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Abstract
Brain-Computer Interfaces (BCI) try to interpret
brain signals, such as EEG, to issue some com-
mand or to characterize the cognitive states of the
subjects. A strong limitation is that BCI tasks re-
quire a high concentration of the user, de facto
limiting the length of experiment and the size of
the dataset. Furthermore, several BCI paradigms
depend on rare events, as for event-related po-
tentials, also reducing the number of training ex-
amples available. A common strategy in ma-
chine learning when dealing with scarce data is
called data augmentation; new samples are gen-
erated by applying chosen transformations on the
original dataset. In this contribution, we pro-
pose a scheme to adapt data augmentation in
EEG-based BCI with a Riemannian standpoint:
geometrical properties of EEG covariance ma-
trix are taken into account to generate new train-
ing samples. Neural network are good candi-
dates to benefit from such training scheme and
a simple multi-layer perceptron offers good re-
sults. Experimental validation is conducted on
two datasets: an SSVEP experiment with few
training samples in each class and an error po-
tential experiment with unbalanced classes (NER
Kaggle competition).

1. Introduction
Brain Computer Interfaces (BCI) allow human-machine
communication using brain signals, i.e. without involving
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the neuromuscular pathways. In rehabilitation and assistive
technology, it constitutes a promising solution to compen-
sate for motor disabilities. It can also be used to reinforce
conventional human-machine interactions by providing in-
formation not explicitly expressed by the subjects (Mühl
et al., 2014). This contribution focuses on BCI based
on electroencephalography (EEG) to record brain signals.
Some of the neurological phenomenon that are decoded are
Steady State Visually Evoked Potentials (SSVEP) (Capilla
et al., 2011), and event related potential (ERP) (Wolpaw
et al., 2002).

The current state of the art in BCI performances is still fac-
ing challenges that limit their usage. To name but a few,
these challenges are due to (1) the curse of dimensional-
ity resulting from the high dimensional feature space (i.e.
feature space too large compared to the number of trials
available), (2) low signal-to-noise ratio and poor spatial res-
olution of EEG, (3) the inter-session and the inter-subject
variabilities (non-stationarity in the data) , (4) the difficulty
to acquire long and reliable recording from subjects. The
latter is imputable to the high cognitive engagement re-
quired from the subjects to perform correctly the task. In
the case of ERP, the signal of interest (i.e. neurological
phenomenon) is a rare event. The curse of dimensionality
is usually handled by mapping the feature space to a lower
dimensional space. Several dimensionality reduction tech-
niques, such as Principal Component Analysis (PCA), have
been applied to this end (Blankertz et al., 2006). State-
of-the-art methods address the noise corruption and the
poor spatial resolution problems in EEG signals with spa-
tial filters such as Common Spatial Pattern (CSP) (Muller-
Gerking et al., 1999), xDAWN (Rivet et al., 2009), Canon-
ical Correlation Analysis (CCA) (Kalunga et al., 2013).
Most of these filtering methods depend on the estimation of
the signal covariance matrices. Approaches drawing from
non-Euclidean geometry have demonstrated successful re-
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sults, substituting the need of spatial filters and providing
a simple yet effective framework (Congedo et al., 2013).
The main idea is to consider covariance matrices, which are
symmetric positive definite (SPD), in their original space.

For efficient learning in EEG based BCI, as in most ma-
chine learning applications, an important amount of train-
ing data is needed. However the amount of data available
within the BCI community is little (Delorme A., 2015).
Another particularity with BCI is that the inter-subject vari-
ability requires that data used for training come from the
same subject that the testing ones. Because of the above
mentioned difficulties in acquiring long signals from users
and the need to keep the calibration time short, such train-
ing data are usually not available. Moreover, in some BCI
applications the number of trials per class cannot be deter-
mined by the experimental paradigm, resulting in a class
imbalance that disturbs the learning process.

A possible way of solving these problems related to data
scarsity is data augmentation. In this approach, artifi-
cial data are generated by applying a transformation to
the recorded data (Van Dyk & Meng, 2001; Grandvalet,
2000). This technique has been successfully applied on
image classification, when the number of samples in each
class is small. The common practice is to identify a set
of possible transformations that could affect input images,
e.g. rotation, translation, scaling, flipping, brightness ad-
justment, and to randomly applied those transformation to
each training example (Dieleman et al., 2015). In the con-
text of handwritten character recognition, an elastic distor-
tion emulating uncontrolled oscillation of hand muscles is
applied (Simard et al., 2003). Data augmentation works
well when combined with artificial neural network (Duda
et al., 2001; Ciresan et al., 2012; Krizhevsky et al., 2012).
In BCI applications, a similar approach has been used to
reduce calibration time in a motor imagery based BCI sys-
tem (Lotte, 2015). Each recorded trial is segmented and
segments from the original set are randomly selected and
concatenated to form new artificial trials.

In this work a novel data augmentation method based on
non-Euclidean geometry is proposed. Unlike those men-
tioned above, data are not generated in the input space.
Each training trial is represented in the space of SPD ma-
trices by its covariance matrix. The space of SPD matrices,
with the proper structure and inner product, defines a Rie-
mannian manifold. The augmented data lives on the man-
ifold and within the convex hull defined by their class set.
As a result, the convex hull of the class is densified with
transformed versions of the original data. The augmented
data are fed to a classifier, here we consider a multi-layer
perceptron. This method is evaluated on two experimental
datasets. The first one is a SSVEP-based BCI where only a
limited number of training example are available. The sec-

ond one is an error detection application of ERP-based BCI
to generate artificial trials to balance the number of positive
and negative trials. In the error related potential (ErrP) ap-
plication paradigm, the number of trials with and without
ErrP variable and not controlled. In the following, the pro-
posed approach for training set augmentation is presented
in Section 2. Data and results are presented in Sections 3
and 4, and a conclusion is drawn in Section 5.

2. Data augmentation on covariance matrices
This section presents the proposed approach of augment-
ing training data examples from their covariance matrices
using Riemannian geometry. It is divided into three parts.
First, it introduces the basics of Riemannian geometry as
applied in the field of brain computer interface and consid-
ering only notions relevant to the current work. Then, a
second part details the specific construction of covariance
matrices used in this work. Following those definitions, a
third part presents the proposed method to generate artifi-
cial data.

2.1. Riemannian geometry tools

Let xn ∈ RC , n = 1, . . . , N , denotes a sample of a mul-
tichannel EEG trial recorded on C electrodes. N is the
trial length. Let X ∈ RC×N be the EEG trial such as
X = [x1, . . . , xN ]. Under the hypothesis that all N sam-
ples xn are randomly drawn from a distribution, it fol-
lows that X is a variable of random vectors and its ex-
pected vector is ω = E{X} (Fukunaga, 1990). The co-
variance matrix of the random vector X is defined by
S = E{(X − ω)(X − ω)ᵀ}. Let Σ be an estimate of co-
variance matrix S. Σ belongs to the setMC of the C × C
symmetric positive definite matrices, which is defined as:

MC = {Σ ∈ RC×C : Σ = Σᵀ and

uᵀΣu > 0,∀u ∈ RC\0} .

A geodesic γ is a smooth curve between two points, Σ1

and Σ2 on the manifold. The tangent space TΣM at point
Σ is the vector space spanned by the tangent vectors of all
geodesics onM passing through Σ. This additional struc-
ture defines a manifold over the set of SPD matrices. A
Riemannian manifold is a manifold endowed with an in-
ner product defined on every tangent space, which varies
smoothly from point to point. The tangent space TΣMC at
point Σ is identified to be the set of symmetric matrices:

SC =
{

Θ ∈ RC×C : Θ = Θᵀ
}
.

The mapping from a point Θi of the tangent space at
point Σ to the manifold is called the exponential mapping
ExpΣ(Θi): TΣMC →MC and is defined as:

ExpΣ(Θi) = Σ
1
2 Exp(Σ−

1
2 ΘiΣ

− 1
2 )Σ

1
2 . (1)
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Its inverse mapping, from the manifold to the tangent space
is the logarithmic mapping LogΣ(Σi): MC → TΣMC

and is defined as:

LogΣ(Σi) = Σ
1
2 Log(Σ−

1
2 ΣiΣ

− 1
2 )Σ

1
2 . (2)

Details on the computation of the mappings can be found
in (Bhatia, 2009).

The tangent vector of the geodesic γ between Σ1 and Σ2 is
defined as:

v =
−−−→
Σ1Σ2 = LogΣ1

(Σ2) . (3)

A Riemannian distance between Σ1 and Σ2 can thus be
defined as (Bhatia, 2009):

δ(Σ1,Σ2) = ‖Log(Σ−1
1 Σ2)‖F =

[
C∑

c=1

log2 λc

]1/2

, (4)

where λc, c = 1, . . . , C, are the eigenvalues of Σ−1
1 Σ2.

From Eq. (4), the mean of I points Σi on the manifold,
i = 1, . . . , I , can be defined as the point that minimizes the
sum of squared distances to all Σi:

Σ̄ = arg min
Σ∈MC

I∑
i=1

δ2(Σi,Σ) . (5)

Contrary to the arithmetic mean, this geometric mean has
no closed form for I > 2 and can be computed iteratively
with a gradient descent (Fletcher et al., 2004).

In the following, features w ∈ RC(C+1)/2 are obtained
projecting matrices on the tangent space at their mean
Σ̄ (Barachant et al., 2013b):

Θi = Σ̄−
1
2 LogΣ̄(Σi)Σ̄

− 1
2 = Log(Σ̄−

1
2 ΣiΣ̄

− 1
2 ) , (6)

and then extracting the upper triangular part of a symmetric
matrix Θi and vectorizing it (applying

√
2 weight for out-

of-diagonal elements).

2.2. Covariance matrices for SSVEP and ERP signals

Covariance matrices are constructed such that they contain
discriminative information for either SSVEP or ERP. The
approach used was introduced in (Congedo et al., 2013).
The covariance matrices are estimated from a modified ver-
sion of the input signal X .

For SSVEP, with F stimuli frequencies, the input signal is
modified as:

X ∈ RC×N →

Xfreq1
...

XfreqF

 ∈ RFC×N , (7)

The resulting signal is a concatenation of signals Xfreqf
obtained by filtering X around various stimuli frequencies
freqf , f = 1, . . . , F . The covariance matrix Σ̂ estimated
from such modified signal is of size (F × C)2. It is a mul-
ticlass classification with K = F + 1 classes: one class per
stimulus and one resting state class.

For ERP paradigm with a number E of different ERPs, the
modified signal is the concatenation of the original signal
and the grand averages of trials containing the target ERPs
X̄e, e = 1, . . . , E:

X ∈ RC×N →


X̄1

...
X̄E

X

 ∈ R(E+1)C×N , (8)

The resulting covariance matrix will be of size ((E + 1)×
C)2. Adding a non-target class, it is a multiclass classifica-
tion with K = E + 1 classes.

The covariance matrices are estimated from the modified
input signals using Schäfer shrinkage covariance matrix es-
timator (Schäfer & Strimmer, 2005).

From J labelled training trials {Xi}Jj=1 recorded per sub-
ject, k = 1, . . . , dK centers of classes Σ̄(k) are estimated
using Algorithm 1 of (Kalunga et al., 2015). Finally, fea-
ture wi is extracted using (6) with the mean Σ̄ computed on
all available data. Using a Riemannian kernel, projecting
matrices on the global mean of all data is equivalent to first
whitening the covariance matrices of the dataset and then
using the identity matrix as reference for projecting on the
tangent space (Barachant et al., 2013b; Yger & Sugiyama,
2015).

2.3. Generating artificial points on Riemannian
manifold

Each trial’s covariance matrix being represented as a point
on the manifold, artificial trials are generated by interpolat-
ing new points between original trials’ covariance matrices
belonging to one class. This interpolation is done on the
geodesic connecting each pair of original trials such that
the generated point remains on the manifold and within the
convex hull of the set of the class original data. This ap-
proach is similar to tensor linear interpolation introduced
in (Pennec et al., 2006). Given the definition of the tan-
gent vector

−−−→
Σ1Σ2 between Σ1 and Σ2 in (3), the geodesic

γ on the manifold can be obtained by the exponential map-
ping of

−−−→
Σ1Σ2 defined in (1) as: γ = ExpΣ1

(LogΣ1
(Σ2)).

Defining t ∈ [0; 1], points lying on the geodesic are defined
by:

Σ(t) = ExpΣ1
(t LogΣ1

(Σ2))

= Σ
1
2
1 (Σ

− 1
2

1 Σ2Σ
− 1

2
1 )tΣ

1
2
1

(9)
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with Σ1 = Σ(0) and Σ2 = Σ(1). Remark that the in-
terpolation (9) is equivalent to (1 − t)Σ1 + tΣ2 in Eu-
clidean space. One can note that this interpolation avoid
the “swelling effect” afflicting Euclidean interpolation, i.e.
the determinant of Σ(t) can be significantly larger than de-
terminants of Σ1 or Σ2. Artificial points for data augmen-
tation are obtained between original points by setting t in
(9) to any value other than 0 and 1. In our experiments,
interpolated matrices between each pair Σ1,Σ2 are linearly
spaced on the geodesic between 0 and 1, and all possible
pairs are considered.

Outliers in the pool of original data covariance matrices can
distort the convex hull of classes, resulting in misclassifi-
cation of new trials. To alleviate these effects, outliers are
rejected from the original data before the generation of ar-
tificial data using an offline Riemannian potato (Barachant
et al., 2013a). The Riemannian mean of matrices belonging
to one class is used as the center of the Riemannian potato
for that class. For each class, all matrices beyond the z-
score of 1 from the class center are rejected. This value has
been chosen after careful cross-validation.

2.4. Classification

To evaluate the benefit of applying the proposed data aug-
mentation method, three classifiers are considered: a multi-
layer perceptron (MLP) neural network (Duda et al., 2001)
which is used on original data and then on augmented
data, a tangent space linear discriminant analysis (TSLDA)
(Barachant et al., 2012) and a Riemannian-kernel support
vector machine (RK-SVM) (Yger, 2013). The choice for
a MLP is motivated by the fact that neural networks are
known to be sensitive to the amount and diversity of exam-
ples of data they are presented with (Ciresan et al., 2012;
Krizhevsky et al., 2012). On the other hand, RK-SVM and
TSLDA are versions of SVM and LDA adapted to data ly-
ing on a Riemannian space. They are arguably the state-of-
the-art concerning EEG covariance classification in tangent
space (Barachant et al., 2012; 2013b). These 3 classifica-
tion methods are offline since the feature extraction (6) re-
quires the projection on the global mean. However, online
extensions are possible (Barachant et al., 2013b; Kalunga
et al., 2015).

3. Experimental data description
The assessment of the proposed data augmentation method
is conducted on two datasets. The first one is a SSVEP-
based experiment, with a few number of sample for each
class. The second dataset is an error-related potential de-
tection, where the number of positive examples (the error
potential) is smaller than the number of negative examples,
that is a problem with unbalanced classes.

3.1. SSVEP dataset

This dataset was recorded during an SSVEP-based BCI
experiment (Kalunga et al., 2014). EEG are recorded on
C = 8 channels from 12 subjects. The subjects are pre-
sented with F = 3 visual target stimuli blinking respec-
tively at 13, 17 and 21Hz. When a subject set his gaze at
specific stimulus, the neuronal activity in the primary vi-
sual cortex are expected to be synchronize at the stimulus
frequency. It is this synchronization that should be iden-
tified by classification algorithms. It is a K = 4 classes
setup combining F = 3 stimulus classes and one resting
class (no-SSVEP). In a session, 32 trials are recorded: 8
for each visual stimulus and 8 for the resting class. The
number of sessions recorded for training varies from 1 to 4
i.e. the size of training set for a subject varies between 32
and 128 trials equally distributed across 4 classes. A ses-
sion is recorded within 5 min. Calibration time is short, and
the number of training trials is limited, making this dataset
a good candidate for training set augmentation.

3.2. ERP dataset

The dataset, available for the NER Kaggle competition,
was recorded during an online P300 speller experiment
for error detection in the speller (Perrin et al., 2012). 16
healthy subjects participated in the experiment, the brain
activity was recorded on C = 56 channels. Subjects have
to spell a series a letter in under two spelling conditions:
a fast, more error-prone condition (each item is flashed 4
times), and a slower, less error-prone (each item is flashed
8 times). The subjects had to go through five spelling ses-
sions. Each session consisted of twelve 5-letter words, ex-
cept the fifth which consisted of twenty 5-letter words mak-
ing up for a total of 340 letters. For each spelled letter,
the feedback of the result of the speller is displayed on a
screen. The time of feedback is recorded and the labelled
of feedback (correct or incorrect) is also recorded. In case
of error in the spelling, an error evoked potential occurs
in the EEG. In the current work we focus on the detection
of the error in spelling based on this a priori. The task of
learning algorithms is to detect errors, i.e. to classify trials
as incorrect or correct (K = 2, positive or negative). In
such experiments, the number of positive and negative tri-
als is not balanced. In case of a good speller, the number of
positive trials are very limited. In this dataset the number of
positive trials is largely inferior to the number of negative
trials creating a problem of class unbalance in training set.
To balance training set from this experiment, artificial data
can be generated in the class with less number of trials.
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4. Results and discussion
4.1. SSVEP dataset

SSVEP training set is augmented with different number of
artificial samples for each class. One to five samples are
interpolated between each pair of original samples belong-
ing to a single class. Figure 1 shows the densification effect
resulting from the augmentation process. Original covari-
ance matrices of each class are projected on the tangent
space computed at the mean of all the matrices, and the
two principal components (obtained by applying PCA) are
shown on Fig. 1(a). Similarly, Fig. 1(b) shows the aug-
mented covariance matrices after interpolation of 5 points
between each pair of covariance matrices within each class.
The augmented data are within the convex hull of the orig-
inal data.

−5 0 5
−4

−2

0

2

4

6

8

 

 
Resting class

13Hz class

21Hz class

17Hz class

(a)

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

 

 
Resting class

13Hz class

21Hz class

17Hz class

(b)

Figure 1. Mapping of covariance matrices of trials from each class
on the tangent space (2). Matrices on the tangent space are vec-
torized and the 2 most significant components from PCA are used
to obtain the 2-D representation. Covariance matrices of original
data (a) and augmented data (b)..

The performance of the augmentation approach is evalu-
ated in terms of classification accuracy obtained with an
MLP classifier and the the results are compared with those
obtained with TSLDA and RK-SVM classifiers. The in-

puts to the MLP are trials covariance matrices mapped on
the tangent space. The MLP has 108 input units, one hid-
den layer with 50 neurons, and 4 output units. The classi-
fication obtained with each number of interpolated points
are compared to the performance without training set aug-
mentation. Figure 2 shows the classification performances
from zero interpolated point (no training set augmentation)
to 5 points interpolated. Due to the non-convexity of MLP
optimization, results averaged over subjects, are then av-
eraged over 10 repetitions. Significant p-values show that
average classification across all subjects is improved by the
data augmentation. The effect of data augmentation varies
depending on the quality of training examples from individ-
ual subjects. In Figure 3, the effect of augmenting training
data in the subject with the lowest BCI performance and
the subject with highest BCI performances are put side by
side. In Table 1, the classification accuracies (in %) of the
MLP preceded with data augmentation are compared with
RK-SVM and TSLDA.
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Figure 2. Mean classification accuracy in % across all 12 subjects
for different level of data augmentation. At 0, there is no aug-
mented data. At 1, one artificial data is interpolated between each
pair of original data within each class, and so forth

4.2. ERP dataset

On the ERP dataset the data augmentation is done to bal-
ance the number of positive trials (incorrect P300 feedback
where ErrP is present) and negative trials (feedback with no
error) in the training set. Each subject has 240 or 280 tri-
als in the training set. The number of positive trials can be
as low as 2% of the training set. The number of generated
artificial trials g is determined by the gap between the num-
ber of positive trials and negative trials in the training set.
To generate g trials, a covariance matrix is interpolated be-
tween g pairs of randomly selected original matrices. The
effect of balancing classes with artificial trials is evaluated
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Figure 3. Classification accuracy of subject with lowest BCI per-
formance versus subject with highest BCI performance, using
original training set and using augmented training set with 5 in-
terpolated points between each pair of original data within each
class.

MLP aug+MLP RK-SVM TSLDA
Sub 1 70.63 70.63 68.75 73.44
Sub 2 71.25 78.28 82.81 76.56
Sub 3 94.22 95.00 93.75 93.75
Sub 4 84.06 86.72 92.19 93.75
Sub 5 73.75 67.50 73.44 71.88
Sub 6 84.84 87.66 82.81 84.38
Sub 7 90.73 91.67 89.58 90.63
Sub 8 89.22 92.19 89.06 90.63
Sub 9 70.78 68.28 62.50 67.19

Sub 10 78.44 76.72 78.91 78.13
Sub 11 63.28 72.97 71.88 70.31
Sub 12 94.62 96.13 95.63 93.13
Average 80.49 81.98 81.78 81.98

Table 1. Comparison of classification accuracies (in %) using
the MLP on original dataset, MLP with data augmentation
(aug+MLP), RK-SVM and TSLDA.

with the three classifiers (i.e. MLP, TSLDA and RK-SVM).
The MLP has 10 input units, one hidden layer with 50 neu-
rons and two output units. The number of MLP units is
chosen after a cross-validation phase.

Since the class unbalance is still present in the evaluation
set, the classification performances are evaluated in terms
of sensitivity. Figure 4 shows the performance achieved
when classes are balanced by augmenting data in the posi-
tive class. They are compared to the results achieved when
using unbalanced training set. A t-test was performed and
the p-values reveal significant improvement after data aug-
mentation. Table 2 show details of classifiers performance

per subject in terms of sensitivity with and without data
augmentation.
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Figure 4. Classification performance in terms of sensitivity. For
each of the 16 subjects these measures are given for classification
based on training on original unbalance training set and training
on augmented and balanced training set.

5. Conclusion
In BCI, datasets with reduced numbers of samples and un-
balanced classes are frequent. This contribution introduces
a data augmentation scheme based on the geometry of co-
variance matrices. From the geodesics passing through
pairs of samples, new samples are drawn and fed to a neu-
ral classifier. The data augmentation allows to boost the
classification accuracy when there is only a few number
of samples per class. It is also possible to compensate for
dataset with unbalanced classes as it is often the case in
event-related potential paradigm. The choice of the clas-
sifier is important when dealing with this augmented data;
neural networks yields the best results. Future works will
focus on the optimization of the neural networks: deter-
mining the best architecture (in term of layers and neu-
rons) for processing covariance matrices and the investiga-
tion of common deep learning methods to improve results
(dropouts, ReLU units, etc).
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