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Abstract. Euclidean norm computations over continuous variables appear natu-

rally in the constraints or in the objective of many problems in the optimization

literature, possibly defining non-convex feasible regions or cost functions. When

some other variables have discrete domains, it positions the problem in the chal-

lenging Mixed Integer Nonlinear Programming (MINLP) class. For any MINLP

where the nonlinearity is only present in the form of inequality constraints involv-

ing the Euclidean norm, we propose in this article an efficient methodology for

linearizing the optimization problem at the cost of entirely controllable approx-

imations. They make it possible to rely fully on Mixed Integer Linear Program-

ming and all its strengths. This methodology is successfully applied to a critical

problem in the telecommunication satellite industry: the optimization of the beam

layouts in multibeam satellite systems. We provide a proof of the NP-hardness of

this very problem along with experiments on a realistic reference scenario.

Keywords: Mixed Integer Linear Programming, Mixed Integer Nonlinear Pro-

gramming, Euclidean Norm Linearization, NP-Hardness, Multibeam Satellites

1 Introduction

In the wide literature on mathematical optimization, there are several examples of prob-

lems involving continuous point variables in R
2 or R3 with constraints on the Euclidean

distance between pairs of such points. In some of these problems, the possibility to

rely on convex optimization is preserved: for instance, an upper-bound on a Euclidean

distance between two points is a convex constraint. On the other hand, any equality or

lower-bound set on a Euclidean distance makes the corresponding optimization problem

non-convex. In any case though, these quadratic constraints position the optimization in

the Nonlinear Programming (NLP) class. One of the most famous problems that han-

dles such 2-norm computations over continuous variables is the Euclidean Multifacility

Location Problem (EMFL): [21], [20]. This problem consists in defining positions for
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n new facilities with respect to m existing facilities. The minimized cost function terms

are proportional to distances between pairs of new facilities, and to pairwise distances

between old and new facilities. Most algorithms that solve the EMFL rely on second-

order cone programming and interior point techniques for convex optimization since

the problem can be equivalently transformed into another one where convex quadratic

proximity constraints appear. For works that consider both proximity and separation

constraints, we can mention for instance the research on wireless sensor localization

(see [10] for a thorough survey on the matter). In this problem, we assume that a set of

sensors has been deployed on a certain region, and that some of the sensor positions are

known while the others are not, the goal being to estimate these unknown positions. The

authors of [1] have indeed to deal with non-convex equality and separation constraints

which they choose to relax just enough to reach a semidefinite programming model.

In some cases, discrete variables are necessary to model decisions with finite numbers

of possibilities. When combined with the Euclidean norm constraints discussed above,

these integer variables lead to Mixed Integer Nonlinear Programming (MINLP), which

is known to be one of the most difficult optimization problems class ever to be tackled.

As an example of such problems, the authors of [19] worked on the issue of packing

unequal spheres in a 3-dimensional polytope with sphere separation constraints and an

objective to maximize the volume occupied by the spheres, the application being radio-

surgical treatment planning. In that case, the continuous variables are the sphere centers,

and the discrete variables correspond for each sphere to the choice of a radius among a

finite set of possibilities. This non-convex quadratic problem is solved with an heuris-

tically improved simplicial branch-and-bound method. Another example in the satellite

industry is the problem of optimizing the beam layouts of a multibeam telecommuni-

cation satellite system (see [2] for instance). It consists of defining the positions in the

Euclidean plane of a certain number of disks, each one representing the spatial extent of

a radiofrequency beam that carries telecommunication signals for various applications:

television, telephone, radio or internet by satellite for instance. While the number of

user ground stations (modelled by points of known coordinates in the Euclidean plane)

covered by these disks of discretely varying diameter is maximized, satellite antenna

technological constraints force some couples of disks to be sufficiently separated. Note

that this last application is the one that motivated this work.

In the end, the focus of this article is laid on the particular MINLP problems where

the only nonlinearities are quadratic constraints expressed with a Euclidean distance

over continuous variables. Both separation and proximity constraints are handled, and

they cohabit with discrete variables, in order to optimize a linear objective. For these

problems, we detail in section 2 the methodology we devised for reaching a Mixed Inte-

ger Linear Programming model (MILP) thanks to controllable approximations, the goal

being to take full advantage of all the efficient techniques developped for this specific

class of optimization problems. In section 4, the beam layout optimization is defined

more in details, its NP-hardness is proven, and the principles of section 2 are applied

in order to reach a MILP model which is presented and commented. Experiments on a

reference scenario are presented in section 5 before some concluding remarks in section

6.
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2 Linearization of Euclidean norm dependent constraints in R
2

Let X ∈ R
2 and α,β ∈ R

+, we develop in this section a MILP-compatible linearization

process of the constraints of the following form: ||X || ≤ α and ||X || ≥ β with || · || de-

noting the Euclidean norm. The associated inner product will be denoted by < · | · >.

The choice of R
2 is directly motivated by the beam layout optimization application,

but the principles presented could be generalized to R
3, or to higher dimensions. Also

note that, even if it is not discussed here, these techniques could also be extended to the

constraints of the form ||X1||+ · · ·+ ||Xk|| ≤ α and ||X1||+ · · ·+ ||Xk|| ≥ β with k > 1.

On the topic of linearizing the Euclidean norm in the context of mathematical opti-

mization, the examples are rare but can be found in the applications overviewed in

the introduction section 5. In the context of radiotherapy equipment configuration, the

authors of [9] propose to linearize the quadratic terms of the convex proximity con-

straints with added variables and a notion of approximation points, but without really

discussing the error made in the end on the approximated Euclidean distances. Another

way of linearizing the Euclidean distances is to discretize the possible positions of the

originally continuous variables allowing then to pre-compute all the possible point-to-

point distances, as done both in [9] and [2]. Although, our ambition in this work was

to preserve this continuity of the position variables so this type of discretization has

been discarded. Then, in the context of wireless sensor location, the author of [7] ap-

proximates the Euclidean distances by the L1 norm and exploits the triangle inequality

for reaching a linear programming model. This last technique falls within a more gen-

eral wave of research in the field of digital distances on how to substitute cleverly the

computationally expensive L2 norm calculations by optimized combinations of the less

operation demanding L1 and L∞ norms. Note also that these two norms are much more

naturally linearizable norms than the Euclidean norm. In the most recent works ([3],

[13]), they showed that in the Euclidean plane, the best maximum relative error (ob-

tained empirically) of an optimized combination of the L1 and L∞ norms with respect to

the L2 norm is approximately equal to 5.6%. Here, we are looking for a totally control-

lable approximation of the Euclidean norm whose maximum relative error could tend

towards 0 if one was willing to pay the price in terms of numerical complexity.

2.1 Euclidean norm linearization through plane directions discretization

To find such a convenient linearization process, we relied on two geometrical results.

They are both based on a parametrically controlled discretization of the directions

of the Euclidean plane, that are otherwise characterized by the continuous domain

[0,2π[. In practice, for a given ndirections ∈ N such that ndirections ≥ 3, and for all i ∈
{1, · · · ,ndirections}= U, let us denote by

Ui =

(

Ui,x

Ui,y

)

=











cos

(

2(i−1)π

ndirections

)

sin

(

2(i−1)π

ndirections

)











∈ R
2 (1)
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the ith discretized direction (running notation throughout the paper). These ndirections-th

roots of unity provide a regular discretization of the Euclidean plane directions with

each resulting direction representing an exclusive sub-interval of [0,2π[ of size 2π
ndirections

.

See for instance Fig. 1(a) for an example with 8 directions. Note that by definition, we

2π

n !u1

!u2

(a) (b)

Fig. 1. (a) Discretization of the directions of the Euclidean plane (ndirections = 8) : the 8th roots of

unity (b) Approximation of the Euclidean plane disk D by the regular ndirections-sided polygons

P and P ′ with the linear approximation of the Euclidean norm

have:

∀i ∈ U, ||Ui||= 1 (2)

In practice, the Proposition 1 described below allows to define a process based on linear

operations to check whether two points u,v ∈ R
2 are closer than a given distance: one

has to check that the projections of the u− v vector on the Ui directions are all lower

than a precise threshold. The fact that u and v will be decision variables (position vari-

ables) while the Ui directions will be input data is to be kept in mind to understand the

linearity of the process proposed.

Proposition 1:

Let u,v ∈ R
2 and let d ∈ R

+,

[ ∀i ∈ U, 〈u− v | Ui〉 ≤ d ] =⇒ ||u− v|| ≤ d

cos(θmax)
(3)

where θmax =
π

ndirections

Proof:

Let us therefore assume that

∀i ∈ U, 〈u− v | Ui〉 ≤ d (4)
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Since two consecutive directions are separated by an angle of exactly 2π
ndirections

, we nec-

essarily have

|(u− v , Uimin
)| ≤ π

ndirections

= θmax (5)

where the direction imin ∈ U is defined as the closest direction to u− v in terms of

angular separation. Therefore, since ||Uimin
||= 1 and since θmax ∈ [0, π

3
]:

cos(θmax) ||u− v|| ≤ 〈u− v , Uimin
〉 (6)

and since imin ∈ U and therefore verifies the equation (4):

||u− v|| ≤ d

cos(θmax)
(7)

⊓⊔

As a natural complement to the previous proposition, Proposition 2 defines a linear

process to check this time whether the two points u,v ∈ R
2 are sufficiently separated,

according to the separation distance d.

Proposition 2:

Let once again u,v ∈ R
2 and d ∈ R

+. Then, the following implication holds

[ ∃i ∈ U, 〈u− v | Ui〉 ≥ d ] =⇒ ||u− v|| ≥ d (8)

On a practical point of view, when we need to make sure that two points are suffi-

ciently seperated, it means that we only need to find, among the ndirections discretized

directions, one direction for which this inner product is sufficiently high.

Proof:

It is a direct consequence of the Cauchy-Schwarz inequality for the canonical inner

product of R2. Let i be the direction such that 〈u− v | Ui〉 ≥ d, then:

||u− v||= ||u− v|| · ||Ui|| (since ||Ui||= 1) (9)

≥ |〈u− v | Ui〉| (10)

≥ d (11)

⊓⊔

2.2 Impact of the linear approximation

In the case of Proposition 1 (the same analysis could be conducted for Proposition 2),

say we are trying to check whether the distance duv ∈ R
+ between two points u,v ∈ R

2

is lower than ∆∈R
+. Relying on our previous results, if all the inner products are less or

equal to ∆ as dictated by Proposition 1, we will consider here that duv ≤∆. Though, note
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that the guarantee resulting from all the inner product inequalities is that the distance

between the two points is lower than ∆lim with

∆lim =
∆

cos(θmax)
(12)

This means that the two points could be actually at a distance comprised between ∆ and

∆lim, and still be considered as closer than ∆ according to the process of Proposition

1. This is exactly what is represented in Fig. 1(b): D is a disk of radius ∆ centered on

a certain v ∈ R
2, and P is the set of points verifying all the inner product inequalities

with respect to the point v, i.e. P = {u ∈ R
2 / ∀i ∈ U,〈u− v | Ui〉 ≤ ∆}. Therefore,

P\D is what we could call the exterior approximation set, that is the set of points

that are considered at a distance from v less than ∆ although they are not. Note that

there is another way of exploiting Proposition 1 by comparing all the inner products to

cos(θmax)∆ instead of directly ∆, then when all the inequalities are true, we have this

time the guarantee that the distance between the two analyzed points is less or equal to

∆. However, in that case, it is possible to find situations where the distance between the

two points is comprised between cos(θmax)∆ and ∆ and where one of the inner prod-

ucts has a value greater than cos(θmax)∆, leading to an impossibility to conclude that

the two points are closer than ∆ with the process of Proposition 1. This defines the inte-

rior approximation set D\P ′ with P ′ = {u ∈ R
2 / ∀i ∈ U,〈u− v | Ui〉 ≤ cos(θmax)∆},

also represented in Fig. 1(b). In the end, we have to chose between two undesirable

consequences of our linear approximation: accepting incorrect close points, or not de-

tecting correct close points. Concerning these two effects, note that the two right-hand

sides analyzed here (cos(θmax)∆ and ∆ that helped define P ′ and P respectively) corre-

spond to extreme situations. Depending on the application considered, one could try to

find a convenient trade-off between the two detrimental effects by chosing a right-hand

side α ∈ [cos(θmax)∆,∆]. Concerning the amplitude of the error caused by the linear

approximation, it is directly linked to the number of directions ndirections: the error tends

relatively fast towards 0 when ndirections increases. One way to quantify this convergence

is to compare the area of D,P and P ′ with a varying number of directions, as done in

Fig. 2.

2.3 Extension of these principles to R
3 and higher dimensions

Another way to interprete this choice we made to rely on the nth roots of unity in R
2

to discretize the Euclidean plane directions is to observe that they are a solution to the

following problem: what subset of size ndirections of the R
2 unit circle minimizes the

maximum angular distance between a point of the unit circle and its angularly closest

point among the selected ndirections points ? Mathematically, this problem can be ex-

pressed as follows

min
A⊂{v∈R2 | ||v||=1}
s.t. card(A)=ndirections

J (A) = max
u∈R2

s.t. ||u||=1

min
u′∈A

( u , u′ ) (13)
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Area(P)
Area(D)

Area(P′)
Area(D)

4 1.273 0.637

8 1.055 0.900

12 1.023 0.955

16 1.013 0.974

20 1.008 0.984

24 1.006 0.989

28 1.004 0.992

(b)

Fig. 2. (a) Evolution of the area of the approximating polygons P and P ′ with respect to the area

of the disk D (b) Examples of values appearing in the curves

and it indeed admits the uniform distribution defined by the nth roots of unity (A = U)

as an optimal solution of optimal value J (U) = θmax (the entire set of optimal solutions

can be obtained by rotating the nth roots of unity of an angle α ∈
[

0, 2π
ndirections

)

, each

value of α leading to a distinct solution).

While it is trivial in R
2 to discretize uniformly the directions of the plane for a cer-

tain number of aimed directions ndirections, it is far from obvious to find a pre-determined

number of uniformly distributed points at the surface of the unit sphere in R
3. For some

values of ndirections, it can even be proven that there is no solution of exactly uniform

distributions of the points on the sphere. As a result, this very simple problem motivated

a dedicated wave of research and therefore offers a rich literature on the different meth-

ods developped to solve it: [15], [18], [8], [5]. For our linearization process, it means

that we have to extend our principles to non-uniform discretized directions in R
3. One

way to do so is to solve at best the problem defined previously in R
3:

min
A⊂{v∈R3 | ||v||=1}
s.t. card(A)=ndirections

J (A) = max
u∈R3

s.t. ||u||=1

min
u′∈A

( u , u′ ) (14)

In some of the aforementioned literature, this problem is exactly the one tackled, but

there are articles that also address close variants of the problem with other criteria in-

spired by physical phenomena, such as electrostatic equilibrium for instance. From the

point of view of our application, solving this optimization problem can be interpreted as

finding the most isotropic treatment of all the R
3 directions before approximating lin-

early the Euclidean distances. Let therefore U be an optimal (or suboptimal) solution

of (14), then Proposition 1 and Proposition 2 become valid in R
3 simply by using U as

the set of discretized directions and by setting θmax = J (U). Since the application that

motivated this work (beam layout optimization, detailed further in the article) is set in
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the Euclidean plane, we did not perform at this point any analysis for R3 similar to the

one presented in the previous paragraph for R2 where the evolution of the approxima-

tion error with the number of discretized direction has been properly quantified. To do

so, one would simply have to implement a solution for solving (14) for each number of

directions ndirections tested.

Finally, note that several articles tackle the question of sampling uniformly n-dimensional

spheres (for instance [4] and [14]), allowing us to further extend our principles to di-

mensions even higher than R
3 by applying the exact same reasoning.

3 A simple application: the continuous k-center problem

To illustrate the applicability of the proposed linearization process, this section intro-

duces how it could be used to solve a well-known operations research problem that

mixes continuous and discrete aspects: the continuous k-center problem. It consists in

defining the position of K ≥ 1 centers that are used to cover N ≥ 1 cities of known

positions Cc = (Xc,Yc) ∈R
2 (c ∈ {1, · · · ,N}) in order to provide a certain service: these

centers can be fire stations, hospitals, police stations, warehouses... The goal is to place

the centers and to allocate the cities to the centers in such a way as to minimize the

maximum time needed to provide service to a city. To produce such solutions, most

of the literature on the continuous k-center problem proposes to minimize the maxi-

mum Euclidean distance between a center and its allocated stations, but other norms

can be used, as it is done in [17] with l1 and l∞ norms for instance. This is naturally

the Euclidean norm we considered here in order to apply the linearization principles

presented in the previous section. We use continuous variables for the position of the

K centers ((xk,yk) ∈ R
2, k ∈ {1, · · · ,K}), that are allowed to vary in a certain bound-

ing box B = [Xmin,Xmax]× [Ymin,Ymax]⊂ R
2, and boolean variables to materialize the

allocation of the cities to the centers (αc,k ∈ {0,1}). Finally, λ ∈ R
+ is the continuous

variable that will represent the maximum distance of a city to its center (that is to be

minimized).
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Minimize λ (15)

under the following constraints

∀k ∈ {1, · · · ,K}, xk ≥ Xmin (16)

∀k ∈ {1, · · · ,K}, xk ≤ Xmax (17)

∀k ∈ {1, · · · ,K}, yk ≥ Ymin (18)

∀k ∈ {1, · · · ,K}, yk ≤ Ymax (19)

∀c ∈ {1, · · · ,N}, ∑
k∈{1,··· ,K}

αc,k = 1 (20)

∀c ∈ {1, · · · ,N},∀k ∈ {1, · · · ,K},∀u ∈ {1, · · · ,ndirections},

cos(θmax)λ ≥
(

xk −Xc

yk −Yc

)

·
(

Uu,x

Uu,y

)

−max
Z∈B

||Z −Cc||(1−αc,k) (21)

Equation (16) corresponds to the minimization of the maximum distance between a

center and its associated cities. Equations (16), (17), (18), (19) define the boundaries

of the center positions. The constraints (20) force each city to be allocated to one and

only center. Finally, the constraints (21) allows to lower-bound the continuous distance

variable λ by all the center-city distances of all active center-city couples. Note that in

equations (21), Proposition 1 is used with a “conservative” approach: the unit disk is

approximated by P ′ in order to over-estimate the minimized maximum distance, instead

of under-estimating it as it would have been the case with an approximation of the disk

by P . Fig. 3 provides examples of solutions generated by this MILP respectively for

(N = 59, K = 9, ndirections = 12) and (N = 144, K = 30, ndirections = 12). Note that in this

problem, there are no strict proximity constraints, nor separation constraints, but simply

a notion of maximum distance to be minimized. This allows to have a wide range of

different strategies based on branch-and-bound procedures (see [6] for instance) or on

metaheuristics ([16]) to produce optimal solutions for very large instances that we could

not solve with the MILP model above. However, this example seemed simple enough

to illustrate how easily our linearization process allows to reach a direct algorithmic

solution that relies on all the powerful solving principles inherent to Mixed Integer

Linear Programming. Most importantly, such models are adaptable to variants of the

problem that are characterized by added sets of constraints and variables.

4 A more complex application: the beam layout optimization in

multibeam satellite systems

4.1 Coordinate system used to define the optimization problem

This paragraph describes the coordinate system used to identify the points on the Earth’s

surface in the context of satellite communications. It is a necessary information to un-

derstand the beam layout optimization problem as it is presented in the next paragraph.
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(a)

(b)

Fig. 3. (a) k-center solution example for N = 59, K = 9, ndirections = 12(b) k-center solution ex-

ample for N = 144, K = 30, ndirections = 12

A well-known reference system in this application (see [11] for instance) is the satellite-

centred (x,y,z) coordinate system, presented on Fig. 4(a). The z axis is in the satellite-

Earth centre direction, the x axis is perpendicular to the meridian plane of the satellite

(defined by the North, the z axis, and the position of the satellite) and is oriented toward

the east, and the y axis is perpendicular to the equatorial plane and oriented in such a

way as to complete a right-handed coordinate system (i.e. the south for a geostationary

satellite). On the figure, S represents the satellite, O the centre of the Earth, P a point on

the Earth’s surface and P̂ its projection on the equatorial plane.
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z

x

y

S

0 P

P̂

(a) (b)

Fig. 4. (a) Satellite-centered coordinate system and true view angles (b) True view representation

Let us denote by A the set of points on the Earth’s surface that are visible from the

satellite. Let Θ be the set of possible angles between the −→z direction and the
−→
SP direc-

tions when P ∈ A , and let Φ be the set of possible (
−→
HP̂,

−→
HP) angles when P ∈ A with

H being its projection on the
−→
SO line and P̂ being its projection on the equatorial plane.

Then, a useful property is that there exists a subset Z of Θ×Φ and a bijection from A

into Z that allows us to use the couple of true view angles (θ,ϕ)∈ Z, as they are called,

to completely identify any point P in A , as shown in Fig. 4(a). In this figure, there is

also an illustration of the notion of angular separation of two points on the surface of

the Earth from the point of view of the satellite, which is crucial for the problem we

addressed in this paper: there is indeed an example of such an angular separation with

θ, which is the angle between the sub-satellite point (on the surface of the Earth) and

the point P.

There exists a very convenient representation of these true view angles in the xy plane.

To the two true view angles (θ,ϕ) of a given point P in A , we associate the so called

projected true view angles θx ∈ Θx and θy ∈ Θy defined as follows:

θx = θcosϕ (22)

θy = θsinϕ (23)

which bijectively defines Θx and Θy from Z, as represented in figure (b) of Fig. 4. A

well known result on these projected true view angles is that, for any two points P1 and

P2 in A , the following approximation

∣

∣

∣
(
−→
SP1,

−→
SP2)

∣

∣

∣
≃
√

(θx,P2
−θx,P1

)2 +(θy,P2
−θy,P1

)2
(24)

is perfectly acceptable in the case of geostationary satellites (see [11] for instance for

more details on this point). This means that the angular distance from the point of view
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of the satellite between two points on the surface of the Earth can be computed with

a simple Euclidean norm in the projection space Θx ×Θy. For this very reason, these

coordinates have been chosen for our study and our models.

4.2 Definition of the problem: variables, constraints and objective

A multibeam satellite is particular type of telecommunication satellite that provides ser-

vice to its users thanks to a plurality of relatively narrow beams, a beam being a zone

of significant electromagnetic power on the surface of the Earth for a given radiofre-

quency source. After receiving the signals from a gateway connected to the terrestrial

network, the satellite payload converts in frequency, amplifies, and retransmits the in-

put signals in the different beams through the reflector antennas, as depicted in Fig.

5 where we have 13 beams transmitted by 4 reflector antennas (one per color in the

figure). In the coordinate system presented in 4.1, and with the antenna technology

Fig. 5. Standard architecture of a multibeam satellite system

considered in this work, a beam can be represented as a disk of a certain diameter

and with a certain center on the surface of the Earth. The telecommunication mission

is defined by a finite set S = {1, · · · ,NS} of NS user stations, each station s ∈ S be-

ing characterized by a traffic demand Ts ∈ R
+ in Megabits per second and coordinates

Scoord,s = (Xstations,s,Ystations,s) ∈ R
2. The traffic of a station is considered covered if

the station belongs to at least one disk representation of a beam: this condition is the

connection with our previous work on Euclidean proximity constraints. We denote by

NB the number of beams than can be embarked on the satellite, and by B the set in-

dexing them. When optimizing a beam layout, each beam b ∈ B must be assigned a

beam center (xb,yb) ∈ R
2 and a diameter in a finite set W = {1, · · · ,NW} of possibil-

ities: {W1, · · · ,WNW
} ⊂ R

+. Each beam b ∈ B is transmitted by exactly one of the NR

available satellite reflectors, indexed by R = {1, · · · ,NR}. For antenna feasibility rea-

sons detailed in [2], two beams associated to the same reflector must have sufficiently

separated beam centers, which makes the link with our previous work on Euclidean

separation constraints. The rule adopted in this study is that this separation distance is
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proportional to the mean of two beam diameters, according to a proportionality coeffi-

cient κ ∈ R
+ (physically realistic values varying in [ 3

2
,
√

3]). Finally, the objective is to

maximize the covered traffic ∑s∈{covered stations} Ts.

4.3 NP-hardness of the beam layout optimization

The Circle Covering Problem (CCP) defined as the following decision problem:

Let x1, · · · ,xn ∈ R
2 be n points of the Euclidean plane and let p ∈ N

∗.

Can we find p unit disks D1, · · · ,Dp ⊂ R
2 such that each point is contained by at least

one disk ?

In [12], the authors prove that the Circle Covering Problem (CCP) is NP-complete.

The beam layout decision problem (BLDP) associated to the beam layout optimization

problem defined in the previous paragraph is the following

Let ζ ∈ R
+.

Can the aggregate covered traffic ∑Ts be greater than or equal to ζ under the

constraints of section 4.2 ?

Proposition 3:

CCP can be reduced polynomially to BLDP. The beam layout optimization problem is

therefore NP-hard.

Proof:

Let n and p be two positive integers defining an instance I of CCP. We are looking for

an instance I′ of BLDP polynomially defined from I and such that I true ⇔ I′ true. Let

therefore I′ be defined as follows: NS = n, Ts = 1 for all s ∈ S , ζ = n, NB = p, NR = NB,

κ = 0, NW = 1 and W1 = 2. Finally, for all s ∈ S , the position of the station s in the plane

coincides with the sth point of I. This set of input parameters for I′ disables several con-

straints and the problem becomes: can all the NS stations be covered by NB beams of

radius 1 (no further constraints) ? Thus, the equivalency with I is clear.

⊓⊔

4.4 Mixed Integer Linear Programming model

Relying fully on the principles of section 2 allows to reach the following MILP model:



14 J. Camino, C. Artigues, L. Houssin, S. Mourgues

Maximize ∑
(s,b)∈S×B

Ts αs,b (25)

under the following constraints

∀s ∈ S , ∑
b∈B

αs,b ≤ 1 (26)

∀b ∈ B , ∑
w∈W

ωb,w = 1 (27)

∀b ∈ B , ∑
r∈R

ρb,r = 1 (28)

∀s ∈ S ,∀b ∈ B ,∀u ∈ U,

(

xb −Xstations,s

yb −Ystations,s

)T (
Uu,x

Uu,y

)

≤ 1

2
cos(θmax) ∑

w∈W

Wwωb,w +(1−αs,b)Ms (29)

∀b,b′ ∈ B such that b′ > b,∀r ∈ R , βb,b′ +ρb,r +ρb′,r ≤ 2 (30)

∀b,b′ ∈ B such that b′ > b, βb,b′ + ∑
u∈U

γb,b′,u ≥ 1 (31)

∀b,b′ ∈ B such that b′ > b,∀u ∈ U,

(

xb′ − xb

yb′ − yb

)T (
Uu,x

Uu,y

)

≥ κ

2

(

∑
w∈W

Wwωb,w + ∑
w∈W

Wwωb′,w

)

−N(1− γb,b′,u) (32)

Variables: αs,b,ωb,w,ρb,r,βb,b′ ,γb,b′,u ∈ {0,1}, xb,yb ∈ R

For each beam b∈ B , we introduce beam center variables (xb,yb)∈R
2, beam diameter,

satellite reflector and station allocation variables (respectively ωb,w,ρb,r,αs,b ∈ {0,1}
for all w ∈ W ,r ∈ R ,s ∈ S ) and corresponding “at most one” and “exactly one” con-

straints: (26), (27) and (28). They help write linearly the objective (25): traffic covered

maximization. The proximity constraint that says that a station must be inside the disk

of a beam to be covered by it is expressed in (29) thanks to Proposition 1 (approximation

by P ′). Ms ∈ R
+ (precisely tuned) relaxes the constraints when b ∈ B does not cover

s ∈ S (αs,b = 0). Constraints (30) force the βb,b′ ∈ {0,1} variables to be equal to 0 if

b,b′ ∈B (b 6= b′) use the same reflector. The antenna separation constraints are activated

in that case, first through constraints (31) that force at least one γb,b′,u ∈ {0,1} (u ∈ U)

to be equal to 1: this is the materialization of the existential quantifier of Proposition

2. Constraints (32) operate the separation according to Proposition 2 and coefficient κ
when γb,b′,u = 1 (approximation by P ). They are relaxed by N ∈ R

+ when γb,b′,u = 0.

5 Experiments

The experiments were conducted on instances consisting of NS ∈ {100,200,300} user

stations of fixed position, with the traffic demand distribution Ts being generated ran-
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domly: each draw defines an instance. The number of beams NB ∈ {10,20,30} grows

with NS. The number of reflectors has been set to NR = 4, the number of diameters to

NW = 2 (W1 = 0.3◦ and W2 = 0.5◦), κ =
√

3. We tested different values of ndirections to

assess its impact on the numerical complexity: 10 instances were generated per num-

ber of user stations NS considered, the resulting 30 instances being all tested on the

numbers of discretized directions ndirections in the set J3;50K. The MILP solver used is

Gurobi with a timeout per instance set to 180 seconds. Some other minor industrial

constraints were integrated to the model but we chose not to discuss them here. The

results are given in Fig. 6(a) in the form of relative gaps between best solution found

and best known objective bound for the three types of instances tested. Each point of the

three curves is an average gap value obtained over the 10 instances of the correspond-

ing category of instances. As we could have predicted, the more beams and stations,

the harder the convergence toward the optimal solution, materialized by higher average

gaps in Fig. 6(a). Then, the main observation that can be made from these results is

that, for a too low number of directions (3 ≤ ndirections ≤ 8), the approximation of the

disks by P (separation constraint) and P ′ (proximity constraint) is too rough and does

not allow to reach solutions of good quality. On the other hand, for a too high num-

ber of directions (20 ≤ ndirections ≤ 50), the gain in approximation accuracy becomes

so small that the solution quality improvements, if any, do not compensate the increase

in numerical complexity due to the growing model size: this explains the degradation

of the average gaps in Fig. 6(a) for these values of ndirections. This is a general rule to

keep in mind for applying this Euclidean norm linearization technique. For illustra-
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Fig. 6. (a) Campaign of runs for varying numbers of discretized directions and varying numbers of

user stations (b) Example of instance with 200 user stations solved optimally with 12 discretized

directions

tion purposes, Fig. 6(b) is an example of instance that has been solved optimally with

NS = 200 and NB = 20 (this particular optimum was reached with ndirections = 15). The

user stations are represented by black dots covered by the 20 beams. Each beam color
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corresponds to a different satellite reflector antenna. Note that only one beam uses the

smallest diameter W1, all the others use W2.

6 Conclusion

We introduced a general methodology for linearizing inequality constraints involving

the L2 norm, and validated it on a crucial industrial problem for satellite manufacturers,

for which we have reached significantly improved solutions compared to the existing

hand-crafted ones. The next steps, that are already a work in progess, will consist in im-

proving the current model to remove symmetries and solve bigger instances, for finally

benchmarking the methodology with MINLP solvers.
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