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Abstract. Brain Computer Interfaces (BCI) based on electroencephalog-
raphy (EEG) rely on multichannel brain signal processing. Most of the
state-of-the-art approaches deal with covariance matrices, and indeed
Riemannian geometry has provided a substantial framework for devel-
oping new algorithms. Most notably, a straightforward algorithm such as
Minimum Distance to Mean yields competitive results when applied with
a Riemannian distance. This applicative contribution aims at assessing
the impact of several distances on real EEG dataset, as the invariances
embedded in those distances have an influence on the classification ac-
curacy. Euclidean and Riemannian distances and means are compared
both in term of quality of results and of computational load.

Keywords: Information geometry, Riemannian means, Brain-Computer
Interfaces, Steady State Visually Evoked Potentials.

1 Introduction

Brain-Computer Interfaces (BCI) allow interaction with a computer or a machine
without relying on the user’s motor capabilities. In rehabilitation and assistive
technologies, BCI offer promising solutions to compensate for physical disabili-
ties. To record brain signals in BCI systems, the most common choice is to rely
on electroencephalography (EEG) [15], as the recording systems are smaller and
less expensive than other brain imaging technologies (such as MEG or fMRI).
BCI systems rely on different brain signals, such as event-related desynchro-
nization or evoked potentials. The former is observed in the premotor cortex
when the subject imagines moving some part of his own body (also known as
Motor Imagery paradigm) and the latter qualifies the brain response to a spe-
cific sensory stimulation, usually visual or auditory. This contribution focuses on
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Steady-State Visually Evoked Potentials (SSVEP), which are potentials emerg-
ing when a subject concentrates his attention on a stimulus blinking at a given
frequency. Shortly after the user concentrates on this stimulus, brain waves in
visual cortex could be observed with matching frequencies. To date, BCI still
faces challenges and a major limitation is the EEG poor spatial resolution. This
limitation is due to the volume conductance effect [15], as the skull bones act as
a non-linear low pass filter, mixing the brain source signals and thus reducing
the signal-to-noise ratio.

Consequently, spatial filtering methods are used, such as xDAWN [17], Inde-
pendent Component Analysis (ICA) [20], Common Spatial Pattern (CSP) [10]
and Canonical Correlation Analysis (CCA) [12]. Spatial filters, obtained by di-
agonalization of data covariance matrices, enhance the differences between vari-
ances of signals of different classes/tasks. They are efficient on clean datasets
obtained from strongly constrained environment. However they are sensitive to
artifacts and outliers [13, 19]. Working directly on covariance matrices is advan-
tageous: it simplifies the whole BCI system [21], avoiding the alignment of two
learning steps (spatial filters and classifiers) that might lead to overfitting. Co-
variance matrices being Symmetric and Positive-Definite (SPD), they are best
handled by tools provided by Riemannian geometry. Classification in the space
of SPD matrices eliminates the need of spatial filters and improves the system
robustness [5, 7, 21].

A classification technique referred to as minimum distance to Riemannian
mean (MDRM) has been recently introduced to EEG classification [5]. It en-
tirely relies on covariance matrices and the fact that they belong to the mani-
fold of SPD matrices. New EEG trials are assigned to the class whose average
covariance matrix is the closest to the trial covariance matrix according to the
affine-invariant Riemannian metric [14]. It is a simple, yet robust classification
scheme outperforming complex and highly parametrized state-of-the-art classi-
fiers. The limitations of using Euclidean metrics in the computation of distances
between SPD matrices and their means have been demonstrated [3]. Using infor-
mation geometry, a number of Riemannian distances have been developed and
appropriately used on SPD matrices [1,3]. The present work applies some of
these distances to SSVEP data, providing a practical analysis and a comparison
with Euclidean distance.

Moreover, most applications of Riemannian geometry to BCI are thus far
focusing only on Motor Imagery (MI) paradigm. Riemannian BCT is well suited
for MI experiment as the spatial information linked with synchronization are
directly embedded in covariance matrices obtained from multichannel recordings.
However, for BCI that rely on evoked potential such as SSVEP or event-related
potential, as P300, frequency or temporal information are needed. In [7], the
authors propose a rearrangement of the covariance matrices that embed the
timing or the frequency information, thus allowing a direct application of the
Riemannian framework. This contribution relies on this rearrangement to apply
MDRM on covariance matrices of SSVEP signals. The signals are recorded in an
application of assistive robotics where an SSVEP-based BCI is used in tandem
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with a 3D touchless interface based on IR-sensors as a multimodal system to
control an arm exoskeleton [11].

The paper is organized as follows: Section 2 describes the framework for the
classification of covariance matrices. The distances and means considered for this
study are presented. In Section 3, the classification results obtained on real EEG
dataset are presented and discussed. Section 4 concludes this paper.

2 Classification of covariance matrices for SSVEP

A SSVEP classifier based on covariance matrices is presented. The computation
of means of training covariance matrices is crucial to the classifier performance.

2.1 Means for covariance matrices

In the following, we will consider covariance matrices belonging to the manifold
M of the C' x C symmetric positive definite matrices, defined as:

Me={2 eRY: ¥ =57 and 27Xz > 0,V € RE\0} .

Given a set of covariance matrices {X;};=1,... 1, we consider the mean matrix »
of the set, which is a covariance matrix that minimizes the sum of the squared
distances to matrices X;:

I
: m
Y =p(E,.. ., X) —argzrg/l\ﬂc i:1d (X, X)), (1)
where m = 1 when d(-,-) is a divergence (i.e. a generalization of squared dis-
tance), and m = 2 when d(-,-) is a distance.

From Eq. (1), several means can be defined and those considered in this study
are indicated in Table 1. We consider the Euclidean distance dg, as a baseline,
yielding the arithmetic mean. The first considered Riemannian distance is the
Log-Euclidean dp i distance. Its mean is expressed explicitly [3]. The second is the
Affine-Invariant da; [14]. Unlike the dyg, it does not have an explicit expression
for the mean. It could be efficiently computed with the gradient-based iterative
algorithm proposed in [8]. The two last distances considered in this study are
the log-determinant a-divergence [6] and the Bhattacharyya distance [16], the
later being a special case of the the former with o = 0. Since the a-divergence
is not symmetrical, its right version is used in this work [6].

2.2 Minimum Distance to Mean classifier for SSVEP

The considered classifier is referred to as Minimum Distance to Mean (MDM),
and is inspired from [5] where it is limited to Riemannian mean. Covariance

4 For a = —1, the log-determinant a-divergence is defined as: tr(X;'Xs — I) —
log det(X; ' 25), and for a = 1: tr(X, '3y — I) — log det(X, ' X1) [6].
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Distance/Divergence Mean References

Euclidean de (X1, X2) = | 21 — Z2||r Sp=130 %

Log-Euclidean die(Xh, X2) = ||log(X1) — log(Xs)||F YL = exp (25:1 log(Z‘i)) (2, 3]
Affine-invariant da1(Z1, Do) = |llog(Z7 22)||r Algorithm 3 in [8] [14, 8]

et( 1= 1ta
a-divergence (*)|dap (21, X2) = =5 log deC Pty >a) Algorithm 1 in [6] 6]
—1<a<l1 det(X1) 2 det(X2) 2
_ det (21 459) 1/2 . .
Bhattacharyya dB(Z‘l7 22) = (log m) Algorlthm 1in [6] [67 16]

Table 1. Distances, divergences and means considered in the experimental study.

matrices of EEG trials are classified based on their distance to the centers of
the classes, equal to means. To embed frequency information in the covariance
matrices, we use a construction of matrices proposed in [7]. Let X € RE*N be
an EEG trial measured on C' channels and N samples in a SSVEP experiment
with F' stimulus blinking at different frequencies. The covariance matrices are
estimated from a modified version of the input signal X:

)(freq1
X c RCXN — : c RFCXN

XfreqF

, (2)

where Xireq, 18 the input signal X band-pass filtered around frequency freqy,
f = 1,..., F. Henceforth, all EEG signals will be considered as filtered and
modified by Eq. (2). The associated covariance matrix X' € Mp¢ is estimated
using the Schéfer shrinkage estimator [18].

For SSVEP classification, K = F'+1 classes are considered: one class for each
target frequency, and one for the resting state. As described in Algorithm 1, from
I labelled training trials {Xi}le recorded per subject, K centers of classes (%)
are estimated (step 3). In this step, outlier matrices are removed to have a reliable
mean estimation, using an offline Riemannian potato [4]. A new unlabeled test
trial Y is predicted to belong to the class whose mean £(¥) is the closest to the
trial covariance matrix, w.r.t. one of the distances from Table 1 (step 5). Remark
that test trial has to be finished before being classified: in this paper, there is no
early classification.

3 Experimental Results

This section presents experimental results obtained applying Euclidean and Rie-
mannian distances in SSVEP classification task. The first part of this section
describes the data used and the second part provides the assessment of the clas-
sification for the considered distances and divergences.
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Algorithm 1 Minimum Distance to Mean Classifier

Inputs: X; € RFCXN fori=1,...,1, a set of labelled EEG trials.
Inputs: Z(k), a set of indices of trials belonging to class k.

Input: Y € RFE*N an unlabeled test EEG trial.

Output: k*, the predicted label of Y.

1: Compute covariance matrices X; of X;

2: for k=1 to K do

3:  Compute center of class : % = (5, : i € I(k))

4: end

5: Compute covariance matrix X of Y, and classify it : k* = arg ming d(X, E(k))
6: return k*

3.1 SSVEP Dataset

The experimental study is conducted on multichannel EEG signals recorded
during an SSVEP-based BCI experiment [11]. EEG are recorded on C' = 8
channels (i.e. Oz, O1, 02, PO3, POz, PO7, PO8, PO4) from 12 subjects. The
subjects are presented with F' = 3 visual target stimuli blinking respectively at
13Hz, 17Hz and 21Hz. It is a K = 4 classes setup combining F = 3 stimulus
classes and one resting class (no-SSVEP). In a session, 32 trials are recorded:
8 for each visual stimulus and 8 for the resting class. The number of sessions
recorded per subject varies from 2 to 5. For each subject, a test set is made of
32 trials while the remaining trials (which might vary from 32 to 128) make up
for the training set.

3.2 Results and Discussion

The MDM classifier is simple. Once the covariance matrices have been esti-
mated, the only major calculations involved are the mean and distance com-
putations. The covariance matrices obtained from SSVEP data extended with
Eq. (2) have interesting features, allowing the discrimination between signals
of identical sources but with different frequencies. Fig. 1 shows the K classes
mean covariance matrices X(®) from subjects with the highest (a) and lowest
(b) classification accuracies. The three 8x8 diagonal blocks hold the covariance
matrices of the F' = 3 target frequencies. Inter-frequencies covariances blocks are
almost null. In each mean covariance matrix, the block holding the covariance
of the target frequency has the largest values. For the resting class, all ' blocks
tend to have similar and small values. These features are more visible in the
subject with the highest classification accuracy, and less visible in the one with
lowest classification accuracy. Contrary to discriminative classifiers classically
used in BCI, such as LDA or SVM [9] which can appear as black-boxes with
difficult interpretation, it is very interesting to see that the presented covariance
based classifier uses features with a simple representation, and thus allows for an
intuitive understanding. The observed covariance matrices have a physiological
meaning and interpretation. In this framework, EEG processing complexity is
encoded by a dedicated distance and not by a machine learning algorithm.
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Fig. 1. Representation of covariance matrices: each image is the covariance matrix
mean £ of the class k, for one session of the recording. The diagonal blocks show
the covariance in different frequency bands, i.e. 13Hz in the upper-left block, 21Hz in
the middle, and 17Hz in the bottom-right. The two chosen subjects are those with the
highest (a) and the lowest (b) BCI performance.
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CCA+SVM| Euclidean Riemannian

[12] arithmetic Log-Euclidean |Affine-Invariant| a-divergence |Bhattacharyya

Sub. | acc (%) |lacc (%)|time(s)|acc (%)|time(s)|acc (%)|time(s) |acc (%)|time(s)|acc (%)[time(s)
1 54.68 53.12 | 0.025 || 71.88 | 0.150 | 73.44 | 0.194 | 59.37 | 0.155 | 68.75 | 0.225
2 37.50 43.75 | 0.020 || 78.13 | 0.160 | 79.69 | 0.190 | 79.69 | 0.200 | 81.25 | 0.065
3 89.06 67.19 | 0.020 || 85.94 | 0.120 | 85.93 | 0.205 | 95.31 | 0.155 | 85.94 | 0.100
4 79.69 54.68 | 0.030 || 84.38 | 0.225 | 87.50 | 0.315 | 89.07 | 0.250 | 85.94 | 0.100
5 50.00 37.50 | 0.020 || 62.50 |0.115| 68.75 | 0.290 | 73.44 | 0.140 | 65.62 | 0.125
6 87.50 34.37 | 0.015 || 84.38 | 0.120 | 85.94 | 0.210 | 87.50 | 0.145 | 82.81 | 0.100
7 77.08 60.42 | 0.027 || 87.50 | 0.267 | 88.54 | 0.410 | 91.66 | 0.417 | 86.46 | 0.137
8 73.44 67.19 | 0.035 || 90.63 | 0.215 | 92.19 | 0.290 | 92.19 | 0.290 | 92.19 | 0.125
9 60.94 57.81 | 0.035 || 70.31 | 0.275 | 70.31 | 0.380 | 75.00 | 0.300 | 67.19 | 0.134
10 67.97 38.28 | 0.035 || 75.00 | 0.254 | 80.47 | 0.514 | 82.03 | 0.510 | 78.13 | 0.160
11 71.88 48.44 | 0.025 || 60.94 | 0.144 | 65.63 | 0.235 | 57.81 | 0.150 | 75.00 | 0.105
12 95.63 71.25 | 0.032 || 96.25 | 0.292| 96.69 | 0.534 | 95.62 | 0.634 | 96.88 | 0.300
[Avg.] 7045 [ 52.83 [0.027 || 78.98 [ 0.194 | 81.27 [ 0.314 | 81.56 [ 0.279 | 80.51 [0.140 |

Table 2. Subject classification accuracies (acc(%)) and average CPU time (time(s))
elapsed for the classification of a single trial. Classification is performed with MDM
using either Euclidean or Riemannian means (see Table 1). Results obtained with a
state-of-the-art method using CCA and SVM [12] are included.

Based on those covariance matrices, the different distances and means of Ta-
ble 1 are compared in terms of classification accuracy and average CPU time
elapsed on a trial classification, which involves the computation of 4 means of
class and a distance to each mean. One can note that for an optimal imple-
mentation, the 4 means are computed only once. Table 2 summarizes results
obtained for each subject and each distance/divergence. Results obtained with
a state-of-the-art method are also included, combining CCA and SVM [12].

Euclidean distance yields drastically low accuracy. This supports the fact
that using Euclidean distance and arithmetic mean on SPD matrices is not
appropriate. This is generally attributed to the invariance under inversion that
is not guaranteed (i.e. X(%;) # £~1(X; 1)) and the fact that the determinant of
the arithmetic mean of SPD matrices can be larger than the determinant of its
parts; it is referred to as the swelling effect. Since the value of the determinant
is a direct measure of dispersion of the multivariate variables (i.e. EEG channels
and frequency bands), it leads to poor discrimination in the classification task.
The swelling effect of arithmetic mean is shown in Fig. 3.2: the determinant
of the arithmetic mean is strictly larger than other means, the Log-Euclidean,
Affine-Invariant and Bhattacharyya ones yielding similar determinants, close to
trials values.

Using Riemannian distances significantly improves classification performances,
with regards to state-of-the-art method (70.45%) and Euclidean distance. The
a-divergence yields the best results (81.56%). The value of o was set to 0.6
through cross-validation. This procedure lasted 225.42 seconds and makes -
divergence the most costly method, due to the optimization of its parameter «.
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Fig. 2. (a): Swelling effect of arithmetic mean shown through log-determinant values.
Training trials are taken from the 13Hz class of the subject with the highest BCI
performance. Log-determinant values are given for each trial covariance (points), and
for means of Table 1 (horizontal lines).
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Fig. 3. Classification accuracy and CPU time obtained for the log-determinant a-
divergence, with —1 < a < 1. The values are averaged across all sessions and subjects.

Log-Euclidean yields lower classification accuracy (average 78.98%) but could
be computed faster than a-divergence or Affine-Invariant distance. However,
the Bhattacharyya distance has the lowest computational cost of the consid-
ered Riemannian distances (average CPU time 0.140s), with a higher average
accuracy of 80.51%. So, it is good trade-off between efficiency and speed. The
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accuracies and CPU time of the a-divergence at different values of a are shown
in Fig. 3.2. It is seen that for a = +1, where a-divergence represents a Bregman
divergence associated with the log-determinant function, the classification accu-
racy are drastically low (25%). For the rest, the accuracy varies smoothly with
changes in «, with the highest accuracy scored while « is positive.

This experiment on real EEG data shows that it is crucial to process covari-
ance matrices with dedicated Riemannian tools, impacting the efficiency of the
classification.

4 Conclusion

Riemannian approaches have been successfully applied on EEG signals for brain
computer interfaces. Straightforward algorithms, such as Minimum Distance to
Mean, provide competitive results with state-of-the-art methods, without requir-
ing meticulous parametrization or optimization. Working on covariance matrices
in Riemannian spaces offers a wide choice of distances, embedding desirable in-
variances: it is thus possible to avoid the computation of user-specific spatial
filters which are sensitive to artifacts and outliers. Nonetheless, the estimation
of the Riemannian geometric mean has a strong impact on the classifier accu-
racy. This study investigates the performance of several distances and divergence
on a real EEG dataset in the context of BCI based on the SSVEP paradigm.
The experimental results indicate that the a-divergence yields the best accuracy
after the selection of the best « values, but the Bhattacharyya distance has the
lowest computational cost while providing decent accuracies.
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