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Abstract. This paper presents an algebra of coloured Petri nets called
the Asynchronous Box Calculus with Data, or abcd for short. abcd al-
lows to model complex systems using a user-friendly and high-level syn-
tax. In particular, parts of the model can be directly programmed in
Python [21], which allows to embed complex computation and data val-
ues within a model. A compiler for abcd is shipped with the toolkit
snakes [16, 18] and abcd has been used for years, which is quickly sur-
veyed. This paper is the first complete and formal presentation of the
language and its semantics. It also presents uses cases of abcd for the
modelling and analysis of various systems.

Keywords: Formal modelling, high-level models, Petri nets semantics.

1 Introduction

The Asynchronous Box Calculus with Data, or abcd for short, is an algebra of
Petri net, i.e., a process algebra with a Petri net semantics [17]. With respect to
the other algebras of the family like the Petri Box Calculus [2,3], abcd is a high-
level modelling language: its semantics is based on high-level Python-coloured
Petri nets, that can be composed and transformed using various operations like
the terms of a process algebra. With respect to other members of the family,
abcd is asynchronous, i.e., does not have the transition synchronisation opera-
tion à la CCS; however, it could be added easily if needed. An important aspect
of abcd is that it uses Python as a concrete programming language to provide
data, expressions and computation. The syntax of abcd is inspired from that
of Python but separated even if it actually embeds the fragment for expressions
(Python expressions may be used in abcd). A compiler is distributed within the
snakes toolkit [16,18] and allows to build a Petri net from abcd source code.

This paper provides the first complete and formal definition of abcd, i.e., its
syntax and semantics. Only informal introductions though examples had been
published so far, the most complete of which being [17, pages 30–33]. Other
contributions of this paper are: a definition of Python-coloured Petri nets with
read/fill/flush-arcs, a presentation of the abcd compiler and simulator, and a
short survey of abcd use cases for research and teaching to showcase its usability.

The next section presents the syntax of abcd together with its intuitive se-
mantics. The formal semantics is defined in section 3 as a translation of abcd
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terms into Petri nets. Section 5 describes the compiler and the interactive simu-
lator. Section 4 presents existing applications of abcd. Finally, the paper ends
on a conclusion with perspectives. This paper assumes no particular knowledge
about Python, however, a good Python tutorial is available online [20].

2 Modelling with ABCD

Figure 1 shows an abcd model of the dining philosophers problem with four
philosophers. We use it to introduce the main concepts of ABCD. Line 1, a
buffer called forks is declared, it is a typed container that will initially hold
the four integers 0 to 3 (whose type is int in Python), each of which models a
fork identifier. Line 3–4, a sub-process called philo is declared. It is parametrised
by the two values of the left and right fork that a particular philosopher has
to use. Line 4 is the process expression for a philosopher that consists of three
atomic actions enclosed between square brackets and connected with control-flow
operators. The first atomic action is “[forks-(left), forks-(right)]” and specifies
that value left is consumed (thus the “-”) from buffer forks and, at the same
time, value right is also consumed in the same buffer. This atomic action is
composed sequentially (operator “;”) with another atomic action that produces
(thus the “+”) the two same values into the same buffer. Then, the sequence
itself is composed in a loop (operator “∗”) with atomic action “[False]”, which
means that the sequence can be arbitrarily repeated until “[False]” is executed
to finish the loop (and here the whole process). However, “[False]” is an atomic
actions that can never be executed so we actually have an infinite loop. Finally,
Line 6 defines the main process of the model that composes in parallel (operator
“|”) four instances of sub-process philo with parameters chosen to arrange the
philosophers on a circle.

More generally, an abcd model consists of a process description comprising
optional declarations (in particular sub-processes and resources) and a main
process expression. Sub-process can themselves include declarations that are local
to them, i.e., cannot be used from outside the sub-process. The full grammar of
abcd is given in Figure 2 and is commented in the rest of the section.

1 buffer forks : int = 0, 1, 2, 3
2

3 net philo ( left , right ):
4 ([ forks-( left ), forks-(right )] ; [ forks+( left ), forks+(right )]) ∗ [False]
5

6 philo(0, 1) | philo(1, 2) | philo(2, 3) | philo(3, 0)

Fig. 1. A model of four dining philosophers where a generic philosopher is specified as
a parametrised sub-process.
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〈spec〉 ::= 〈global〉 〈spec〉 global declaration
| 〈local〉 〈spec〉 local declaration
| 〈proc〉 process

〈global〉 ::= import stmt Python import statement
| symbol name {"," name} symbols declaration
| typedef name ":" 〈type〉 type declaration
| const name "=" expr constant declaration

〈local〉 ::= buffer name ":" 〈type〉 "=" expr buffer declaration
| net name "(" 〈params〉? "):" 〈sub〉 sub-process declaration

〈sub〉 ::= 〈local〉 〈sub〉 local declarations
| 〈proc〉 behaviour specification

〈type〉 ::= name native Python type
| 〈type〉 "&" 〈type〉 intersection
| 〈type〉 "|" 〈type〉 union
| 〈type〉 "*" 〈type〉 cross-product
| enum "(" expr {"," expr} ")" enumerated type
| 〈cont〉 "(" 〈type〉 {"," 〈type〉} ")" container type

〈cont〉 ::= name "(" 〈type〉 ")" collection type
| "dict(" 〈type〉 "," 〈type〉 ")" dictionary type

〈params〉 ::= name {"," 〈params〉} value parameter
| name ":" buffer {"," 〈params〉} buffer parameter

〈proc〉 ::= 〈proc〉 "|" 〈proc〉 parallel composition
| 〈proc〉 ";" 〈proc〉 sequential composition
| 〈proc〉 "+" 〈proc〉 choice composition
| 〈proc〉 "*" 〈proc〉 iteration
| "(" 〈proc〉 ")" nested process
| name "(" 〈args〉? ")" anonymous net instance
| name "::" name "(" 〈args〉? ")" named net instance
| "[True]" always possible action
| "[False]" always blocking action
| "[" 〈access〉 {"," 〈access〉} "]" unconditional action
| "[" 〈access〉 {"," 〈access〉} if expr "]" conditional action

〈access〉 ::= name "+(" expr ")" production
| name "-(" expr ")" consumption
| name "?(" expr ")" test
| name "<>(" expr "=" expr ")" swap
| name ">>(" name ")" flush
| name "<<(" expr ")" fill

〈args〉 ::= expr {"," 〈args〉} arguments

Fig. 2. The syntax of abcd, where: 〈· · ·〉 denotes non-terminals, denotes a newline;
import stmt is a Python import statement; bold face denotes keywords; name is an
arbitrary Python name (i.e., an identifier); expr is an arbitrary Python expression;
"..." denotes literals; {· · ·} denotes parts that can be repeated zero or more times;
. . .? denotes parts that can be omitted; denotes a newline followed by an indented
block; denotes a newline at the end of an indented block.
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2.1 Global Declarations

These are declarations that are only allowed at the top level of the specification,
i.e., not within a sub-process.

A Python import statement [20, sec. 6] allows to make visible names defined
in an external Python module. For instance, using “import math” allows to use
function “math.factorial” in expressions; statement “from math import ∗” gives a
direct access to function “factorial” and others, without the prefix “math.”.

Defining symbols is a way to create unique named values in a model. For
instance,“symbol OPEN, CLOSE”defines names“OPEN”and“CLOSE”that have
opaque values, distinct from every other existing values.

It is also possible to define new types, i.e., give a name to a type, using the
“typedef” declaration. Types in abcd are sets of values and can be specified us-
ing a rich type algebra, see 〈type〉 in the grammar. Basically, a type is a Python
class, for instance “int” or “str”, and corresponds to the set of all the objects of
this class. Two classes are worth mentioning: “object” is Python’s universal class,
i.e., any value an “object” instance; “BlackToken” is a class with a single value
“dot”that implements the Petri nets black token. Building more complex types is
possible using union, intersection and cross-product of types; two more construc-
tions deserve explanation. Enumerated types are defined as sets of values, for
instance “enum(1, 2, "hello")” defines a type with only the three enumerated
values. Container types are Python collections whose content is constrained, for
instance “tuple(int)” denotes the set of tuples of integers; “list” and “set” are the
two other supported simple containers. Finally, Python dictionaries (i.e., map-
pings) are also supported containers, for instance “dict(int, str)” denotes the set
of dictionaries whose keys are integers and values are strings.

Other global declarations are constants. For instance, “const foo = 42” de-
fines the name “foo” whose value is 42. Contrasting with symbols, constants
have known values that can be exploited in the model, for instance, “foo+2” is
a correct expression when “foo” has been declared as above.

2.2 Buffers

Resources in abcd are stored in buffers, i.e., unbounded and unordered data
containers that can be accessed from the process that declares the buffer as well
as from any of its sub-processes. In the semantics, they correspond to (coloured)
places. A buffer is declared using keyword buffer and is given:

– a name that is an identifier that will be used in process expressions to access
the buffer;

– a type that restricts the values allowed in the buffer;
– an initial content given as an expression that is interpreted as a series of

values initially stored in by the buffer.

The following abcd code shows the declarations of two buffers:

1 buffer foo : int = ()
2 buffer bar : str = "hello", "world"
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The first line declares a buffer named “foo”, whose type is “int” the set of integers
and whose initial content is empty since “()” denotes the empty tuple in Python.
The second line declares a buffer named“bar”whose type is“str”the set of strings
and that initially contains the two strings "hello" and "world".

2.3 Sub-Processes

An important feature of abcd is to provide parametrised sub-process that can be
instantiated later on. A sub-process is declared using keyword“net” followed by a
name and a list of parameters. For instance “net sub (a, b): ” introduces a sub-
process called sub that is parametrised by two values “a” and “b”. If a parameter
needs to be a buffer, this must be explicit, like in“net sub (a, b: buffer): ”where
“b” is now a buffer parameter. The specification of a sub-process is given in an
indented block after the first line, it comprises local declarations and a process
expression that specifies the behaviour. We will see later on how sub-processes
are instantiated within a process expression.

2.4 Process Expressions

These specify the behaviour of a (sub-)process. The most basic behaviours are
atomic actions and are enclosed in square brackets “[· · ·]”. In the semantics,
atomic actions correspond to Petri nets transitions. The simplest ones are“[True]”
that can always be executed and has no effect on buffers, and “[False]” that can
never be executed and is always blocking. We have seen and example using
“[False]” above and will see one with “[True]” later on.

More complex actions are formed as lists of buffer accesses and an optional
execution condition. Each buffer access is given as a buffer name, a symbol to
specify the access type and an expression to specify the data accessed. For in-
stance, “buf+(2∗n)” specifies that the atomic action, when executed, creates in
buffer “buf” a value that is the result of evaluation expression “2∗n”. “buf-(x)”
allows to consume from the buffer a value that is bound to variable “x”. An
actual value may be used instead of variable “x” to consume a known value.
It is also possible to use patterns, like in “buf-(x,y,0)” that consumes a triple
whose first and second elements are bound to x and y respectively and whose
third element must be 0. Currently, patterns may only be nested tuples, allow-
ing to decompose the consumed values. Note that it is not possible to specify
an arbitrary expression to be consumed because this would require to solve an
arbitrary equation, which is not possible in general. Two other access types are:
test “?” that behaves like consumption except that is does not actually consume
the value; and swap that is a shorthand for consumption plus production, for
instance, “buf<>(x=x+1)” can be replaced by “buf-(x), buf+(x+1)”.

Then come two accesses handling multiple tokens. First, the flush “buf>>(v)”
empties buffer “buf” and binds the multiset of its content to variable “v”. Note
that this is possible even if the buffer is empty in which case “v” is bound to
the empty multiset, this gives a possible implementation of a test for zero using
“[. . ., buf>>(v) if not v]” where “v” used as a Boolean expression is true if and
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only if it is not empty. Next, the fill operation produces values into a buffer:
using “buf<<(expr)”, expression “expr” is evaluated and iterated over as a col-
lection so that each of its value is added to “buf”. (Note that this does not
overwrite existing values in the buffer, it just adds new content.) For instance,
one may increment all the values within a buffer using a single atomic action:
“[buf>>(v), buf<<(x+1 for x in v)]” where expression “x+1 for x in v” is a Python
comprehension [20, sec. 5.1.4].

A guard may be specified at the end of an atomic action, using keyword
“if” followed by an expression. This allows the execution only if the expression
evaluates to true. The scope of the variables used within an action is limited to
this action. Variables are bound thanks to buffer accesses that consume or test
values in buffers (i.e., “-”, “?”, “>>” and the left-hand side of “<>”), free variables
in other accesses and in the guard are forbidden.

Actions can be composed using four control-flow operators and parentheses:
“;” is the sequential composition allowing to execute first its left-hand side pro-
cess and then its right-hand side process; “|” is the parallel composition allowing
to execute two processes concurrently; “+” is the choice composition allowing to
execute only one of the two processes it composes; “*” is the iteration allowing
to execute repeatedly its left-hand side process (including zero times) followed
by exactly one execution of its right-hand side process. Action “[False]” is of-
ten used at the right-hand side of an iteration to create an infinite loop, like in
“[buf-(x), buf-(y), buf+(x) if y % x == 0] ∗ [False]” which implements a sieve of
Eratosthenes.

Finally, a process may also include instances of previously declared sub-
processes (i.e., nets). A term composed of the net name followed by a list of
effective arguments is replaced by the whole sub-process in which all the param-
eters have been substituted by the arguments. Such an instance may be named to
simplify the access to its places in the Petri net semantics. Imagine for example a
buffer “mybuf” declared inside a sub-process “mynet” parametrised by three val-
ues, when building instance “mynet(1,2,3)”, the resulting copy of “mybuf” is nor-
mally called “mynet(1,2,3).mybuff”. By using a named instance, one can simplify
this, for example, instance “foo::mynet(1,2,3)” gives rise to buffer “foo.mybuff”
and a place with the same name in the Petri net semantics.

Note that within a process expression, spaces and newlines are not significant,
only indentation must be respected. And within a process nested in parenthe-
ses, even indentation is not significant anymore. This allows to choose clearer
presentation for process expressions, as for instance in the example of Section 4.1.

3 Petri Net Semantics of ABCD

We define now the Petri nets semantics of abcd, and first the variant of Petri
nets we use: an algebra of Python-coloured Petri nets extended with read/fill/
flush-arcs, and supporting control-flow compositions. This class of Petri nets
corresponds to Petri nets with control-flow as defined in [17, sec. 2.1 to 2.3] in
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which the originally abstract colour domain has been concretized as the Python
language, and with an extension to support read/fill/flush-arcs.

3.1 Python-Coloured Petri Nets

A Python-coloured Petri net (pcpn) involves values, variables and expressions.
These objects are defined by the Python programming language and, because
we do not want to defined them here, abstracted away as follows:

– D is the set of data values, i.e., all the possible Python objects, including
“dot” that implements “•”;

– D⊥
df
= D ] {⊥} is the set of data enriched with a special “undefined” value;

– V is the set of variables, i.e., all the possible Python identifiers;
– E is the set of expressions, involving values, variables and appropriate oper-

ators according the syntax of Python. Let e ∈ E, we denote by vars(e) the
set of variables from V involved in e. Moreover, variables or values are valid
(simple) expressions, i.e., we have D ∪ V ⊂ E.

We make no assumption about the typing or syntactical correctness of values
or expressions. Instead, we assume that any expression can be evaluated, possibly
to ⊥ (undefined). More precisely, a binding is a partial function β : V→ D. Let
e ∈ E and β be a binding, we denote by β(e) the evaluation of e under β. For
instance, if β1

df
= {x 7→ 1, y 7→ 2}, we have β1(x + y) = 3. With β2

df
= {x 7→

1, y 7→ "2"}, Python raises an exception upon evaluation, which corresponds
in our setting to β2(x + y) = ⊥; similarly, if the domain of β does not include
vars(e) then β(e)

df
= ⊥. The application of a binding to evaluate an expression is

naturally extended to sets and multisets of expressions.
In the following, given a set X, we denote by X? the set of multisets over X.

We use the standard notations for mutisets, + for sum, − for difference, ≤ for
inclusion, etc., as well as an extended set notation {· · ·}.

Definition 1 (Python-Coloured Petri Nets). A Python-coloured Petri net
(pcpn) is a tuple (S, T, `, α) where:

– S is the finite set of places;
– T , disjoint from S, is the finite set of transitions;
– ` is a labelling function such that:
• for all s ∈ S, `(s) ⊆ D is the type of s, i.e., the set of values that s is

allowed to carry,
• for all t ∈ T , `(t) ∈ E is the guard of t, i.e., a condition for its execution,
• for all (x, y) ∈ (S × T ) ∪ (T × S), `(x, y) ∈ E? is the arc from x to y.

Arcs from S × T (resp. T ×S) are called input arcs (resp. output arcs);
– α is the arc type function that associates to each arc in (S × T )∪ (T ×S) a

function D?×D? → D⊥
? that takes the marking of a place plus the evaluation

of an arc annotation and returns the actual multiset of consumed or produced
tokens. In particular we shall use four functions:
• α=

df
= (m, a 7→ a) for a regular arc;
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• α?
df
= (m, a 7→ ∅ if a ≤ m else {⊥}) for a read arc;

• α>>
df
= (m, a 7→ a if a = m else {⊥}) for a flush arc;

• α<<
df
= (m, a 7→

∑
x∈a iter(x)) for a fill arc, where iter is a function that

builds a multiset from the elements in collection x (set, list, . . . ). �

As usual, Petri nets are depicted as graphs in which places are round nodes,
transitions are square nodes, and arcs are directed edges with arrow tips depend-
ing on the arc types: for regular, for read, for flush (input arcs) or fill
(output arc). Empty arcs, i.e., arcs such that `(x, y) = ∅, are not depicted.

Definition 2 (Markings and Firing). Let N
df
= (S, T, `, α) be a pcpn. A

marking M of N is a function on S that maps each place s to a finite multiset
over `(s) representing the tokens in s. A transition t ∈ T is enabled at a marking
M and a binding β, which is denoted by M [t, β〉, iff the following conditions hold:

– M has enough tokens, i.e., for all s ∈ S, α(s, t)(M(s), β(`(s, t))) ≤M(s);
– the guard is satisfied, i.e., β(`(t)) = True;
– place types are respected, i.e., for all s ∈ S, α(t, s)(M(s), β(`(t, s))) is a

multiset over `(s).

If t ∈ T is enabled at marking M and binding β, then t may fire and yield a
marking M ′ defined for all s ∈ S as M ′(s)

df
= M(s)− α(s, t)(M(s), β(`(s, t))) +

α(t, s)(M(s), β(`(t, s))). This is denoted by M [t, β〉M ′. �

We may observe how the various arc types are implemented:

– α= always returns the evaluation of the arc β(`(s, t)) or β(`(t, s)) so we fall
back to the definition given in [17, def. 1];

– on an input arc, α? requires that the tokens from β(`(s, t)) are actually in
the marking of s but then it returns ∅ so no token is consumed. But if some
tokens are not in the place, returning {⊥} forbids the firing because ⊥ /∈ `(s)
by definition. Returning ∅ unconditionally would not work because it would
be like removing the arc;

– on an input arc also, α>> forces to find β such that β(`(s, t)) = M(s) so
that all the marking is consumed;

– finally, on an output arcs, α<< transforms a collection of multisets (or other
collection types) into the sum of these multisets which is how fill arcs are
expected to behave.

3.2 Petri Nets Compositions

To implement control-flow operations, pcpn are equipped with control-flow op-
erations adapted from the Petri Box Calculus [2] and Petri Net Algebra [3]. We
refer to [17, sec 2.3] for a complete definition and give here a summary.

First, places of a pcpn are separated into control-flow and data places. To
do so, pcpn are equipped with an additional labelling function σ that returns
for each place its status which may be for control-flow places: e for an entry
place that is marked when the pcpn starts its execution; x for an exit place



abcd: a User-Friendly Language for Formal Modelling 9

sequence #

e

]1

i

]2

x

choice �

e

]1 ]2

x

iteration ~

e ]1

]2

x

parallel ‖

e

]1

x

e

]2

x

Fig. 3. The four operator nets. [17, fig 3 in sec 2.3]

that is marked when the pcpn has finished its execution; i for an internal place
when the pcpn is in an intermediary state. For data places, status may be ε for
an anonymous data place or an arbitrary label name /∈ {e, i, x, ε} for a named
data place. Control-flow places must have type {•} and data places may have
arbitrary types.

Then, control-flow operations are defined from the operator nets shown in
Figure 3. Intuitively, each transition ]i in an operator net is to be replaced with
the i-th operand net of the specified operation. To do so, we consider in turn
each place in the operator net and use its arcs to collect in the operand net
the places to be combined. For instance, take the internal place of the sequence
operator net to compute N1 # N2: it is an output of ]1 so we collect the exit
places of N1; it is also an input place of ]2 so we collect the entry places of N2.
The sets of collected places are then composed using a cross-product and become
internal places in the resulting net because we considered an internal place in
the operator net. The same principle is applied for every place of the operator
net which results in a composition of N1 and N2 whose control-flow places have
been combined to implement the required control-flow. To finish the control-flow
operation, we have to glue together (adding the markings) all the named data
places that have the same name (usually one such place comes from each operand
name), so that each named place is present only once. Anonymous data places
are left untouched because they are considered local to each operand net.

One more operation is needed for our purpose, this is name hiding N/name
that replaces the status of every place named name with ε, making it anonymous
and no more mergeable upon control-flow compositions.

3.3 From ABCD to Petri Nets

The translation of abcd to pcpn is defined through a recursive function net
that takes two arguments: an environment that is used to collect information
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symbol definition
net(env ,“symbol name1, . . . ,namek tail”)

df
= net(env + {name1 7→ [symbol], . . . ,namek 7→ [symbol]},“tail”)

type definition
net(env ,“typedef name : type tail”)

df
= net(env + {name 7→ [type, type(env , type)]},“tail”)

buffer definition
net(env ,“buffer name : type = expr tail”)

df
= Nbuffer ‖ net(env + {name 7→ [buffer, type(type), expr ]},“tail”)

net definition
net(env ,“net name(par1, . . . , park) : sub tail”)

df
= net(env + {name 7→ [net, sub, par1, . . . , park]},“tail”)

constant definition
net(env ,“const name = expr tail”)

df
= net(env + {name 7→ [const, expr ]},“tail”)

parallel composition

net(env ,“proc1 | proc2”)
df
= net(env ,“proc1”) ‖ net(env ,“proc2”)

sequential composition

net(env ,“proc1 ; proc2”)
df
= net(env ,“proc1”) # net(env ,“proc2”)

choice composition

net(env ,“proc1 + proc2”)
df
= net(env ,“proc1”)� net(env ,“proc2”)

iteration

net(env ,“proc1 ∗ proc2”)
df
= net(env ,“proc1”)~ net(env ,“proc2”)

nested process

net(env ,“(proc)”)
df
= net(env , proc)

always possible action

net(env ,“[True]”)
df
= NTrue

always blocking action

net(env ,“[False]”)
df
= NFalse

unconditional action

net(env ,“[access1, . . . accessk]”)
df
= net(env ,“[access1, . . . accessk if True]”)

conditional action

net(env ,“[access1, . . . accessk if expr ]”)
df
= Naction

anonymous net instance
net(env ,“name(arg1, . . . , argk)”)

df
= net(env ,“Jsub | par1 ← arg1, . . . , park ← argkK”)/buf1/ · · · /bufn
where env(name) = [net, sub, par1, . . . , park]
and buf1 , . . . , bufn are the names of the buffers declared inside net name

named net instance
net(env ,“alias :: name(arg1, . . . , argk)”)

df
= 〈〈net(env ,“name(arg1, . . . , argk)”) | name(arg1, . . . , argk)← alias〉〉

Fig. 4. Translation rules of the pcpn semantics of abcd.
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NTrue

e

True

x

NFalse

e

x

Naction

e

expr

x

buf1

type1

buf2

type2

...

Fig. 5. Base nets for atomic actions.

about abcd declarations encountered so far, and a fragment of abcd source
code that remains to be compiled. The environment is a mapping from declared
names to various information about the corresponding declarations. Look for
instance at the first rule in Figure 4: when a symbol declaration is found, this
is simply recorded in the environment and the translation proceeds with the
rest of the code. Type definition is treated similarly but the value of the type is
recorded also, it is computed using an auxiliary function type. We will not detail
it because it is both straightforward and an implementation detail (interested
readers may look at module snakes.typing that is used for this purpose [16]).
Buffer definition starts to build parts of the resulting Petri net: the net returned
by translating the rest of the code is composed in parallel with a net Nbuffer

that consists of a single data place, whose type, status and marking is exactly
the type, name and initial content of the buffer respectively. When applying the
composition, this will result in merging this place with another empty copy (see
the translations of actions below) in order to initialise the marking. The next six
rules are straightforward.

Then come two rules to build simple actions: “[True]” (resp. “[False]”) is trans-
lated to a net NTrue (resp NFalse) depicted in Figure 5. Then, an unconditional
action is just a conditional action with a true guard. Conditional action itself is
implemented by a simple Petri net Naction as sketched in Figure 5:

– it has one entry place and one exit place, connected by a single transition
whose guard is exactly the guard of the action;

– for each buffer access, there is a data place named and typed as the buffer
(which is known from the environment) to implement the buffer, and an arc
with the appropriate type:
• α= on an input arc for a consumption (“-”),
• α= on an output arc for production (“+”),
• α? on an input arc for a test (“?”),
• α>> on an input arc for a flush (“>>”),
• α<< on an output arc for a fill (“<<”),
• a swap (“<>”) is decomposed into the corresponding pair of consumption

and production;
– multiple regular arcs to (resp. from) the same buffer are merged, i.e., there

annotations is summed. Multiple read arcs and multiple fill arcs are merged
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as well. Multiple arcs with the same direction but of one of the other types
or of mixed types are forbidden. For instance we cannot flush twice a place
nor we can flush it and at the same time consume one token from it.

Finally, net instances are built as follows:

– function net is called recursively on the content sub of the net declaration in
which we substitute each parameter par i with the effective argument arg i,
which is denoted by Jsub | par1 ← arg1, . . . , park ← argkK;

– the data places for all the buffer declared inside the net are hidden so that
they become private to the resulting Petri net and no more mergeable;

– if the net instance is named, its nodes are renamed by replacing the prefix
name(arg1, . . . , argk) with the name alias of the instance, which is denoted
by 〈〈· · · | name(arg1, . . . , argk)← alias〉〉.

Definition 3 (Semantics of ABCD). Given function net as defined above,
the complete semantics of an abcd specification “spec” is the pcpn returned by
net({},“spec”) in which all the entry places are marked with a single “•”. �

Note that we did not include import statement in the semantics because it
does not change the net itself. It is rather an implementation detail and just
consists in making the imported names available in the execution environment
of the Petri net. This is made also for constants and symbols.

4 Applications and Use Cases

This section presents uses of abcd for scientific applications and for teaching.
The first one is detailed to provide a complete example of an actual abcd model.
The next examples will be partly presented due to space limitation, so chosen
fragments will be showed to illustrate particular points we would like to discuss.

4.1 Critical Systems

A model of a railroad crossing system with multiple tracks has been developed
in abcd in order to generate Petri nets for the model-checking contest (mcc)
2012 [11,12]. The purpose of the mcc is to compare model-checkers on a variety
of models with a scaling parameter, i.e., a parameter allowing to tune the size of
the model and of its state space. For the railroad model, the idea was to develop
a model that is generic with respect to the number of tracks, each track being a
net instance. However, as one may have remarked with the dining philosophers
model of Figure 1, abcd has no mechanism to instantiate a number of processes
that depends on a parameter: in the case of the philosophers, we have to explicitly
instantiate a statistically chosen number of nets. In the case of the railroad model,
this was solved using a template engine that allowed to generate abcd source
code for any number of tracks, each such abcd file was then converted to a Petri
net. Below, we show the model for two tracks, it is easy to figure out how this
can be parametrised (actually, only the first and last lines need to be changed).



abcd: a User-Friendly Language for Formal Modelling 13

The model is based on three nets to model respectively: a pair of gates;
generic tracks with a green/red light to control the progression of trains; and
a controller to count the trains and operate the gates. The model starts with
various declarations: number of tracks, values and type for the state of the gates,
then all the global buffers. Note line 5 how a comment is inserted just like in
Python: “#this comment extends until the end of the line ”. Note also
that in source code below, the omitted lines are all blank. Buffer “green” stores
the number of each track that has a green light, so that a red light is modelled
by the absence of the corresponding token. Other buffers are dedicated to the
communication between the components: “enter” receives the track numbers on
which a trains approaches the gates; “leave” receives the track numbers on which
a train leaves the gates; “down” allows to ask the gates to go down; “up” allows
to ask the gates to go up; “done” is used by the gates to notify the controller
that they have finished a command.

1 const NUM = 2
2 symbol OPEN, MOVING, CLOSED
3 typedef gatestate : enum(OPEN, MOVING, CLOSED)
4

5 # green lights on tracks

6 buffer green : int = range(NUM)
7 # tracks -> controller

8 buffer enter : int = ()
9 buffer leave : int = ()

10 # controller -> gates

11 buffer down : BlackToken = ()
12 buffer up : BlackToken = ()
13 # gates -> controller

14 buffer done : gatestate = ()

The gates are modelled with a net that has a private buffer “state” reflecting
the current position of the gates. The associated process is a repeated sequence
of four actions: wait for the request to go down and start proceed it; arrive down
and notify the controller; wait for the request to go up and start proceed it;
arrive up and notify the controller.

16 net gates () :
17 buffer state : gatestate = OPEN
18 ([down-(dot), state<>(OPEN=MOVING)]
19 ; [state<>(MOVING=CLOSED), done+(CLOSED)]
20 ; [up-(dot), state<>(CLOSED=MOVING)]
21 ; [state<>(MOVING=OPEN), done+(OPEN)])
22 ∗ [False]

The model for the tracks has the same structure. A local buffer “crossing”
is marked when a train is crossing the road and a series of actions executed
repeatedly corresponds to the successive steps of the progression of a train:
approach the gates and switch the green light to red; start crossing the road
only on a green light and switch it back to red; leave the crossing zone.
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24 net track (this) :
25 buffer crossing : BlackToken = ()
26 ([enter+(this ), green-(this)]
27 ; [green-(this), crossing+(dot)]
28 ; [crossing-(dot), leave+(this )])
29 ∗ [False]

Then, the model for the controller is composed of one buffer “count” to count
the trains present in the supervised zone, one buffer “waiting” to record on which
track a train is waiting for the green light, and one process that can repeatedly
execute one of four behaviours: detect the first train approaching (“c == 0”
line 34) and ask the gates to go down, then wait until they arrive down and give
the green light to the train that triggered this behaviour; count another train
approaching (line 36) and give it the green light; count a train leaving the zone
while there are still other trains in the zone (“c > 1” line 37); detect that the last
train leaves the zone (“c == 1” line 37), ask the gates to go up and wait until
this order is executed. When a train leaves, the corresponding light is turned
green again so another train is allowed to approach on this track. Without this
mechanism, we could have an accumulation of tokens in buffer “leave”.

31 net controller () :
32 buffer count : int = 0
33 buffer waiting : int = ()
34 (([enter-(num), count<>(c=c+1), down+(dot), waiting+(num) if c == 0]
35 ; [done-(CLOSED), waiting-(num), green+(num)])
36 + [enter-(num), count<>(c=c+1), green+(num) if c > 0]
37 + [leave-(num), green+(num), count<>(c=c−1) if c > 1]
38 + ([leave-(num), green+(num), count<>(c=c−1), up+(dot) if c == 1]
39 ; [done-(OPEN)]))
40 ∗ [False]

The complete system is just a parallel composition of instances of these nets:
one pair of gates, one controller and several tracks.

42 # all components in parallel

43 gates() | controller () | track(0) | track(1)

On the Petri net obtained from this model, safety (1) and liveness (2) LTL
properties may be verified using Neco-spot model-checker [9]:

∀ 0 ≤ i ≤ 1 : G
(
track(i).crossing 6= ∅ ⇒ gates().state = {CLOSED}

)
(1)

G
(
gates().state = {CLOSED} ⇒ F (gates().state = {OPEN})

)
(2)

where G and F are respectively the globally and eventually modalities. Note that
Neco actually requires slight changes to the model presented above because it
does not support dot or parentheses in place names (so buffers “crossing” and
“state” need to be replaced with global buffers), symbols (to be replaced with
constants) nor enumerated types (to be replaced with “int”), see [15].
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4.2 Security Protocols

A massively parallel ctl* model-checker for models of security protocols has
been developed in [10]; a side product of this work has been the actual modelling
of a bunch of security protocols, which has been made using abcd. We show here
two excerpts of a model of the Needham-Schroeder public key protocol [13], it
is not needed to present it to understand our purpose, it is enough to know that
some agents are exchanging encrypted messages in the presence of an attacker.

1 # implementation of a Dolev-Yao attacker

2 from dolev yao import ∗

First, a Python module called “dolev yao” is imported, it contains the defini-
tion of various symbols (“CRYPT”, “PUB”, “PRIV” and “NONCE”) used to make
a symbolic treatment of cryptography (i.e., replace actual computation of cryp-
tographic operations with terms that express it, which is a classical treatment of
cryptography when modelling protocols) as well as a class “Spy” that implements
a Dolev-Yao attacker [8]. Such an attacker has an infinite memory and computa-
tional power, however, it cannot break the cryptography that is assumed perfect.
So it can capture messages exchanged by the other agents, gain knowledge (i.e.,
learn) by decomposing messages, decrypt messages when it has the key to do
so, recompose or encrypt messages, and inject new messages on the network.
Recomposition leads in practice to infinite computation because just one object
may be assembled into sequences of arbitrary sizes. The classical solution to
bound the computation is to restrict compositions of objects to patterns that
actually appear in the protocol: indeed, other sequences are useless to produce
because no other agent in the system would ever use them as a valid message.

Modelling such an attacker is actually not difficult, but it requires to im-
plement the learning actions discussed above, which immediately leads to state
space explosion because we expose in the model all the intermediate steps of a
fixed point computation (i.e., the attacker applies each learning action until it
cannot learn anything new). Instead of this, using abcd, we implement (i.e., pro-
gram) the Dolev-Yao attacker directly in Python and have an efficient execution
of this learning phase on a single transition. So, in the case of the Needham-
Schroeder protocol, we have a simple model of the attacker as follows:

25 net Mallory (this , agents) :
26 buffer knowledge : object = ([this, (NONCE, this), (PRIV, this)]
27 + [(PUB, a) for a in agents]
28 + agents)
29 # Dolev-Yao engine, bound by the protocol signature

30 buffer spy : object = Spy((CRYPT, (PUB, int), int, (NONCE, int)),
31 (CRYPT, (PUB, int), (NONCE, int), (NONCE, int)),
32 (CRYPT, (PUB, int), (NONCE, int)))
33 # capture on message and learn from it

34 ([spy?(s), nw-(m), knowledge>>(k), knowledge<<(s.learn(m, k))]
35 # loose message or inject another one (may be the same)

36 ; ([True] + [spy?(s), knowledge?(x), nw+(x) if s.message(x)]))
37 ∗ [False]
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Buffer “knowledge” stores all the information learnt by the attacker; initially,
this is information about itself, plus the public keys and identities of the other
agents. Buffer “spy” stores an instance of class “Spy” that implements the Dolev-
Yao learning mechanism. This class is instantiated with the signature of the
protocol, that is, the types of all the possible messages, here also presented in
a symbolic way (i.e., as terms). Then, the process executed by the attacker
is always the same for any protocol, it repeatedly execute a sequence of two
behaviours:

– line 34, capture a message on the network “nw-(m)”, learn from it and the
previous knowledge by calling method “Spy.learn”, and enrich the knowledge
with decomposed and recomposed messages;

– line 36, immediately loop with “[True]” which causes a message loss, or inject
a new message on the network using method “Spy.message” to check that a
syntactically correct message is actually injected (anything else would yield
additional states for nothing).

This example illustrates well how in abcd programming and modelling can
nicely complement each other. Not only this is simpler for the modeller, but also
it leads to more efficient verification because it reduces state spaces a lot. Of
course, the programmed part has to be correct but in this case, it is only 100 lines
of simple Python that can be carefully written and scrutinised as well as thor-
oughly tested. In particular, we have verified that known attacks are detected,
which shows that our Dolev-Yao attacker is at least as good as that implemented
by specialised tools like Avispa [1]. On the other hand, when functions of the
system are programmed and model-checking is applied, we can consider that
this code has a good level of certification because it has been intensely exercised
without triggering a bug nor producing an invalid run from the model-checking
point of view. In other word, this code is part of the model and is verified just
like the abcd part.

abcd has been initially developed for the purpose of modelling an industrial
peer-to-peer storage system whose security needed to be assessed [5,19]. The kind
of models we obtain for such a use case is similar to models of security protocols,
the main difference is that we model identical peers instead of distinct partners
with distinct roles. However, additionally to model-checking in the Dolev-Yao
perspective, we have used statistical analysis of large sets of random traces to
assess quantitative properties; in particular, we obtained the number of file loss
with respect to the number of malicious peers connected to the system (a typical
case where the yes/no answer of a model-checker is not enough).

4.3 Teaching Formal Modelling and Verification

The most recurring use of abcd is for teaching: it is used for years at the
university of Évry to teach formal modelling to master students in computer
science. They are presented models like those discussed above and they must
produce such models themselves.
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This experience has shown that abcd is not easier nor harder to understand
by such students than coloured Petri nets. However, when it comes to actually
produce models, students are much more successful and efficient using abcd. In
particular, sub-processes are naturally adopted and the models produced tend
to be clearly structured, contrasting with Petri net models that quickly become
random-looking and completely wrong. Clearly, the similarity of the syntax of
abcd with that of programming languages helps a lot to this respect. The inter-
active simulator is also very much appreciated because it allows an immediate
feedback during the process of modelling.

5 Implementation, Compilation and Simulation

abcd is implemented in snakes [16, 18] as a compiler that takes abcd source
code as its input and has various possible outcomes: pictures, snakes’ vari-
ant of pnml,1 or an interactive simulator that allows to execute a model in a
user-friendly graphical user-interface. A naive reachability model-checker is also
implemented but we will not describe it, and actually we did not describe the
related parts in the syntax, because it is intended to be replaced with something
more general, robust and efficient. The compiler can be invoked from a command
line interface or from a Python program in which case the constructed Petri net
object is returned as an instance of snakes’ PetriNet class.

The compiler is a rather straightforward implementation of the rules pre-
sented in Figure 4, extended with syntactic and semantic constraints checks.

The interactive simulator is an important feature of the abcd compiler, it
is often the main tool invoked by users during the design of a model, just like
a programmer invokes the compiler and make dry runs to exercise programs.
The simulator has been completely reworked recently and is now displayed as
a responsive Web user interface: when simulation is asked from the compiler, a
Web page opens in which all the interaction takes place. Figure 6 show the main
parts of this simulator (hiding a menu with a few auxiliary features):

– at the top is a player that allows to automatically run a chosen number of
actions randomly selected, with a controlled speed;

– in the left column, under the abcd label, the abcd source code is displayed
and enabled actions are highlighted. This is static information that will not
evolve with the execution (apart from the highlighting);

– in the right column, a dynamic tree view of the model allows the user to
observe and control the execution. Because a sub-process may have many
instances, it is necessary to display separately each instance so that it can
be controlled separately and its state (i.e., the content of its buffers) can be
displayed separately. In the example of Figure 6 that shows a simulation of
the specification from Figure 1 (restricted to two philosophers for readabil-
ity), we can see the instances of “net philo”, each with its actions in various
enabling states. For instance, among the two actions of the first instance,

1 Which is not valid pnml in the case of the coloured models obtained from abcd [18].
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philo.abcd powered by Franck
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Fig. 6. A screenshot of (part of) the Web user interface.

only the second one is enabled for only one possible mode that is {} here
because there is no variables;

– finally, at the bottom is the trace executed so far. Using the arrow in the
right-most column, it is possible to navigate into the trace in order to update
the tree view to the state it had just before the corresponding action has been
executed; it is also possible to restart a new trace from this point.

The architecture of the simulator is modular and flexible and it is possible
to adapt it to simulate Petri nets based formalisms others than abcd. For in-
stance, we have developed a similar simulator for models of biological regulatory
networks [6, 7] where the state is a plot of concentration levels of the regulated
products (on the y axe) with respect to time (on the x axe). To do so, it is
necessary to provide some HTML code that provides the presentation of the
model and its state, and some JavaScript code to translate the interactions with
them into appropriate calls to the simulation engine, as well as to implement the
updates requested by the engine.

6 Conclusion

We have presented abcd, a modelling language that is mixing the Python pro-
gramming language and a process algebras. We have defined the Petri nets se-
mantics of abcd, targeting a Python-coloured variant of Petri nets extended
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with read-, flush- and fill-arcs. All this is implemented and freely available with
the toolkit snakes. Use cases of abcd have showed its suitability to qualita-
tive analysis through model-checking as well as to quantitative analysis through
statistics on large sets of traces. abcd is also suitable to teach formal modelling
to master students and is regularly used for this purpose.

Among the numerous languages or notations with a Petri net semantics,
apart from the pbc and pna family of which abcd is a member, essentially one
can be directly related to abcd: the Basic Petri Net Programming Notation,
b(pn)2 [4], is also a process algebra and its semantics is expressed in terms
of coloured Petri nets. Data in b(pn)2 is stored into variables which makes
necessary to distinguish the value of a variable before and after the execution
of an atomic action. So, a variable x is actually used as ′x and x′ within the
Boolean expressions that form the atomic actions. After having taught both
b(pn)2 and abcd, it appears that abcd is easier to understand than b(pn)2

because it is more explicit with respect to data storage through buffer accesses,
the latter being clearly distinguished from the guard when b(pn)2 unifies both
aspects. Finally, b(pn)2 is implemented only in the pep toolkit [14] that is not
maintained anymore.

Future work about abcd will aim at implementing various extensions and
improving its connection with analysis tools.

Considered extensions include: buffer capacities to block actions that would
add (resp. remove) too much tokens to (resp. from) a buffer; arrays of buffers
to declare k identical buffers at the same time, where k is a constant; paramet-
ric composition to compose identical processes depending on a parameter, for
instance to compose the k tracks of the railroad example of Section 4.1 where
k is a constant; dynamic threads of executions like suggested in [17, sec. 4.3] al-
lowing to create dynamic instances of sub-processes with abort/suspend/resume
capabilities and to emulate function calls (including recursive calls); syntax for
raw Petri nets allowing to include arbitrary Petri nets within an abcd model,
which is sometimes useful when control-flow is over-constraining; inhibitor access
to leverage the inhibitor arcs already implemented in snakes. These extensions
will be included in a demand driven fashion: they are identified to be potentially
useful but the actual need for them has not been too crucial so far to trigger the
effort of implementing them.

Two ways are envisaged to improve the usability of abcd for analysis. First,
we would like to ease the invocation of Neco-spot [9] to support direct model-
checking of ltl formulas on abcd models, this will require some work on Neco
itself that currently has a few blocking limitations as explained above. Then,
we are already working on a fast multi-core simulation engine coupled with
automatic execution-related data collection for statistical analysis. Currently,
this is a manual process with an inefficient execution of the traces, and so,
building even simple statistics is quite a tedious process.

Finally, we will continue to model systems using abcd in the context of
research projects as well as for teaching because it has proved to be a good tool
for these purposes.
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