI for
healthy users [3], particularly in navigation in virtual envi-
ronments and video games [4]. However the performance
achieved by these systems are still far behind those of
traditional assistive and HMI devices, such as joysticks. The
notorious poor spatial resolution of EEG and its vulnerability
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to artifacts [5] result in low classification accuracy and thus
slow information transfer rate [2]. Also, BCIs are afflicted by
a high cognitive load for the user, especially when engaged in
a continuous control scheme. The last limitation is known as
BCI-inefficiency or BCI illiteracy [6], [7]; a large proportion
of the users (15 to 30%) obtain poor classification results
with BCI system, even with state of the art algorithms.
Because of these reasons, BCIs are a possible alternative
for persons with specific motor disabilities but they are not
mature enough to be proposed to a larger audience.

To address these issues, two categories of approaches are
found in the literature. The first, which can be regarded as
a low level solution, is the refinement of signal processing
techniques to enhance the EEG signal quality and pattern
recognition. The second, which can be regarded as a high
level adjustment, is a change in BCI paradigms. This last
category is about creating new paradigms that ease the
discomfort of using BCI systems and increase their perfor-
mance. It has given rise to hybrid BCI approaches where two
or more signals are combined in different ways to control a
system. These signals can all be neurological phenomena
in EEG (e.g. SSVEP and P300 [8]), or EEG and another
biologic signal (e.g. EEG and EMG [9]). Another approach
is to use BCI as a switch for goal selection or for performing
predefined tasks that are carried on by the controlled interface
to avoid a continuous control from the user [10]. We can
also mention the approach of shared control between brain
commands and intelligent systems where information from
the environment are used to dynamically adapt the behaviour
of the BCI system [11]. In each of these approaches, one of
the following problem persist: either the cognitive load is still
high, or the degree of freedom is very low, or the information
transfer rate is low or the user’s choices are predefined and
thus lacks flexibility.

We propose a new methodology, where the system in-
tegrates a BCI as a complementary communication chan-
nel. This hybrid system make use of user’s residual motor
abilities and offers BCI as an optional choice: the user
chooses when to rely on BCI and could alternate between
the muscular- and brain-mediated interface at the appropriate
time. Our hybrid system integrates a 3D touchless interface
based on IR-sensors [12] that captures hand poses and an
SSVEP-based BCI. Such an approach combines these two
interfaces in a multimodal BCI-motor system that takes
advantage of both the user’s brain signals and her residual
motor ability.

Regarding the touchless interface, our IR-based interface
does not need to be held by the user, thus not requiring



any grasping capability. It provides a 3 degrees of freedom
controller. On the BCI side, we rely on SSVEP which is the
response of the visual cortex to stimuli with strong frequency
information [13], such as blinking stimuli. The choice of
the SSVEP paradigm is motivated by the fact that it has a
better signal-to-noise ratio compared to other brain activities
used in BCI and it is emulated with little training as it is an
inherent response of the brain [14]. We propose an approach
to process SSVEP with a novel algorithm based on Canonical
Correlation Analysis (CCA).

II. STATE OF THE ART

A. Hybrid BCI Interfaces

Combining BCI with existing Assistive Technologies (AT)
has the potential of augmenting the capabilities of disabled
people. In the literature, this approach is refereed to as hybrid
BCI (hBCI).

The existing hBCI can be categorized according to (1)
the type of signals combined and (2) how the signals are
combined to achieve the desired task. According to the type
of signal used, two types of hBCI are distinguished. In the
first type, different brain signals (e.g. motor imagery, evoked
potentials) are combined [15]–[17], while in the second a
brain signal is combined with other biosignals e.g. ECG [18]
or EMG [9]. The hBCI combining EMG and a brain signal
is the only case where the residual muscular functionalities
of the patients are used. Apart from this approach, residual
muscular functionalities have been combined with BCI in
a neuroprosthesis where the patient uses arm movement for
reaching positions and BCI for grasping objects [19], [20].

Depending on the combination of interfaces (or control
channel), several control strategies are possible. The first one
is to assign one specific task per interface. Another possi-
bility is to merge all interfaces in a weighted combination
to achieve a unique task with higher accuracy. Finally, they
can be used alternatively so as to allow users to smoothly
switch from one interface to another depending on their
performance or preference. The work of [21] provides a
comprehensive review of the existing hBCI approaches and
their applications. The approach proposed in this work falls
under the first category of strategies. One interface is in
charge of continuous control while the other is used to
achieve predefined tasks (usually difficult and/or recurrent).

B. SSVEP Algorithms

Common methods for processing SSVEP are Independent
Component Analysis (ICA) [22], Common Spatial Pattern
(CSP) [23], and Principal Component Analysis (PCA) [24].
Most recently Canonical Correlation Analysis (CCA) [25]
have been explored for signal enhancement in SSVEP. For
SSVEP classification, a baseline algorithm shows good per-
formances [26], relying only on the detection of the highest
frequency component in the signal [26]. Standard classifica-
tion algorithms such as LDA [11], neural networks [27], [28]
or SVM [29] have also yield good results. In [29], the authors
implement a code modulated-VEP BCI, a paradigm close
to SSVEP, where CCA is used for the design of a spatial

filter. A one-class SVM classifies the filtered EEG with
high accuracy. In this work we propose a similar approach,
modified and applied to regular SSVEP as described in
section III.

C. Touchless Interface

The objective of this study is to propose an hybrid ap-
proach, relying on the residual motor capabilities combined
with the SSVEP brain signals (fig. 2), to design a robust and
adaptive system. We chose a 3D touchless interface as the
main physical controller mainly because this device could
be modified for different users, with different abilities and
disabilities. The main advantage over EMG-based sensors is
that touchless interface are less invasive and require no prior
preparation.

In HMI, hand gestures are an active research topic [30],
the main drawback of image-based approaches are the high
computational cost of the existing solutions. The proposed
system is meant to be embedded, working with limited
resources, excluding computationally demanding algorithms.
We propose to use a touchless interface based on IR-sensors,
such as [31], but adapted to the motor capacities of persons
affected by muscular dystrophy and neuro-degenerative dis-
orders. Existing devices, as Leap Motion, assume a contin-
uous and tonic activity from the user and offer no resting
position.

D. Arm Exoskeleton Control

The control of an arm exoskeleton is presented here as a
concrete application for our hybrid system. Exoskeleton for
upper limb offers a useful technology for assistive [32] and
rehabilitation robotics [33]. In the context of this paper, we
rely on the ESTA robotic exoskeleton [34]. ESTA is designed
to compensate for muscular dystrophy in the shoulder and
elbow muscles occurring in several degenerative diseases,
which affect the large muscles but spare the wrists and hands
motor capacities.

III. METHOD AND MATERIALS

A. Touchless Interface

Our touchless interface embeds 5 IR-sensors which could
set up in different spatial positions, according to the user
requirements. The control system relies on a iterative kNN
scheme to learn hand poses of each user. The details of the
algorithm is provided in [12], hence only the key aspects are
exposed here. Firstly, the iterative kNN scheme requires a
fast calibration phase to learn the different hand poses, here
seven (six for the directions and one for the resting position).
The outliers and ambiguous examples are excluded from
the training examples. Secondly, the algorithm continuously
adapt to the received signal, labelling new examples change
the set of neighbours. This algorithm is able to track the
changes of the user’s hand pose, providing an online adap-
tation to the behavioural modifications induced by tiredness.
The interface is shown in Fig. 1.



Fig. 1. The 3D touchless interface and examples of three hand poses: left,
resting and right positions. The IR-sensors are in the black plastic housing
on the right side of the hand and around the wrist. Another symmetrical
plastic housing have been realised for left-handed users.

B. SSVEP-based BCI

The g.Mobilab+ device is used for recording EEG at
256 Hz on 8 channels. For SSVEP stimulation, flash stimulus
technique has been chosen. To avoid limitation imposed by
refresh rate of computer screens, a microcontroller is set up
to flash stimuli with light emitting diodes (LED) at frequen-
cies F = {13, 17, 21} Hz. The device has been controlled
and the LED blinking is precise up to the millisecond. The
eight electrodes are placed according to the 10/20 system on
Oz, O1, O2, POz, PO3, PO4, PO7 and PO8. The ground was
placed on Fz and the reference was located on the right (or
left) hear mastoid.

Overlaping EEG epochs of 3 seconds are recorded every
0.5 second. Each epoch is filtered between 12Hz and 45Hz
to discard irrelevant bands while allowing all stimulation
frequencies and their first harmonics. A spatial filter is then
designed based on CCA: let X be the obtained EEG signal
in Rn×m, where n is the number of channels (8) and
m the sample length (3 × 256). A signal Y is generated
using sinusoid functions with a frequency f ∈ F and its
k harmonics, i.e. Y ∈ Rp×m with p = k + 1. The CCA
is obtained by maximising the correlation ρ between XTwx

and Y Twy as shown in Eq. (1), where wx and wy are vectors
respectively in Rn and Rp.

ρ = max
wx,wy

wT
xXY

Twy√
wT

xXX
TwxwT

y Y Y
Twy

. (1)

The filtered signal x̂, of dimension m, is obtained as:

x̂ = wT
xX, (2)

The features X̄ provided to the classifier are defined as:

X̄ = Px̂(ω) (3)

with ω ∈ Ω and Px̂(·) being the power spectral density
(PSD).

Unlike the work of [25], which propose to rely on the
correlation coefficient of CCA for processing SSVEP signal,
in our algorithm the CCA is only applied to determine
the spatial filter wx. This produce a single signal x̂ which
is a linear combination of all the electrodes and which is
expected to maximize the correlation with an hypothetically
perfect neural response, that is the sinusoids of Y . A similar
approach can be found in [29] but in a different context and
using x̂ to generate exemplars for supervised learning. Here,
we propose a novel algorithm where the PSD of x̂ is used

to obtain the features of the classification process. We rely
on a SVM to classify the EEG signal in four classes: the
three stimuli frequency F (13, 17 and 21Hz) and a reject
class. We use the LIBSVM implementation with standard
RBF kernels.

C. Proposed Hybrid Interface
The proposed hybrid approach is illustrated in Fig. 2.

The user – a person with motor disabilities – is given two
modalities to control the system. The first modality is an
input device that takes a signal generated by users’ motor
action. This might be any type of device that is adapted to
the subject’s disability, allowing her to use her residual motor
ability. This modality is used for the continuous control of
the system.
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Fig. 2. Hybrid BCI system integration. The motor abilities of the user
are the primary controller of the system, using adapted interfaces (here: 3D
touchless interface). The brain computer interface (here: SSVEP) provides
a complementary communication channel and is designed to trigger specific
actions.

The second modality, which is BCI based is used to
provide an additional command, giving alternative control
options to the user, or a special command to activate a
common and repetitive task. In this work, the continuous
control is achieve with the described touchless interface and
the BCI modality relies on SSVEP.

D. Applications
The described approach is validated in two contexts: a

Virtual Environment (VE) for the navigation of a helicopter
shown in Fig. 5, and an exoskeleton arm control task shown
in Fig. 6. In the VE, the user is asked to reach three
waypoints. Three specific locations are identified in the VE
to serve as shortcuts. In previous works, locations of this
nature have been used as predefined final destination [10],
while we only use them as shortcuts. After reaching these
locations using BCI commands, the user could reach any
position using the 3D-touchless interface.

The approach with the exoskeleton arm bears some simili-
tude with the VE navigation task. The arm is control with the
3D-touchless interface. Common arm movements performed
by the user are predefined (e.g. reaching the mouth or a
resting position). The BCI shortcut trigger the automatic arm
movement to these positions.

The hybrid scheme is especially well suited for exoskele-
ton arm control task: as the arm is continuously controlled
by the 3D touchless interface, once the user has grabbed an
object (e.g. a glass of water), she will no longer be able
to move her hand freely to control the touchless interface.
The BCI command allows to overcome this limitation by
activating predefined movements.



IV. EXPERIMENTAL RESULTS

This section describes the results obtained with the pro-
posed system. Five subjects participated in the experiments.
One of the subject is hemiplegic and the four others are
healthy. The first section is dedicated to the assessment of
our online detection of SSVEP algorithm. The next section
provides the results obtained using the hybrid system for a
navigation task in a virtual environment. The last section
explained how the system has been implemented on an
embedded system for an exoskeleton arm control task.

A. Validation of our SSVEP Algorithm

Before using the BCI subsystem in online mode, a calibra-
tion phase is needed to compute the CCA spatial filter wx of
Eq (1) and training the SVM classifier. During the calibration
phase, a sequence of trials is proposed to the user. A trial
begin by an audio cue indicating which LED to focus on, or
to focus on a fixation point set at an equal distance from all
LEDs for the reject class. A trial last 5 seconds and there
is a 3 second pause between each trial. The evaluation is
conducted during a session consisting of 32 trials, with 8
trials for each frequency f ∈ F and 8 trials for the reject
class, i.e. when the subject is not focusing on any specific
blinking LED. The online classification is done every 0.5
second, using a tW = 3 s window of EEG signals. An audio
feedback indicates the predicted class to the user.

Figure 3 shows the online BCI classification performances
for each prediction made every 0.5 second, starting at t =
t0 + tW , that is 3 seconds after the beginning of the trial
t0. The y-axis indicates the error rate for each of the five
subjects. The results demonstrate that our algorithm is very
robust and provides a very reliable response after t+2 s with
a small mean error rate for all subjects.

To further evaluate the algorithm, it is important to con-
sider that the loss function is not uniform. If the algo-
rithm detects a reject class instead of a specific class, the
consequences are not as bad as a wrong prediction: e.g.
detecting 13 Hz instead of 17 Hz, as the user needs only
to concentrate half a second on the chosen LED before
the system make another prediction. Thus we propose the
following accuracy measure, similar to a precision score. For
each trial, we consider the first class prediction at time t:
if this is correct the accuracy is increased, if this is false
the accuracy is decreased. If the prediction is the reject
class, the accuracy measure is only postponed on the next
time segment. Figure 4 displays the results of this measure
for all subjects. The accuracy is above 70% for almost all
subjects and it can be seen that the algorithm provides almost
immediately the correct answer.

At last, we compare our algorithm with classical SSVEP
approaches in Table I, using an offline evaluation for each
subject. The baseline is a comparison with a SVM using the
PSD of the EEG signal, that is without applying the CCA
spatial filter. A classical methodology is to rely on ICA to
extract the main components of the signal and to provide
these components to the SVM classifier. Table I shows that
our algorithm yields the best results.
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Fig. 3. Evaluation of the online performances of our BCI algorithm. The
error rates for all five subjects are indicated as a function of time, with t+0
indicating the first prediction made (after tW = 3 s). The error rates are
averaged on all classes.
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Fig. 4. Assessment of the accuracy of classification depending on the
time of the prediction. On x-axis, t+0 indicates the first prediction made
3 seconds after the start of a trial. The results are averaged on all trials
for each subjects. Subject 1 is the only one to present a slight increase of
the classification accuracy. For all other subjects the algorithm proposes a
correct answer as the first prediction.

TABLE I
COMPARISON WITH OTHER ALGORITHMS

Subject1 Subject2 Subject3 Subject4 Subject5

Baseline 81.3 88.3 80.0 75.0 79.2

ICA 100 88.3 91.7 93.3 95.0

CCA 100 100 97.5 93.3 96.7

B. Experiments in Virtual Environment

For the navigation task in the virtual environment, the as-
sessment is based on the time spent and the distance travelled
during the experiment for 4 subjects. These results are shown
in Table II. The time is indicated in seconds and the distance
in metric units. Each subject has performed 3 experiments: in
the first experimental condition, the subject should rely only
on the 3D touchless interface (‘None’ in Table II). In the



Fig. 5. Experiment in the virtual environment. Here the subject is using the
3D touchless interface with his right hand and the SSVEP LEDs are put in
front of him. The screen displays an helicopter in the virtual environment.
The subject should pass through all waypoints, materialised by red (or grey)
disks on the screen. When the subject triggers a shortcut, the helicopter is
moved to a location materialized by the transparent ball.

second one, shortcuts are available and are triggered by the
BCI subsystem (BCI-S). In the last experimental condition,
the subject could trigger a shortcut using a keyboard (KB-
S). The fourth subject is hemiplegic and she could not use
the keyboard with her spare hand. Thus, her results do not
include the last experimental condition.

In Table II, next to the BCI and keyboard shortcut, a
percentage indicates the relative improvement compared to
the reference experiment (without shortcut). It could be seen
that distance covered is almost equivalent with BCI shortcuts
and keyboard shortcuts, which is the expected results as users
have activated the shortcut each time it was possible. When
the shortcuts are activated by the BCI, the task is slower
than when using the keyboard. This effect is mainly caused
because the subject need to focus at least 3 seconds on a
blinking LED before triggering the shortcut.

TABLE II
DISTANCE COVERED AND DURATION OF EXPERIMENTS, WITHOUT

SHORTCUTS (NONE), WITH BCI-ACTIVATED SHORTCUT (BCI-S) AND

WITH KEYBOARD-ACTIVATED SHORTCUT (KB-S).

None BCI-S (inc. %). KB-S (inc. %).

Subject 1
Time 108.9 68.3 (37.3%) 53.56 (50.8%)

Distance 1367.7 538.2 (60.6%) 535.0 (60.9%)

Subject 2
Time 99.2 74.7 (24.7%) 50.5 (49.1%)

Distance 1469.4 529.1 (64.0%) 549.0 (62.6%)

Subject 3
Time 105.5 63.4 (39.9%) 50.4 (52.2%)

Distance 1447.3 627.6 (56.6%) 542.1 (62.5%)

Subject 4
Time 125.6 70.4 (43.9%) –

(hemiplegic) Distance 1490.8 598.9 (59.8%) –

C. Application to Exoskeleton Arm Control

The proposed system have been applied to the ESTA
exoskeleton arm control. This assistive device is designed
to compensate shoulder and elbow deficiencies occurring
in degenerative diseases. Fig. 6 shows the 3D touchless
interface equipped at the extremity of the ESTA arm. LEDs
are placed on the left side, a close-up picture is displayed on
the top left part of the figure.

Fig. 6. The ESTA arm exoskeleton with the proposed system: a 3D-
touchless interface and the SSVEP-based BCI.

The subject controls the exoskeleton arm with the touch-
less interface and the BCI shortcuts allows to reach pre-
defined positions, such as a resting or a close-to-mouth
positions. In the case of the hemiplegic subject (who can
not use her left arm and hand), the BCI subsystem is the
only possibility to control the exoskeleton with an object in
hand. This example illustrates the complementary aspect of
the two interfaces, the physical and the brain one.

V. CONCLUSION

We introduce a new methodology for designing hybrid
systems, using both a physical interface and a BCI. The main
goal of these hybrid systems is to assist people with motor
disabilities or muscular diseases, by proposing a system
which make use of their residual abilities. The BCI is
integrated in the system as a secondary interface, which is
used to trigger specific behavior or predefined actions.

A first contribution is to propose an implementation of
such a system using a 3D touchless interface and a SSVEP-
based BCI. This implementation gather the two interfaces
in a multimodal system which benefits from both the brain
and motor signals. Our second contribution is to describe a
novel algorithm for processing SSVEP-based EEG signals,
with stable results, even when computed in an online setup.
This algorithm is compared to other existing solutions and
an experimental assessment of its validity is conducted.

The full system is evaluated on a 3D navigation task in
virtual environment. The results demonstrate that the system
is functional and could be used to assist people in various
contexts. We also implement our system to control the ESTA
arm exoskeleton: the system is functional and could be
adapted for controlling other assistive devices.

Future works is focused on adding adaptive properties to
the system, enabling the system to adapt to the behavioral
variations of the user.
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