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Chapter 1
Artificial Neurogenesis: An Introduction
and Selective Review

Taras Kowaliw, Nicolas Bredeche, Sylvain Chevallier and René Doursat

Abstract In this introduction and review—Ilike in the book which follows—we
explore the hypothesis that adaptive growth is a means of producing brain-like
machines. The emulation of neural development can incorporate desirable character-
istics of natural neural systems into engineered designs. The introduction begins with
a review of neural development and neural models. Next, artificial development—
the use of a developmentally-inspired stage in engineering design—is introduced.
Several strategies for performing this “meta-design” for artificial neural systems are
reviewed. This work is divided into three main categories: bio-inspired representa-
tions; developmental systems; and epigenetic simulations. Several specific network
biases and their benefits to neural network design are identified in these contexts.
In particular, several recent studies show a strong synergy, sometimes interchange-
ability, between developmental and epigenetic processes—a topic that has remained
largely under-explored in the literature.
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This book is about growing adaptive machines. By this, we mean producing
programs that generate neural networks, which, in turn, are capable of learning. We
think this is possible because nature routinely does so. And despite the fact that
animals—those multicellular organisms that possess a nervous system—are stagger-
ingly complex, they develop from a relatively small set of instructions. Accordingly,
our strategy concerns the simulation of biological development as a means of gener-
ating, in contrast to directly designing, machines that can learn. By creating abstrac-
tions of the growth process, we can explore their contribution to neural networks
from the viewpoint of complex systems, which self-organize from relatively simple
agents, and identify model choices that will help us generate functional and useful
artefacts. This pursuit is highly interdisciplinary: it is inspired by, and overlaps with,
computational neuroscience, systems biology, machine learning, complex systems
science, and artificial life.

Through growing adaptive machines, our ambition is also to contribute to a radical
reconception of engineering. We want to focus on the design of component-level
behaviour from which higher-level intelligent machines can emerge. The success of
this “meta-design” [63] endeavour will be measured by our capacity to generate new
learning machines: machines that scale, machines that adapt to novel environments,
in short, machines that exhibit the richness we encounter in animals, but presently
eludes artificial systems.

This chapter and the book that it introduces are centred around developmental
and learning neural networks. It is a timely topic considering the recent resurgence
of the neural paradigm as a major representation formalism in many technological
areas, such as computer vision, signal processing, and robotic controllers, together
with rapid progress in the modelling and applications of complex systems and highly
decentralized processes. Researchers generally establish a distinction between struc-
tural design, focusing on the network topology, and synaptic design, defining the
weights of the connections in a network [278]. This book examines how one could
create a biologically inspired network structure capable of synaptic training, and
blend synaptic and structural processes to let functionally suitable networks self-
organize. In so doing, the aim is to recreate some of the natural phenomena that have
inspired this approach.

The present chapter is organized as follows: it begins with a broad description of
neural systems and an overview of existing models in computational neuroscience.
This is followed by a discussion of artificial development and artificial neurogenesis
in general terms, with the objective of presenting an introduction and motivation
for both. Finally, three high-level strategies related to artificial neurogenesis are
explored: first, bio-inspired representations, where network organization is inspired
by empirical studies and used as a template for network design; then, developmental
simulation, where networks grow by a process simulating biological embryogenesis;
finally, epigenetic simulation, where learning is used as the main step in the design
of the network. The contributions gathered in this book are written by experts in the
field and contain state-of-the-art descriptions of these domains, including reviews of
original research. We summarize their work here and place it in the context of the
meta-design of developmental learning machines.



1 Artificial Neurogenesis: An Introduction and Selective Review 3

1 The Brain and Its Models

1.1 Generating a Brain

Natural reproduction is, to date, the only one known way to generate true “intelli-
gence”. In humans, a mere six million (6 x 10°) base pairs, of which the majority
is not directly expressed, code for an organism of some hundred trillion (10'4) cells.
Assuming that a great part of this genetic information concerns neural development
and function [253], it gives us a rough estimate of a brain-to-genome “compression
ratio”. In the central nervous system of adult humans, which contains approximately
8.5 % 10'? neural cells and an equivalent number of non-neural (mostly glial) cells [8],
this ratio would be of the order of 10*. However, the mind is not equal to its neurons,
but considered to emerge from the specific synaptic connections and transmission
efficacies between neurons [234, 255]. Since a neural cell makes contacts with 103
other cells on average,' the number of connections in the brain reaches 104, raising
our compression ratio to 108, a level beyond any of today’s compression algorithms.

From there, one is tempted to infer that the brain is not as complex as it appears
based solely on the number of its components, and even that something similar
might be generated via a relatively simple parallel process. The brain’s remarkable
structural complexity is the result of several dynamical processes that have emerged
over the course of evolution and are often categorized on four levels, based on their
time scale and the mechanisms involved:

level time scale change
phylogenic generations genetic: randomly mutated genes propagate or perish
with the success of their organisms
ontogenic days to years cellular: cells follow their genetic instructions, which

make them divide, differentiate, or die

epigenetic seconds to days cellular, connective: cells respond to external stimuli,
and behave differently depending on the environment;
in neurons, these changes include contact modifica-
tions and cell death

inferential milliseconds to seconds connective, activation: neurons send electrical signals
to their neighbours, generating reactions to stimuli

However, a strict separation between these levels is difficult in neural development
and learning processes.” Any attempt to estimate the phenotype-to-genotype com-

! Further complicating this picture are recent results showing that these connections might them-
selves be information processing units, which would increase this estimation by several orders of
magnitude [196].

2 By epigenetic, we mean here any heritable and non-genetic changes in cellular expression. (The
same term is also used in another context to refer strictly to DNA methylation and transcription-level
mechanisms.) This includes processes such as learning for an animal, or growing toward a light
source for a plant. The mentioned time scale represents a rough average over cellular responses to
environmental stimuli.
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pression ratio must also take into account epigenetic, not just genetic, information.
More realistic or bio-inspired models of brain development will need to include
models of environmental influences as well.

1.2 Neural Development

We briefly describe in this section the development of the human brain, noting that the
general pattern is similar in most mammals, despite the fact that size and durations
vastly differ. A few weeks after conception, a sheet of cells is formed along the
dorsal side of the embryo. This neural plate is the source of all neural and glial cells
in the future body. Later, this sheet closes and creates a neural tube whose anterior
part develops into the brain, while the posterior part produces the spinal cord. Three
bulges appear in the anterior part, eventually becoming the forebrain, midbrain, and
hindbrain. A neural crest also forms on both sides of the neural tube, giving rise to
the nervous cells outside of the brain, including the spinal cord. After approximately
eight weeks, all these structures can be identified: for the next 13-months they grow
in size at a fantastic rate, sometimes generating as many as 500,000 neurons per
minute.

Between three to six months after birth, the number of neurons in a human reaches
a peak. Nearly all of the neural cells used throughout the lifetime of the individual
have been produced [69, 93]. Concurrently, they disappear at a rapid rate in various
regions of the brain as programmed cell death (apoptosis) sets in. This overproduction
of cells is thought to have evolved as a competitive strategy for the establishment
of efficient connectivity in axonal outgrowth [34]. It is also regional: for instance,
neural death comes later and is less significant in the cortex compared to the spinal
cord, which loses a majority of its neurons before birth.

Despite this continual loss of neurons, the total brain mass keeps increasing rapidly
until the age of three in humans, then more slowly until about 20. This second peak
marks a reversal of the trend, as the brain now undergoes a gradual but steady loss
of matter [53]. The primary cause of weight increase can be found in the connective
structures: as the size of the neurons increase, so does their dendritic tree and glial
support. Most dendritic growth is postnatal, but is not simply about adding more
connections: the number of synapses across the whole brain also peaks at eight
months of age. Rather, mass is added in a more selective manner through specific
phases of neural, dendritic, and glial development.

These phenomena of maturation—neural, dendritic, and glial growth, combined
with programmed cell death—do not occur uniformly across the brain, but regionally.
This can be measured by the level of myelination, the insulation provided by glial
cells that wrap themselves around the axons and greatly improve the propagation
of membrane potential. Taken as an indication of more permanent connectivity,
myelination reveals that maturation proceeds in the posterior-anterior direction: the
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Fig. 1 Illustration of the general steps in neural dendritic development

spinal cord and brain stem (controlling vital bodily function) are generally mature
at birth, the cerebellum and midbrain mature in the few months following birth,
and after a couple of years the various parts of the forebrain also begin to mature.
The first areas to be completed concern sensory processing, and the last ones are the
higher-level “association areas” in the frontal cortex, which are the site of myelination
and drastic reorganization until as late as 18-years old [69]. In fact, development in
mammals never ends: dendritic growth, myelination, and selective cell death continue
throughout the life of an individual, albeit at a reduced pace.

1.2.1 Neuronal Morphology

Neurons come in many types and shapes. The particular geometric configuration of
a neural cell affects the connectivity patterns that it creates in a given brain region,
including the density of synaptic contacts with other neurons and the direction of sig-
nal propagation. The shape of a neuron is determined by the outgrowth of neurites, an
adaptive process steered by a combination of genetic instructions and environmental
cues.

Although neurons can differ greatly, there are general steps in dendritic and axonal
development that are common to many species. Initially, a neuron begins its life as a
roughly spherical body. From there, neurites start sprouting, guided by growth cones.
Elongation works by addition of material to relatively stable spines. Sprouts extend
or retract, and one of them ultimately self-identifies as the cell’s axon. Dendrites then
continue to grow out, either from branching or from new dendritic spines that seem to
pop up randomly along the membrane. Neurites stop developing, for example, when
they have encountered a neighbouring cell or have reached a certain size. These
general steps are illustrated in Fig. 1 [230, 251].

Dendritic growth is guided by several principles, generally thought to be controlled
regionally: a cell’s dendrites do not connect to other specific cells but, instead, are
drawn to regions of the developing brain defined by diffusive signals. Axonal growth
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tends to be more nuanced: some axons grow to a fixed distance in the direction of
a simple gradient; others grow to long distances in a multistage process requiring
a large number of guidance cells. While dendritic and axonal development is most
active during early development, by no means does it end at maturity. The continual
generation of dendritic spines plays a crucial role throughout the lifetime of an
organism.

Experiments show that neurons isolated in cultures will regenerate neurites. It is
also well known that various extracellular molecules can promote, inhibit, or other-
wise bias neurite growth. In fact, there is evidence that in some cases context alone
can be sufficient to trigger differentiation into specific neural types. For example, the
introduction of catalysts can radically alter certain neuron morphologies to the point
that they transform into other morphologies [230]. This has important consequences
on any attempt to classify and model neural types [268].

In any case, the product of neural growth is a network possessing several key
properties that are thought to be conducive to learning. It is an open question in
neuroscience how much of neural organization is a result of genetic and epigenetic
targeting, and how much is pure randomness. However, it is known that on the meso-
scopic scale, seemingly random networks have consistent properties that are thought
to be typical of effective networks. For instance, in several species, cortical axonal
outgrowth can be modelled by a gamma distribution. Moreover, cortical structures in
several species have properties such as relatively high clustering along certain axes,
but not other axes [28, 146]. Cortical connectivity patterns are also “small-world”
networks (with high local specialization, and minimal wiring lengths), which pro-
vide efficient long-range connections [263] and are probably a consequence of dense
packing constraints inside a small space.

1.2.2 Neural Plasticity

There are also many forms of plasticity in a nervous system. While neural cell
behaviour is clearly different during development and maturity (for instance, the
drastic changes in programmed cell death), many of the same mechanisms are at
play throughout the lifetime of the brain. The remaining differences between devel-
opmental and mature plasticity seem to be regulated by a variety of signals, especially
in the extracellular matrix, which trigger the end of sensitive periods and a decrease
in spine formation dynamics [230].

Originally, it was Hebb who postulated in 1949 what is now called Hebbian learn-
ing: repeated simultaneous activity (understood as mean-rate firing) between two
neurons or assemblies of neurons reinforces the connections between them, further
encouraging this co-activity. Since then, biologists have discovered a great variety of
mechanisms governing synaptic plasticity in the brain, clearly establishing recipro-
cal causal relations between wiring patterns and firing patterns. For example, long-
term potentiation (LTP) and long-term depression (LTD) refer to ositiveor negative
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changes in the probability of successful signal transmission from a resynapticaction
potential to the generation of a postsynaptic potential. These “long-term” changes can
last for several minutes, but are generally less pronounced over hours or days [230].
Prior to synaptic efficacies, synaptogenesis itself can also be driven by activity-
dependent mechanisms, as dendrites “seek out” appropriate partner axons in a process
that can take as little as a few hours [310]. Other types of plasticity come from
glial cells, which stabilize and accelerate the propagation of signals along mature
axons (through myelination and extracellular regulation), and can also depend on
activity [135].

Many others forms and functions of plasticity are known, or assumed, to exist.
For instance, “fast synaptic plasticity”, a type of versatile Hebbian learning on the
1-ms time scale, was posited by von der Malsburg [286-288]. Together with a neural
code based on temporal correlations between units rather than individual firing rates,
it provides a theoretical framework to solve the well-known “binding problem”, the
question of how the brain is able to compose sensory information into multi-feature
concepts without losing relational information. In collaboration with Bienenstock and
Doursat, this assumption led to a format of representation using graphs, and models
of pattern recognition based on graph matching [19-21]. Similarly, “spike-timing
dependent plasticity” (STDP) describes the dependence of transmission efficacies
between connected neurons on the ordering of neural spikes. Among other effects,
this allows for pre-synaptic spikes which precede post-synaptic spikes to have greater
influence on the resulting efficacy of the connection, potentially capturing a notion
of causality [183]. It is posited that Hebbian-like mechanisms also operate on
non-neural cells or neural groups [310]. “Metaplasticity” refers to the ability of
neurons to alter the threshold at which LTP and LTD occur [2]. “Homeostatic plas-
ticity” refers to the phenomenon where groups of neurons self-normalize their own
level of activity [208].

1.2.3 Theories of Neural Organization

Empirical insights into mammalian brain development have spawned several theories
regarding neural organization. We briefly present three of them in this section:
nativism, selectivism, and neural constructivism.

The nativist view of neural development posits a strong genetic role in the
construction of cognitive function. It claims that, after millions of years of evo-
lutionary shaping, development is capable of generating highly specialized, innate
neural structures that are appropriate for the various cognitive tasks that humans
accomplish. On top of these fundamental neural structures, details can be adjusted
by learning, like parameters. In cognitive science, it is argued that since children learn
from a relative poverty of data (based on single examples and “one-shot learning”),
there must be a native processing unit in the brain that preexists independently of
environmental influence. Famously, this hypothesis led to the idea of a “universal
grammar” for language [36], and some authors even posit that all basic concepts
are innate [181]. According to a neurological (and controversial) theory, the cortex
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Fig. 2 Illustration of axonal outgrowth: initial overproduction of axonal connections and compet-
itive selection for efficient branches leads to a globally efficient map (adapted from [294])

is composed of a repetitive lattice of nearly identical “computational units”, typi-
cally identified with cortical columns [45]. While histological evidence is unclear,
this view seems to be supported by physiological evidence that cortical regions can
adapt to their input sources, and are somewhat interchangeable or “reusable” by other
modalities, especially in vision- or hearing-impaired subjects. Recent neuro-imaging
research on the mammalian cortex has revived this perspective. It showed that cor-
tical structure is highly regular, even across species: fibre pathways appear to form
a rectilinear 3D grid containing parallel sheets of interwoven paths [290]. Imaging
also revealed the existence of arrays of assemblies of cells whose connectivity is
highly structured and predictable across species [227]. Both discoveries suggest a
significant role for regular and innate structuring in cortex layout (Fig.2).

In contrast to nativism, selectivist theories focus on competitive mechanisms as
the lead principle of structural organization. Here, the brain initially overproduces
neurons and neural connections, after which plasticity-based competitive mecha-
nisms choose those that can generate useful representations. For instance, theories
such as Changeux’s “selective stabilization” [34] and Katz’s “epigenetic popula-
tion matching” [149] describe the competition in growing axons for postsynaptic
sites, explaining how the number of projected neurons matches the number of avail-
able cells. The quantity of axons and contacts in an embryo can also be artificially
decreased or increased by excising target sites or by surgically attaching supernu-
merary limbs [272]. This is an important reason for the high degree of evolvabil-
ity of the nervous system, since adaptation can be easily obtained under the same
developmental mechanisms without the need for genetic modifications.

The regularities of neocortical connectivity can also be explained as a
self-organization process during pre- and post-natal development via epigenetic fac-
tors such as ongoing biochemical and electrophysiological activity. These princi-
ples have been at the foundation of biological models of “topographically ordered
mappings”, i.e. the preservation of neighborhood relationships between cells from
one sheet to another, most famously the bundle of fibers of the “retinotopic projec-
tion” from the retina to the visual cortex, via relays [293]. Bienenstock and Doursat
have also proposed a model of selectivist self-structuration of the cortex [61, 65],
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showing the possibility of simultaneous emergence of ordered chains of synaptic
connectivity together with wave-like propagation of neuronal activity (also called
“synfire chains” [1]). Bednar discusses an alternate model in Chap. 7.

A more debated selectivist hypothesis involves the existence of “epigenetic
cascades” [268], which refer to a series of events driven by epigenetic population-
matching that affect successive interconnected regions of the brain. Evidence for
phenomena of epigenetic cascades is mixed: they seem to exist in only certain regions
of the brain but not in others. The selectivist viewpoint also leads to several intriguing
hypotheses about brain development over the evolutionary time scale. For instance,
Ebbesson’s “parcellation hypothesis” [74] is an attempt to explain the emergence
of specialized brain regions. As the brain becomes larger over evolutionary time,
the number of inter-region connections increases but due to competition and geo-
metric constraints, these connections will preferentially target neighbouring regions.
Therefore, the increase in brain mass will tend to form “parcels” with specialized
functions. Another hypothesis is Deacon’s “displacement theory” [51], which tries
to account for the differential enlargement and multiplication of cortical areas.

More recently, the neural constructivism of Quartz and Sejnowski [234] casts
doubt on both the nativist and selectivist perspectives. First, the developing cortex
appears to be free of functionally specialized structures. Second, finer measures of
neural diversity, such as type-dependent synapse counts or axonal/dendritic arboriza-
tion, provide a better assessment of cognitive function than total quantities of neu-
rons and synapses. According to this view, development consists of a long period of
dendritic development, which slowly generates a neural structure mediated by, and
appropriately biased toward, the environment.

These three paradigms highlight principles that are clearly at play in one form or
another during brain development. However, their relative merits are still a subject of
debate, which could be settled through modelling and computational experiments.

1.3 Brain Modelling

Computational neuroscience promotes the theoretical study of the brain, with the
goal of uncovering the principles and mechanisms that guide the organization,
information-processing and cognitive abilities of the nervous system [278]. A great
variety of brain structures and functions have already been the topic of many mod-
elling and simulation works, at various levels of abstraction or data-dependency.
Models range from the highly detailed and generic, where as many possible phenom-
ena are reproduced in as much detail as possible, to the highly abstract and specific,
where the focus is one particular organization or behaviour, such as feed-forward
neural networks. These different levels and features serve different motivations: for
example, concrete simulations can try to predict the outcome of medical treatment,
or demonstrate the generic power of certain neural theories, while abstract systems
are the tool of choice for higher-level conceptual endeavours.
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In contrast with the majority of computational neuroscience research, our main
interest with this book, as exposed in this introductory chapter, resides in the potential
to use brain-inspired mechanisms for engineering challenges.

1.3.1 Challenges in Large-Scale Brain Modelling

Creating a model and simulation of the brain is a daunting task. One immediate
challenge is the scale involved, as billions of elements are each interacting with
thousands of other elements nonlinearly. Yet, there have already been several attempts
to create large-scale neural simulations (see reviews in [27, 32, 95]). Although itis a
hard problem, researchers remain optimistic that it will be possible to create a system
with sufficient resources to mimic all connections in the human brain within a few
years [182]. A prominent example of this trend is the Blue Brain project, whose
ultimate goal is to reconstruct the entire brain numerically at a molecular level. To
date, it has generated a simulation of an array of cortical columns (based on data
from the rat) containing approximately a million cells. Among other applications, this
project allows generating and testing hypotheses about the macroscopic structures
that result from the collective behaviours of instances of neural models [116, 184].
Other recent examples of large-scale simulations include a new proof-of-concept
using the Japanese K computer simulating a (non-functional) collection of nearly
2 x 10° neurons connected via 10'2 synapses [118], and Spaun, a more functional
system consisting of 2.5 x 10° neurons and their associated connections. Interestingly,
Spaun was created by top-down design, and is capable of executing several different
functional behaviours [80]. With the exception of one submodule, however, Spaun
does not “learn” in a classical sense.

Other important challenges of brain simulation projects, as reviewed by Cattell
and Parker [32], include neural diversity and complexity, interconnectivity, plas-
ticity mechanisms in neural and glial cells, and power consumption. Even more
critically, the fast progress in computing resources able to support massive brain-like
simulations is not any guarantee that such simulations will behave “intelligently”.
This requires a much greater understanding of neural behaviour and plasticity, at
the individual and population scales, than what we currently have. After the recent
announcements of two major funded programs, the EU Human Brain Project and
the US Brain Initiative, it is hoped that research on large-scale brain modelling and
simulation should progress rapidly.

1.3.2 Machine Learning and Neural Networks

Today, examples of abstract learning models are legion, and machine learning as
a whole is a field of great importance attracting a vast community of researchers.
While some learning machines bear little resemblance to the brain, many are inspired
by their natural source, and a great part of current research is devoted to reverse-
engineering natural intelligence.
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Fig. 3 Example of neural network with three input neurons, three hidden neurons, two output
neurons, and nine connections. One feedback connection (5—4) creates a cycle. Therefore, this is
a recurrent NN. If that connection was removed, the network would be feed-forward only

Chapter 2: A brief introduction to probabilistic machine learning and its
relation to neuroscience.

In Chap. 2, Trappenberg provides an overview of the most important ideas
in modern machine learning, such as support vector machines and Bayesian
networks. Meant as an introduction to the probabilistic formulation of machine
learning, this chapter outlines a contemporary view of learning theories across
three main paradigms: unsupervised learning, close to certain developmen-
tal aspects of an organism, supervised learning, and reinforcement learning
viewed as an important generalization of supervised learning in the temporal
domain. Beside general comments on organizational mechanisms, the author
discusses the relations between these learning theories and biological analo-
gies: unsupervised learning and the development of filters in early sensory cor-
tical areas, synaptic plasticity as the physical basis of learning, and research
that relates models of basal ganglia to reinforcement learning theories. He also
argues that, while lines can be drawn between development and learning to
distinguish between different scientific camps, this distinction is not as clear
as it seems since, ultimately, all model implementations have to be reflected
by some morphological changes in the syste [279].

In this book, we focus on neural networks (NNs). Of all the machine learning
algorithms, NNs provide perhaps the most direct analogy with the nervous system.
They are also highly effective as engineering systems, often achieving state-of-the-
art results in computer vision, signal processing, speech recognition, and many other
areas (see [113] for an introduction). In what follows, we introduce a summary of a
few concepts and terminology.

For our purposes, a neural network consists of a graph of neurons indexed by i. A
connection i — j between two neurons is directed and has a weight w;;. Typically,
input neurons are application-specific (for example, sensors), output neurons are
desired responses (for example, actuators or categories), and hidden neurons are
information processing units located in-between (Fig. 3).
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A neural network typically processes signals propagating through its units: a
vector of floating-point numbers, s, originates in input neurons and resulting signals
are transmitted along the connections. Each neuron j generates an output value v,
by collecting input from its connected neighbours and computing a weighted sum
via an activation function, @:

vi(s) = Z wij vi(s)

i @i—=j)

where ¢(x) is often a sigmoid function, such as tanh (x), making the output nonlinear.
For example, in the neural network of Fig. 3, the output of neuron 8 can be written
in terms of input signals v, v2, v3 as follows:

vg(s) = @(wag v2 + Weg V6)
= p(wag v2 + weg @ (W36 V3))

Graph topologies without cycles are known as feedforward NNs, while topologies
with cycles are called recurrent NNs. The former are necessarily stateless machines,
while the latter might possess some memory capacity. With sufficient size, even
simple feed-forward topologies can approximate any continuous function [44]. It is
possible to build a Turing machine in a recurrent NN [260].

A critical question in this chapter concerns the representation format of such a net-
work. Two common representations are adjacency matrices, which list every possible
connection between nodes, and graph-based representations, typically represented
as a list of nodes and edges (Fig. 4). Given sufficient space, any NN topology and set
of weights can be represented in either format.

Neural networks can be used to solve a variety of problems. In classification or
regression problems, when examples of input-output pairs are available to the net-
work during the learning phase, the training is said to be supervised. In this scenario,
the fitness function is typically a mean square error (MSE) measured between the
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network outputs and the actual outputs over the known examples. With feedback
available for each training signal sent, NNs can be trained through several means,
most often via gradient descent (as in the “backpropagation” algorithm). Here, a
error or “loss function” E is defined between the desired and actual responses of the
network, and each weight is updated according to the derivative of that function:

OE
wij(t + 1) = wi;(t) — UWU_
where 7 is the learning rate. Generally, this kind of approach assumes a fixed topology
and its goal is to optimize the weights.

On the other hand, unsupervised learning concerns cases where no output samples
are available and data-driven self-organization mechanisms are at work, such as
Hebbian learning. Finally, reinforcement learning (including neuroevolution) is con-
cerned with delayed, sparse and possibly noisy rewards. Typical examples include
robotic control problems, decision problems, and a large array of inverse problems
in engineering. These various topics will be discussed later.

1.3.3 Brain-Like AI: What’s Missing?

It is generally agreed that, at present, artificial intelligence (Al) is not “brain-like”.
While Al is successful at many specialized tasks, none of them shows the versatil-
ity and adaptability of animal intelligence. Several authors have compiled a list of
“missing” properties, which would be necessary for brain-like Al. These include:
the capacity to engage in a behavioural tasks; control via a simulated nervous sys-
tem; continuously changing self-defined representations; and embodiment in the real
world [165, 253, 263, 292]. Embodiment, especially, is viewed as critical because by
exploiting the richness of information contained in the morphology and the dynamics
of the body and the environment, intelligent behaviour could be generated with far
less representational complexity [228, 291].

The hypothesis explored in this book is that the missing feature is development.
The brain is not built from a blueprint; instead, it grows in situ from a complex
multicellular process, and it is this adaptive growth process that leads to the adap-
tive intelligence of the brain. Our goal is not to account for all properties observed
in nature, but rather to identify the relevance of a developmental approach with
respect to an engineering objective driven by performance alone. In the remainder of
this chapter, we review several approaches incorporating developmentally inspired
strategies into artificial neural networks.

2 Artificial Development

There are about 1.5 million known species of multicellular organisms, representing
an extraordinary diversity of body plans and shapes. Each individual grows from
the division and self-assembly of a great number of cells. Yet, this developmental
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process also imposes very specific constraints on the space of possible organisms,
which restricts the evolutionary branches and speciation bifurcations. For instance,
bilaterally symmetric cellular growth tends to generate organisms possessing pairs
of limbs that are equally long, which is useful for locomotion, whereas asymmetrical
organisms are much less frequent.

While the “modern synthesis” of genetics and evolution focused most of the
attention on selection, it is only during the past decade that analyzing and under-
standing variation by comparing the developmental processes of different species,
at both embryonic and genomic levels, became a major concern of evolutionary
development, or “evo-devo”. To what extent are organisms also the product of self-
organized physicochemical developmental processes not necessarily or always con-
trolled by complex underlying genetics? Before and during the advent of genetics, the
study of developmental structures had been pioneered by the “structuralist” school
of theoretical biology, which can be traced back to Goethe, D’ Arcy Thompson, and
Waddington. Later, it was most actively pursued and defended by Kauffman [150]
and Goodwin [98] under the banner of self-organization, argued to be an even greater
force than natural selection in the production of viable diversity.

By artificial development (AD), also variously referred to as artificial embryogeny,
generative systems, computational ontogeny, and other equivalent expressions (see
early reviews in [107, 265]), we mean the attempt to reproduce the constraints and
effects of self-organization in automated design. Artificial development is about
creating a growth-inspired process that will bias design outcomes toward useful forms
or properties. The developmental engineer engages in a form of “meta-design” [63],
where the goal is not to design a system directly but rather set a framework in which
human design or automated search will specify a process that can generate a desired
result. The benefits and effectiveness of development-based design, both in natural
and artificial systems, became an active topic of research only recently and are still
being investigated.

Assume for now that our goal is to generate a design which maximizes an objective
function, 0: @ — R”", where @ is the “phenotypic” space, that is, the space of
potential designs, and R” is a collection of performance assessments, as real values,
with n > 1 (n = 1 denotes a single-objective problem, while n > 1 denotes a
multiobjective problem). A practitioner of AD will seek to generate a lower-level
“genetic” space I", a space of “environments” E in which genomes will be expressed,
and a dynamic process ¢ that transforms the genome into a phenotype:

FsxES oS R

In many cases, only one environment is used, usually a trivial or empty instance from
the phenotypic space. In these cases, we simply write:

ri e R
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production rule

mall

axiom iteration 1 iteration 2 iteration 3 iteration 4

Fig. 5 Visualization of an L-System. Top-left a single production rule (the “genome”). Bottom-
left the axiom (initial “word”). Recursive application of the production rule generates a growing
structure (the “phenotype”). In this case, the phenotype develops exponentially with each application
of the production rule

The dynamic process J is inspired by biological embryogenesis, but need not resem-
ble it. Regardless, we will refer to it as growth or development, and to the quadruple
(I', E,d, @) as an AD system.

Often, the choice of phenotypic space @ is dictated by the problem domain. For
instance, to design neural networks, one might specify @ as the space of all adjacency
matrices, or perhaps as all possible instances of some data structure corresponding
to directed, weighted graphs. Or to design robots, one might define @ as all pos-
sible lattice configurations of a collection of primitive components and actuators.
Sometimes there is value in restricting @, for example to exclude nonsensical or
dangerous configurations. It is the engineer’s task to choose an appropriate @ and
to “meta-design” the I", E, and J parts that will help import the useful biases of
biological growth into evolved systems.

A famous class of AD systems are the so-called L-Systems. These are formal
grammars originally developed by Lindenmayer as a means of generating model
plants [231]. In their simplest form, they are context-free grammars, consisting of a
starting symbol, or “axiom”, a collection of variables and constants, and at most one
production rule per variable. By applying the production rules to the axiom, a new
and generally larger string of symbols, or “word”, is created. Repeated application of
the production rules to the resulting word simulates a growth process, often leading
to gradually more complex outputs. One such grammar is illustrated in Fig. 5, where
a single variable (red stick) develops into a tree-like shape. In this case, the space
of phenotypes @ is the collection of all possible words (collections of sticks), the
space of genotypes I” is any nonambiguous set of context-free production rules, the
environment E is the space in which a phenotype exists (here trivially 2D space), and
the dynamic process ¢ is the repeated application of the rules to a given phenotype.

There are several important aspects to the meta-design of space of representations
I' and growth process d. Perhaps the most critical requirement is that the chosen enti-
ties be “evolvable”. This term has many definitions [129] but generally means that
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Fig. 6 A mutation of the
production rule in Fig.5, and
the output after four iterations
of growth

Fig.7 McCormack’s evolved
L-Systems, inspired by, but
exaggerating, Australian flora

producion rule

T. Kowaliw et al.

the space of representations should be easily searchable for candidates that optimize
some objective. A generally desirable trait is that small changes in a representation
should lead to small changes in the phenotype—a “gentle slope” allowing for incre-
mental search techniques. In AD systems, however, due to the nonlinear dynamic
properties of the transformation process, it is not unusual for small genetic changes
to have large effects on the phenotype [87].

For instance, consider in Fig.6 a possible mutation of the previous L-System.
Here, the original genome has undergone a small change, which has affected the
resulting form. The final phenotypes from the original and the mutated version are
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similar in this case: they are both trees with an identical topology. However, it is
not difficult to imagine mutations that would have catastrophic effects, resulting in
highly different forms, such as straight lines or self-intersections. Nonlinearity of the
genotype-to-phenotype mapping J can be at the same time a strength and a weakness
in design tasks.

There is an important distinction to be made here between our motivations and
those of systems biology or computational neuroscience. In AD, we seek means of
creating engineered designs, not simulating or reproducing biological phenomena.
Perhaps this is best illustrated via an example: McCormack, a computational artist,
works with evolutionary computation and L-Systems (Fig. 7). Initially, this involved
the generation of realistic models of Australian flora. Later, however, he continued
to apply evolutionary methods to create exaggerations of real flora, artefacts that
he termed “impossible nature” [187, 188]. McCormack’s creations retain salient
properties of flora, especially the ability to inspire humans, but do not model any
existing organism.

2.1 Why Use Artificial Development?

Artificial development is one way of approaching complex systems engineering,
also called “emergent engineering” [282]. It has been argued that the traditional
state-based approach in engineering has reached its limits, and the principles under-
lying complex systems—self-organization, nonlinearity, and adaptation—must be
accommodated in new engineering processes [11, 203]. Incorporating complex
systems into our design process is necessary to overcome our present logjam of
complexity, and open new areas of productivity. Perhaps the primary reason for the
interest in simulations of development is that natural embryogenesis is a practical
example of complex systems engineering, one which achieves designs of scale and
functionality that modern engineers aspire to. There are several concrete demonstra-
tions of importing desirable properties from natural systems into artificial counter-
parts. The key property of evolvability, which we have already discussed, is linked
to a notion of scalability. Other related properties include robustness via self-repair
and plasticity.

2.1.1 Scalability

Perhaps the best studied property of AD systems is the ability to scale to several sizes.
This is a consequence of a general decoupling of the complexity of the genome (what
we are searching for) from the phenotype (the final product). In many models, the
size of the phenotype is controlled via a single parameter, which can be the number of
repetitions of a module, the number of iterations in an L-System, or a single variable
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controlling the amount of available resources. In these cases, a minimal change in
the size of the genome might have exponential effects on the size of the resulting
phenotype.

This property—the capacity to scale—brings to mind the notion of “Kolmogorov
complexity”, or the measurement of the complexity of a piece of data by the shortest
computer program that generates it. With the decision to use AD, we make the
assumption that there exists a short computer program that can generate our desired
data, i.e. that the Kolmogorov complexity of our problem is small. This implies that
AD will succeed in cases where the data to be generated is sufficiently large and
non-random. Unfortunately, in the general case, finding such a program for some
given data is an uncomputable problem, and to date there is no good approximation
other than enumerating all possible programs, a generally untenable solution [173].

In many highly relevant domains of application, the capacity for scaling has been
successfully demonstrated by AD systems. Researchers will often compare their
AD model to a direct encoding model, in which each component of the solution is
specified in the genome independently. Abstract studies have confirmed our intuition
that AD systems are often better for large phenotypes and nonrandom data [40,
108]. This has also been demonstrated in neural networks [86, 104, 153], virtual
robotics [161]; engineering design [127], and other domains [17, 243].

2.1.2 Robustness and Self-repair

Another desirable property of biological systems is the capacity for robustness. By
this, we mean a “canalization” or the fact that a resulting phenotype is resistant
to environmental perturbations, whether they are obstacles placed in the path of a
developing organism, damage inflicted, or small changes to external factors affecting
cellular expression, such as temperature or sources of nutrient. In biology, this ability
is hypothesized to result from a huge number of almost identical cells, a redundancy
creating tolerance toward differences in cellular arrangement, cell damage, or the
location of organizers [152]. Several AD systems have been shown to import robust-
ness, which can be selected for explicitly [ 18]. More interestingly, robustness is often
imported without the inclusion of selection pressure [86, 161, 243]. In many cases,
this property seems to be a natural consequence of the use of an adaptive growth
process as a design step.

An extreme example of robustness is the capacity for self-repair. Many authors
have conducted experiments with AD systems in which portions of an individual are
damaged (e.g. by scrambling or removing components). In these cases, organisms
can often self-repair, reconfiguring themselves to reconstruct the missing or altered
portions and optimize the original objective. For instance, this has been demonstrated
in abstract settings [5, 42, 145, 197], digital circuits [224], and virtual robotics [275].
Interestingly, in most of these cases, the self-repair capacity is not explicitly selected
for in the design stage.
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2.1.3 Plasticity

Another property of AD systems is plasticity, also referred to as polymorphism or
polyphenism (although these terms are not strictly equivalent). By this, we mean the
ability of organisms to be influenced by their environment and adopt as a result any
phenotype from a number of possibilities. Examples in nature are legion [94], and
most striking in the tendency of plants to grow toward light or food, or the ability of
nervous systems to adapt to new stimuli. While robustness means reaching the same
genotype under perturbation, plasticity means reaching different phenotypes under
perturbation. Both, however, serve to improve the ultimate fitess of the organism in
a variety of environments.

In classical neural systems, plasticity is the norm and is exemplified by well-
known training methods: Hebbian learning, where connections between neurons are
reinforced according to their correlation under stimuli [114], and backpropagation,
where connection weights are altered according to an error derivative associated with
incoming stimuli [245]. These classic examples focus on synaptic structure, or the
weighting of connections in some predetermined network topology. While this is
certainly an element of natural self-organization, it is by no means a complete char-
acterization of the role that plasticity plays in embryogenesis. Environmental stimuli
in animal morphogenesis include other neural mechanisms, such as the constant re-
formation and re-connection of synapses. Both selectivist and constructivist theories
of brain development posit a central role for environmental stimuli in the generation
of neural morphology. Furthermore, plasticity plays a major role in other develop-
mental processes as well. In plants, the presence or absence of nutrients, light, and
other cues will all but determine the coarse morphology of the resulting form. In
animals, cues such as temperature, abundance of nutrients, mechanical stress, and
available space are all strong influences. Indeed, the existence of plasticity is viewed
as a strong factor in the evolvability of forms: for instance, plastic mechanisms in
the development of the vascular system allow for a sort of “accidental adaptation”,
where novel morphological structures are well served by existing genetic mecha-
nisms for vasculogenesis, despite never being directly selected for in evolutionary
history [99, 177].

Most examples of artificial neural systems exploit plasticity mechanisms to tune
parameters according to some set of “training” stimuli. Despite this, the use of envi-
ronmentally induced plasticity in AD systems is rare. Only a few examples have
shown that environmental cues can be used to reproduce plasticity effects com-
monly seen in natural phenomena, such as: virtual plant growth [87, 252], circuit
design [280], or other scenarios [157, 190]. In one case, Kowaliw et al. experimented
with the growth of planar trusses, a model of structural engineering. They initially
showed that the coarse morphology of the structures could be somewhat controlled
by the choice of objective function—however, this was also a difficult method of
morphology specification [163]. Instead, the authors experimented with external
constraints, which consisted of growing their structures in an environment that had
the shape of the desired morphology. Not only was this approach generally success-
ful in the sense of generating usable structures of the desired overall shape, but it
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also spontaneously generated results indicating evolvability. A few of the discovered
genomes could grow successful trusses not only in the specific optimization envi-
ronment but also in all the other experimental environments, thus demonstrating a
capacity for accidental adaptation [162].

2.1.4 Other Desirable Natural Properties

Other desirable natural properties are known to occasionally result from AD systems.
These include: graceful degradation, i.e. the capacity for systems performance to fail
continuously with the removal of parts [18]; adaptation to previously unseen environ-
ments, thought to be the result of repetitions of phenotypic patterns capturing useful
regularities (see, for instance, Chap.9 [206]); and the existence of “scafolding”, i.e.
a plan for the construction of the design in question, based on the developmental
growth plan [241].

2.2 Models of Growth

An AD system requires a means of converting a representation into a design. This
conversion typically involves a dynamic process that generates an arrangement of
“cells”, where these cells can stand for robotic components, structural members, neu-
rons, and so on. Several models of multi-component growth have been investigated
in detail:

e Induced representational bias: the designer adds a biologically inspired bias to an
otherwise direct encoding. Examples include very simple cases, such as mirroring
elements of the representation to generate symmetries in the phenotype [256], or
enforcing a statistical property inspired by biological networks, such as the density
of connections in a neural system [258].

e Graph rewriting: the phenotype is represented as a graph, the genome as a col-
lection of graph-specific actions, and growth as the application of rules from the
genome to some interim graph. Examples of this paradigm include L-Systems and
dynamic forms of genetic programming [109, 122].

e Cellular growth models: the phenotype consists of a collection of cells on a lattice
or in continuous space. The genome consists of logic that specifies associations
between cell neighbourhoods and cell actions, where the growth of a phenotype
involves the sum of the behaviours of cells. Cellular growth models are sometimes
based on variants of cellular automata, a well-studied early model of discrete
dynamics [161, 197]. This choice is informed by the success of cellular automata
in the simulation of natural phenomena [56]. Other models involve more plausible
physical models of cellular interactions, where cells orient themselves via inter-
cellular physics [25, 62, 76, 144, 249]
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e Reaction-diffusion models: due to Turing [281], they consist of two or more
simulated chemical agents interacting on a lattice. The chemical interactions
are modelled as nonlinear differential equations, solved numerically. Here, sim-
ple equations quickly lead to remarkable examples of self-organized patterns.
Reaction-diffusion models are known to model many aspects of biological devel-
opment, including overall neural organization [172, 259] and organismal behav-
iour [47, 298].

e Other less common but viable choices include: the direct specification of
dynamical systems, where the genome represents geometric components such
as attractors and repulsors [267]; the use of cell sorting, or the simulation of ran-
dom cell motion among a collection of cells with various affinities for attraction,
which can be used to generate a final phenotype [107].

A major concern for designers of artificial development (and nearly all com-
plex systems) is how to find the micro-rules which will generate a desired macro-
scale pattern. Indeed, this problem has seen little progress despite several decades of
research, and in the case of certain generative machines such as cellular automata, it
is even known to be impossible [133]. The primary way to solve this issue is using a
machine learner as a search method. Evolutionary computation is the general choice
for this machine learner, mostly due to the flexibility of genomic representations
and objective functions, and the capacity to easily incorporate conditions and heuris-
tics. In this case, the phenotype of the discovered design solution will be an unpre-
dictable, emergent trait of bottom-up design choices, but one which meets the needs
of the objective function. Various authors have explored several means of ameliorat-
ing this approach, in particular by controlling or predicting the evolutionary output
[213, 214].

2.3 Why Does Artificial Development Work?

The means by which development improves the evolvability of organisms is a critical
question. In biology, the importance of developmental mechanisms in organismal
organization has slowly been acknowledged. Several decades ago, Gould (contro-
versially) characterized the role of development as that of a “constraint”, or a “fruit-
ful channelling [to] accelerate or enhance the work of natural selection” [99]. Later
authors envisioned more active mechanisms, or “drives” [7, 152]. More recently,
discussion has turned to “increased evolvability”, partly in recognition that no sim-
ple geometric or phenotypic description can presently describe all useful phenotypic
biases [115]. At the same time, mechanisms of development have gained in impor-
tance in theoretical biology, spawning the field of evo-devo [31] mentioned above,
and convincing several researchers that the emergence of physical epigenetic cellular
mechanisms capable of supporting robust multicellular forms was, in fact, the “hard”
part of the evolution of today’s diversity of life [212].
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Inspired by this related biological work, practitioners of artificial development
have hypothesized several mechanisms as an explanation for the success of artificial
development, or as candidates for future experiments:

e Regularities: this term is used ambiguously in the literature. Here, we refer to the
use of simple geometrically based patterns over space as a means of generating or
biasing phenotypic patterns, for example relying on Wolpert’s notion of gradient-
based positional information [295]. This description includes many associated
biological phenomena, such as various symmetries, repetition, and repetition with
variations. Regularities in artificial development are well studied and present in
many models; arguably the first AD model, Turing’s models of chemical morpho-
genesis, relied implicitly on such mechanisms through chemical diffusion [281].
A recent and popular example is the Compositional Pattern Producing Network
(CPPN), an attempt to reproduce the beneficial properties of development without
explicit multicellular simulation [266] (see also Sect. 5.4 and Chap. 5).

e Modularity: this term implies genetic reuse. Structures with commonalities are
routine in natural organisms, as in the repeated vertebrae of a snake, limbs of a
centipede, or columns in a cortex [29]. As Lipson points out, modules need not
even repeat in a particular organism or design, as perhaps they originate from a
meta-processes, such as the wheel in a unicycle [174]. Despite this common con-
ception, there is significant disagreement on how to define modularity in neural
systems. In cognitive science, a module is a functional unit: a specialized and
encapsulated unit of function, but not necessarily related to any particular low-
level property of neural organization [89, 233]. In molecular biology, modules are
measured as either information-theoretic clusters [121], or as some measure of
the clustering of network nodes [147, 211, 289]. These sorts of modularity are
implicated in the separation of functions within a structure, allowing for greater
redundancy in functional parts, and for greater evolvability through the separa-
tion of important functions from other mutable elements [229]. Further research
shows that evolution, natural and artificial, induces modularity in some form, under
pressures of dynamic or compartmentalized environments [23, 24, 39, 121, 147],
speciation [82], and selection for decreased wiring costs [39]. In some cases, these
same measures of modularity are applied to neural networks [23, 39, 147]. Beyond
modularity, hierarchy (i.e. the recursive composition of a structure and/or function
[64, 124, 174]) is also frequently cited as a possibly relevant network property.

e Phenotypic properties: Perhaps the most literal interpretation of biological theory
comes from Matos et al., who argue for the use of measures on phenotypic space.
In this view, an AD system promotes a bias on the space of phenotypic structures
that can be reached, which might or might not promote success in some particular
domain. By enumerating several phenotypic properties (e.g. “the number of cells
produced”) they contrast several developmental techniques, showing the bias of
AD systems relative to the design space [185]. While this approach is certainly
capable of adapting to the problem at hand, it requires a priori knowledge of
the interesting phenotypic properties—something not presently existing for large
neural systems;
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o Adaptive feedback and learning: Some authors posit adaptive feedback during
development as a mechanism for improved evolvability. The use of an explicit
developmental stage allows for the incorporation of explicit cues in the resulting
phenotype, a form of structural plasticity which recalls natural growth. These cues
include not only a sense of the environment, as was previously discussed, but
also interim indications of the eventual success of the developing organism. This
latter notion, that of a continuous measure of viability, can be explicitly included
in AD system, and has been shown in simple problems to improve efficacy and
efficiency [12, 157, 158, 190]. A specialized case of adaptive feedback is learn-
ing, by which is meant the reaction to stimuli by specialized plastic components
devoted to the communication and processing of inter-cellular signals. This impor-
tant mechanism is discussed in the next section.

3 Artificial Neurogenesis

By artificial neurogenesis, we mean a developmentally inspired process that gener-
ates neural systems for use in a practical context. These contexts include tasks such
as supervised learning, computer vision, robotic control, and so on. The definition of
developmentally inspired processes in this chapter is also kept broad on purpose: at
this early stage, we do not want to exclude the possibility that aspects of our current
understanding of development are spurious or replaceable.

An interesting early example of artificial neurogenesis is Gruau’s cellular encod-
ing [103]. Gruau works with directed graph structures: each neural network starts
with one input and one output node, and a hidden “mother” cell connected between
them. The representation, or “genome”, is a tree encoding that lists the successive
cell actions taken during development. The mother cell has a reading head pointed
at the top of this tree, and executes any cellular command found there. In the case of
a division, the cell is replaced with two connected children, each with reading heads
pointed to the next node in the genome. Other cellular commands change registers
inside cells, by adding bias or changing connections. A simple example is illustrated
in Fig. 8.

Through this graph-based encoding, Gruau et al. designed and evolved networks
solving several different problems. Variants of the algorithm used learning as a mid-
step in development and encouraged modularity in networks through the introduction
of a form of genomic recursion [103, 104]. The developed networks showed strong
phenotypic organization and modularity (see Fig.9 for samples).

3.1 The Interplay Between Development and Learning

A critical difference between artificial neurogenesis and AD is the emphasis on learn-
ing in the latter. Through the modelling of neural elements, a practitioner includes
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genome step 0: step 1 step 6:
initial neural network final phenotype

Fig. 8 Simple example of a neural network generated via cellular encoding (adapted from [103]).
On the /eft, an image of the genome of the network. On the right, snapshots of the growth of the
neural network. The green arrows show the reading head of the active cells, that is, which part
of the genome they will execute next. This particular network solves the XOR problem. Genomic
recurrence (not shown) is possible through the addition of a recurrence node in the genomic tree

Fig. 9 Sample neural networks generated via cellular encoding: left a network solving the 21-bit
parity problem; middle a network solving the 40-bit symmetry problem; right a network imple-
menting a 7-input, 128-output decoder (reproduced with permission from [103])

any number of plasticity mechanisms that can effectively incorporate environmental
information.

One such hypothetical mechanism requiring the interplay between genetics and
epigenetics is the Baldwin effect [9]. Briefly, it concerns a hypothesized process that
occurs in the presence of both genetic and plastic changes and accelerates evolution-
ary progress. Initially, one imagines a collection of individuals distributed randomly
over a fitness landscape. As expected, the learning mechanism will push some, or all,
of these individuals toward local optima, leading to a population more optimally dis-
tributed for non-genetic reasons. However, such organisms are under “stress” since
they must work to achieve and maintain their epigenetically induced location in the
fitness landscape. If a population has converged toward a learned optimum, then in
subsequent generations, evolution will operate to lower this stress, by finding genetic
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means of reducing the amount of learning required. Thus, learning will identify an
optimum, and evolution will gradually adapt the genetic basis of the organism to fit
the discovered optimum. While this effect is purely theoretical in the natural world,
it has long been known that it can be generated in simple artificial organisms [120].
Accommodating developmental processes in these artificial models is a challenge,
but examples exist [72, 103]. Other theories of brain organization, such as displace-
ment theory, have also been tentatively explored in artificial systems [70, 71].

3.2 Why Use Artificial Neurogenesis?

There is danger in the assumption that all products of nature were directly selected
for their contribution to fitness; this Panglossian worldview obscures the possibility
that certain features of natural organisms are the result of non-adaptive forces, such
as genetic drift, imperfect genetic selection, accidental survivability, side-effects of
ontogeny or phylogeny, and others [100]. In this spirit, we note that while a computer
simulation might show a model to be sufficient for the explanation of a phenomenon,
it takes more work to show that it is indeed necessary. Given the staggering complex-
ity of recent neural models, even a successful recreation of natural phenomena does
not necessarily elucidate important principles of neural organization, especially if the
reconstructed system is of size comparable to the underlying data source. A position
of many practitioners working with bio-inspired neural models, as in artificial intel-
ligence generally, is that an alternative path to understanding neural organization
is the bottom-up construction of intelligent systems. The creation of artefacts capa-
ble of simple behaviours that we consider adaptive or intelligent gives us a second
means of “understanding” intelligent systems, a second metric through which we can
eliminate architectural overfitting from data-driven models, and identify redundant
features of natural systems.

A second feature of many developmental neural networks is the reliance on local
communication. Practitioners of AD will often purposefully avoid global information
(e.g. in the form of coordinate spaces or centralized controllers) in order to generate
systems capable of emergent global behaviour from purely local interactions, as is
the case in nature. Regardless of historic motivations, this attitude brings potential
benefits in engineered designs. First, it assumes that the absence of global control
contributes to the scalability of developed networks (a special form of the robust-
ness discussed in Sect.2.1.1). Second, it guarantees that the resulting process can
be implemented in a parallel or distributed architecture, ideally based on physically
asynchronous components. Purely local controllers are key in several new engineer-
ing application domains, for instance: a uniform array of locally connected hardware
components (such as neuromorphic engineering), a collection of modules with lim-
ited communication (such as a swarm of robots, or a collection of software modules
over a network), or a group of real biological cells executing engineered DNA (such
as synthetic biology).
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3.3 Model Choices

A key feature in artificial neurogenesis is the level of simulation involved in the
growth model. It can range from highly detailed, as is the case for models of cellular
physics or metabolism, to highly abstract, when high-level descriptions of cellular
groups are used as building blocks to generate form. While realism is the norm in
computational neuroscience, simpler and faster models are typical in machine learn-
ing. An interesting and open question is whether or not this choice limits the capacity
of machine learning models to solve certain problems. For artificial neurogenesis, rel-
evant design decisions include: spiking versus non-spiking neurons, recurrent versus
feed-forward networks, the level of detail in neural models (e.g. simple transmission
of a value versus detailed models of dendrites and axons), and the sensitivity of neural
firing to connection type and location.

Perhaps the most abstract models come from the field of neuroevolution, which
relies on static feed-forward topologies and nonspiking neurons. For instance, Stan-
ley’s HyperNEAT model [49] generates a pattern of connections from another lattice
of feed-forward connections based on a composition of geometric regularities. This
model is a highly simplified view of neural development and organization, but can
be easily evolved (see Chap. 5, [48]). A far more detailed model by Khan et al. [151]
provides in each neuron several controllers that govern neural growth, the synap-
togenesis of dendrites and axons, connection strength, and other factors. Yet, even
these models are highly abstract compared to other works from computational neu-
roscience, such as the modelling language of Zubler et al. [311]. The trade-offs
associated with this level of detailed modelling are discussed in depth by Miller
(Chap. 8, [198]).

Assuming that connectivity between neurons depends on their geometric loca-
tion, a second key question concerns the level of stochasticity in the placement of
those elements. Many models from computational neuroscience assume that neural
positions are at least partially random, and construct models that simply overlay pre-
formed neurons according to some probability law. For instance, Cuntz et al. posit
that synapses follow one of several empirically calculated distributions, and con-
struct neural models based on samples from those distributions [41]. Similarly, the
Blue Brain project assumes that neurons are randomly scattered: this model does, in
fact, generate statistical phenomena which resemble actual brain connectivity pat-
terns [116].

A final key decision for artificial neurogenesis is the level of detail in the simulation
of neural plasticity. These include questions such as:

e Is plasticity modelled at all? In many applications of neuroevolution (Sect.4.3), it
is not: network parameters are determined purely via an evolutionary process.

e Does plasticity consist solely of the modification of connection weights or firing
rates? This is the case in most classical neural networks, where a simple, almost
arbitrary network topology is used, such as a multilayer perceptron. In other cases,
connection-weight learning is applied to biologically motivated but static network
topologies (Sects.4.1 and 4.2, Chap.7 [13]).
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e How many forms of plasticity are modelled? Recent examples in reservoir
computing show the value of including several different forms (Sect.6.1).

e Does the topology of the network change in response to stimuli? Is this change
based on a constructive or destructive trigger (Sect.6.2)? Is the change based on
model cell-inspired synaptogenesis (Sect.5)?

The plethora of forms of plasticity in the brain suggests different functional roles in
cognition. For instance, artificial neural networks are prone to a phenomenon known
as “catastrophic forgetting”, that is, a tendency to rapidly forget all previously learned
knowledge when presented with new data sources for training. Clearly, such forget-
fulness will negatively impact our capacity to create multi-purpose machines [90].
Miller and Khan argue, however, that re-introducing metaphors for developmental
mechanisms, such as dendritic growth, overcomes this limitation [201].

3.4 Issues Surrounding Developmental Neural Network Design

The use of a developmentally inspired representation or growth routine in neural
network design implies a scale of network rarely seen in other design choices. Indeed,
development is associated with the generation of large structures and is not expected
to be useful below a minimal number of parts. This leads to several related issues for
practitioners:

e Large networks are difficult to train via conventional means. This is mainly due to
computational complexity, as training procedures such as backpropagation grow
with the number of connections in a network.

e A more specific issue of size, depth, refers to the number of steps between the
input and output of the network. It is known that there are exponentially more
local optima in “deep” networks than “shallow” ones, and this has important con-
sequences for the success of a gradient-descent technique in a supervised learning
task. Despite these difficulties, depth is found to be useful because certain problems
can be represented in exponentially smaller formats in deep networks [16].

These issues can be ameliorated via several new and highly promising neural tech-
niques. On such technique is reservoir computing, where only a small subset of a
large network is trained (Sect. 4.2). A second such technique is deep learning, where
a deep network is preconditioned to suit the data source at hand (Sect.4.1).

In much of statistical learning, there is a drive toward finding the most parsimo-
nious representation possible for a solution. This is usually the case in constructive
and pruning networks (Sect.6.2), in which a smaller network is an explicit metric
of success. Obviously, simpler solutions are more efficient computationally and can
be more easily understood. However, it is further claimed that parsimonious solu-
tions will also perform better on previously unseen data, essentially based on the
bias/variance trade-off argument by Geman et al. [92]. They show that for a simple,
fully connected network topology, the number of hidden nodes controls the level
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of bias and variance in a trained classifier. Too many nodes lead to a network with
excessive variance and overfitting of the training data. They conclude that the hard
part of a machine learning problem is finding a representational structure that can
support a useful “bias” toward the problem at hand. It means that a heuristic architec-
tural search must precede the exploration and optimization of network parameters.
Perhaps inspired by this and similar studies on limited representations, and the hope
that smaller representations will have less tendencies to overfit, parsimony is often
an explicit goal in optimization frameworks. Yet, we take here a different view: for
us, certain forms of redundancy in the network might in fact be one of the archi-
tectural biases that support intelligence. In AD, redundancy is often celebrated for
increasing resilience to damage, allowing graceful degradation, and creating neutral
landscapes, or genetic landscapes that encourage evolvability [239, 248, 305].

4 Bio-Inspired Representations

Many neural models do not explicitly simulate any developmental process, yet they
are substantially informed by biology through the observation the network struc-
ture of natural neural systems (or systems from computational neuroscience), and
the inclusion of an explicit “bias” containing similar properties. Several of these
approaches have proven tremendously successful in recent years, contributing to the
so-called “second neural renaissance” that has reinvigorated research in artificial
neural networks. We summarize below some of these bio-inspired representations.

4.1 Deep Learning

With the advent of deep learning, neural networks have made headlines again both
in the machine learning community and publicly, to the point that “deep networks”
could be seen on the cover of the New York Times. While deep learning is primarily
applied to image and speech recognition [15, 46, 171], itis also mature enough today
to work out of the box in a wide variety of problems, sometimes achieving state-of-
the-art performance. For example, the prediction of molecular activity in the Kaggle
challenge on Merck datasets (won by the Machine Learning group of the University
of Toronto), or collaborative filtering and preference ranking in the Netflix movie
database [246] both used deep learning.

These impressive results can be explained by the fact that deep learning very
efficiently learns simple features from the data and combines them to build high-
level detectors, a crucial part of the learning task. The features are learned in an
unsupervised way and the learning methods are scalable: they yield the best results on
the ImageNet problem [52, 166, 170], a dataset comprising 1,000 classes of common
object images, after a training process that ran on a cluster of tens of thousands of
CPUs and several millions of examples. Even through purely unsupervised training
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Fig. 10 Architecture of a convolution neural network, as proposed by LeCun in [171]. The convo-
lutional layers alternate with subsampling (or pooling) layers

on YouTube images, the features learned are specialized enough to serve as face
detectors or cat detectors. A straightforward supervised tuning of these unsupervised
features often leans to highly effective classifiers, typically outperforming all other
techniques.

Deep networks are similar to the classical multilayer perceptrons (MLP). MLPs
are organized into “hidden layers”, which are rows of neurons receiving and process-
ing signals in parallel. These hidden layers are the actual locus of the computation,
while the input and output layers provide the interface with the external world. Before
deep learning, most multilayered neural nets contained only one hidden layer, with
the notable exception of LeCun’s convolutional network [171] (see below). One rea-
son comes from the theoretical work of Héstad [112], who showed that all boolean
circuits with £ 4 1 layers could be simulated with £ layers, at the cost of an exponen-
tially larger number of units in each layer. Therefore, to make the model selection
phase easier, for example chosing the number of units per layer, a common practice
was to consider a single hidden layer. Another reason is that networks with more
than one or two hidden layers were notoriously difficult to train [274], and the very
small number of studies found in the literature that involve such networks is a good
indicator of this problem.

Pioneering work on deep learning was conducted by LeCun [171], who proposed
a family of perceptrons with many layers called convolutional networks (Fig. 10).
These neural networks combine two important ideas for solving difficult tasks: shift-
invariance, and reduction of dimensionality of the data. A convolution layer imple-
ments a filtering of its input through a kernel function common to all neurons of the
layer. This approach is also called weight sharing, as all neurons of a given layer
always have the same weight pattern. Convolution layers alternate with “pooling
layers”, which implement a subsampling process. The activation level of one neuron
in a pooling layer is simply the average of the activity of all neurons from the previ-
ous convolution layer. In the first layer, the network implements a filter bank whose
output is subsampled then convolved by the filter implemented in the next layer.
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Fig. 11 Layer-wise unsupervised training in a deep architecture: left training of the first hidden
layer, shown in black; center training of the second hidden layer, shown in black. Hidden layers
and associated weights that are not subject to learning are shown in grey

Therefore, each pair of layers extracts a set of features from the input, which in turn
feed into the next pair of layers, eventually building a whole hierarchy of features.
Interesting variants of convolutional networks include L2-pooling, in which the L,
norm of a neuron’s activation in the previous layer is used instead of the maximum
or the average [141], and contrast normalization, where the activities of the pooling
neurons are normalized.

Hierarchical combination of features is the key ingredient of deep networks. In
convolutional networks, the weight sharing technique allows learning a specific filter
for each convolution map, which drastically reduces the number of variables required,
and also explains why convolutional networks converge by simple stochastic gradient
descent. On the other hand, weight sharing also limits the expressivity of the network,
as each filter must be associated to a feature map and too many feature maps could
negatively affect the convergence of the learning algorithm.

To overcome this trade-off, the method proposed by deep learning is to build the
network step by step and ensure the learning of a feature hierarchy while maintaining
good expressivity [81]. This is implemented via layer-wise unsupervised training,
followed by a fine tuning phase that uses a supervised learning algorithm, such as
gradient descent (Fig. 11). The idea of relying on unsupervised learning to train a
network for a supervised task has been advocated by Raina et al. [235] in their
work about self-taught learning. It is known that adding unlabelled examples to the
training patterns improves the accuracy of the classifiers, an approach called “semi-
supervised” learning [217]. In self-taught learning, however, any example and any
signal can be used to improve the classifier’s accuracy.

The underlying hypothesis is that recurring patterns in the input signal can be
learned from any of the signal classes, and these typical recurrent patterns are helpful
to discriminate between different signal classes. In other words, when the signal space
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is large, it is possible to learn feature detectors that lie in the region containing most
of the signal’s energy, and then, classifiers can focus on this relevant signal space.

The layer-wise unsupervised objective of a deep network is to minimize the recon-
struction error between the signal given on the input layer of the network and the
signal reconstructed on the output layer. In the autoencoder framework, this first
learning step, also called generative pretraining, focuses on a pair of parameters, the
weight matrix W and the bias b of an encoder-decoder network. The encoder layer
is a mapping f from the input signal x to an internal representation y:

y=fx)=s(Wx +Db) (D)

where b is a bias vector and s is a non-linear function, usually a sigmoidal function.
The decoder is a mapping from the internal state to a reconstructed signal z:

z=g() =s(Wlx+b") )

In the left part of Fig. 11, the input vector x activates the neurons of the input layer,
the internal state y of the hidden layer is expressed by Eq. (2) and the output layer is
z = g(f(x)). The reconstructed error to minimize is then:

L(x,z) o< —log p(x|z) 3)

A deep network can be built by stacking networks on top of each other. The most
common are the autoencoders, also called auto-associators, which are often con-
strained to either ensure sparsity (sparse autoencoders) [15, 169, 236], or enforce
generalization by purposefully corrupting the input signals, as with denoising autoen-
coders [81, 285]. Another widely investigated type of network is the restricted
Boltzmann machine (RBM) [119], which is based on latent variables and a probabilis-
tic formulation. A bound on accuracy ensures that stacking RBMs could only improve
the accuracy of the whole architecture. Recent developments have shown that it is
possible to use many different classifiers as the building blocks of a deep architecture.
Nonetheless, the neural networks and their training have been sufficiently investi-
gated to be integrated into a toolbox and applied without prior knowledge to nearly
any pattern recognition problem.

The incremental method used in deep learning can be construed as a type of
simplified evolutionary process, in which a first layer is set up to process certain
inputs until it is sufficiently robust, then a second layer uses as input the output of the
first layer and re-processes it until convergence, and so on. In a sense, this mimics an
evolutionary process based on the “modularity of the mind” hypothesis [89], which
claims that cognitive functions are constructed incrementally using the output of
previous modules leading to a complex system. Another evolutionary perspective on
deep learning, in relation with cultural development, is proposed by Bengio [14].
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Chapter 3: Evolving culture versus local minima.

In Chap.3, Bengio [14] provides a global view of the main hypotheses
behind the training of deep architectures. It describes both the difficulties and
the benefits of deep learning, in particular the ability to capture higher-level and
more abstract relations. Bengio relates this challenge to human learning, and
proposes connections to culture and language. In his theory, language conveys
higher-order representations from a “teacher” to a “learner” architecture, and
offers the opportunity to improve learning by carefully selecting the sequence
of training examples—an approach known as Curriculum Learning. Bengio’s
theory is divided into several distinct hypotheses, each with proposed means of
empirical evaluation, suggesting avenues for future research. He further postu-
lates cultural consequences for his theory, predicting, for instance, an increase
in collective intelligence linked to better methods of memetic transmission,
such as the Internet.

From a computational viewpoint, signals acquired from natural observations
often reside on a low-dimension manifold embedded in a higher-dimensional space.
Deep learning aims at learning local features that characterize the neighbourhood
of observed manifold elements. A connection could be made with sparse coding
and dictionary learning algorithms, as described in [222], since all these data-driven
approaches construct over-complete bases that capture most of the signal’s energy.
This line of research is elaborated and developed in Chap.4 by Rebecchi, Paugam-
Moisy and Sebag [236].

Chapter 4: Learning sparse features with an auto-associator.

In Chap.4, Rebecchi, Paugam-Moisy and Sebag [236] review the recent
advances in sparse representations, that is, mappings of the input space to
a high-dimensional feature space, known to be robust to noise and facilitate
discriminant learning. After describing a dictionary-based method to build such
representations, the authors propose an approach to regularize auto-associator
networks, a common building block in deep architectures, by constraining the
learned representations to be sparse. Their model offers a good alternative to
denoising auto-associator networks, which can efficiently reinforce learning
stability when the source of noise is identified.

To deal with multivariate signals and particularly complicated time-series, several
deep learning systems have been proposed. A common choice is to replicate and
connect deep networks to capture temporal aspect of signals, using learning rules
such as backpropagation through time. However, since these networks are recurrent,
the usual gradient descent search does not converge. Consequently, “vanishing” or
“exploding” gradient descents have also been the subject of an intense research
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Fig. 12 A time-series u(n) inputs reservoir outputs
is assigned to input neurons.
These input neurons are
connected to the “reservoir”,
a recurrent neural network
x(n). Only a subset of x(n)
is connected to the output
neurons y(n)

effort and have led to the development of reservoir computing approaches, which are
detailed in the next section.

4.2 Reservoir Computing

Reservoir computing is an approach and family of models that rely on a recurrent
neural network, called a reservoir, to generate a high-dimensional and dynamical
representation of a given input, often a time series. Typically, the connections and
weights in the network are randomly distributed and can produce a large number of
nonlinear patterns from an input stream. Rather than modifying the reservoir with a
supervised learning algorithm, however, the dynamical state of the reservoir is “read
out” by a simple classifier, for example a linear regression or support vector machine,
connected to a fraction of its neurons. This idea has been instantiated in different
neural models, the two best known being Jaeger’s Echo State Network (ESN) [137]
and Maass’ Liquid State Machine (LSM) [180, 210] (Fig. 12).

The ESN formulation uses a common sum of the weight / nonlinearity neurons
as a neural model for the reservoir, such as McCulloch and Pitts neurons [189] or
sigmoidal units. A good reservoir should produce a rich dynamics to facilitate the sep-
arability of its activity traces by the readout classifier, thus it is usually large, sparsely
and randomly connected. It should also possess the echo state property, meaning that
the effect of a previous state of the network should vanish asymptotically—in other
words, the network should “forget” its previous state in a finite amount of time. To
ensure this property, a common practice is to verify that the spectral radius [Apax | of
the weight matrix of the reservoir W is less than 1, and close to 1 for tasks requiring
long memories. Other strategies have also been explored, taking into account more
specialized neural types [303].

In other setups, the reservoir relies on more realistic neuronal models, such
as integrate-and-fire or spiking neurons. While such temporal models endow the
network with a richer dynamics, they also come at the expense of computational



34 T. Kowaliw et al.

efficiency, which can be noticeably reduced even in the case of simple spiking
neurons [27]. Nonetheless, this type of reservoir form the basis of LSMs [210] and
“cortical microcircuits” [ 180], which have been employed less frequently than ESNs.
In any case, both types have been applied to a great variety of tasks and are theoret-
ically linked [138].

One of the major difficulties of the LSM paradigm is the choice of the readout
classifier. A simple linear regression achieves correct results and has been used to
demonstrate theoretical characterizations [180], yet it ignores the fact that spiking
neurons convey information through precise spike timings. Several propositions have
been made to exploit this temporal information: encoding patterns with transient
synchrony, as shown by Hopfield and Brody [123], or applying a margin classifier
based on connection delays [226].

Whether LSMs or ESNs, another key element is the fopology of the reservoir. The
spectral radius | Amax | of the weight matrix W plays a crucial role in determining the
dynamics that will take place in the recurrent network. Other factors, such as small-
world degree, scale-free regimes, and bio-inspired axonal growth patterns, have also
been shown to positively influence the capabilities of the reservoir [242]. On the other
hand, a recent theoretical analysis by Zhang et al. argues that all random reservoir
topologies asymptotically converge to the same distribution of eigenvalues, implying
that the topology is relatively indifferent after all [307]. Finer investigations of the
dynamics are also possible [226] but they have not yet been applied in this context.

Beyond fixed topologies, a topic of great relevance to this chapter concerns endow-
ing the reservoir with plasticity. Applying an unsupervised learning procedure to the
weights allows the reservoir to adapt to very constrained topologies, although a the-
oretical analysis in this case becomes problematic [250]. The use of plasticity in
reservoir computing will be discussed further in Sect. 6. Another widely investigated
aspect is the influence of an external loop, by which the readout classification results
are reinjected in the reservoir. This feedback adds another level of cognition to the
network, as the system can now utilize its own capacity for prediction in input. An in-
depth review of reservoir computing challenges and common practice can be found
in a special issue of Neural Network [139], and a comprehensive explanation of the
ongoing approaches is proposed in [179].

4.3 Neuroevolution

In evolutionary computation, there has been an long-standing interest in artificial
neural networks for classification and regression, as well as control problems. The
term “neuroevolution” is now well established and covers a large range of approaches
(evolving weights, evolving topologies, learning rules, developmental processes)
and applications. In this framework, the design of a particular neural network for
solving a task is driven by its performance with respect to the defined task. This
performance is itself described in terms of fitness value(s), and the evolutionary
algorithm targets incremental improvements of fitness evaluations. To this aim, it
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produces new candidate solutions (i.e. particular configurations of neural networks)
from previously tried ones through the action of various mutation and recombination
operators [79].

For example, neural networks have long been the method of choice of evolutionary
robotics when performing “policy search” in reinforcement learning problems [219,
271, 273]. As a formalism for controller representation, they exhibit interesting
features such as robustness (with respect to noisy sensory inputs), evolvability (in
the sense that small weight changes give rise to small behavioral changes), and ease
of implementation (since update time varies only linearly with the number of links).
This is also true in situations with limited hardware specifications, such as onboard
robotic systems.

Three important decisions may impact the choice of a learning method to train
the network: (a) the definition of the neural network to be considered (with/without
recurrent connections), (b) the choice of variables to learn (the weights of a fixed
topology, and/or the topology), and (c) how these variables will be learnt (how to
encode such a network, how to navigate through the search space). While there exist
several methods in the literature for evolving weights only, such as classic multi-
layered perceptrons or echo state networks [110], things become more challenging
when evolving entire topologies. On the one hand, the choice of a particular search
space relies for a great part on the programmer’s expertise, and a poor guess may
hinder the whole process. On the other hand, learning both the weights and the
topology opens up a much larger search space and may well lead to performance
normally unreachable through pure synaptic modification. Due to the versatility and
robustness of evolutionary algorithms, they are considered promising candidates in
the exploration of configuration spaces.

Evolutionary algorithms (EAs) quickly appeared as a relevant approach toward
NN learning by the end of the 1990s (see [302] for a detailed survey). Although EAs
can be useful for the optimization of the weights of a feedforward NN, they have
instead been mainly used for their flexibility in handling complex search spaces.
Many algorithms modifying the structure of neural networks through dedicated vari-
ation operators have been proposed.

Notable works and models in this field include: GNARL [6], which uses a direct
encoding of the neural network to build a robot controller; EANT [148], which
evolves the structure and weights via distinct processes; SANE (Symbiotic Adaptive
Neuro-Evolution) [204] and ESP (Enforced Sub-Population) [96, 97], which evolve
a population of neurons (rather than a network) and combine these neurons to form
effective neural networks; and GASNET [132], which combines the optimization of
the position of neurons in an Euclidean space through diffusion of chemicals. More
recently, NEAT (Neuro Evolution of Augmenting Topologies) [264] has set new stan-
dards for neuroevolution algorithms in pure performance and speed of convergence
based on classical benchmarks from evolutionary robotics.

It has been known for a long time [194] that the choice of a representation, i.e.
search space, is crucial for the success of any evolutionary algorithm. This led to the
exploration of genotype-to-phenotype maps using a more compact representation,
which should theoretically enable the evolution of more complex neural networks.
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One approach is the inclusion of an induced representational bias. In these cases,
forms of structural organization known to be employed by natural neural systems are
added to the otherwise directly encoded network. An illuminating study by Seys and
Beer considers the value of several forms of induced symmetry on the generation
of NNs [256]. Evolved genomes are “unpacked” by creating symmetric copies of
the evolved network substructure, and evaluated via the whole unpacked network.
The authors contrast their results against nonsymmetric networks, showing that the
inclusion of symmetry makes NNs more evolvable, even compared to nonsymmet-
ric networks of smaller size. A more practical example inspired by computational
neuroscience models comes from Doncieux et al. [59]. Finally, recent works have
explored the benefits of particular topological properties, such as regularity and mod-
ularity, whether a priori designed or evolved [33, 37, 284]. Another approach to the
genotype-to-phenotype map strategy consists of including a simulation of develop-
ment, a process that serves to construct the phenotype in a time-based fashion. The
next section covers these strategies in greater detail.

5 Developmental Systems

This section gives an overview of neural developmental systems, which are about the
abstraction of a developmental process to obtain artificial neural networks from sim-
pler representations. Since, in the vast majority of cases, adequate representations
(genomes) are optimized via evolutionary computation, we will use terminology
from that field. Due to their metaphorical inspiration from developmental biology,
developmental systems have received several names, including computational
embryogeny [17], artificial ontogeny [25] and artificial embryogeny [265]. While
all these terms emphasize the biological metaphor, we think that a broader phrasing
of “evolution of developmental neural networks”, or evo-devo-NN for short, would
be more appropriate for this section.

The idea of combining evolution and development for designing artificial neural
networks was first put to the test in 1990. Kitano [153] criticized direct encod-
ing methods and proposed exploring indirect encodings as a promising solution to
address the challenge of scalability. In this setup, the evolved genotypic description
of a solution undergoes a reformulation process (or mapping) in order to obtain a
usable phenotype. As noted in later works, this would enable it to evolve compact
representations and possibly exploit properties such as modularity and hierarchy.

The debate about the relevance of evolving developmental neural networks has
been, and still is, very much alive. In the first decade after Kitano’s original claim
regarding scalability, his results were first confirmed [75] (in a different context) then
challenged [258] (in the original context). We now review the various approaches
and works conducted in this area.
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5.1 Grammar-Based Encoding

In his seminal work, Kitano [153] described the first approach with indirect encoding
for generating artificial neural networks. Kitano used a genetic algorithm to evolve
L-System grammar rules, a work which was later extended with lifelong neurogene-
sis [154]. His original contribution also fostered the emergence of a whole new field,
which explored various approaches to developmental neural networks and addressed
various challenges, some of them still open. Since then, evolutionary L-Systems
have been further applied to the generation of neural networks [22, 225] or the co-
evolution of artificial creatures [126]. While similar methods have been proposed to
evolve morphologies, Hornby’s GenRe system [126] relied on L-Systems for gener-
ating both body and brain (i.e. neural network) of virtual and real robots.

As previously discussed, in 1992 Gruau designed an original approach to the
evolution of graph-rewriting rules called Cellular Encoding [101, 102]. His model
was based on genetic programming to evolve a list of instructions that an original cell
could follow to determine its fate. This cell would undergo several transformations
(such as cell division) until a graph was built. A major contribution of this work was
to provide the first-ever neural controller of hexapodal robot gait [103]. It was further
extended [155, 178] and reused [25, 164] by several authors.

Other studies have explored the evolution of rewriting rules to generate neural
networks. In the early 1990s, Nolfi and Parisi evolved direct encodings of neu-
ron locations on a 2D substrate, then applied a heuristic for the simulation of
axon growth (using previously evolved parameters) to obtain full-grown networks
that were executing a robot navigation task. This work was later extended with
cell division and migration [30], and lifetime adaptation through environment-
triggered axon growth [218]. In 1994, Sims’ “virtual creatures” also relied on
evolved graph-rewriting rules both in the neural networks and in the morpholo-
gies [261]. Most recently, Mouret and Doncieux proposed Modular Encoding for
Neural Networks based on Attribute Grammars (MENNAG), a general approach to
evo-devo-NN based on the definition of grammar-based constraints [207], and the
EvoNeuro method [205], which takes inspiration from computational neuroscience in
order to generate large-scale and highly regular neural networks. Other applications
exist as well [3].

5.2 Genetic Regulatory Networks

A major topic of interest in theoretical biology todayf is the modelling of gene
regulatory networks (GRNs), which represent the interactions among genes and
transcription products (mainly DNA-binding proteins) governing cell behaviour and
maintenance. Generally, theoretical models are chosen based on their ability to
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replicate specific patterns of expression found in natural systems [4, 150], or based
on approximations of the molecular mechanisms of gene regulation [10]. In all cases,
GRN simulations comprise a set of differential equations describing the dynamics of
a various product concentrations. These models have been explored for their com-
putational properties [144, 176, 215].

Offering a different approach to developmental systems, GRNs became a strong
source of inspiration for researchers in computer science for obvious reasons. Starting
from a relatively compact description such as a string of symbols, GRNs made it
possible to build an entire network topology and function by defining interaction
patterns among parts of the original representation. The possible benefits for control
systems were first explored in 1994 by Dellaert and Beer [55] and quickly used
to generate neural networks [54]. Their work combined a boolean GRN and a cell
division process, alternating regulation and division over N iterations, in order to
iteratively grow a full neural network. Although evolution was only discussed, some
of the resulting networks were tested on a simplified robot navigation task as a proof
of concept.

This first attempt was soon followed by others that had the same dual objective
of taking inspiration from biology to achieve compact representations and, at the
same time, addressing evolutionary robotics challenges. Jakobi [140] described a
method to evolve a bit-string, acting as a GRN to grow a neural network for robot
control. Eggenberger proposed a similar approach, stressing scalability as the main
motivation, and applied it to robot morphogenesis [76] and pattern recognition in
neural networks [78].

An interesting alternative came from Reisinger and Miikkulainen [238], who
used an evolved GRN structure directly as a neural network architecture. Applying
their system to game playing, the authors contrasted their GRN-based NN against
several non-developmental alternatives, and found favourable results. Their analysis
mentions several reasons for this success: their representation was significantly more
compact, more evolvable under a simple mutation operator, and pushed phenotypes
toward larger, more recurrent network motifs, typical of networks in nature.’

A more recent instance of GRN-inspired neural model is the AGE (Analog Genetic
Encoding) model by Mattiussi and Floreano [73, 186], in which a string of symbols
(rather than bits) represents a genotypic description, while the “coding” parts of the
genome (i.e. syntactically correct with respect to the gene definitions) build a neural
network. As with other GRN abstractions, the AGE process is a one-step transfor-
mation from the representation to the network, i.e. self-regulation is abstracted as
a one-pass process. Wrdébel et al. later proposed a system called GReaNs (Genetic
Regulatory evolving artificial Networks), which shares many similarities with AGE.
Among several applications, GReaNs has been used to evolve spiking neural net-
works [296]. In this scope, each gene stands for a node, and the connection between

3 The authors point out a similarity between their developed NNs and natural networks, specifically
the existence of higher-order network triads. However, Milo et al. [202] attribute the existence of
such triads in natural networks to the minimization of information processing time, a factor which
was not relevant to the NNs. Hence, we consider this similarity unexplained.
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nodes is determined by their relative euclidian distance to one another—as is the case
with AGE. The sign of this connection, however, is evolved seperately.

Chapter 6: Using the Genetic Regulatory evolving artificial Networks
(GReaNs) platform for signal processing, animat control, and artificial
multicellular development.

In Chap. 6, Wrébel and Joachimczak present their bio-inspired model of
pattern formation and morphogenesis, GReaNs, and show that it can support
an evo-devo approach to complex neural networks. The topology of a GReaN is
encoded in a linear genome composed of genetic modules, including regulatory
factors, regions of promoting or repressing elements, and inputs and outputs.
The resulting genetic network is evolved toward the control of the behaviour of
a cell, coupling the chemical simulation with mechanical outputs. The authors
review the results of previous experiments in which GReaNs have been used to
design single-celled animats, 2D soft-bodied animats, and 3D morphologies,
as well as more recent work where spiking neuron models emerge from the
GRNSs. They conclude by laying out their vision for the evolution of plausible
neural control mechanisms from genetic origins [297].

5.3 Cellular Automata Models

Also inspired from biology, several authors have explored models of multicellular-
ity. Defined as a particular kind of cellular automaton (CA), each cell is capable of
processing information, either by triggering further growth of the network or by relay-
ing information as a neuronal cell. The seminal work from De Garis followed this
metaphor to design the CAM-brain (Cellular Automata Machine), a two-dimensional
CA in which a source cell could develop into a full organism capable of transmit-
ting and manipulating information like a regular neural network [50]. This kind of
approach raises the question of the halting problem, i.e. when and how development
should stop [57]. Astor and Adami applied a similar approach based on a hexagonal
grid, which addressed the halting problem by setting boundary cells to limit the total
number of possible neurons. Adding a self-limiting mechanism allowed development
to terminate before the environment was saturated with cells.

Early CA-based works were mostly limited to proof-of-concept experiments
where evolution was merely discussed but not exploited. By contrast, Federici et
al. designed a continuous CA implementation, which they termed cell chemistry, to
generate spiking neural networks for solving a robotic navigation task in a discrete
environment [84, 85]. In a later work, this approach was shown to outperform a direct
encoding approach on a pattern recognition task [244].
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5.4 HyperNEAT

In 2007, Stanley et al. presented the first version of HyperNEAT (Hybercube-based
NeuroEvolution of Augmenting Topologies [49, 266]. Since then, it has become very
popular and has been applied in many domains, including the evolution of neural
networks. One of the key principles behind HyperNEAT is a high level of abstraction
that emphasizes the expressivity of the genotype-phenotype mapping in terms of
composed transformation functions, instead of a temporal development process.

Chapter 5: HyperNEAT: the first five years.

In Chap.5, D’ Ambrosio, Gauci, and Stanley summarize recent work on
generating patterns with properties such as regularity, symmetry, and repetition
with variations. This chapter successively considers spatial pattern generation
using CPPNs (compositional pattern-producing networks), NEAT (NeuroEvo-
lution of Augmenting Topologies), and neural connectivity pattern generation
using the many flavours of HyperNEAT (Hybercube-based NEAT). The basic
idea behind this work is to define the search space as a set of compositions of
simple functions, each function with particular behaviours (e.g. favouring sym-
metries, repetitions, etc.). To some extent, HyperNEAT is an abstraction of the
developmental process, mapping a compact representation to a possibly large
phenotype, but removing the temporal aspects of such a process. The benefits
of the HyperNEAT approach are presented and discussed: the compact encod-
ing of large networks which posses relevant structural properties, the ability to
generate solutions in various sizes and resolutions, and the exploitation of the
geometric properties of the problem at hand. Finally, a short review of existing
applications across several fields is given, from image generation to robotic
control, from visual discrimination to playing chess and Go [48].

HyperNEAT has also inspired other works in various ways. The HybridID
(“Hybridization of Indirect and Direct Encodings”) algorithm [38, 40] tries to inte-
grate the best of indirect encodings and direct encodings by successively applying
HyperNEAT and FT-NEAT to refine the last steps of evolution. The DSE (“Develop-
mental Symbolic Encoding”) model [270] takes inspiration both from HyperNEAT
and Cellular Encoding, retaining interesting properties such as the ability to create
neural networks with regularity, modularity and scalability. DSE also provides an
interesting complement to existing approaches as it focuses on specific problems for
which scale-free network topologies are relevant. Alternatively, the NEON (“Neuro-
Evolution with ONtogeny”) algorithm [134] extends the traditional NEAT algorithm
with a developmental process.
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5.5 Beyond Artificial Neural Networks

From the start, there have been strong interactions among subfields of artificial
development and evolution: from evolvable hardware [175, 199, 200] to simu-
lated dynamics of genetic regulatory networks [10, 64, 237]; from artificial mod-
els of morphogenesis [57, 63, 158, 161] to agent control [191, 192]. In robotics
(virtual or real), the integration of development with morphofunctional machines
shows great promise toward faster and more innovative methodologies of automated
design. Under the name of brain-body co-evolution, an emerging trend of evolu-
tionary computation argues that structure and function should not be predefined
and optimized separately, but simultaneously as a whole, and based on the same
genome. The work of Sims offered the first results with simulated robots [261], and
was soon followed by researchers exploring various grammar-based encoding for
a similar purpose, such as the works lead by Eggenberger [77], Hornby [126] and
Bongard [23].

Recent research in this domain has also seen a division between works targeting
engineering and more fundamental research. On the one hand, developmental sys-
tems for morphogenesis is illustrated by physical systems from Hornby [125],
Hiller [117] and Rieffel [240], where more recent works benefit from the advent
of versatile 3D printing machines. On the other hand, several authors have either
explored virtual creatures [35, 66, 142, 143, 156, 193, 249], or considered a less
robot-oriented interpretation of simulated morphofunctional machines [43, 62, 63,
247]. Doursat et al. [67, 68] propose a new approach encompassing these trends:
“Morphogenetic Engineering” aims to reconcile engineering with decentralized com-
plex systems. It explores new methodologies to model and create precise architectures
that self-organize from a swarm of heterogeneous agents, in particular by develop-
ment. It can also describe brain representations based on dynamic “neural shapes”
in phase space, formed by myriads of correlated spikes [60].

From artificial neural networks to robotics, this shared interest in the
developmental paradigm can be explained by the need for features (such as mod-
ularity, regularity, or hierarchy) that are considered relevant for functional or
morphological reasons. Moreover, scalability stands as a critical issue in all these
domains, and the combination of a compact genotype with a dedicated develop-
mental process remains a promising track to achieve large phenotypes, as long as
evolvability as a property is successfully retained.

6 Epigenetic Simulation

In this section, we consider algorithms that rely primarily on the simulation of epi-
genetic mechanisms, in the sense that they build neural networks from transient
information provided by stimuli. From a certain perspective, this is already the norm
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in artificial neural nets, where “classic” techniques involve simple and often fixed
network topologies trained via stimulus-based methods such as backpropagation.
Here, by contrast, we consider cases in which the structural design of the network
is strongly influenced by the environment, or where a more biologically motivated
synaptic plasticity mechanism has a significant effect on the topology.

Perhaps the best argumentation that development and epigenetics are both neces-
sary in artificial networks comes from a study by Valsalam et al. [283]. In this work,
the authors were concerned with exploring the role of prenatal and postnatal learning
on the generation of a network. Under this viewpoint, development is modelled by
non-environmentally induced stimuli, that is, patterns produced genetically rather
than coming from the task at hand. Valsalam et al. explored three groups of mod-
els, all applied to hand-written character recognition and relying on a simple static
network (ferminology ours):

e learn: in the first group, networks were trained by competitive Hebbian learning
using input samples

e evo: in the second group, networks evolved through a simple neuro-evolutionary
technique

e pre-learn-evo: in the third group, networks were trained by competitive Heb-
bian learning, first using genetically defined pretraining samples, then using input
samples.

In summary, these three groups represented pure learning, pure genetic control, and
a technique combining prenatal development and learning. The authors found that
the two evolutionary models, “evo” and “pre-learn-evo”, were far superior to “learn”
in classifying hand-written characters. Furthermore, the “pre-learn-evo” type com-
pleted the task in a fraction of the time taken by “evo”. They argued that the prenatal
learning stage could be replaced with alternative forms of development for similar
results. Valsalam et al. concluded that their prenatal stage implemented a form of
bias on the space of neural models, which could be adjusted by evolution to adapt the
particular network to the problem at hand. A more recent study by Tonelli and Mouret
also shows that a combination of development (via map-based and HyperNEAT-like
encodings) and plasticity can lead to improved learning efficacy, which they attribute
to the increased propensity toward the generation of symmetric networks [277] (see
also Chap. 9).

These studies are perfectly in line with the view of development as a means of
achieving useful phenotypic biases, in this case via Hebbian learning. In a sense, some
of these algorithms pose a challenge to the existence of developmental modelling in
general, with the suggestion that very simple static topologies might be sufficient for
intelligent behaviour when subjected to proper epigenetic mechanisms. Perhaps one
of the most striking examples is given by the work of Bednar and colleagues:
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Chapter 7: Constructing complex systems via activity-driven unsuper-
vised Hebbian self-organization.

In Chap.7, Bednar summarizes his recent work on exploring the use of
Hebbian learning as a mechanism for the recreation of phenomena associated
with the visual cortex. Starting from highly regular topologies, a simple form
of Hebbian learning is applied. Through learning and the appropriate design of
simple and complex cell layers, the major functional properties of the primary
visual cortex emerge: receptive fields, selective topographic maps, surround
modulation, visual contrast, and temporal responses. This impressive array
of functional responses is notable for emerging simultaneously from a highly
simple neural model, a result which suggest that most of the development and
function of the first layer of the primary visual cortex can be viewed as an
instance of unsupervised learning. Bednar goes on to discuss the lessons avail-
able from his model for the design of complex data-processing systems [13].

As in biology, it is difficult to determine whether certain phenomena should con-
sidered “strictly” developmental (in the sense of genetic control), or whether they
depend on epigenetic processes. In reality, almost all scenarios integrate both mech-
anisms in a tight feedback loop. No amount of genetic information can control the
fate and behavior of each cell, therefore a great many details have to depend on their
interactions with one another and with environmental stimuli (which, for the most
part, arise from the cell assembly itself). This is why a combination of developmen-
tal and epigenetic mechanisms will also be necessary in the simulation of intelligent
networks. We summarize below three active areas of research that we characterize
as epigenetic models: Hebbian pretraining, constructive and pruning algorithms, and
epigenetic neuroevolution.

6.1 Hebbian Pretraining

Several recent models have explored the addition of Hebbian learning to
bio-inspired representations. These have used reservoir computing instead of simpler
feed-forward networks, and have concentrated on how to initialize and pretrain the
reservoir.

Self-Organizing Recurrent Neural Network (SORN) is a model by Lazar
et al. [168], which develops a recurrent neural network reservoir with a particular
connectivity for inhibitory neurons. It includes three plasticity mechanisms: intrin-
sic plasticity, STDP, and synaptic normalization. SORN is trained via an echo state
approach, and contrasted against static reservoirs and more limited forms of the
model. The authors show that the conjunction of the three forms of plasticity outper-
form other configurations on simple learning tasks: counting and occluding. There is
further suggestion that the organization of neural systems might be predictable from
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the model. Zheng et al. [309] have constructed a version of SORN in which structure
was a result only of internal plasticity (i.e. no external inputs), and tested over a range
of parameters. They discovered that an emergent consequence of the model was a
log-normal weight distribution, which resembles the organization found in nature,
and has been implicated in the computational capacities of network in general. This
suggests that the plasticity mechanisms alone in the absence of environmental stimuli
are capable of generating useful organizational principles in a model cortex.

Yin et al. consider the addition of Hebbian learning mechanisms to a recurrent
reservoir approach [304]. In this model, a genetic regulatory network specifies Heb-
bian and anti-Hebbian learning to generate plasticity parameters. The role of the
genome here is to create a particular form of plasticity suitable for the problem
at hand. An initially complete reservoir is then pruned according to the interplay
between input and the GRN, leading to a sparse and pretrained reservoir. The net-
works are trained via “backpropagation through time” (BPTT), and evaluated on a
collection of vision-based tasks with favourable results. Similar work has also been
shown to have value in Liquid State Machines [220, 221].

6.2 Constructive and Pruning Algorithms

Closely related to the notion of using simulations of neural development are domains
such as constructive neural networks (CoNNs) and pruning networks. Both are fami-
lies of network design algorithms that operate by gradually changing a network struc-
ture in response to training data. They are designed to explore artificial versions of
neural organization starting from two opposite viewpoints: CoNN s instantiate a form
of constructivist process, whereas pruning networks illustrate a selectivist process.

In constructive algorithms, a small initial network (sometimes a single hidden
neuron) is gradually transformed into a large network in a series of iterations. The
network is trained until convergence or until some other stopping criterion has been
met. Based on output from this training, the algorithm either terminates or adds
more neurons or connections to the network. Once a global termination criterion is
reached, the final, larger network is returned, possibly for additional training.

Perhaps the most popular CoNN algorithm is the cascade-correlation architec-
ture [83], which has spawned numerous variants. In a recent review, Nicoletti et
al. [58] have compiled a list of models and design decisions which characterize
different CoNN approaches. More recent work has concentrated on network growth
based on sensitivity analysis [106], adaptive neural activation functions [257],
extreme learning machines [308], and extending CoNN to reinforcement
learning [131].

In contrast, pruning algorithms start with a large network and gradually remove
nodes. Initially, some large network is generated and trained. Next, particular neurons
are selected as unimportant, and those neurons are deleted or merged. This process
iterates until some global stopping criterion is reached, and finally, a smaller net-
work is returned. Pruning algorithms are less restrained than CoNN algorithms, as
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pruning plays a role in many different forms of neural networks and at different times.
Deciding which neurons to prune can be made in many ways: for example, neurons
that are highly correlated, neurons connected via weak weights, neurons with little
influence over outputs, or neurons identified by more complex procedures, such as
Optimal Brain Damage [300] and the Optimal Brain Surgeon [111]. A general disad-
vantage to pruning is that the use of large networks as a starting point tends to require
significant computational effort. Recent work on pruning algorithms has included
decisions to prune based on sensitivity analysis [167], component analysis [216],
and competitive pressures [269]. Extensions to extreme learning machines [195] and
other applications [306] have also been tried.

In their simplest forms, both types of algorithms are greedy and can fall prey
to “architectural local optima” [6]. However, modern variants are more complex
and less easily characterized. One such example, AMGA (adaptive merging and
growing algorithm) comes from Islam et al. [136]. AMGA generates a network by
both construction and pruning, using adaptive rules as triggers. Between iterations,
a given network is trained via backpropagation. Construction occurs by splitting an
existing hidden node, which results in the preservation of the behavioural linkages
among neurons. Pruning occurs by merging highly correlated hidden nodes. AMGA
is highly effective at supervised learning, outperforming several other neural and
SVM techniques. The authors hypothesize that constructive-pruning hybrid tech-
niques successfully avoid the local optima that hindered previous algorithms. Many
such hybrid techniques have been explored [26, 105, 128, 130, 209, 232, 299].

CoNN and pruning algorithms are inspired by development, although motivations
differ somewhat from those of developmental systems. They generally target the most
parsimonious network possible, and show little interest for a parallel implementation
of the algorithms, since they often rely on global data structures such as inter-neural
correlations or Hessian matrices. Regardless, these techniques provide insight into
how to execute ontogenic and epigenetic processes simultaneously.

6.3 Epigenetic Neuroevolution

Other authors have explored techniques that could be characterized as epigenetic
neuroevolution as they offer a combination of evolutionary algorithms and learning
techniques operating in tandem. Researchers in this category hope that such com-
bination might return the best of both worlds: the high accuracy associated with
epigenetic training and the capacity to explore a wide space of possible networks
associated with neuroevolution, leading together to the ability to generalize to new
environmental stimuli. Some authors also hope to avoid the architectural local min-
ima generated by other non-evolutionary techniques*

4 Caveat: while neuroevolution is known to be more versatile than, for instance, classic CONN
algorithms, it is also known that evolutionary computation will be often hindered by local optima
in the fitness landscape, suggesting a possibly different sort of suboptimality.
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A simple early example of epigenetic neuroevolution is outlined in Yao and
Liu [301]. It is based on an evolutionary algorithm that controls the topology and
weights of a network (via a form of genetic programming), while a learning routine
is applied at mid-step to trigger the addition or deletion of neurons in the network.
Training accuracy was used as the fitness of an individual during evolution. As the
authors later argue, the issue with such a naive approach is that learning techniques
based on gradient descent, when initialized with random weights, tend to be very
noisy to the point of negatively affecting the evolutionary process. Using an averaged
success over several independent learning sessions may provide a solution, but also
tends to be too computationally expensive to serve as a fitness function [302].

To alleviate these problems, several authors including Yao and Liu have explored
hybrid algorithms where the evolutionary search is global while the learning methods
work on a local level. A recent example comes from Oong and Isa [223], who
evolved a direct representation of the network via an adjacency matrix. This matrix,
however, is augmented with a secondary genetic representation, a “node vector”,
which applies structural changes to the network topology. The interim success of
the network is used to compute a measure of generalization loss, which in turn
serves to control the weight of the evolutionary mutation. Thus, for Oong and Isa,
instead of letting epigenetic information directly control the change of a network, it
is a cue for the meta-process (evolution) to adjust the degree of exploration versus
exploitation. Other forms of hybrid evolutionary-epigenetic algorithms, including
the use of constructive techniques, have been explored [91].

Chapter 8: Neuro-centric and holocentric approaches to the evolution of
developmental neural networks.

In Chap. 8, Miller explores two strategies of generating neural networks via
neuroevolution. The first, a neurocentric approach, involves the detailed mod-
elling of cells in a dynamic, time-based process. In this case, several indepen-
dent control mechanisms are created, ones which emulate detailed sub-cellular
behaviours. The second strategy, a holocentric approach, operates on a whole
neural network. Here, network-specific operations make changes to sub-graphs
of neurons and connections. By contrasting these two approaches, the author
explores the value of the inclusion of a detailed and more plausible model of
growth and plasticity relative to the additional computational costs involved.
The chapter closes with design advice for practitioners [198].

In some cases, an explicit developmental process and a later epigenetic process are
both included, which can make development occur twice: as a genotype-phenotype
mapping process, and as a plastic property during operation, closely related to learn-
ing. Autonomous robotics is one prominent area of application, where neural net-
work controllers are grown from compact genotypes (Sect.4), and modification to
the actual controller may occur during the robot’s lifetime, whether the objective
is long-term adaptation to the environment [151, 218], memorizing events [88], or
learning new capabilities [262, 276].
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Chapter 9: Artificial evolution of plastic neural networks: a few key con-
cepts.

In Chap.9, Mouret and Tonelli consider the use of neuroevolution to
find plastic neural networks for reinforcement learning. A neuroevolution-
ary process produces a network topology, which is then trained via Hebbian
learning in a (possibly reward-based) environment. Two key motivations for
this type of approach are the promotion of behavioural robustness and reward-
based behavioural change, concepts which suffer from inconsistent terminol-
ogy in the literature. The authors provide new definitions of both concepts,
and turn their attention to a key issue: the response of a neural network to
previously unseen scenarios. To promote research on the topic, they define
and discuss relevant concepts, such as the capacity for general and transitive
learning, then theorize about the benefits of a developmental stage in terms of
general learning [206].

7 Summary

In this introduction, we have explored the central hypothesis of this book that adap-
tive growth is a means of producing brain-like machines. The emulation of neural
development can incorporate desirable characteristics of natural neural systems into
engineered designs. We have reviewed several strategies for performing this “meta-
design”, which also involves identifying specific network biases and their benefits.
In particular, we have seen that several recent studies show a strong synergy, some-
times interchangeability, between developmental and epigenetic processes—a topic
that has remained largely under-explored in the literature. The chapters that follow
in this book describe some of the most important works in this area, offering a
state-of-the-art review of intelligent machine design.

Recent accelerating progress in observation and modelling techniques in neuro-
science, and systems biology in general, ensures the continued generation of novel
insights into brain organization. This new collection of “biases” should be further
explored and exploited in neural networks over the coming years, suggesting that
artificial neurogenesis is a promising avenue of research.
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