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Abstract

In present paper we confirm our previous result [4] that Planck con-
stant is adiabatic invariant of electromagnetic field propagating on the
adiabatically changed Finslerian manifold. Direct calculation from cos-
mological parameters gives value h=6x10(-27) (erg s). We also confirm
that Planck constant (and hence other fundamental constants which de-
pend on h) is varied on time due to changing of geometry.

As an example the variation of the fine structure constant is calculated.
Its relative variation ((da/dt)/a) consist 1.0x10(-18) (1/s).

We show that on the Finsler manifold characterized by adiabatically
changed geometry, classical free electromagnetic field is quantized geomet-
rically, from the properties of the manifold in such manner that adiabatic
invariant of field is ET=6x10(-27)=h.

Electrodynamic equations on the Finslerian manifold are suggested.
It is stressed that quantization naturally appears from these equations
and is provoked by adiabatically changed geometry of manifold. We con-
sider in details two direct consequences of the equations: i) cosmological
redshift of photons and ii) effects of Aharonov – Bohm that immediately
follow from equations. It is shown that quantization of system consists
of electromagnetic field and baryonic components (like atoms) is obvious
and has clear explanation.

1 Introduction

The problem of formulation of general theory which could naturally unify Gen-
eral Relativity (GR) and Quantum Theory (QT) is of most fundamental and
actual problem of modern physics. But to resolve this problem we should first
to know what is the Planck constant. This is the question which open the door
and allow us to find unified theory for all branches of physics. To obtain this
key we have first to remember some important facts.
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1) Planck constant in quantum mechanics always appears together with
derivatives and in equations them appears in the same power. This fact clearly
points out on the possible relation between Planck constant and geometry.

2) Einstein [1] and later Debye [2] have shown from thermodynamical ap-
proach that electromagnetic field is quantized alone, without any assumption
on the nature of oscillators. So this is another hint that it should be quantized
from geometry.

3) Recently the cornerstone result was announced [3] in respect to the quan-
tization at very small scales. It was found that at the small scales the behavior
(movements) of quantum system becomes classical one (see paper [3] for details).
This result also argue that QT is pure geometrical phenomenon and it disap-
pears at small scales when geometry becomes to be approximately Euclidean.

4) Recently we have publish result which clearly point out into geometri-
cal origin of the Planck constant [4]. In this paper we have shown that the
Planck constant is adiabatic invariant of electromagnetic field on the adiabat-
ically changed Finslerian manifold. From this fact the variation of the Planck
constant on the time directly follows (and hence variations of fundamental con-
stants, for example variation of the fine structure constant, due to adiabatically
changed geometry [4,5]).

On the one hand we have these serious arguments for the geometric origin
of quantization, but on the other hand we have also serious problems with
Riemannian geometry. General relativity was created as theory on (pseudo-)
Riemannian manifold (we will use farther in this paper ”Riemannian” instead of
”pseudo-Remannian”). Such choice was not favored by some serious arguments
but only by the fact the real geometry is curved. Metrical function L(x) in
this case depends only on the coordinates and this fact applies some restrictions
on the theory, and lead to the serious problem with singularity. However, as
it follows from experiments on measurement of the cosmological constant, our
Universe is expanding with acceleration and for this reason complete geometry
of Finsler should be favoured. On the Finslerian manifold the metric function
depends not only of coordinates, but also on velocities L = L(x,

·

x) and (as it will
be shown in this paper) this fact allows us to introduce the cosmological constant
by natural way, calculate from geometry correct value of Planck constant and
unify gravity, electrodynamics and QT. From the Finsler geometry in natural
way follows Hubble constant, cosmological constant, quantization (as we will
show in this paper) and much more and we can conclude that Finsler geometry
naturally comply with all observational data.

In this paper we obtain classical equations of motion for a system on the
manyfold with adiabatically changed geometry and supplied by Finslerian met-

rical function L(x,
·

x). We show how the Planck’s constant naturally appears
from geometry and within (3+1) formalism write exact relation between h on
the one hand and scalar curvature and cosmological constant on the other hand.

We show how the classical electromagnetic field is naturally quantized due to
existence of adiabatic invariant of the field on adiabatically changed Finslerian
manifold.
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Finally we write equations of electrodynamics, which classically (geomet-
rically) describe quantization of electromagnetic field. We clearly show two
important particular cases for these equations: i) case of free electromagnetic
field, when quantization appears from geometry and leads to losses of energy
by propagating photon (so called cosmological redshift), and ii) the Aharonov -
Bohm effects, which immediately follows from equations.

All-around in this paper we suppose that Latin indexes i, j, k, l,m = 1, 2, 3
and greek α, β, ...µ, ν... = 0, 1, 2, 3 . Signature of metric is (1,−1,−1,−1) .

2 Adiabatic invariant and general formalism

let M be an 3-dimensional, class C3 manifold characterized by scalar curvature
R =2/R2, where R is the curvature radius in point xk, where xk is a local
coordinate on an open subset U ⊂ M . Let suppose M be supplied by Finsler

metric L(x,
·

x) and write a 1-parameter family of hypersurfaces on theXn defined
by equation

Sm(xk,
·

x
k
) = SM (xk,

·

x
k
) (1)

Here Sm stay for matter action and SM corresponds to a 1 - parameter
family of hypersurfaces on the M .

Our aim is to write the geodesic equations (Hamilton or Lagrange - Euler
equations) for this general case. In classical physics right hand part is constant
or zero and we get usual classical Hamilton (or Lagrange - Euler) equations. In
the case of General Relativity we put there the only invariant we have in pseudo-
Riemann geometry - scalar curvature of manifold R. Let us consider what
happens in general case, when the right-hand term consist of the adiabatically
changed parameters of the Finslerian manifold. In this case by varying (1)

δSm =

∫

δLm(xk,
·

x
k
)dt =

∫

δ(pkdx
k −Hdt) = δSM =

∫

δLM (xk,
·

x
k
)dt (2)

we immediately obtain Hamilton - like equations

dpk
dt

= − ∂H

∂xk
− ∂LM

∂xk
(3)

and

dxk

dt
=

∂H

∂pk
+

∂LM

∂pk
. (4)

One can see there appears an additional force in right - hand term of equa-
tion (3) and an additional velocity in (4), which we naturally can attribute to
cosmological constant (acceleration) and to the Hubble constant (v = Hx). It
actually corresponds to the fact that there no exist absolutely closed systems
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and these additional terms appear due to adiabatic changes of geometry (tensor
of metric) because of expansion of the Universe.

Absolutely the same way we can write equations of Lagrange - Euler varying
(1):

∂Lm

∂xk
− d

dt

∂Lm

∂
·

x
k

=
∂LM

∂xk
− d

dt

∂LM

∂
·

x
k

. (5)

As one can see in right part of this equation again appear two additional
terms due to expansion of the Universe (due to changing of geometry of the
manifold, as the system under consideration is moving).

3 Exact Planck’s constant value and quantiza-

tion of electromagnetic field

Let us calculate value of the Planck constant from the parameters which char-
acterize the Finslerian manifold. Consider a generalized system distributed over
volume. Let Tp(M) and T ∗

p (M) be respectively tangent and cotangent bundles
on M , where pα ∈ Tp(M) and pα ∈ T ∗

p (M) are covariant and contravariant
components of corresponding impulse.

Total momentum density of our system, in unit volume summed over all
directions is given by expression

p =
c3

8πG
R =

c3

4πG

1

R2
. (6)

Here, as usually, R =2/R2 is the scalar curvature and R is the radius of
curvature.

But on the Finsler manifold the tensor of metric depends on x and
·

x for this

reason the momentum p2 = gµν(x,
·

x)pµpν also depends on x and
·

x. Let’s fix

the spatial part of the coordinate system x0. In this case we have p(t,
·

x) and,

hence R(t,
·

x) too. So we can write

δp =
c3

2πG

1

R3
δR(t,

·

x) =
c3

2πG

1

R3

(

δR(t) +
∂R(H)

∂H
δH

)

, (7)

here we note that R(t,
·

x) = R(t,Hx0) where H is Hubble constant.
But by taking into account that

∂R

∂t
=

∂

∂t

c

2H
= − c

2H2

∂H

∂t
(8)

we can write

∂R

∂H
=

∂R

∂t

∂t

∂H
= − c

2H2
. (9)

Let us consider variation of Hubble constant.
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From the relation
·

x = Hx we can find

δ
·

x = xδH +Hδx (10)

or

xδH =
··

xδt−Hδx (11)

But the only cosmological acceleration we have experimentally measured is
associated with the cosmological constant Λ , so we can write for this variation

δH =
(

c2Λ−H2
)

δt (12)

Substituting these expressions into (7) we find

δp =
2c3H

πG

(

2H2

c2
− Λ

)

δt , (13)

or taking into account that R =2/R2 and by changing volume from the
spherical coordinates to the euclidean ones, we obtain

δp =
3c3H

8π2G
(R− 4Λ) δt . (14)

This is variation of momentum (in unit volume in 3 directions) of our gener-
alized system located on the Finslerian manifold, due to adiabatically changed
geometry.

Now we are ready to write complete adiabatic invariant for a free propa-
gating electromagnetic field. The components of the 4 - momentum p of free
electromagnetic field propagating on the Finslerian manifold with adiabatically
changed geometry are varied on time. This variation proceeds adiabatically and
can be considered as lineal function i.e. for energy ε of the field, for example,
we have

δε

ε
= −δt

t
(15)

so, the adiabatic invariant we are interested in is

εt = −δε

δt
t2 . (16)

But

δε = cδpk . (17)

By substituting (14) into (16) we can write finally (we divide δp by factor 3
because we are interesting only in one direction of the momentum)

εt = −ct2
∂p

∂t
= − c4H

8π2G
(R− 4Λ) t2 = η0 (18)
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so, for one second and measured values of H = 73 kms−1Mpc−1 = 2.4 ·
10−18s−1 and Λ = 1.7 · 10−56cm−2 [6] we have for this adiabatic invariant
η0 = h = 6 · 10−27 (ergs · s.) as it should be. In the same way we can obtain
similar relations for other components of 4-momentum:

pγx
γ = ηγ (19)

(there is no summation over γ in this relation and for the photon propagating
in direction x3 the components p1 = p2 = 0). Introduced here 4-vector ηγ has
components in unit volume:

ηγ = (h, h, h, h) . (20)

Here the adiabatic invariant for electromagnetic field (Planck constant),
which depends clearly on the parameters of the manifold R and Λ (and conse-
quently depends on time) is:

h = − c4H

8π2G
(R− 4Λ) t2 (21)

that give for unit time at present epoch h = 6·10−27 (ergs · s.) as it was men-
tioned above. From this relation it is easy to see the Planck constant depends
on time as h ∼ 1/t.

3.1 Hilbert integral

Now let’s consider integral of Hilbert for particular case of the free electromag-
netic field propagating along geodesic on the adiabatically changed Finslerian
manifold:

∫

pαdq
α = ∆SM , (22)

where pα is 4-momentum of the field, qα is generalized coordinate and right
hand term δSM , as before, corresponds to the changing of the 1-parameter
family of hypersurfaces due to adiabatic variation of geometry as system under
consideration is moving onM . For electromagnetic field with Lagrangian Lm =
FµνF

µν/16π we have from (22)

1

c

∫

∂Lm

∂Aµ,ν
Aµ,σdx

σ = ∆SM (23)

By taking into account that tensor of energy - momentum is

T ν
σ =

∂Lm

∂Aµ,ν
Aµ,σ − δνσLm (24)

we can write for propagating classical electromagnetic field
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1

c

∫

(T ν
σ + δνσLm) dxσ = ∆SM (25)

If the field propagate in the direction x3, than electric field E = E1 and
magnetic field H = H2. So the only non-zero components of the field tensor
Fµν are F01 = −F10 = E1 ; F13 = −F31 = −H2 and hence T 00 = T 33 = T 30 =
(E2 +H2)/8π .

In this case for the 00 - component, for example, by taking into account (18)
we have

E2 +H2

8π
=

h

T
= hν (26)

and similar relations one can write for other components.
So, as one can see the classical electromagnetic field is quantized due to

adiabatic variation of the Finslerian manifold and we do not need some artificial
methods to quantize it.

3.2 Variation of the fine structure constant

As it was shown before [5] even on the Riemannian manifold the value of the fine
structure constant is changed adiabatically on time. In the case of Finslerian
manifold this variation is smaller by factor 2/3 due to presence of the cosmo-
logical constant. To show this let’s start from (14). For one direction (divided
by factor 3) we have from (14):

δp =
c3H

8π2G
(R− 4Λ) δt . (27)

But the fine structure constant is α = V/c where V is electron velocity at
the first Bohr orbit. Momentum in this case we can write as

P =
mαc√
1− α2

(28)

so

δP =
mc

(1− α2)
3/2

δα (29)

and

δα =

(

1− α2
)3/2

Hc3

mc8π2G
(R− 4Λ) δt (30)

that give us value
·

α/α = −1.03 · 10−18 (for 1 second), R =2/R2, R = c/2H
(see [5]), H = 73 kms−1Mpc−1 = 2.4 · 10−18s−1 and Λ = 1.7 · 10−56cm−2).
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4 Electrodynamics on the Finslerian manifold

In Riemannian geometry the first pair of equations of electrodynamics is follows
directly from the properties of the field tensor.

Fµν = Aν;µ −Aµ;ν = Aν,µ −Aµ,ν (31)

where

Aµ;ν = Aµ,ν − Γσ
µνAσ (32)

And for this reason (Γσ
µν = Γσ

νµ) the first pair of equations on Riemannian
manifold with constant scalar curvature is

∂σFµν + ∂µFνσ + ∂νFσµ = 0 (33)

On the Finsler manifold we can obtain the first pair in the same way, but
in this case the field tensor is

∽

Fµν = Aν;µ −Aµ;ν (34)

where covariant differentials DAµ include now terms with the Cartan con-

nections Cµνσ = 1
2

∂gµν

∂
·

x
σ like this C σ

µ νAσd
·

x
ν
and also Γ σ

µ νAσdx
ν . In the most

important case, we are interested in, when the scalar curvature is small and
the tensor of metric has spatial structure described by the Robertson-Walker

metric, the additional terms Cσ
µνAσd

·

x
ν
and Γσ

µνAσdx
ν in covariant derivative

can be evaluated easily as ≈ Aσdx
ν/R (here 1/R = 2H/c = 5 · 10−29 is the

inverse radius of scalar curvature) so we have

∽

Fµν = Aνµ −Aµν − tµν (35)

where our estimation for the small components consist tµν ≈ Aµdx
ν/R ≈

Aµ · 10−29.
As one can see these components probably will be significant only in the

vicinity of black holes and can be omitted in our present consideration.
For this reason the first pair of the equations can be written as

∼

Fµν;σ +
∼

F νσ;µ +
∼

F σµ;ν = 0 (36)

or, by taking account our estimations

∂σFµν + ∂µFνσ + ∂νFσµ = O(tµν,σ) (37)

So one can see that the first pair of electrodynamic equations remains to be
the first pair of the Maxwell equations with high precision.

The second pair of equations of electrodynamics follows directly from varia-
tion of functional (1) if we consider a charge characterized by 4-current jα, and
the electromagnetic field on the Finslerian manifold:
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Sm = SM (38)

Here SM as before corresponds to family of the hypersurfaces on the ex-
panded manifold. By varying Sm we have

δSm = −1

c

∫

Ω

[

1

c
jαδAα +

1

16π
δ(FµνF

µν)

]

dΩ (39)

here we put Fµν instead of
∽

Fµν because, as we have seen, small additional
terms, corresponding to small components of tµν are insignificant in the case of
Robertson-Walker metric. Integrating the second term by parts, we obtain

δSm = −1

c

∫

Ω

[

1

c
jµ +

1

4π

∂Fµν

∂xν

]

Aµ,σδx
σdΩ (40)

By varying SM we have (see eq. (16 - 20))

δSM =

∫

Ω

ησ
(xσ)2

δxσdΩ (41)

where, as it was shown before, ησ = (h, h, h, h) in unit volume (here h is
the Planck constant). The equations under discussion one can write as follows

1

c

∫

Ω

[

1

c
jµ +

1

4π

∂Fµν

∂xν

]

Aµ,σδx
σdΩ = −

∫

Ω

ησ
(xσ)2

δxσdΩ +O(η2σ) (42)

or finally

1

c

[

1

c
jµ +

1

4π

∂Fµν

∂xν

]

Aµ,σ = − ησ
(xσ)2

+O(η2σ) (43)

(there is no summation over σ here).
This is the second pair of equations of electrodynamics on the adiabatically

changed Finslerian manifold. The bounded electromagnetic field (second term)
in this case is explicitly included into consideration, as it take place in the case
of Bohmian formalism when this field appears in QT as quantum potential (see
[7] for details and also results of paper [8]). Here we consider two important
cases which immediately follow from these equations.

4.1 Cosmological redshift

It is well known as the photon propagate through expanding universe its fre-
quency (or wave length) is changed. This loss of energy by free electromagnetic
field, named as cosmological redshift, appears in our equations by natural way
as losses of the energy by photon due to adiabatically changed geometry of
manifold.
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1

4πc

∂Fµν

∂xν
Aµ,σ =

1

8πc

∂(FµνF
µν)

∂xσ
= − ησ

(xσ)2
+O(η2σ) (44)

(there is no summation over σ).

4.2 The Aharonov - Bohm effects

Another important case that follows directly from the second pair of equations
is the Aharonov - Bohm effects. As is known, a necessary condition for the
existence of the Aharonov-Bohm (AB) effects is the presence, in the overall
structure of the equations, of the ”zero field” potentials which cannot be re-
moved by gauge transformations and do not create electromagnetic fields [9,10].
These ”zero - potentials” are the result of ”non-trivial topology” of the area
on which the particle moves [9,11,12]. Such a situation arises in electrodynam-
ics of anisotropic media where the structure of Maxwell’s equations eliminates
the possibility of satisfying the boundary conditions. To satisfy regularly the
boundary conditions in anisotropic media, usually introduce the zero - potential,
which do not create electromagnetic fields (see [9] and references therein). In
the case of adiabatically expanding Finslerian manifold, the anisotropy of space
occurs for any moving body automatically as right part of eq. (43).Therefore,
it is safe to say that in the case of AB effects we are dealing directly with the
anisotropy of space, due to adiabatically changed Finslerian manifold as the
particle moves along its trajectory. In this case, the role of the zero potentials
(which do not generate electromagnetic fields) performs variable geometry as it
follows directly from (43).

In absence of electric and magnetic fields on the path of propagation of the
particle under consideration, the second term disappears (but it still take place
inside of the solenoid and affects our particle: ”In spite of the fact that the
magnetic field vanishes out of the solenoid, the phase shift in the wave functions
is proportional to the corresponding magnetic flux inside of the solenoid” [13] )
and we obtain (we neglect here by the small term O(η2σ))

1

c2
jµAµ,σ = − ησ

(xσ)2
(45)

but jµ = (ρc, ρV k) (here ρ is charge density and V k is 3-velocity) so if
we put ρ = e and remember that δjµ = 0 (for this reason Aµ∂σj

µ = 0 and
Aµ,σj

µ = ∂σ(Aµj
µ)) we obtain by using the Gauss theorem

e

c
A0 = − η0

(x0)
,

e

c
AkV

k = − ηk
(xk)

. (48)

These equations describe the electric and magnetic effects of Aharonov -
Bohm (here x0 and xk are fixed). Namely for µ = 0 we have for the phase
variation ∆Φ

e

∫

t

ϕdt = −h
∆t

1 sec .
= −h∆Φ (49)
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electric effect of Aharonov - Bohm, and when µ = k (here k = 1, 2, 3) we
have relation

e

c

∫

l

Akdx
k = −h

∆x

1cm.
= −h∆Φ (50)

describes magnetic effect of Aharonov - Bohm.
To conclude this part we would like to stress again that whereas the bounded

field (second term in (43)) do not appears in these relations, it actually affects
the moving particle through potentials Aµ [13] and this bounded field corre-
sponds to quantum potential in the Bohmian formalism [7,8].

5 Complete theory

In previous part we have obtained electrodynamic equations. They are applied
in the case when the movement of charge (or jµ ) is defined. To construct
self-consistent theory we should treat jµ as variable from the beginning.

We consider now a charge characterized by 4-current jα, and the electro-
magnetic field on the Finslerian manifold:

Sm = SM (51)

Here SM as before corresponds to family of the hypersurfaces on the ex-
panded manifold. In complete form, when δjµ 6= 0 , we have the action

−
∑

∫

mcds− 1

c

∫

Ω

[

1

c
jαAα +

1

16π
(FµνF

µν)

]

dΩ = SM (52)

which describes quantum properties of our system. It is clear there are a lot
of different systems and applications. For this reason it is impossible to write
here a general theory, but as an example let us consider the hydrogen atom. In
order to coincide with quantum mechanical calculations we should neglect by
third term in (52) which corresponds to quantum potential [7,8] and gives the
zero energy correction (for example in the case of harmonic oscillator it gives
term 1/2 in expression for energy [4,7]). In this case by varying (52) we have

− δ

∫

(mcds+
e

c
Aαdx

α) = δSM (53)

and we can write

∫
[

mc
duµ

ds
− e

c

(

Aν

∂xµ
− Aµ

∂xν

)

uν

]

δxµds = −
∫

ηµ
(xµ)2

δxµds . (54)

So, finally we obtain equation of movement
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mc
duµ

ds
− e

c
Fµνuν = −

ηµ
(xµ)2

. (55)

By taking into account that classical period for orbital movement of electron
is

T = πe2
√

m

2 |E|3
, (56)

in classical limit v << c the straightforward calculations give the energy for
first Bohr orbit, obtained from classical electrodynamic on Finslerian manifold:

E1 =
me4

2~2
(57)

that coincide with quantum calculations. Relativistic corrections are obvi-
ous.

6 Conclusions

In this paper we confirm our previous result [4] that Planck constant is adia-
batic invariant of electromagnetic field propagating on the adiabatically changed
Finslerian manifold. Direct calculation of the Planck constant value made from
cosmological parameters gives h = 6 ·10−27 (ergs · s.) that is in great agreement
with measured value. We also confirm that Planck constant (and hence other
fundamental constants which depend on h) is varied on time due to changing of
geometry of the manifold.

As an example we suggest calculation of the fine structure constant variation.

Obtained value consist
·

α/α = −1.03 · 10−18 (for 1 second) and this variation is
expected to be measured in nearest future.

We show that on the Finslerian manifold characterized by adiabatically
changed geometry, classical free electromagnetic field is quantized geometrically,
from the properties of the manifold.

Equations for electrodynamics on the Finslerian manifold are suggested. It is
shown that quantization naturally appears from these equations and is provoked
by adiabatically changed geometry of manifold. We consider in details two direct
consequences of the equations - cosmological redshift of photons and effects of
Aharonov - Bohm.

Finally we show how quantization of systems which consist of electromag-
netic field and baryonic components (like atoms and molecules) appears.
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