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Mining graph topological patterns: finding
co-variations among vertex descriptors

Adriana Prado , Marc Plantevit , Céline Robardet , Jean-François Boulicaut

Abstract—In this article, we propose to mine the graph topology of a large attributed graph by finding regularities among vertex
descriptors. Such descriptors are of two types: (1) the vertex attributes that correspond to the information conveyed by the vertices
themselves and (2) some topological properties, used to describe the connectivity of each vertex in the graph. Such topological
properties and attributes are mostly of numerical or ordinal types and their similarity can be captured by quantifying their co-variation,
that is, if their largest or smallest values are supported mostly by the same set of vertices. A topological pattern is thus defined as a
set of vertex attributes and topological properties that strongly co-vary over the vertices of the graph. Such pattern mining task relies
on frequent pattern mining and graph topology analysis to reveal the links that exist between the relation encoded by the graph and
the vertex attributes. For instance, a topological pattern in a co-authorship graph, where vertices represent authors, edges encode co-
authorship, and vertex attributes reveal the number of publications in several journals, could be “the higher the number of publications
in IEEE TKDE, the higher the closeness centrality of the vertex within the graph”. Hence, such pattern discloses the fact that the
number of times an author publishes at IEEE TKDE is positively correlated to the fact she has co-authored papers with other central
authors, inducing a rather short distance to other graph vertices. We propose several interestingness measures of topological patterns
that are different w.r.t. the pairs of vertices considered while evaluating up and down co-variations between properties and attributes:
(1) considering all the pairs of vertices enables to find patterns that are true all over the graph; (2) taking into account only the vertex
pairs that are in a specific order w.r.t. a selected attribute reveals the topological patterns that emerge with respect to this attribute;
(3) examining the vertex pairs that are connected in the graph makes it possible to identify patterns that are structurally correlated to
the relationship encoded by the graph. An efficient algorithm that combines searching and pruning strategies in the identification of the
most relevant topological patterns is presented. Besides a classical empirical study, we report case studies on four real-life networks
showing that our approach provides valuable knowledge in a feasible time.

Index Terms—Attributed graph mining, topological pattern mining, co-variation.
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1 INTRODUCTION

Real-world phenomena are often depicted by graphs where
vertices represent entities and edges represent their relation-
ships or interactions. Entities are also described by one or more
attributes that constitute the attribute vectors associated with
the vertices of the attributed graph. Existing methods that sup-
port the discovery of local patterns in graphs mainly focus on
the topological structure of the patterns, by extracting specific
subgraphs while ignoring the vertex properties (cliques [22],
quasi-cliques [21], [32]), or compute frequent relationships
between vertex attribute values (frequent subgraphs in a collec-
tion of graphs [16] or in a single graph [4]), while ignoring the
topological status of the vertices within the whole graph, e.g.
the vertex connectivity or centrality. The same limitation holds
for methods [18], [24], [29], [30] that identify sets of vertices
that share local attributes and that are close neighbors. Such
approaches only focus on a local neighborhood of the vertices
and do not consider the connectivity of the vertex in the whole
graph. In this paper, we propose to extract meaningful patterns
that integrate information about the connectivity of the vertices
and their attribute values.
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The connectivity of each vertex is described by topological
properties that quantify the topological status of the vertex
in the graph. Some of these properties are based on the
close neighborhood of the vertices, while others describe the
connectivity of a vertex by considering its relationship with
all other graph vertices. Combining such microscopic and
macroscopic properties precisely characterizes the connectivity
of the nodes and constitutes an information that may explain
why some vertices have similar attribute values. For instance,
as topological properties, one may consider the degree of
each vertex, which describes the close neighborhood of the
vertex, or a centrality measure of the vertices, which depicts
the role of the vertex in the whole graph. Depending on the
link between vertex attributes and the relationship encoded by
the graph, one of these topological properties may co-vary
with vertex attributes.

Such topological properties and vertex attributes are mostly
of numerical or ordinal types and their similarity can be
captured by quantifying their co-variation. Such co-variation
indicates how a set of vertex descriptors tend to monotonically
increase or decrease all together. Therefore, following the way
paved by [5], we propose to mine rank-correlated sets over
graph descriptors by extracting topological patterns defined as
a set of vertex properties and attributes that strongly co-vary
over the vertices of the graph. We propose several interesting-
ness measures of topological patterns that are different w.r.t.
the pairs of vertices considered while evaluating up and down
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co-variations between properties and attributes: (1) considering
all the vertex pairs enables to find patterns that are true all over
the graph; (2) taking into account only the vertex pairs that
are in a specific order with respect to a selected numerical or
ordinal attribute reveals the topological patterns that emerge
with respect to this attribute; (3) examining the vertex pairs
that are connected in the graph makes it possible to identify
patterns that are structurally correlated to the relationship
encoded by the graph. We also propose an operator that
identifies the top k representative vertices of a topological
pattern.

Let us illustrate our proposal on a co-authorship graph
depicted in Figure 1, where vertices (from A to P ) de-
note authors, edges encode co-authorship relations, and three
attributes describe author: h corresponds to the author h-
index, which attempts to measure both the productivity and
the impact of the published work of each author [15]; i
denotes the average number of hours per week spent by each
author on instructional duties; and t designates the number of
publications the author had in the IEEE TKDE journal. As
topological property, we consider the betweenness centrality
measure that is the number of times a vertex appears on a
shortest path of the graph (see Section 2). This value is in
a circle associated to each vertex on Figure 1. For instance,
vertex D has attribute values h = 25, i = 1.5 and t = 18
and a betweenness centrality value equal to 73. One of the
topological patterns extracted from this attributed graph is
P = {h+, i−,BETW+}, whose meaning is the higher the
value of attribute h, the lower the value of attribute i and the
higher the betweenness centrality of a vertex. In other words,
authors that tend to have a high h-index, tend to have a low
instructional duty and publish articles with co-authors that are
also central in the graph, inducing a rather small distance to
other vertices. This topological pattern combines a topological
property (BETW) with two vertex attributes (h and i) and is
supported by 89 pairs of vertices among the

(
16
2

)
possible pairs

over the graph. Its top 3 representative vertices are E, I and
D (shadowed on Figure 1) appearing respectively 15, 14 and
13 times in the right hand side of the supporting pairs, that
is, these vertices have the highest values on h and BETW, and
the lowest values on attribute i compare to other vertices.

We propose in this article an algorithm, called TopGraph-
Miner, which discovers topological patterns. It has as input
an attributed graph, such as the one in Figure 1. Given such
graph, it first computes a set of topological properties for every
of its vertices. TopGraphMiner then integrates searching and
pruning strategies in the identification of the most relevant
topological patterns. Finally, it gives to the user the ability to
visualize every pattern on the input graph by identifying the
top k representative vertices.

Our contribution is therefore threefold. First, we propose
a new kind of graph analysis that exploits attributes and
topological properties of vertices. Second, to produce such
analysis, we provide new insights into co-variation pattern
mining by considering up and down co-variations, defining
new upper bounds on the support of such co-variations,
proposing several interestingness measures of topological pat-
tern, and giving to the user the ability to visualize the patterns
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Figure 1. A co-authorship attributed graph toy example.

on the original graph thanks to the identification of the top
k representative vertices. Third, to validate our approach, we
conducted an empirical study that includes: (1) a comparison
of TopGraphMiner with a baseline approach; (2) a study
of its empirical complexity; (3) an analysis of the pruning
capability of the proposed upper-bound; (4) we provide results
on the execution time with and without the pruning strategy;
and (5) we study qualitatively some patterns extracted from
four real-life networks: a co-authorship network, a movie co-
actor network, a patent citation network, and gene interaction
network.

This article is structured as follows: Section 2 presents
topological vertex properties. Sections 3 and 4 introduce our
new model for mining topological patterns. Our algorithm is
defined in Section 5. Its efficiency and its effectiveness are
shown in Sections 6 and 7. Section 8 discusses the related
work and Section 9 concludes the article.

2 TOPOLOGICAL VERTEX PROPERTIES

The input of our mining task is a non-directed attributed graph
G = (V,E, L), where V is a set of n vertices, E a set of m
edges, and L = {l1, · · · , lp} a set of p attributes associated to
each vertex of V , which may be numerical or ordinal.

Important properties of the vertices are also encoded by
the edges of the graph, which describe inter-relations between
vertices. From this relation, we can compute some topological
properties that synthesize the role played by each vertex in the
graph. The topological properties we are interested in range
from a microscopic level – those that described a vertex based
on its direct neighborhood – to a macroscopic level – those
that characterize a vertex by considering its relationship to all
other vertices in the whole graph. Statistical distributions of
these properties are generally used to characterize large graphs
(see, e.g., [2], [17]). We propose here to use them as vertex
descriptors.

2.1 Microscopic properties
We propose to use four topological properties to describe the
direct neighborhood of a vertex v:
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• The degree of v is the number of edges incident to v
(deg(v) = |{u ∈ V, {u, v} ∈ E}|). When normalized
by the maximum number of edges a vertex can have, it
is called the degree centrality coefficient: DEGREE(v) =
deg(v)
n−1 .

• The clustering coefficient evaluates the connectivity of
the neighbors of v (its local density):

CLUST(v) =
2|{{u,w} ∈ E, {u, v} ∈ E ∧ {v, w} ∈ E}|

deg(v)(deg(v)− 1)

• To better understand the structure of the neighborhood of
v, we also consider the quasi-cliques [21] that involve v.
v belongs to a γ-quasi clique Q iff the graph GQ induced
by the set of vertices Q is connected and satisfies

∀u ∈ Q, degGQ
(u) ≥ dγ(|Q| − 1)e

where degGQ
(u) is the degree of u in GQ. We consider

two properties based on the quasi-cliques involving v:
the size of the largest quasi-clique (SZQC(v)) and the
number of quasi-cliques (NBQC(v)).

2.2 Macroscopic properties

We consider five macroscopic topological properties to char-
acterize a vertex while taking into account its connectivity to
all other vertices of the graph.
• Vertex communities can be computed by looking for a

partition of V that maximizes the Newman’s modularity
measure [25]. This criterion is based on the proportion of
edges that fall within the community minus the expected
such proportion if edges were distributed at random:

Q =
1

4m

∑
u,v

(
1E({u, v})−

deg(u)deg(v)

2m

)
δcu,cv

where cv is the community assigned to v, δcu,cv is the
Kronecker delta (δcu,cv = 1 if cu = cv and δcu,cv = 0
otherwise), 1E({u, v}) is the indicator function of the set
E (1E({u, v}) = 1 if {u, v} ∈ E, 0 otherwise).
As topological property, we consider the size of the
community of v (SZCOM(v)).

• The relative importance of vertices in a graph can be
obtained through centrality measures [11]. Closeness
centrality CLOSE(v) is defined as the inverse of the
average distance between v and all other vertices that
are reachable from it. The distance between two vertices
is defined as the number of edges of the shortest path
between them: CLOSE(v) = n∑

u∈V |shortest path(u,v)| .
• The betweenness centrality BETW(v) of v is equal to

the number of times a vertex appears on a shortest path
in the graph. It is evaluated by first computing all the
shortest paths between every pair of vertices, and then
counting the number of times a vertex appears on these
paths: BETW(v) =

∑
u,w 1shortest path(u,w)(v).

• The eigenvector centrality measure (EGVECT) favours
vertices that are connected to vertices with high eigenvec-
tor centrality. This recursive definition can be expressed
by the following eigenvector equation Ax = λx which

is solved by the eigenvector x associated to the largest
eigenvalue λ of the adjacency matrix A of the graph.

• The PAGERANK index [3] is based on a random walk
on the vertices of the graph, where the probability to
go from one vertex to another is modelled as a Markov
chain in which the states are vertices and the transition
probabilities are computed based on the edges of the
graph. This index reflects the probability that the random
walk ends at the vertex itself:

PAGERANK(v) = α
∑
j

1E({u, v})
PAGERANK(u)

deg(u)
+
1− α
n

where the parameter α is the probability that a random
jump to vertex v occurs.

The 9 aforementioned topological properties characterizes the
graph relationship encoded by E. These properties, along with
the set of vertex attributes L, constitutes the set of vertex
descriptors D used in our following mining approach.

3 TOPOLOGICAL PATTERNS OVER NUMERICAL
VERTEX DESCRIPTORS

Let us now consider topological patterns as a set of vertex
attributes and topological properties that behave similarly over
a large part of the vertices of the graph. We assume that all
topological properties and vertex attributes are of numerical
or ordinal type, and we propose to capture their similarity by
quantifying their co-variation over the vertices of the graph.
Topological patterns are defined as P = D1

s1 , · · · , D`
s` ,

where Dj is a vertex descriptor from D and sj ∈ {+,−} is its
co-variation sign. Following the example of Figure 1, the trend
“the more papers in IEEE TKDE (t) the lower the average
number of hours per week spent on instructional duties (i)”
is represented by the pattern {t+, i−}. In the following, we
propose three interestingness measures that are different w.r.t.
the pairs of vertices considered while evaluating the support
of such patterns.

3.1 Topological patterns over the whole graph
Several signed vertex descriptors co-vary all the more since
the orders induced by each of them on the set of vertices
are consistent. This consistency is evaluated by the number
of vertex pairs ordered the same way by all descriptors. The
number of such pairs constitutes the support of the pattern.
This measure can be seen as a generalization of the Kendall’s
τ measure. When we consider all possible vertex pairs, this
interestingness measure is defined as follows:

Definition 1 (Suppall): The support of a topological pat-
tern P over all possible pairs of vertices is:

Suppall(P ) =
|{(u, v) ∈ V 2 | ∀Ds ∈ P : D(u)Bs D(v)}|(

n

2

)
where Bs denotes < when s is equal to +, and Bs denotes
> when s is equal to −.
This measure gives the number of vertex pairs (u, v) such
that u is strictly lower than v on all descriptors with sign +,
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and u is strictly higher than v on descriptors with sign −. As
mentioned in [5], Suppall is an anti-monotonic measure for
positively signed descriptors. This is still true when consider-
ing negatively signed ones: adding D− to a pattern P leads
to a support lower than or equal to that of P since the pairs
(u, v) that support P must also satisfy D(u) > D(v). Besides,
when adding descriptors with negative sign, the support of
some patterns can be deduced from others, the latter referred
to as symmetrical patterns.

Property 1 (Support of symmetrical patterns): Let P be a
topological pattern and P be its symmetrical, that is, ∀Dsj

j ∈
P , Dsj

j ∈ P , with sj = {+,−} \ {sj}. If a pair (u, v) of V 2

contributes to the support of P , then the pair (v, u) contributes
to the support of P . Thus, we have Suppall(P ) = Suppall(P ).

Topological patterns and their symmetrical patterns are
semantically equivalent. To avoid the computation of duplicate
topological patterns, we exploit Property 1. Equation (1) dis-
plays the number of possible patterns that can be constructed
on D without the symmetrical patterns:

2|D| − 1 +

|D|∑
k=2

(
|D|
k

)
× (2k−1 − 1) (1)

2|D|−1 is the number of patterns that contain only descriptors
with positive sign. The remainder represents those that com-
bine positively and negatively signed descriptors. Considering
the patterns of size k, with at least two descriptors, there
are

(|D|
k

)
such patterns and each gives rise to (2k−1 − 1)

patterns with at least one negatively signed descriptor. To
discard symmetrical patterns, we force the first descriptor to
be positively signed.

Thus, mining frequent topological patterns consists in com-
puting all sets of signed descriptors P , but not their symmet-
rical ones, such that Suppall(P ) ≥ minsup, where minsup
is the minimum support threshold.

3.2 Other interestingness measures for topological
patterns

To identify most interesting topological patterns, we propose
to give to the end-user the possibility of guiding its data mining
process by querying the patterns w.r.t. their correlation with the
relationship encoded by the graph or with a selected descriptor.
Therefore, we revisit the notion of emerging patterns [10]
by identifying the patterns whose support is significantly
greater (i.e., according to a growth-rate threshold) in a specific
subset of vertex pairs than in the remaining. This subset
can be defined in different ways according to the end-user’s
motivations: either it is defined by the vertex pairs that are
ordered with respect to a selected descriptor called the class
descriptor, or it is equal to E, the set of edges. Whereas the
former highlights the correlation of a pattern with the class
descriptor, the latter enables to characterize the importance
of the graph structure within the support of the topological
pattern. For instance, considering the toy example of Figure 1,
h+t+ and h+t− are both frequent with minimum support of
20%. Note that although these patterns are contradicting, they
are both output by our approach when only the frequency

constraint is considered. The extraction of emerging patterns
with respect to t outputs the pattern h+t+ as the frequency
of h+ is significantly greater in t+ than in t− (with a factor
of 2.13). h+t+ is more emerging w.r.t. E than h+t−, their
growth rates being respectively equal to 1.185 and 0.631.

3.2.1 Emerging patterns w.r.t. a selected descriptor
Let us consider a selected descriptor C ∈ D and a sign r ∈
{+,−}. The set of pairs of vertices that are ordered by Cr is

CCr = {(u, v) ∈ V 2 | C(u)Br C(v)}

The support measure based on the vertex pairs of CCr is
defined below.

Definition 2 (SuppCr ): The support of a topological pat-
tern P over Cr is:

SuppCr (P ) =
|{(u, v) ∈ CCr | ∀Ds ∈ P : D(u)Bs D(v)}|

|CCr |
Analogously, the support of P over the pairs of vertices that
do not belong to CCr is denoted SuppCr (P ).
To evaluate the impact of Cr on the support of P , we consider
the growth rate of the support of P over the partition of vertex
pairs {CCr , CCr}:

Gr(P,Cr) =
SuppCr (P )

SuppCr (P )
(2)

If Gr(P,Cr) is greater than a minimum growth-rate threshold,
then P is referred to as emerging with respect to Cr.

If Gr(P,Cr) ≈ 1, P is as frequent in CCr as in CCr . If
gr(P,Cr) � 1, P is much more frequent in CCr than in
CCr . The intuition behind this definition is to identify the
topological patterns that are mostly supported by pairs of
vertices that are also ordered by the selected descriptor.

3.2.2 Emerging patterns w.r.t. the graph structure
It is interesting to measure if the graph structure plays an
important role in the support of a topological pattern P . To
this end, we define a similar support measure based on pairs
that belongs to E, the set of edges of the graph:

CE = {(u, v) ∈ V 2 | {u, v} ∈ E}

Based on this set of pairs, we define the support of P as:
Definition 3 (SuppE): The support of a topological pattern

P over the pairs of vertices that are linked in G is:

SuppE(P ) =
2|{(u, v) ∈ CE | ∀Ds ∈ P : D(u)Bs D(v)}|

|CE |

The maximum value of the numerator is |CE |2 since: (1) if
(u, v) ∈ CE then (v, u) ∈ CE , and (2) it is not possible that
∀Ds ∈ P , D(u)BsD(v) and D(v)BsD(u) at the same time.

The support of P over the pairs of vertices that do not
belong to CE is denoted SuppE(P ).

As before, to evaluate the impact of E on the support of
P , we consider the growth rate of the support of P over the
partition of vertex pairs {CE , CE}:

Gr(P,E) =
SuppE(P )

SuppE(P )
(3)
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Gr(P,E) enables to assess the impact of the graph structure
on the pattern. Therefore, if Gr(P,E) � 1, P is said to be
structurally correlated. If Gr(P,E) � 1, the graph structure
tends to inhibit the support of P .

4 TOP k REPESENTATIVE VERTICES OF A
TOPOLOGICAL PATTERN

The user may be interested in identifying the vertices that
are the most representative of a topological pattern, thus
enabling the projection of the patterns back into the graph.
For example, the representative vertices of the pattern {IEEE
TKDE+, BETW−} would be researchers with a relatively
large number of IEEE TKDE papers and a low betweenness
centrality measure.

We denote by S(P ) the set of vertex pairs (u, v) that
constitutes the support of a topological pattern P :

S(P ) = {(u, v) ∈ V 2 | ∀Ds ∈ P : D(u)Bs D(v)}

which forms, with V , a directed graph GP = (V, S(P )). This
graph satisfies the following property.

Property 2: The graph GP = (V, S(P )) is transitive and
acyclic.

Proof: Let us consider (u, v) ∈ V 2 and (v, w) ∈ V 2

such that, ∀Ds ∈ P : D(u) Bs D(v) and D(v) Bs D(w).
Thus, D(u) Bs D(w) and (u,w) ∈ S(P ). Therefore, GP is
transitive.

As Bs ∈ {<,>}, it stands for a strict inequality. Thus,
if (u, v) ∈ S(P ), (v, u) 6∈ S(P ). Furthermore, as GP is
transitive, if there exists a path between u and v, there is
also an arc (u, v) ∈ S(P ). Therefore, (v, u) 6∈ S(P ) and we
can conclude that GP is acyclic.

As GP is acyclic, it admits a topological ordering of its
vertices, which is, in the general case, not unique. The top k
representative vertices of a topological pattern P are identified
on the basis of such a topological ordering of V and are the
k largest vertices with respect to this ordering. Considering
that an arc (u, v) ∈ S(P ) is such that v dominates u on P ,
this vertex set contains the most dominant vertices on P . The
top k representative vertices of P can be easily identified by
ordering the vertices by their incoming degree as shown in
Section 5.3.2.

5 ALGORITHM TOPGRAPHMINER

Having described the topological pattern domain, this section
aims at presenting TopGraphMiner, an efficient algorithm that
combines searching and pruning strategies to identify the most
relevant topological patterns. Indeed, as the support counting
is quadratic in the number of vertices, it is important to avoid,
in linear time, some useless support computation. To this end,
we derive an upper bound on the support used to safely prune
none promising topological patterns.

5.1 Upper Bound on the Support Measure
To define an upper bound on the support of a given topo-
logical pattern which benefits from the presence of ties in
the descriptors, a rank value ρ(D(u)) is associated with each

numerical descriptor value D(u) [5]. ρ(D(u)) is the index of
u in V when V is sorted in ascending order w.r.t. D, such that
1 ≤ ρ(D(u)) ≤ |V |, ties being handled arbitrarily. Actually,
due to the presence of ties, there are many possible rankings,
but in all of them, the ranks of a given value range in an
interval defined by [ρ(D(u)), ρ(D(u))] with:

ρ(D(u)) = min{ρ(D(v)) | v ∈ V and D(v) = D(u)}
ρ(D(u)) = max{ρ(D(v)) | v ∈ V and D(v) = D(u)}

Given two descriptors A and B and their respective signs sa
and sb, the ranking intervals over these descriptors can be
used to establish a lower bound on the number of vertices
that cannot form a supporting pair with u. If va is a vertex
such that (A(va)Dsa A(u)), then the pair (u, va) cannot
support AsaBsb . On the other hand, if a vertex vb does not
satisfy (B(vb)Bsb B(u)), then the pair (vb, u) cannot support
AsaBsb either. We denote Isa and Jsb the sets of vertices va
and vb, respectively. Then, DiffAsaBsb is the set of vertices
that cannot form a supporting pair with u, such that:

DiffAsaBsb = {v ∈ V | v ∈ Isa ∧ v 6∈ Jsb}
Depending on the values of sa and sb, the cardinality of Isa
and Jsb can easily be computed from the end points of the
ranking intervals:

|I+| = |{v ∈ V |A(v) ≤ A(u) and v 6= u}| = ρ(A(u))− 1

|J+| = |{v ∈ V |B(v) < B(u) and v 6= u}| = ρ(B(u))− 1

|I−| = |{v ∈ V |A(v) ≥ A(u) and v 6= u}| = |V | − ρ(A(u))
|J−| = |{v ∈ V |B(v) > B(u) and v 6= u}| = |V | − ρ(B(u))

Figure 2 illustrates these sets. In every case, the line represents

I+

ρ(A(u)) ρ(A(u))u
1

|V |

A

J+

ρ(B(u)) ρ(B(u))u
1

|V |

B

I−

ρ(A(u)) ρ(A(u))u
1

|V |

A

J−

ρ(B(u)) ρ(B(u))u
1

|V |

B

Figure 2. Illustration of the computation of DiffAsaBsb .

the vertices sorted by the descriptor depicted on the right, in
ascending order. In each line, we distinguish a given vertex
u and the end points of the interval containing the vertices
with the same value as u (ρ(D(u)) and ρ(D(u))). Besides,
the hatched gray rectangle gives the set Isa or Jsb .

Since we cannot derive the exact cardinality of DiffAsaBsb ,
given that we do not know how the sets Isa and Jsb intersect,
we compute a lower bound on it. If |Isa | ≥ |Jsb |, then
the cardinality of DiffAsaBsb is minimal when Jsb ⊆ Isa .
Analogously, if |Isa | < |Jsb |, then DiffAsaBsb can be empty,
and thus its cardinality is 0. Thus,

|DiffA+B+ | ≥ max{0,
(
ρ(A(u))− ρ(B(u))

)
}

|DiffA−B− | ≥ max{0,
(
ρ(B(u))− ρ(A(u))

)
}

|DiffA+B− | ≥ max{0, (ρ(A(u))− 1− (|V | − ρ(B(u))))}
|DiffA−B+ | ≥ max{0, (|V | − ρ(A(u)))−

(
ρ(B(u))− 1

)
)}
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To establish an upper bound on the support of a pattern
P , we take, for each vertex u, the pair of signed descrip-
tors AsaBsb that maximizes DiffAsaBsb : maxDiffP (u) =
maxAsaBsb∈P 2 |DiffAsaBsb |. This leads to the following upper
bound:

Theorem 1 (Upper bound on Supp): Let P be a topologi-
cal pattern,

Suppall(P ) ≤ 1−
∑

u∈V maxDiffP (u)
n(n− 1)

(4)

Proof: For each vertex u, let us consider two descriptors
Asa and Bsb from P such as maxDiffP (u) = |DiffAsaBsb (u)|.
This is a lower bound on the number of vertices v such that
(A(v)DsaA(u)) and ¬(B(v)BsbB(u)). For each such vertex
v, neither (u, v) nor (v, u) contributes to Suppall(P ). If we
sum these numbers over all vertices from V , we get a lower
bound on the number of ordered pairs that cannot support P .
Since every ordered pair of vertices (u, v) is taken into account
twice, we need to divide it by 2 to get a lower bound on the
pairs of vertices that do not contribute to the support of P .
Finally we divide the upper bound by

(
n
2

)
.

Observe that this upper bound on Suppall is very convenient
since its computation is in O(|V |), whereas the computation
of Suppall is in O(|V |2). On the one hand, it requires storing
2 additional values for every descriptor and every vertex (the
end points of the ranking intervals). On the other hand, since
we are enumerating descriptors and not descriptor values (as
in itemset mining) this is not costly in terms of memory usage.

5.2 Algorithm

TopGraphMiner computes frequent topological patterns and
their top k representative vertices from an attributed graph
(see Algorithms 1 and 2). It takes in input the graph G =
(V,E,L) and two parameters: minsup and k. In line 1 of
Algorithm 1, it performs the computation of topological vertex
properties. The computation of topological patterns is done
in an ECLAT-based way [33], [34]. More precisely, all the
subsets of a pattern P are always evaluated before P itself.
In this way, by storing all frequent patterns in the hash-tree
M, the anti-monotonic frequency constraint is fully-checked
on the fly (line 4, in Algorithm 2). We start by enumerating
the singleton positive descriptors to avoid the generation of
duplicate patterns. Larger patterns are recursively generated
by the function EXTEND PATTERN (see line 13, in Algorithm
1). To avoid the unnecessary expensive computation of the
support, we compute the upper bound on the support to prune
non-promising topological patterns (function COMP UB in line
8 of Algorithm 1). This function takes in parameters ρ and ρ
that are computed in lines 5 to 7. When this upper bound
is greater than the minimum threshold, the exact support is
computed (function COMP SUPP in Algorithms 1 and 2). This
step and its optimization will be discussed in the following
subsection.

Another optimization is based on the deduction of the sup-
port from already evaluated patterns (function COMP DEDUC
in line 5 of Algorithm 2). A pair of vertices that supports
a pattern P cannot support another pattern Q that contains

exactly the same descriptors but with different signs. Thus,
another upper bound on the support of P can be computed by
summing the support of all such patterns Q already computed
and taking the complement from 1. So, to be stringent, we
bound the support by taking the minimum between this value
and the upper bound defined in Theorem 4 (see line 5 in Algo-
rithm 2). When computing the support of the pattern, the top
k representative vertices are also identified (see section 5.3.2).

Algorithm 1 TopGraphMiner
Require: G = (V,E, L), minsup, k
Ensure: M: the frequent topological patterns and

their top k representative vertices.
1: Compute T , the set of topological properties of G

that associate a numerical value to vertices of V
based on the relation E.

2: D ← T ∪ L
3: M← ∅
4: for all D ∈ D, in descending order do
5: for all v ∈ V do
6: Compute ρ(D(v)) and ρ(D(v)).
7: end for
8: UB ← COMP UB({D+}, ρ, ρ)
9: if (UB ≥ minsup) then

10: (supp, topk)← COMP SUPP({D+}, k)
11: if (supp ≥ minsup) then
12: M←M∪ ({D+}, topk)
13: EXTEND PATTERN ({D+})
14: end if
15: end if
16: end for

Algorithm 2 Extend Pattern
Require: P a topological pattern, minsup, k, ρ, ρ
Ensure: Compute all frequent extensions of P and

add them to the global variable M with their top
k representative vertices

1: for all B ∈ D, B greater than the last descriptor
in P do

2: for all s ∈ {+,−} do
3: Q← P ∪ {Bs}
4: if (∀R ⊂ Q, R ∈M) then
5: UB ← min{COMP UB(Q, ρ, ρ),

COMP DEDUC(Q,M)}
6: if (UB ≥ minsup) then
7: (supp, topk)← COMP SUPP(Q, k)
8: if (supp ≥ minsup) then
9: M←M∪ (Q, topk)

10: EXTEND PATTERN (Q)
11: end if
12: end if
13: end if
14: end for
15: end for

5.3 Discussion and Optimizations
We discuss other optimizations used in TopGraphMiner algo-
rithm and how emerging topological patterns are computed.

5.3.1 Computation of Suppall
The support of P is evaluated by function COMP SUPP that
counts the number of pairs of vertices (u, v) such that ∀Asa ∈
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P, A(u)Bsa A(v). The computation of this measure requires
to perform a quadratic operation on the number of vertices.
However, as proposed in [5], a more directed search for all
vertices that have smaller or greater values on all descriptors
in P is implemented by using range trees and enable good
performances when |P | is not too large.

For a singleton pattern {D+}, the range tree is simply a
binary search tree where each node contains a value x of D
along with two values: y+, that, is the number of vertices that
are lower than or equal to x, and y−, that is, the number of
vertices having a value greater or equal to x. Then, to compute
the support of {D+}, we simply loop over the vertices of the
graph, find their corresponding nodes in the range tree and
sum the y+ values of their left subtrees. When extending a
pattern P , every node in the range tree is expanded to contain
a nested range tree that corresponds to the added descriptor. To
compute the support, we loop over the graph vertices, find their
corresponding nodes in the inner range trees and sum up the
y+ (resp. y−) values for positive (resp. negative) descriptors
of their left (resp. right) subtrees.

5.3.2 Computation of the top k representatives
As explained in section 4, the vertex pairs S(P ) that support a
topological pattern P define a transitive acyclic directed graph
GP = (V, S(P )) (see property 2) that admits at least one
topological ordering of its vertices. The top k representative
vertices are the k highest vertices with respect to one of these
topological orderings.

Property 3: Let G = (V,A) be a transitive directed graph
and let Deg−(v) be the incoming degree of the vertex v ∈ V
(deg−(v) = |{∀u ∈ V such that (u, v) ∈ A}|). For any arc
(u, v) ∈ A, deg−(u) ≤ deg−(v) + 1.

Proof: Given an arc (u, v) ∈ A, ∀t ∈ V such that (t, u) ∈
A, by transitivity of G there exists an arc (t, v) ∈ A. Therefore,
deg−(u) ≤ deg−(v) + 1.

As a result, ordering V with respect to deg− constitutes a
topological sorting of GP . The range trees used for computing
the support of P can easily be exploited to retrieve the top k
representative vertices of P : when we loop over the vertices
of the graph and find in the range trees their incoming degree
to compute the support of P , the set of k vertices having the
largest incoming degree is maintain in a heap, using operations
in O(log k).

5.3.3 Computation of SuppCr , SuppE and Gr
Emerging topological patterns can easily be computed by
adapting Algorithm 1: the selected descriptor Cr is the last
one in the pattern being enumerated (in the ECLAT enumer-
ation fashion, the last descriptor in the pattern is the first to
be enumerated), and when enumerated, its support provides
the numerator value of Equation (2). When subtracting this
value from the support of its direct ancestor, it provides the
denominator value. We therefore retrieve only those patterns
with a growth-rate higher than a threshold.

The computation of SuppE(P ) can be done in a time
complexity proportional to the number of edges in the graph.
Finally, Gr(P,E) can be deduced from SuppE(P ) and
Suppall(P ).

6 PERFORMANCE STUDY

In this section, we report experimental results to illustrate
the interest of our approach. We start by describing the 4
attributed graphs we use in our experiments. Then, we provide
a performance study. Qualitative results are given in the next
section. All experiments were performed on a cluster. Nodes
are equipped with 16 processors at 2.5GHz and 16GB of RAM
under Linux operating systems. TopGraphMiner algorithm is
implemented in C.

6.1 Real-World attributed graphs

We considered 4 real-world attributed graphs whose charac-
teristics are given in Table 1:

1) DBLP: This co-authorship graph is built from the DBLP
digital library. Each vertex represents an author who
published at least one paper in one of the major con-
ferences and journals of the Data Mining and Database
communities1 between January 1990 and February 2011.
Each edge links two authors who co-authored at least
one paper (no matter the conference or journal). The
vertex properties are the number of publications in each
of the 29 conferences or journals.

2) MOVIES: Each vertex of this graph represents a movie
and an edge exists between two movies if they have an
actor in common2. The vertex attributes are based on
movie ratings from Netflix customers: the number of
ratings, their average and standard deviation values, the
release year of the movie and its number of actors.

3) PATENTS: It is a graph derived from a subset of the
citation graph of U.S. patents granted between January
1963 and December 19993. We selected only patents
of the subcategory “Computer Peripherals”. There are
10 vertex attributes as, e.g., the grant year and the
corresponding number of claims.

4) GENES: This graph contains gene-gene interactions [31],
that is, each vertex stands for a gene and an edge links
two vertices if they are known to interact during the
biological transcription process. The vertex attributes
associated with each gene are its expression values in
each of 348 biological situations. Those situations are as
many human tissues from several organs that are healthy
or cancerous [19].

The main characteristics of these graphs are reported in
Table 1. Many of these properties have a standard-deviation
greater than their average, suggesting that they follow power
law distributions. Note that we do not compute NBQC, SZQC,
and CLUST for the attributed graph PATENTS, since it is a
directed graph and, as such, there are very few dense quasi-
cliques and triangles.

1. Conferences: KDD, ICDM, ECML/PKDD, PAKDD, SIAM DM, AAAI,
ICML, IJCAI, IDA, DASFAA, VLDB, CIKM, SIGMOD, PODS, ICDE,
EDBT, ICDT, SAC – Journals: IEEE TKDE, DAMI, IEEE Int. Sys., SIGKDD
Exp., Comm. ACM, IDA J., KAIS, SADM, PVLDB, VLDB J., ACM TKDD.

2. http://www.imdb.com/
3. http://www.nber.org/patents/
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Table 1
Main characteristics of the graphs DBLP, MOVIES, PATENTS, and GENES.

Attributed graph DBLP MOVIES PATENTS GENES

#Vertices 42, 252 5, 972 24, 282 4, 711
#Edges 210, 320 64, 338 100, 246 6, 036
#Vertex attributes 29 5 10 348
Density 2× 10−4 3.6× 10−3 1.7× 10−4 0.54× 10−3

#Connected Components 577 33 67 11
#Communities 1016 56 169 30

Topological properties Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev.
Raw degree 0 304 9.73 14.22 0 118 21.16 19.13 0 313 8.26 9.67 0 68 2.28 6.66
DEGREE 0 7.3× 10−3 2.4× 10−4 3.4× 10−4 0 2.2× 10−2 4× 10−3 3.5× 10−3 0 2.5× 10−2 3.6× 10−4 5.6× 10−4 0 0.04 1.75× 10−3 4.5× 10−3

CLUST 0 1 0.31 0.29 0 1.57 0.34 0.26 – – – – 0 1.69 0.06 0.18
NBQC 0 4.6× 105 2.2× 102 7.8× 103 0 503 2.96 19.93 – – – – 0 22 0.16 1.26
SZQC 0 35 2.75 4.83 0 52 13.87 11.35 – – – – 0 46 0.84 4.96
SZCOM 0 9, 342 40.67 5× 102 0 1, 563 11.5× 102 5.6× 102 0 8, 178 50.9× 102 25.9× 102 0 394 48.73 93.9
CLOSE 0 1 0.024 0.137 0 1 0.010 0.099 0 1 0.005 0.067 0 1 4× 10−3 0.06
BETW 0 2.6× 106 1.4× 105 5.7× 105 0 1.6× 105 1.1× 104 1.6× 104 0 20.2× 106 10.8× 104 40.4× 104 0 1.4× 105 1.4× 103 5.5× 103

EGVECT 0 0.003 2.36× 10−5 9.91× 10−5 0 8.4× 10−3 1.6× 10−4 7.5× 10−4 0 11.6× 10−3 4.11× 10−5 2.8× 10−4 0 0.021 2.00× 10−4 2× 10−3

PAGERANK 0 21.53 0.98 0.98 0 0.59 0.88 0.59 0 35.98 0.93 0.91 0 7.69 0.31 0.62
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Figure 3. Comparison w.r.t. a baseline technique: execution time ratio (A), execution time w.r.t. number of descriptors
(MOVIES, minsup=20%) (B), execution time w.r.t. a replication factor (MOVIES, minsup=20%) (C).

6.2 Performance Study

6.2.1 Comparison with a baseline approach

Since there is no other algorithm that simultaneously computes
up and down co-variations using the same support measure as
in our approach, we first study the performance of TopGraph-
Miner by comparing it with a baseline approach. It consists
in using the algorithm of [5], which only computes up co-
variations, after having duplicate and reverse each descriptor.
For instance, the vertex ranked first w.r.t. the descriptor D+

is ranked last w.r.t. D−. Notice that non-sensible patterns,
such as {D+, D−}, will be discarded in linear time since
their support is 0. Besides, it is necessary to post-process
the output patterns to remove the symmetrical patterns. This
additional step is quadratic in the size of the output and can
be computationnaly expensive. However, for these experiments
we do not take into account the execution time of this post-
processing step.

Figure 3(A) gives the ratio of the execution time of the
baseline approach to the execution time of our approach on the
4 attributed graphs. We can see that for the graphs MOVIES,
PATENTS and GENES, our approach is at least twice as faster
as the baseline. Besides, the lower the support the higher this
ratio is. Notice that we were not able to compute topological
patterns for low support values on the graph GENES, since
there are many vertex attributes. This behavior shows that our
approach is more efficient than the baseline one and that this
efficiency does not only rely on the fact that the number of
descriptors of the graphs is twice as smaller than the one used
by the baseline approach, but also on the pruning capability.

With the DBLP graph, however, the ratio decreases for lower
supports. This can be explained by the fact that there are
many non-frequent topological patterns with negative signs
that are early pruned by the baseline approach. Figure 3(B)
shows the execution time spent by both algorithms w.r.t.
different numbers of randomly chosen original descriptors
from the MOVIES graph, with minimum support of 20%. We
can observe that our approach outperforms the baseline one
and the gain is more important when the number of descriptors
increases. Figure 3(C) gives the execution time spent by both
algorithms w.r.t. the number of vertices in the attributed graph
MOVIES, with minimum support of 20% (the x-axis gives the
replication factor). We can notice that TopGraphMiner is faster
than the baseline approach and this especially as the number
of vertices increases. Although the computation of the support
of the patterns is quadratic in the number of vertices, the
execution times do not increase accordingly due to the use
of the range trees. We can therefore conclude that the results
shown in Figure 3(A) are more influenced by the number of
descriptors than that of vertices.

6.2.2 Empirical complexity of TopGraphMiner
Figures 4(A) and 4(B) present, respectively, the execution
time of TopGraphMiner and the number of obtained frequent
patterns according to the minimum support threshold. The
execution time is strongly related to the number of frequent
topological patterns, even if the computation of the support
may impact the execution time when the number of vertices is
high. For example, for minimum supports greater than 60%,
the number of frequent patterns in the graphs MOVIES and
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PATENTS is greater than that in DBLP. Nevertheless, the
extraction of the patterns is faster in the former two since
they have fewer vertices than the latter.
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Figure 5. Impact of the upper bound on the execution
time w.r.t. a replication factor (DBLP, minsup=40%).

Regarding the efficiency of our pruning technique (i.e., the
upper bound on the support), Figure 4(C) gives, for every
minimum support, the ratio of the number of pruned patterns,
thanks to equation (4), to the number of patterns that, in the
end, turned out to be indeed non-frequent. In other words,
it gives the recall of our pruning technique. It can be seen
from this figure that the technique is very efficient for high
minimum support values on the attributed graphs DBLP,
GENES, MOVIES, and PATENTS. In fact, when the minimum
support is higher than 70%, almost all non-frequent patterns
are pruned without computing their exact supports.

However, for lower support values, we observe that the
upper bound is less stringent on MOVIES and PATENTS, while
keeping its performance for the graphs GENES and DBLP.
This behavior can be explained by the fact that the upper
bound exploits tie values, whose ratio is higher in the latter
two. Let us consider the ratio of tie values defined as

Ties(G) =

∑
D∈D

∑
u,v∈V 2u<vD(u) = D(v)

|D|.
(
n
2

)
In the 4 real-world attributed graphs, this ratio is:

Graphs DBLP MOVIES PATENTS GENES

Ties(G) 0.8 0.16 0.32 0.69
The presence of many tie values in DBLP and GENES
descriptors may explain the robustness of the upper bound
w.r.t. the minimum support threshold.

Figure 5 shows the execution time of TopGraphMiner with
and without using the upper bound. To show that the use
of the upper bound is more and more advantageous as the
number of vertices of the graph grows, we plot the average
execution time of 10 runs of TopGraphMiner on DBLP graph
w.r.t. a replication factor. We can observe that the use the
upper bound reduces the execution time and that this difference
increases with the number of vertices. Note that, this difference
is lighten by the use of range trees that smooth the impact of
the computation of unpromising patterns.

7 CASE STUDIES

We now analyze the effectiveness of our approach on the real-
world attributed graphs.

7.1 Tell us where you publish, we tell you how im-
portant you are.

We examine the results obtained by TopGraphMiner on the
DBLP attributed graph regarding the following questions:

• Are there any interesting patterns among publications?
• Are there interesting trends between some authors’ pub-

lications and topological properties?
• What about IEEE TKDE authors?

Before extracting topological patterns with TopGraphMiner,
we compute correlations between descriptors. The resulting
correlation matrix is reported in Figure 6(A). The vertex
attributes that have a correlation higher than 0.7 are VLDB,
ICDE and SIGMOD. The more correlated topological proper-
ties are, on the one hand, BETW, DEGREE and PAGERANK
and, on the other hand, SZQC and NBQC. The vertex at-
tributes and the topological properties that are not correlated
with any other (with a correlation always lower than 0.2) are:
SAC, Comm. of ACM, IEEE Int. Sys., CLOSE and CLUST.
These correlation measures will help us in the interpretation
of the following results.
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Figure 6. Correlation matrix between vertex attributes
(1 to 29) and topological properties (30 to 38) in DBLP
(A). Silhouette plot of the K-means clustering on some
topological patterns (B).

7.1.1 Topological patterns on conferences and journals

Let us first consider topological patterns among publications
venues. Mining all frequent topological patterns with a support
threshold of 1% takes 68 seconds. The output contains 263
topological patterns, from which 58 (22%) involve negatively
signed attributes. To better understand the type of information
retrieved by these 263 patterns, we performed a clustering
analysis of the topological patterns. We use K-means algorithm
on the 263×57 Boolean matrix where the rows correspond to
the patterns and the columns to the signed vertex attributes
(2 × 29 − 1). We use the cosine distance and employ the
silhouette plot to determine the number of clusters [27]. It
suggests 10 clusters (see Figure 6(B)). The most frequent
vertex attributes of each cluster are shown in Table 2. We can
observe that the majority of the clusters are homogeneous,
referring either to Data mining or to Database publications.
For instance, clusters 1, 2, 6, and 9 refer to Data mining
publications, while clusters 3, 8, and 10 clearly refer to
Database publications. Other clusters are related to a specific
conference/journal.



10

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Minimum support threshold

DBLP
MOVIES

PATENTS
GENES

 1

 10

 100

 1000

 10000

 100000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

#
 P

a
tt

e
rn

s

Minimum support threshold

DBLP
MOVIES

PATENTS
GENES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
ru

n
in

g
 r

e
c
a

ll

Minimum support threshold

DBLP
MOVIES

PATENTS
GENES

(A) (B) (C)

Figure 4. Execution time (A), number of patterns (B), pruning recall (C) w.r.t. minimum support threshold.

Table 2
Most frequent vertex attributes in clusters of patterns

found in the DBLP attributed graph.

Cluster # patterns Most frequent vertex
attributes

Cluster # patterns Most frequent vertex
attributes

1 32 SAC−, IJCAI+ 6 17 KAIS+, SDM+,
PAKDD+, KDD+

2 34 CIKM+, PAKDD+ 7 18 IEEE TKDE+

3 28 SIGMOD+ 8 24 VLDB+, VLDBJ+,
PVLDB+

4 15 AAAI+ 9 34 ICDM+, PKDD+,
KDD+

5 15 CommACM+ 10 46 ICDE+, SIGMOD+,
TKDE+, VLDB+

Interestingly, 20 of these patterns contain the attribute
SAC− together with positively signed attributes. Exam-
ples of such patterns are {SAC−, KDD+}, {SAC−,
ECML/PKDD+}, {SAC−, VLDB+}, and {SAC−, SIG-
MOD+}. This type of pattern can be explained by the fact that
SAC scope is larger than that of selected conferences, which
are more focused either on Database or Data Mining topics.
Since the topics covered by SAC are much general (e.g., Pro-
gramming Languages, Geometric Constraints and Reasoning,
and Applied Biometrics), it is not surprising that many authors
that have several publications in SAC conference series have
none or few publications in the Data Mining or Database area.

7.1.2 Are there interesting trends between author publi-
cations and topological properties?
Table 3 reports the most frequent topological pattern (Pall), the
most emerging pattern (PPAGERANK+ ) w.r.t. PAGERANK+ and
the most structurally correlated topological pattern (PE). Pall

is formed by descriptors SAC+ and SZCOM−. Its meaning is
that SAC authors tend to belong to small communities, that
is, these authors are rather isolated in the graph as illustrated
in Figure 7(A), where the top-10 representative vertices and
their direct neighborhoods are displayed. These vertices have a
low degree. As mentioned in Subsection 7.1.1, the scope of the
SAC conference is much wider than Database and Data mining
topics. This makes this pattern sensible and justifies that (1)
this pattern is not much correlated to the graph structure
(Gr(P,E) = 0.21), and (2) its top-5 supporting vertices are
mostly researchers from Software engineering and Network
areas.

The computation of emerging patterns w.r.t. PAGERANK,
with a support threshold of 1% and a growth-rate threshold

Table 3
Top topological patterns in the DBLP attributed graph.

P Descriptors Measures Top-5 Representative vertices
Pall SAC+, SZCOM− Suppall = 0.19

Gr(P,E) = 0.21
#1 F. N. Sibai, #2 M. M. Huntbach,
#3 C. Leopold, #4 A. J. Duben, #5
P. Rittgen,

PPAGERANK+ ICDE+,
DEGREE+,
BETW+, CLUST−,
NBQC+, SZQC+

Gr(P, PAGERANK+) =
253, 933
Gr(P,E) = 4.8
Suppall = 0.12

#1 H. Garcia-Molina, #2 M. Stone-
braker, #3 G. Weikum #4 R.
Agrawal, #5 M. J. Franklin,

PE PVLDB+,
DEGREE+,
BETW+

Gr(P,E) = 6.9682 #1 G. Weikum, #2 J. Han, #3 D.
Maier #4 P. S. Yu, #5 H. Garcia-
Molina,

of 3, takes around 6 hours and produces 4, 313 patterns. The
most emerging pattern PPAGERANK+ (see Table 3) contains many
topological properties with a positive sign, except CLUST,
which has a negative sign. As we have seen before, PAGER-
ANK is highly correlated with DEGREE and BETW. Therefore,
it is not surprising that both appear in the pattern. On the other
hand, the presence of the property CLUST− suggests that the
higher the PAGERANK of the authors (and consequently their
DEGREE and BETW), the lower the connectivity of their co-
authors. In other words, authors with high PAGERANK have
many co-authors that do not publish together. This can be
observed on Figure 7(B) where the connectivity between co-
authors of the top-10 representative vertices is low. Those that
advise many PhD students can be seen as typical examples of
these authors.

The most structurally correlated topological pattern PE

gathers the descriptors PVLDB+, DEGREE+ and BETW+.
PVLDB is at the same time a well-established conference and
journal in the Data mining and Database communities. This
pattern is strongly structurally correlated (Gr(P,E) > 5),
i.e., it tends to be more supported by pairs that are edges
than arbitrary pairs of vertices. Figure 7(C) displays its top-10
representative vertices.

We can also use emerging topological patterns, made
only of topological properties, to compare the relative
importance of conferences and journals. Let us consider
PTopo1 = {PAGERANK+,DEGREE+} and PTopo2 =
{PAGERANK+,BETW+}, two such emerging patterns whose
respective growth-rates are Gr(PTopo1 , PAGERANK+) =
124.69 and Gr(PTopo2 , PAGERANK+) = 584.46. These
emerging patterns reveal which conferences or journals are
more related to the topological properties BETW+ and
DEGREE+. To that end, for each publication venue C
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Figure 7. Top 10 vertices supporting Pall (A), PPAGERANK (B) and PE (C) and their connected vertices.

and both emerging patterns PTopo, we compute the ratio
Gr(PTopoC,PAGERANK+)
Gr(PTopo,PAGERANK+)

. Table 4(A) gives the top 5 publi-
cations w.r.t. to this ratio. Surprisingly, we observe that
Data Mining conferences have a higher impact on the
pattern {PAGERANK+,DEGREE+}, while Database confer-
ences positively influence the growth-rate of the pattern
{PAGERANK+,BETW+}. Since Data Mining intersects many
other research areas, these results may be explained by the fact
that Data Mining authors may also publish with many others
from different areas, such as Database and Machine Learning.
On the other hand, as Database is an older well-established
research field, Database authors tend to appear at the center
of the graph. For the most impacting publications, we identify
the top 5 representative authors. They are shown in Table 4(B).

Table 4
Top-5 “impacting” publications in the emergence of

DEGREE+ and BETW+ w.r.t. PAGERANK+ (A) along with
their top-5 authors (B).

(A)
Rank PTopo1 PTopo2

Publication Factor Publication Factor

1 ECML/PKDD+ 2.5 PVLDB+ 5.67
2 IEEE TKDE+ 2.28 EDBT+ 5.11
3 PAKDD+ 2.21 VLDB J.+ 4.35
4 DASFAA+ 2.09 SIGMOD+ 4.25
5 ICDM+ 1.95 ICDE+ 3.42

(B)
PAGERANK+ DEGREE+

ECML/PKDD+
PAGERANK+ BETW+

PVLDB+

Christos Faloutsos Gerhard Weikum
Jiawei Han Jiawei Han
Philip S. Yu David Maier
Bing Liu Philip S. Yu
C. Lee Giles Hector Garcia-Molina

7.1.3 What about the IEEE TKDE authors?
We also look for the emerging patterns w.r.t. to the at-
tribute IEEE TKDE, with support threshold of 1% and
growth-rate threshold of 3 (their computation takes around
5 hours). We obtain 745 emerging patterns w.r.t the class
IEEE TKDE+. The most emerging pattern is PTKDE =

ICDE+,VLDB+,BETW+, PAGERANK+, with Gr(PTKDE =
,TKDE+) = 11.75. This pattern indicates that authors pub-
lishing in IEEE TKDE journal tend also to publish papers in
the conferences ICDE and VLDB. BETW+ suggests that these
authors are located in the center of the co-authorship graph,
while PAGERANK+ means that they co-authored papers with
other researchers that also appear in the center of the graph.
It is important to observe that this pattern is also highly struc-
turally correlated (Gr(PTKDE, E) = 6.5758). Furthermore,
this pattern is sensible since it is supported by well-established
researchers in the Database community: Christos Faloutsos,
Jiawei Han, Philip S. Yu, Beng Chin Ooi, and Hector Garcia-
Molina are its top-5 representative authors.

7.2 What movies do we like watching?
Let us now consider the real-world attributed graph MOVIES.
Table 5 shows the 4 most frequent topological patterns (with
at least 2 descriptors) with their top-5 representative movies.
Pattern P1 suggests that Netflix users tend to rate movies

Table 5
Patterns found in MOVIES and their top-5 movies.

P Descriptors Measures Top-5 movies
P1 AVG RATING+

NB RATINGS+
Suppall = 0.7
Gr(P,E) = 1.05

#1 The Green Mile, #2 Forrest Gump, #3 The Sixth
Sense, #4 Indiana Jones and the Last Crusade,
#5 Gladiator

P2 NB RATINGS+

CLOSE+
Suppall = 0.6
Gr(P,E) = 0.87

#1 The Rock, #2 Fahrenheit 9/11, #3 The Godfather,
#4 Enemy of the State, #5 Men of Honor

P3 STD RATING+

PAGERANK−
Suppall = 0.58
Gr(P,E) = 0.89

#1 There’s no Business Like Show Business,
#2 Michael Moore Hates America, #3 Digimon: The
Movie, #4 Blown Away, #5 Benjamin Smoke

P4 YEAR+

AVG RATING−
Suppall = 0.57
Gr(P,E) = 0.94

#1 Day of the Dead 2: Contagium, #2 raging sharks,
#3 My Big Phat Hip Hop Family, #4 The Fallen Ones,
#5 Last Days

they like. Its top-10 representative movies are connected (see
Figure 8(A)), which indicates they have at least one actor in
common. The second pattern P2 reveals that many users tend
to rate movies located in the center of the graph, that is, movies
with “major” actors (e.g., R. de Niro, S. Connery, T. Hanks,
B. Willis, H. Ford, etc.). Therefore, the supporting vertices of
this pattern is made of major blockbusters (see Figure 8(B)).
Pattern P3 indicates that controversial movies (those with a
high rating standard deviation) tend to be isolated within the
graph (lower PAGERANK): they are more independent films
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without well-known actors. Note that all the supporting movies
of this pattern have a degree of 0. Finally, pattern P4 suggests
that older movies are better rated. This can be due to the fact
that the ratings were given between 1998 and 2005. Therefore,
Netflix users tend to rate only non-contemporary movies they
like, to forget those they did not like over time.

Table 6 shows the most emerging topological pattern with
respect to the PAGERANK and the most structurally correlated
pattern. Pattern PPAGERANK gathers descriptors NB ACTORS+

Table 6
Top topological patterns in MOVIES.

P Descriptors Measures Top-5 movies
PPAGERANK+ NB ACTORS+

STD RATING−

NB RATINGS+ DEGREE+

CLOSE+ BETW+

EGVECT+ NBQC+

SZQC+ SZCOM+

Suppall = 0.052
Gr(P, PAGERANK+) =
11, 789
Gr(P,E) = 0.32

#1 The Godfather, #2
Crimson Tide, #3 The
Untouchables, #4 The
Hunt for Red October, #5
Apollo 13,

PE YEAR+, BETW+,
EGVECT+, PAGERANK+,
CLUST−

Suppall = 0.05
Gr(P,E) = 2.78

#1 Catch me if you can,
#2 True Crime, #3 Bat-
man Begins, #4 The Quiet
American, #5 Scenes of
the Crime,

and all the centrality measures, plus STD RATING− and
NB RATINGS+. As the edges of MOVIES encode the fact
that two movies share at least one actor, it is not surprising
that this pattern associates NB ACTORS+ and all the centrality
measures. Furthermore, the attribute STD RATING− indicates
that the representative movies of this pattern are consensual.

The most structurally correlated topological pattern PE

reveals that recent movies (YEAR+) tend to play a central
role within the graph (BETW+, EGVECT+, PAGERANK+) and
their neighbors tend to be not connected (CLUST−), since it is
not common that several movies share the same casting. The
projection of its top-10 representative vertices on the graph is
given in Figure 8(C).

7.3 How do patents cite each other?
We now present some topological patterns found in PATENTS.
Table 7 shows the 4 most frequent patterns that involve
vertex attributes and topological properties. The companies
associated to the top-5 representative vertices of these patterns
are also shown. For the pattern P1, all 5 representatives belong
to the same company Canon Kabushiki Kaisha. For the other
patterns, at least 2 of the top-5 representative patents belong
to the same company.

Table 7
Frequent patterns in PATENTS with the associated

companies of their top-5 patents.

P Descriptors Measures Companies associated to the Top-5 patents
P1 INNER DEGREE+,

PAGERANK+
Suppall = 0.62
Gr(P,E) = 1.82

#1 Canon Kabushiki Kaisha

P2 OUTER DEGREE+,
PAGERANK+

Suppall = 0.59
Gr(P,E) = 0.82

#1 Hewlett-Packard Company, #2 Colorado Mi-
crodisplay

P3 GRAND YEAR+,
PAGERANK−

Suppall = 0.52
Gr(P,E) = 1.28

#1 Nippondenso Co., #2 Canon Kabushiki
Kaisha #3 Sony Co., #4 Intel Co., #4 Ricoh
Company

P4 NB CLAIMS+,
PAGERANK+

Suppall = 0.51
Gr(P,E) = 1.01

#1 Canon Kabushiki Kaisha, #2 National Instru-
ments #3 VPL Research Inc., #4 Xerox Co.

Patterns P1 and P2 are sensible since to have a high PAGER-
ANK value, a vertex must have high inner or outer degree

(see Figure 9(A) and (B)). P3 means that “the younger the
patents, the lower the PAGERANK”. This knowledge nugget
is meaningful as older patents are more widely cited than
younger ones. All its top-10 representative patents have a
degree of 0. P4 reveals that the higher the number of claims
the higher the PAGERANK of the patent. This can be explained
by the fact that the claims of the patents may refer to many
previously granted patents.

Table 8
Top topological patterns in PATENTS.

P Descriptors Measures Top-5 companies
PPAGERANK+ INNER DEGREE+,

GENERAL+,
CLOSE+, BETW+,
PAGERANK+

Suppall = 0.02
Gr(P,E) = 1094.08

#1 VISUA #2 UNIVERSITY #3
Sony #4 CADWARE #5 TALI-
GENT

PE GRAND YEAR+,
OUTER DEGREE+,
INNER DEGREE−,
PAGERANK−

Suppall = 0.03
Gr(P,E) = 7.47

#1 Immersion Corp., #2 MIT, #3
Immersion Human Interface Corp.,
#4 Fed Corp., #5 Time Warner En-
tertainement,

The most emerging topological pattern w.r.t. PAGERANK
indicates that the more generic a patent is, the more its
location tends to be central in the graph (see Table 8). The
vertex attribute named GENERAL is related to the number of
times the patent is cited by subsequent patents that belong
to a wide range of fields. PE discloses the fact that the
more recent a patent is, the higher the number of citations to
previously granted patents, whereas it tends to be not cited and
consequently its PAGERANK tends to be low (see Figure 9(C)).

7.4 Are the known cancer-specific genes the most
representative genes of the cancer related patterns?
To validate our approach on the attributed graph GENES, we
consider 4 specific patterns made of two vertex attributes: one
that corresponds to a healthy tissue (pancreas versus colon)
and the other one to the same but cancerous tissue (adenocar-
cinoma versus carcinoma). The first attribute has a negative
sign, whereas the second one has a positive one. Therefore, the
most supporting genes of these patterns are those that are over-
expressed in cancerous tissue while inhibited in normal one.
Table 9 shows these patterns and their associated measures.
To validate these patterns, we consider their supporting genes,
and more precisely their ranks w.r.t. the patterns’ topological
ordering. We compute the normalized average ranks of two
specific sets of genes known to be over-expressed in pancreas
cancer (the genes HLA-DRB4, PPAPDC1B, and THBS1) [6]
and colon cancer (the genes ANXA1, GJB2, PSMC5, RPS7)
[26]. These values are given in the last two columns of Table 9.

Table 9
Four specific patterns in GENES.

P Pattern Measures PANCREAS
AVG RANK

COLON
AVG RANK

P1 PANCREAS NORMAL−

PANCREAS ADENOCARCINOMA+
Suppall = 0.0125
SuppE = 0.0235

0.378 0.308

P2 PANCREAS NORMAL−

PANCREAS CARCINOMA+
Suppall = 0.0097
SuppE = 0.0205

0.510 0.183

P3 COLON NORMAL−

COLON ADENOCARCINOMA+
Suppall = 0.0162
SuppE = 0.0188

0.821 0.230

P4 COLON NORMAL−

COLON CARCINOMA+
Suppall = 0.0133
SuppE = 0.0202

0.806 0.306

As can be observed from Table 9, genes related to pancreas
cancer highly support the two first patterns: they are in average
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Figure 8. Top 10 vertices supporting P1 (A), P2 (B), and PE (C) and their connected vertices in MOVIES.

(A) (B) (C)

Figure 9. Top 10 vertices supporting P1 (A), P2 (B), and PE (C) and their connected vertices of PATENTS.

in the first half of the ranks, having high values on Pancreas
adenocarcinoma and carcinoma and low values on Pancreas
normal cells. However, note that it does not happen in the
patterns related to colon cancer (P3 and P4). On the other
hand, the genes identified in [26] are not only involved in colon
carcinoma and adenocarcinoma cells, but also in Pancreas
cancer cells (see they have low average ranks in the 4 patterns).
This is exactly what is claimed in [26]: “the genes ANXA1,
GJB2, RPS7 were also identified as metastasis-specific of
pancreatic metastatic tumor cells versus their nonmetastatic
counterparts”.

8 RELATED WORK

Graph mining is an active topic in Data Mining. In the
literature, there exist two main trends to analyze graphs. On
the one hand, graphs are studied at a macroscopic level by
considering statistical graph properties (e.g., diameter, degree
distribution) [2], [7]. On the other hand, sophisticated graph
properties are discovered by using a local pattern mining
approach. Recent approaches mine attributed graphs which
convey more information. In such graphs, information is
locally available on vertices by means of attribute values. As
argued by Moser et al. [23], “often features and edges contain
complementary information, i.e. neither the relationships can
be derived from the feature vectors nor vice versa”.

Attributed graphs are extensively studied by means of
clustering techniques (see e.g., [1], [8], [13], [14], [20], [35])

whereas pattern mining techniques in such graphs have been
less investigated. The pioneering work [23] propose a method
to find dense homogeneous subgraphs (i.e., subgraphs whose
vertices share a large set of attributes). Silva et al. [30]
extract pairs of dense subgraphs and Boolean attribute sets
such that the Boolean attributes are strongly associated with
the dense subgraph. In [24], the authors propose the task of
finding the collections of homogeneous k-clique percolated
components (i.e., components made of overlapping cliques
sharing a common set of true valued attributes) in Boolean
attributed graphs. Another approach is presented in [18], where
a larger neighborhood is considered. This pattern type relies on
a relaxation of the accurate structure constraint on subgraphs.
Roughly speaking, they propose a probabilistic approach to
both construct the neighborhood of a vertex and propagate
information into this neighborhood. Following the same moti-
vation, Sese et al. [28] extract (not necessarily dense) subgraph
with common itemsets.

Note that these approaches use a single type of topolog-
ical information based on the neighborhood of the vertices.
Furthermore, they do not handle numerical attributes as in
our proposal. However, global statistical analysis [11] of a
single graph considers several measures to describe the graph
topology, but does not benefit from vertex attributes. Besides,
current local pattern mining techniques on attributed graphs do
not consider numerical attributes nor macroscopic topological
properties. To the best of our knowledge, our paper represents
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a first attempt to combine both microscopic and macroscopic
analysis on graphs by means of (emerging) topological pattern
mining. Indeed, several approaches aim at building global
models from local patterns [12], but none of them tries to
combine information from different graph granularity levels.

Co-variation patterns are also known as gradual patterns [9]
or rank-correlated itemsets [5]. Do et al. [9] use a support mea-
sure based on the length of the longest path between ordered
objects. This measure has some drawbacks w.r.t. computational
and semantics aspects. Calders et al. [5] introduce a support
measure based on the Kendall’s τ statistical measure. However,
their approach is not defined to simultaneously discover up
and down co-variation patterns as does our approach. Another
novelty of our work is the definition of other interestingness
measures to capture emerging co-variations. Finally, this work
is also the first attempt to use co-variation pattern mining in
attributed graph.

9 CONCLUSION AND FUTURE DIRECTIONS

We propose TopGraphMiner, an algorithm that supports net-
work analysis by finding regularities among vertex topological
properties and attributes. It mines frequent topological patterns
as up and down co-variations involving both attributes and
topological properties of graph vertices. In addition, we define
two interestingness measures to capture the significance of
a pattern with respect to either a given descriptor, or the
relationship encoded by the graph edges. Furthermore, by
identifying the top k representative vertices of a topological
pattern, we enabled a better interaction with end-users. Ex-
perimental results illustrate the added value of our approach.
In particular, we report on four real-world case studies: a co-
authorship graph built from the DBLP digital library, a graph
derived from movies’ characteristics, a citation graph of U.S.
patents, and a protein-protein interaction graph. These case
studies show the capability of TopGraphMiner to discover
sensible patterns.

Our work opens several perspectives. A short-term perspec-
tive would be to extend our framework to take into account the
information conveyed by categorical vertex descriptors. An-
other interesting perspective would be to adapt the topological
pattern mining approach to dynamic graphs by, for instance,
identifying unexpected topological patterns over time.
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