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Surface Meshing with Curvature Convergence

Huibin Li, Student Member, IEEE, Wei Zeng, Member, IEEE, Jean Marie Morvan,
Liming Chen, Member, IEEE, and Xianfeng David Gu*, Member, IEEE

Abstract —Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve
solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined
by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations.
The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for
conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal
parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal
uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for
the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast
to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure
and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to
the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much
more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm.

Index Terms —Meshing, Delaunay refinement, conformal parameterization, normal cycle, curvature measures, convergence.

O

1 INTRODUCTION rates, and the approximation bounds of the discrete solitio

Surface meshing and remeshing play fundamental roles 3ff largely determined by the quality of the underlyingrigie

many engineering fields, including computer graphics, gegl__esh, which is measured mainly by the S|ze_and thg ;hape of

metric modeling, visualization and medical imaging. Tyglig triangles on the mesh. The_refore, the generation of hightgua

surface meshing finds a set of sample points on the surfABgShes has fundamental importance.

with a curved triangulation, then approximates each faceMOSt existing meshing and remeshing approaches are based

by an Euclidean triangle irR3, thereby approximating the N the Delagnay refm(_ement algorithms. They can be classified

underlying smooth surface by a polyhedral triangular sigfa " thrée main categories:

which is called a triangle mesh. 1) The sampling is computed &3, and triangulated using
Many geometric processing tasks are equivalent to solving the volumetric Delaunay triangulation algorithms, such

geometric partial differential equations (PDEs) on suwefac as [4] [5] [6] [7] [8] [9]-

The following are some direct examples: for shape analysis,2) The sampling and triangulation are directly computed

the heat kernel signature (HKS) [1] is mostly utilized, whic on curved surfaces, such as [10] [11].

entails solving a heat equation and computing the eigesgalu 3) The sampling is computed in a conformal parameter

and eigenfunctions of the Laplace-Beltrami operator on the ~domain, and triangulated using the planar Delaunay

surfaces; for shape registration, the surface harmonic[2fap triangulation algorithms, such as [12] [13] [14] [15] [16].

is widely used, which essentially means solving ellipticH3D  The convergence theories of curvature measures for the

on the surfaces; for surface parameterization, the dis@iici approaches in the first two categories has been thoroughly

flow [3] is often computed, which amounts to solving a norestablished in [17] [18] [19] [20]. However, so far, there is

linear parabolic equation on the surfaces. no theory to show the convergence of curvature measures for
Most geometric PDEs are discretized on triangle meshéise approaches in the third category.

and solved using numerical methods, such as Finite Element

Methods (FEM). The numerical stability, the convergence ¢ Existing Theoretical Results
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where If{p) denotes the local feature sizeMfat pointp. Let 1.2.1 Similarities

T be the triangle mesh induced by the volumetric Delaunq%nowmg the work in [17], our proof is mainly based on the
triangulation ofM; restricted taM. If ¢ is small enough, each ormal cycle theory. Both methods estimate both the Haus-
point of the mesh has a unique closest point on the sSmogf#ff distance and the normal deviation at the correspandin
surface. This leads to the introduction of the closest pOiBbints. Then both methods construct a homeomorphism from
projectionr: T — M. This map has the following propertiesihe triangle mesh to the surface, which induces a homotopy
1) Normal deviation¥p € T, [n(p) —nom(p)|=O(¢g), by from the normal cycle of the mesh to the normal cycle of
Amentaet al. [4], and Boissonnagt al. [6]. the surface. Then, the volume swept by the homotopy and the
2) Hausdorff distancelp — m(p)| = O(g?), by Boissonnat area of its boundary are estimated. This gives a bound on the
et al. [6]. difference between the curvature measures.
3) Homeomorphism:t is a global homeomorphism, by
Amentaet al. [4] and Boissonnagt al. [6]. 1.2.2 Differences

4) Curvature measures: L& be a Borel subset oR®, However our work can be clearly differentiated from theins,
then the differences between the curvature measurestgfins of both theoretical and algorithmic aspects:

M and th_ose ol are Ke, whereK depends on the « In theory, as pointed out previously, without the stronger
triangulationT [17] [19]. sampling condition, the volumetric Delaunay refinement
In the first category, the authors show that, unfortunately, algorithms cannot guarantee the convergence of curvature
the convergence of curvature measures can not be guaranteed measures. In contrast, our results can ensure the conver-
Depending on the triangulation, whengoes to 0,K may gence without extra assumptions.
go to infinity, (see [18] for a counterexample). To ensure « In theory, the volumetric Delaunay refinement methods
the convergence of the curvature measures, in [18] [19], the require the embedding of the surface. Our method is
authors suggest adding a stronger assumption to the samplin intrinsic, which only requires the Riemannian metric.

condition, namely,k-light e-sample which is ane&-sample In many real-life applications, e.g. the general relafivit
with the additional constraint that each bdlp,elfs(p)) simulation in theoretical physics, the surface metric is
contains at mosk sample points. given without any embedding space. In such cases, the

In the second category, the curvature convergence for mesh- volumetric Delaunay refinement methods are invalid, but
es obtained by Chew’s second algorithm [11] has been proved our method can still apply.
in [20]. The normal and area convergence for meshes based on In theory, to prove the main theorem, the closest point
the geodesic Delaunay refinement algorithm has been proved mapping was constructed in [17]. In contrast, we supply
in [10]. However, the computation of the geodesic Delaunay two proofs: one is based on the closest point mapping,
triangulation is prohibitively expensive in practice [23] whereas the other uses a completely different mapping
based on conformal parameterization. Conceptually, be-
sides its novelty, the latter is also simpler.

1.2 Our Theoretical Results - In practice, the planar Delaunay refinement methods are
. _ . _ ) ) much easier to implement, the data structure for planar
This paper will deal with triangulations of the third catego triangulation is much simpler than that of the tetrahedral

showing stronger estimates. Using conformal parameteriza mesh, and the planar algorithms are much more efficient.
tion, we obtain meshes satisfying the first two properties

before émark The current meshing algorithm aims to achieve a

good triangulation, and requires a conformal paramettoiza
1) Normal deviationO(¢), Lemma 4.8 and Lemma 4.9. which in turn requires a triangulation. Consequently, ks
2) Hausdorff distanced(£2), Lemma 4.8 and Lemma 4.9.like a chicken-and-egg problem.

Moreover, we improve the other two properties as follows:; [N fact, conformal parameterization can be carried outgisin
an initial triangulation of low quality, and this algorithmaill

3) Homeomorphism: In addition to the closest point Prgs.oqyce a new triangulation with much better quality. Many
jection 11, we also define a novel mapping, the naturglametric processing tasks cannot be computed on thel initia
projectionn, induced by the conformal parameterizan, s For example, the error bound for a discrete solution to
tion. Both projections are global homeomorphisms, Sefa poisson equation 8(¢2) on good quality meshes. If the

section 4.4.3. ~mesh has too many obtuse angles, then the discrete reslilts wi
4) Curvature measures: we show the Delaunay refinemegt converge to the smooth solution.

method on the conformal parameter domain generate§, o ity surfaces are acquired by 3D scanning devices,
k-light e-sample, which guarantees the CONVErgenc@ . as the laser scanner or the structured light scanner.

of curvature measures. Moreover, we show that theg,ay the raw point clouds are very dense, thus the Initia
bounds of the curvature measures && whereK is  yianqiiation can be induced by the pixel or voxel grid

O(area(B)) +O(length(dB)), and are independent of thegycryres. In the geometric modeling field, the input stega
triangulations, see Theorem 3.4 and section 4.4.4.

may be spline surfaces, and the initial triangulation can be
In addition, the coding and computational complexities ahosen as the regular grids on the parameter domain. Then,
much lower than those in the second category. the conformal parameterizations can be computed using the
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dense samples with the initial triangulation. Finally, wvenc 3 STATEMENT OF THE MAIN THEOREM
perform the remeshing using the current conformal paramets 1  cyrvature Measures

Delaunay refinement algorithm to improve the mesh quality ar 2 3 -
compress the geometric data. &I;I‘St, let M be aCc-smooth surface embedded ®°, its

curvature measures can be defined as follows.
Definition 3.1: The Gaussian curvature measureMyf ¢,
2 PREVIOUS WORKS is the function associated with each Borel Bat R3,

2.1 Meshing/Remeshing @5 (B) = G(p)dp

2.1.1 Delaunay Refinement . _BQM .
where G(p) is the Gaussian curvature d¥l at point p.

The Delaunay refinement algorithms were originally designesimilarly, the mean curvature measugl is given by
for meshing planar domains, and were later generalized for

meshing surfaces and volumes. Chew’s first algorithm [24] @i (B) :/ H(p)dp

splits any triangle whose circumradius is greater than the BM

prescribed shortest edge length parametemd hence gen- whereH(p) denotes the mean curvature Mf at point p.

erates triangulation of uniform density and with no angle Now, let V be a polyhedron ofR® and its polyhedral

smaller than 3@ But the number of triangles produced igooundaryM be a triangular mesh surface. We wséo denote

not optimal. Chew’s second algorithm [11] splits any trieng a vertex,vi,v;] an edge, anéi, vj, v a face ofM. We define

whose circumradius-to-shortest-edge ratio is greater time, the discrete Gaussian curvature Mf at each vertex as the

and hence in practice produces grade mesh. Similar sglitgle deficit, _

criterion was used in Ruppert’s algorithm [25], which has th G(vi) =2m— % Gi’k,

theoretical guarantee of the minimal angle of no less than ]

EO7 etk sonth 25 can greste meshes Wiinre o i te comer ange on e e, at e
. e ' : vertexv;. Similarly, the discrete mean curvature at each edge

of algorithms for surface meshing and remeshing based QN fined as

volumetric Delaunay refinement [7] [8] [9], which belong to H(ai) = v —vi|B(a))

the approaches in the first category. We refer readers to [27] y tTHEREL

for full details. where (B is the angle between the normals to the faces

incident to g;. The sign of3(ej) is chosen to be positive

if ;j is convex and negative if it is concave.

Definition 3.2: The discrete Gaussian curvature measure of
The concept of centroidal Voronoi tessellations (CVT) west fi M, ¢, is the function associated with each Borel Bet R3
proposed by Diet al. [28], and then was generalized to con- s
strained centroidal Voronoi tessellations (CCVT) [29] cRet- i (B) = ; G(v). 1)
ly, CVT has been widely used for surface meshing/remeshing veBiM
to produce high quality triangulations. It can be carried oThe discrete mean curvature measgfgis
in the ambient space, e.g. Yat al. [30], or the conformal H (B) = ; H(e). @

ecBNM

2.1.2 Centroidal Voronoi Tessellation

parameter domain, e.g. Alliegt al. [12] [31], or even high B
embedding space, e.g. Léwt al. [32]. A complete survey

of the recent advancements on CVT based remeshing can b&N€ curvature measures on both smooth surfaces and poly-
found in [16]. Although visually pleasing and uniform, diet he(_jral ;urfaces can be. unlfleq by the normal cycle theory,
existing CVT based remeshing methods for the generation'§fich will be explained in section 4.3.

high quality triangulation have no theoretical bound of th8.2 Main Results

minimal angle [16]. Therefore, the convergence of cunetuft js well known that any Riemannian metric defined on a

measures cannot be guaranteed. smooth (compact with or without boundary) surfadecan
o be conformally deformed into a metric of constant curvature
2.2 Conformal Surface Parameterization ce {_1, O, 1}, depending on the topo'ogy M, the so-called

Over the last two decades, surface parameterization has gidiformization metric (cf. Fig. 1). Now iM is endowed with
ually become a very popular tool for various mesh processiﬁgR'ema”n'a” metric with constant curvature, the Delaunay

processes [33] [34]. In this work, we consider only conform&€finement algorithms can be used to generate a triangulatio

parameterizations. There are many approaches used for fig¥ with good quality. _ _ _
purpose, including the harmonic energy minimization [35 The most common Delaunay refinement algorithms |_nclude
[36] [37], the Cauchy-Riemann equation approximation [38f-1€W's [24], [11] and Ruppert's [25]. Let be a user defined
Laplacian operator linearization [39], circle packing J40 UPPer bound_ .of the circumradius of the final triangulation.
angle-based flattening [41], holomorphic differential]j4 Gven an initial set of samples on surfadé, such that
Ricci curvature flow [3] [43], Yamabe flow [44], conformalthe distance between any pair of samples is greater than

equivalence class [45], most isometric parameterizagumg- - If M has boundaries, then the boundaries are sampled
S) [46], etc. and approximated by piecewise geodesics, such that each
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geodesic segment is greater thariThe Delaunay refinement4 THEORETICAL PROOFS
method on the uniformization space starts with an initigd 1 syrface Uniformization
Delaunay triangulation of the initial samples, then upsat . . .
the samples by inserting circumcenters of the bad trianglz‘set (Ml’gl) al’.]d(l\/lz,gz) be smgoth surfac_es W'.th Riemannian

. . . NN etrics. Letp: M1 — M> be a diffeomorphismgp is conformal
and meanwhile, updates the triangulation by maintainirgy t .

: . - cland only if

Delaunay property. A bad triangle can be either bad-size o — A
or bad-shaped. A triangle is bad-sized, if its circumradsus ¢ %=¢€"0,
greater thare. A triangle is bad-shaped, if its circumradiuswhere ¢*g, is the pullback metric oMy, and A : M; — R
to-shortest-edge ratio is greater than one. In this work, i€ a scalar function defined oM;. Conformal mappings
will show the following meshing algorithm using the packingreserve angles and distort area elements. Theformal
argument. factor function €? indicates the area distortion.

Theorem 3.3 (Delaunay Refinemeritgt M be a compact Accordmg to the classical surface uniformization thearem
very metric surface(M,g) can deform to one of three

Riemannian surface with constant curvature. Suppose lieat L nonical shapes. a sphere. a Euclidean plane or a hvaerboli
boundary ofM is empty or is & union of geodesic circles, lane. Namel pth,ere e?dsts r;l unique confoprmal factorifrlllzt
For any given small enough > 0, the Delaunay refinementP ' Y q

algorithm terminates. Moreover, in the resultant triaagjoh, /e\Z" MirGulié:li:%hn;?;r:ttgztl:snsnicg;mcli?\?;t:rzlihmear;glr?sr:arr?teggi:n
all triangles are well-sized and well-shaped, that is 9 ' 9

one of {+1,0,—1} according to the topology of the surface.

If surfaces have boundaries, then the boundaries are mapped
1) The circumradius of each triangle is not greater than to circles on the uniformization space.

2) The shortest edge length is greater tlsan

SupposeM is also embedded irE3 with the induced
Euclidean metric. TheM can also be conformally mapped to
a surface with uniformization metric, such that all bouneksr
(if there are any) are mapped to geodesic circles. By running
the Delaunay refinement on the uniformization space, we can
get a triangulation oM, which induces a polyhedral surface
T, whose vertices are on the surface, and all faces of which
are Euclidean triangles. Furthermore, all triangles ardl-we
sized and well-shaped under the original induced Euclidean
metric. Based on the induced triangulatidn we will show
the following main theorem.

Theorem 3.4 (Main Theorem):et M be a compact Rie-
mannian surface embeddedid with the induced Euclidean
metric, T the triangulation generated by Delaunay refinement
on conformal uniformization domain, with a small enough
circumradius boung. If B is the relative interior of a union
of triangles ofT, then:

6P (B) —¢ii(1(B))| <Ke @)

o' (B) — ¢li(m(B))] <Ke 4)

0P (B) -~ @i(n(B))| <Ke (5) . o . .

Fig. 2: Uniformization for surfaces with boundaries.
9B - din®) <Ke © o
_ Figures 1 and 2 show the uniformizations for closed sur-
where for fixedM faces and surfaces with boundaries, respectively. Thésaftl
K =0 r(t)2) +O( rt), columns show the_genus zero_surfaces, which can con_formally
{teT1cB) {teT tcB1noB 0} deform to the unit sphere with-1 curvatures. The middle

. ] ) ) columns demonstrate genus one surfaces, whose universal
r(t) being the circumradius of triangle Moreover,K can  coyering space is conformally mapped to the Euclidean plane
be further replaced byK = O(area(B)) + O(lengthdB)).  and the boundaries become circles. The columns on the right
Furthermore, ifM is an abstract compact Riemannian surfagfystrate high genus surfaces, whose universal covefiage
(only with a Riemannian metric, but not an embeddingjs fiattened to the hyperbolic plane, and whose boundarées ar
inequalities (3) and (5) still hold. mapped to circles.
Here 1T denotes the closest point projection bh and n Surface uniformization can be carried out using the discret

denotes the natural projection &, which is induced by the Ricci flow algorithms [3]. Then we can compute the trian-
conformal parameterization, see Definitions 4.6 and 4.7. 9ulation of the surface by performing the planar Delaunay
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refinement algorithms on the canonical uniformization doma 4) Repeat 2 and 3, until the algorithm terminates.

The proof of theorem 3.3 is based on the conventional
packing argument [24].
Proof: In the initial setting, all the edge lengths are greater
€. In step 2, after inserting the circumcenter of a bad
o size triangle, all the newly generated edges are connected t
She center, their lengths are no less than the circumradius,
which is greater thare. In step 3, the circumradius of the
bad shape triangle is greater than the shortest edge of the
bad triangle, which is greater than All the newly generated
dges connecting to the center are longer than the radius
erefore, during the refinement process, the shortest isdge
always greater thea.
f Supposep and q are the closest pair of vertices, then the
qlne segment connecting them must be an edge of the final
I((;Iaunay triangulation, which is longer than Therefore,
e distance between any pair of vertices is greater than
Centered at the each vertex of the triangulation, a disk with
Cu{w},g= 4dzdz . radiuse/2 can be drawn. All these disks are disjoint. Because
’ (1+z2)? the total surface area is finite, the number of vertices isefini
Therefore, the whole algorithm will terminate.
When the algorithm terminates, all triangles are well-dize
and well-shaped. Namely, the circumradius of each triaiggle

4.2 Delaunay Refinement

The Delaunay refinement algorithm for mesh generation opgL-
ates by maintaining a Delaunay triangulation, which is esfin
by inserting circumcenters of triangles, until the mesh
constraints on element quality and size.

4.2.1 Geodesic Delaunay Triangulation

By the uniformization theorem, all oriented metric surfacan

be conformally deformed to one of three canonical shapes,
unit spheres?, the flat torusE?/I" and the hyperbolic surface
H?/I, whereE? is the Euclidean planeil? the hyperbolic
plane, and™ is the Deck transformation group, a subgroup
isometries ofE? or H?, respectively. The unit sphef# can
be conformally mapped to the complex plane by stereograp
projection, with the Riemannian metric t

Similarly, the hyperbolic plan&l? is represented by Poincaré’
disk model with a Riemannian metric

{l7 <1jze C},g= 4dizdz_2 smaller thare, and the shortest edge length is greater than
1-2) For the flat torus case, the minimal angle is greater than 30
The concepts of Euclidean triangles and Euclidean circles O

can be generalized to geodesic triangles and geodesiesircl By the uniformization theorem, if a surface has a bound-
on S? and H2. Therefore, Delaunay triangulation can bary, it can be conformally mapped to the constant curvature
directly defined on these canonical constant curvaturesest surfaces with circular holes. Then the boundaries can be
A triangulation is Delaunay if it satisfies the empty circl@pproximated by the planar straight line graphs (PSLG)hsuc
property, namely the geodesic circumcircle of each gecdeshat the angles between two adjacent segments are greater th
triangle does not include any other point. Spherical c#clé0°. Using a proof similar to the one given by Chew in [24]
on S? are mapped to Euclidean circles or straight lines on thd [11], we can show the theorem still holds.
plane by stereographic projection. Similarly, hyperbolicles
are mapped to the Euclidean circles on the Poincaré di
Therefore, geodesic Delaunay triangulationsS8ror H? are
mapped to the Euclidean Delaunay triangulations on theeplafror general surfaces, we need to add grading to the Delaunay
As a result, geodesic Delaunay triangulations can be chrrigiangulation. The grading function is the conformal facto
out using the conventional Euclidean Delaunay triangairati €, which controls the size of the triangles. Step 2 in the
above algorithm needs to be modified as follows: select a
4.2.2 Delaunay Refinement on Constant Curvature Sur- bad size triangle with the circumcentprand circumradius
faces greater tharee *(P). The same proof can be applied to show

The Delaunay refinement algorithm on constant curvatuffée termination of the algorithm. In the resultant triarggidn,
surfaces with empty boundary is introduced as follows. Eakéh€ grading is controlled by the conformal factor, the ameu

P _ A ; A
flat torusE2/I" as an example. The user chooses a paramei@fius is less thaee™, the shortest edge is greater tran”,
&, which is the upper bound of the circumradius. so the triangles are still well-shaped. On the original acef

1) Aninitial set of samples is generated on the surface, sut ¢ edge length is greater tharand the circumradius is less

that the shortest distance between any pair of sampfe ne. Tdhe minimal angrlle |i.bgurf1ded. lina is locall i
is greater thare. An initial Delaunay triangulation is According to [47], such a kind of sampling is locally unifor-

constructed m, thus is also &-light e-sample Suppose the triangulation

2) Select bad size triangles, whose circumradii are greafdr+ { € T is a triangle, with circumradius(t), BC T is a

than &, insert their circumcenters, and maintain th&nion of tiangles off, then
Delaunay triangulation. Lemma 4.1:The following estimation holds

3) Select bad shape triangles, whose ratio between circu r(t>2Jr Z r(t) = O(areaB)) + O(length(dB)).
radius and shortest edge length is greater than one, insg% tcBN9B LD

their circum centers, maintain the Delaunay triangula- (7
tion.

5}52.3 Delaunay Refinement on General Surfaces
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4.3 Normal Cycle Theory integral coefficients. When no confusion is possible, we use

In order to be complete, we briefly introduce the normal cyciB€ same notatioN(M) to denote both the current and its

theory, which closely follows the work in [17]. For a moredssociated set.

in-depth treatment, we refer readers to [17]. The normal cycle ol is the same as that dfl, namely,
Intuitively, the normal cycle of a surface is its offset agé N(V) = N(M). The diffeomorphic mapping fronM to its

embedded in a higher dimensional Euclidean space. If tRermal cycleN(M) is denoted as

surface is not convex or smooth, its offset surfaceRif i M—N(M)

may have self-intersections. By embedding it in a higher p— (p.n(p))

dimensional space, it can be fully unwrapped. ) )
SupposeV is a convex body, whose boundah is a

4.3.1 Offset Surface e
SupposeV is a volumetric domain ifR®, whose boundary :
M =4V is a compac€2-smooth surface. Lgt be the distance
betweenM and the medial axis of the complement\of The

SO 7 _
R L I

Fig. 4: Additivity of the normal cycle.
polyhedral surface. We use normal cones to replace normal

vectors.
Definition 4.3: The normal condNG, (p) of a pointpeV
Fig. 3: Offset surface and tube formula. is the set of unit vectors such that
g-offset of V minusV is vgeV,(q—p,v) <O0.
Ve ={plp¢V d(p,V) <&} C R Definition 4.4: The normal cycle oM is the current asso-
The tube formula can be written as ciated with the set
i {(p,n(p))Ip€M,n € NG/(p)}

2
Vol(Vg) = areaM)e + @' (M)s— + (M)
) ) 2 3 ~endowed with the orientation induced by the onevof
for € < p. The localized version of the tube formula is ags in figure 4, normal cycles are graphically represented by
follows. LetB C M be a Borel set, the-offset of B is Vz(B),  their image under the map sendifig,n(p)) to p+n(p).

then we have The crucial property of the normal cycle is its additivity as
2 3 in Ei o i
B H o € G € shown in Fig. 4. Supposé, andV, are two convex bodies in
Vol(Ve(B)) = areaB)e + ¢ (B)E TR (B)E' RR3, such thal; UV, is convex, then
The volume of thes-offsetVg(B) is always a polynomial iz, N(ViNVo) +N(V1UV2) = N(Va) + N(Vo).

and its coefficients are multiples of the curvature measures o i
of B. Even if the boundary ofV is not smooth but if By the additivity property, we can define the normal cycle of

p >0, the volume ol;(B) is always a polynomial ire for @ polyhedron. Given a triangulation of the polyhedkbmnto

€ < p. Therefore the coefficients of this polynomial generaliZ&trahedrai. i = 1,2,---,n, the normal cycle oV is defined
the curvature measures from smooth surfaces to polyhedtal n
surfaces. NV) =S (=Dt F NSt

This approach does not generalize to non-convex polyhedral k=1 1<ip<-<ik<n

surfaces, wherp may be equal to 0. So the normal cyclg,y incjysion-exclusion. It is proved that the normal cyiigv)
theory has been developed. Intuitively, normal cycles pi®v ;g independent of triangulations.

a way of unfolding offsets in a higher dimensional space.  gjmilar to the smooth surface case, one can define a set-

4.3.2 Normal Cycles valued mapping fronM and its normal cycl&N(M)

Definition 4.2: The normal cycleN(M) of a C2-smooth i M—=NM)
surfaceM is the current associated with the set p—(p,n(p)) neNG/(p).
N(M) = {(p,n(p))|p € M} 4.3.3 Invariant Differential 2-Forms

endowed with the orientation induced by thatMf where a Normal cycles are embedded in the spadtex R3, denoted
current is the generalization of an oriented surface patith, asEp x En, whereE, is called point spacgandE; is called
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normal spacelLet g be a rigid motion ofR3, g(p) = Rp+d,
whereR is a rotation matrixd is a translation vectoig can
be extended td&, x E, asg(p,n) = (R(p) +d,R(n)). We say
that a differential 2-formw is invariant under rigid motions,
if

§w=w.

The following invariant 2-forms play fundamental roles et
normal cycle theory,

Definition 4.5: Let the coordinates of Ep x Ep
(323 y1, y2,y®), then

be

W = YR ADC+ydxE Adxt 4 yBdxt Adx®
w® = Yy Ady? +y2dy3 Adyt+ yRdyt Ady?
Wl = yHdARAdY +dyYP AdX)+

y2(dE Adyt +dy3 Adxb)+

Y3 (dxt Ady? +dyt Adx®).

Curvature measures of a surface can be recovered by i

|Symbols [Meaning

Surfaces

M smooth metric surface

2 parameter domain

Mappings

$:2—-M conformal parameterization

dd|p: ToZ — Ty(p)M|derivative map ofp

T: 7 —>T piecewise linear map between meshes
n=¢or1:T—M |natural projection fronT to M
mT—M closest point projection frort to M
Triangulations

T triangulation onZ

O(7) surface triangulation induced hy

T polyhedral surface induced h(.7)
Faces

tco a triangle on parameter domain
géig(t) CTypM corresponding face on tangent plane
T(t)CT corresponding face om

grating specific differential forms on its normal cycle. Th

following formula unifies the curvature measures on both

smooth surfaces and polyhedral surfaces. For a Borel
B C RS, the curvature measures are given by

Iy "-ﬂ(ia(smlvl) @ (B)
Iy “ﬂ'ﬁ(BmM) @1(B)
Jnowy "-’ﬁ(BmM) = areaB)

whereqﬁBmw denotes the restriction ab to i(BNM).

4.4 Estimation

In this section, we explicitly estimate the Hausdorff dmste,
the normal deviation, and the differences in curvature nness
from the discrete triangular mesh to the smooth surface.

4.4.1 Configuration

Let (M, g) be aC? metric surface is the unit disk on theiv-
plane. A conformal parameterization is given py 2 — M,
such thatg(u,v) = eV (di? 4 dv?). Supposep € Z is a
point on the parameter domain, therp) is a point on the
surface. The derivative magg|p : T,Z — Ty(n)M is a linear
map
—sinf
d¢|p_e/‘(p)( cosf )

coso
sin@

Fig. 5: Configuration.

Let .7 be a triangulation of the parameter domain the
conformal mappingp induces a triangulatiop(.7) of the

smooth surfac®/, T is the corresponding polyhedral surface.

TABLE 1: Symbol list

l'i:%tch vertexp; € .7 corresponds to a verte(p;) € T, each
triangle on.7 corresponds to a face im. This induces a
piecewise linear map : .7 — T (see Fig. 5 and Tab. 1).

Definition 4.6 (Natural projection):The homeomorphism
from the triangle mesH to the smooth surfackl

n=¢or 1:T=M

is called the natural projection.

Another map from the mesh to the surface is the closest
point projection.

Definition 4.7 (Closest point projectionSuppose T has
no intersection with the medical axis ®. Letqe T, and
i(q) be its closest point on the surfabé

m1(q) = argminem|r —q,

we call the mapping frong to its closest pointt(q) as the
closest point projection

We will show that the closest point projection is also a
homeomorphism.

4.4.2 Hausdorff Distance and Normal Deviation

In the following discussion, we assume the triangulation is
generated by the Delaunay Refinement in Theorem 3.3. Our
goal is to estimate the Hausdorff distance and the normal
deviation, in terms of both the natural projection and the
closest point projection.

Lemma 4.8 (Natural projection)Supposeg € T, then

la—n(a)| = O(e?),
In(q) —n(n(q))| O(e).

8
9)

Proof: As shown in Fig. 5, supposp< 2, 1(p) =q. p
is inside a triangleé = [po, p1, P2,

2
p= %akpk,oé ax <1,
k=
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where ay's are barycentric coordinates. All the edge lengths

are®(e), and angles are bounded. The are®is?).
Equation 8: By the linearity of andd¢, t(px) = ¢ (p«) and
|¢(p) —do (py)| = O(£?), we obtain

IT(p)—do(p)| = [Zkak(T(Px) —dé(py))l
< Yka|¢(pe) —do(py)l
= 0(&?).
Therefore

1T(p) — ¢(p)| < [T(p) —dd(p)|+|dd(p) — ¢(p)| = O(£?),

whereq = 1(p) andn(q) = ¢ ot-1(q) = ¢ (p), this gives Eqn.

8

o(p1)

Fig. 6: Small triangles inscribed to attitudinal circles af
cylinder do not guarantee the normal convergence.

Equation 9: Construct local coordinates on the tangenteplagstimation in Eqn. 9 and Eqn. 11 require the triangulation to

Top(pM, such that¢(po) is at the origin,d¢(p1) is a-
long the x-axis. Thent(p;) is (©(¢),0,0(£?)), 1(p2) is
(©(e) cosB,O(g)sinB,0(£?)), where B is the angle atpo.
By direct computation, the normal to the fackt) is
(O(¢€),0(¢€),0(1)). Therefore

Inot(p) —nod(po)| = O(€).
Furthermore,

Ino¢(p)—nod(po)| W(¢(p) - (po))|

[WI[[¢(p) — ¢ (Po)|
O(S)a

whereW is the Weigarten magM is compact, thereforgWi|
is bounded|¢ (p) — ¢ (po)| is O(¢).

Inot(p)—nod(p)) < [no¢(p)—nocd(po)
+ [not(p)—noé(po)

Al

O(e).
This gives Egn. 9. O
Lemma 4.9 (Closest point projectionfuppose € T, then
la-m(a)| = O(e?), (10)
In(@) —n(m(a))] = Ofe). (11)

Proof: Equation 10: From
closest point, we obtain

la—7i(a)| < la—n(a)| = O(¢?).
Equation 11: From Eqgn. 8 and Egn. 10, we get
In(a) — m(@)| < n(a) —d| +|a— m(g)| = O(&?),
therefore
Inon(q) —nom(g)| < WI||n(q) - m(g)| = O(e?).
Then from Eqgn. 9 and the above equation,

In(q) —n(m(@))] < [n(a)—non(q)
+ [non(q)—no ()
= 0(g) +0(&?).

O

be both well-sized and well-shaped. In the proofs we use the
facts that the triangulation on parameter domain has balinde
angles, and the mapping is conformal. Figure 6 shows a
counterexample: a triangle is inscribed in a latitudinatlei

of a cylinder, no matter how small it is, its normal is always
orthogonal to the surface normals.

4.4.3 Global Homeomorphism

Both the natural projection and the closest point projectio
are homeomorphisms. While it is trivial for natural projeat
in the following we give detailed proof to show that the
closest point projection is a piecewise diffeomorphisng an
we estimate its Jacobian.

Lemma 4.10:The closest point projectiorr: T — M is a
homeomorphism.

Proof: First we show thatr restricted to the one-ring
neighborhood of each vertex @fis a local homeomorphism.
Supposep e T is a vertex, therefor@ € M as well.U(p) is
the union of all faces adjacent {@ We demonstrate that:
U(p) — M is bijective. Assume €U (p), then|p—q| = O(¢),

|m(a) — p| < |71(q) — g + |g— p| = O(€%) + O(e).

Therefore

In(m(@)) —n(p)| = O(e). (12)

Assume there is another point U (p), such thatt(q) = 7i(r).
Let the unit vector of the line segment connecting them be
_ A9
Cr=q’
then because q < U (p), d is almost orthogonal ta(p),
(d,n(p)) = O(e).

On the other handd is along the normal direction at(q),
n(m(q)) = +d, assumel is alongn(7(q)), from Eqn. 12, we
obtain

Eqgn. 8 and the definition of

(13)

|d—n(p)[ = O(e).
Eqgn. 13 and Eqgn. 14 contradict each other. Therefqyg,
is bijective.
Then we show thatt restricted on each face is a dif-

(14)

Remark The proofs for the Hausdorff distances in Eqn. 8 an@domorphism. Letr (u,v),n(u,v) be position and normals of
Eqgn. 10 do not require the triangulation to be well-shapel| respectively, whereu,v) are local parameters along the
but only well-sized. The proofs for the normal deviatiomprincipal directionst € T is a planar face. The inverse closest
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point projection map ist*:r(u,v) — q(u,v), whereq(u,v) is By Lemma 4.8,
the intersection between the ray througl,v) alongn(u,v
e g, Y throuv) alongn(u,v) (@n(@) ~ f(a.n(@)] = Ole). 18)
It is obvious thatf is continuous.

Let B C Ep, we denote the curremd(T) N (B x En) by D,
direct computation shows and the currenN(M) N (n(B) x En) by E, as shown in Fig. 7.
Consider the affine homotogybetweenf and the identity,

q(u,v) =r(u,v)+s(u,v)n(u,v),

(Qu X Qu,N) = (14 2Hs+KS) (ry x ry,n), (15)

wheres= O(£?). Whene is small enough, the above equation
is close to 1, which meansgyp) is a piecewise diffeomor-
phism.
Secondly, we show that is a global homeomorphism. We
have shown thatt is a covering map. At each vertex 0f,
the closest point equals itself, therefore the degrem of 1.
So mris a global homeomorphism. O]
Note that, the estimation of the Jacobian of the closesttpoin
projection in Eqn. 15 can be applied to show the following.
SupposeB C R3 is a Borel set, then

lareaBNT) — area(n1(B) "1M)| = K2,

4.4.4 Proof of the Main Theorem

The proof of the main Theorem 3.4. associated with the ctos#¥e define the volume swept by the homotopy as
point projectionrt is a simple corollary of the following main

Fig. 7: Homotopy between the normal cyc6T ) andN(M).

h(x,) = (1—x)id(-) +xf(),x € [0,1].

theorem in [17]. C =hy([0,1] x D),
Theorem 4.11:SupposeT is a bounded aspect ratio trianwhose boundary is
gulation projecting homeomorphically dW, if B is a relative
interior of a union of triangles of, then dC=E—-D—hg([0,1] x dD).
|p°(B) — ¢S (1(B))| < Ke (16) Intuitively, C is a prism, the ceiling i€, the floor isD, and
H H P the walls arehy([0,1] x D).
[or' (B) —au(m(B))| <Ke 17)
where for fixedM W (n(B))— g8 (B) = / e :/ wG+/ e
K =0( Z r(t)%) +O( Z r(t)), E-D acC hy([0,1] x D)
{teT tcB} {teT,tcB,tNdB£0} By Stokes’ Theorem,
r(t) is the circumradius of triangle WC — / doo®.
Proof (Closest point projection):By Lemma 4.10, the ac C

closest point projection is a homeomorphism. By Theorem 38, (,G and its exterior derivativelw® are bounded, there-

the triangulationT has a bounded aspect ratio, therefore tr}gre, we need to estimate the volume of bl&@land the area

conditions of Theorem 4.11 are satisfied, and consequenfly.ine wall hs([0,1] x D). We useM(-) to denote the flat

Eqgns. 16 and 17 hold. According to Egn. 7 in Lemma 4.}, (volume, area, length).

therefore the main theorem holds. _ | The volume of the prisnC is bounded by the height and
The proof of the main Theorem 3.4. associated with thf, saction area. The height is boundedsoyi f —id|. The

natural projection is more direct and more adapted 10 OULetion area is bounded by the product of the bottom area

framework. o o M (D) and the square of the norm
Proof (Natural projection): The natural projectiom :

T — M can be lifted to a mapping between the two norma||Dh(x,-)||? = [|XDf 4 (1 — x)id||? < (xsup||Df|| + (1 —x))2.

les f : N(T N(M h that the followi [ . . .
cycies (T) = N(M), such that the following diagram In later discussion, we will see that lipf|| > 1, therefore

commutes: f
N(M) «—— N(T) [IDh(x,-)[| < sup||Df||.
iT lpl’ We obtain
M n T M(C) < M(D)sugf —id|sup|Df|?,

M(hs([0,1] x D)) < M(D)sugf —i Df|.
where p; is the projection fromEp x E, to Ep, andi(q) = ( #([O’_ [>0D)) = (9D)sup T —id|sup|Df|
(g,n(q)) for all g€ M. Namely, given a poing € T, andn(q) Now we estimate each term one by one.
in its normal cone(qg,n(q)) € N(T), 1) Egn. 18 shows

f:(a,n(a)) — (n(a),non(q)) € N(M). sugf —id| = O(e).
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2) Since the triangulation has a bounded ratio of circunof Euclidean space, the inequalities (3) and (5) in Theorem
radius to edge length, we obtain 3.4 can be extended to any abstract Riemannian surface, the
M(D) — O(ZteT,tcB‘r(t)z) approximation depending on the chosen embedding.

M(@D) = O(JiericBinasrof (1))
. 5 COMPUTATIONAL ALGORITHM
Let K be the summation of the two terms above.

According to Lemma 4.1K is bounded by the area of We verified our theoretical results by meshing spline sesac
B and the length oBB. and comparing the Gaussian and mean curvature measures.
3) For the estimation of|Df||, we observe that on each Each spline patci is represented as a parametric smooth

on each triangle converges to is the planar rectangle parameter domain, the positiorovect
y is C? continuous, therefore the classical curvatures are well
(ru,0)du+ (ry,0)dv— (ry,ny)du+(rv,ny)dv, defined. Letg : 2 — M be the conformal mapping from the

junit disk 7 to the spline surfacé/. As shown in the left-
hand diagram in Diagram (20), the mappihgs from 2 to
2, which makes the diagram commute, therefore y 1o ¢.

wherer(u,v) and n(u,v) are the position and norma
vectors of the smooth surfadd, (u,v) the conformal
parameters, namelyty| =€, |ry| =€ andry Lr,.

Assume (du,dv) = (cosB,sinf) for any anglef, we y K Y K

obtain that the norm of the tangent vector on the left % M TR T

hand side ise’. The norm of the vector on the right . / f—I / (20)
hand side is bounded by the eigenvalues of the following ¢ ¢

matrix 9 Tk

((ru,nu), (ru,nu)) — ((ru,nu), (v, ) | oa
(o o) G e | =€ "”( l';)

where the third fundamental form is

[ (wng) (nesny)
=1 nny) <nv,nv>}

From Il —2HII 4+ Gl = 0, where the first fundamental
form | = e?id, the second fundamental forth= e W,
W is the Weigarten matrix, we get

I = 2HIl — Gl = ? (2HW — Gid). (a) regular gridT? c #

z
77

Plugging into Eqn. 19, we getDf||? bounded by the g
- = R
eigenvalues of Wﬁﬁéﬁﬁs&\m
1 2 N
(1-G)id + 2HW. ﬁ“‘"*’&&éﬁs‘;\'{“‘@%‘@%
: 2
e Wk ‘\Vgn%w\“mmx :
| mnn\\‘mmm
therefore on each face EEE - 11 ‘% mig‘g&'gég;w SRR
DN

N
NN NN

. =)
2 2 2 ! = ““\ \ﬁimix N
IDF[> < max{1+kf, 1+ K5} / = t\\}ﬁ{}x\:\@\&%}%{&
_ = R b g
So ||Df||? is globally bounded. = R
] s 5

Putting all the estimates together, we obtain

1@S(n(B)) — ¢°(B)| < Ke.

According to Lemma 4.1K is bounded by the area & and
the length ofdB. The proof for the mean curvature measure
is exactly the same. O
Remark 1. In our proofs, perfect conformality is unneces- g
sary. All the proofs are based on one requirement: the ma» ;"A*"
circumcircle of the triangles of the tessellations coneetg K
zero. This only requires the parameterization to be K-guasi
conformal, whereK is a positive constant, less than

2. It is well known that the Gauss curvature is defined on() pelaunay triangulationT ¢ 7 " T
any (abstract) Riemannian surface. By the Nash theorem [4§
[49], any (abstract) Riemannian surface can be isomélical
embedded in a high-dimensional Euclidean space. Using theAs shown in Fig. 8, in our experiments, each planar domain
theory of normal cycle for large codimension submanifoldsr surfaceS (Se {Z,%,M}), is approximated by two triangle

ﬂg. 8: Pipeline for meshing a Bézier patch of Utah teapot.
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meshes;T¥, k = 0,1, where theT? is induced by the regular 6 EXPERIMENTAL RESULTS

grid on the rectangleTg is induced by the Delaunay triangu-The meshing algorithms are developed using generic C++ on
lation on the unit disk. Both the conformal parameterizatioy windows platform, all the experiments are conducted on a
¢ and the parameter domain mappihgre approximated by pc with Intel Core 2 CPU, 2.66GHz, 3,49G RAM.

piecewise linear (PL) mappingg, and f, respectively, which

are computed on the meshes. 6.1 Triangulation Quality

The patch on the Utah teapot (see Fig. 8) is meshed with differ

5.1 Algorithm Pipeline ent sampling densities, the meshes are denotddgs!, as

5.1.1 Conformal Parametrization in Tab. 2. The statistics of the meshing quality are repoiried

In the first stage, the conformal parameterization is coegputFig. 10. Frame (a) shows the maximal circumradius of all the

as follows: triangles of each mesh. Frame (b) is the average circunsadiu
_ y F1 of all the triangles of each mesh. Because the sampling is
R v ™ uniform, we expect the circumradius, vs. the number of

_ _ o ) verticess, to satisfy the relation
TF‘Q is a triangulation induced by the regular grid structures on 1

the rectangleZ. Each vertex orTQ is mapped to the spline &~ ——.

surfaceM by y, each face is mapped to a Euclidean triangle, Va

this gives the mesfAJ. If the grid tessellation is dense, the The curve in Frame (b) perfectly meets our expectations.
quality of the meshT{ is good enough for performing the Frames (c) and (d) show the minimal angles on all meshes.
Ricci flow and we get the PL mappingy*, which mapsT\] ~ According to the theory of Rupert's Delaunay refinement, the
to a triangulation of the disk. The composition ofp and minimal angle should be no less than 20 Frame (c) shows
y~* gives the PL mapping =y o ¢ : T§ — T3. the minimal angles; in our experiments they are no less than

5.1.2 Resampling and Remeshing 5v(r)1|€z;h I;;ir::d(i)ﬁlollustrates the means of the minimal angles,

The process in the second stage is described in the following

diagram: 6.2 Curvature Measure Comparisons
. . f L v 1 For each triangle meshy produced by our method, for each
p: Tp Tr Ty vertexq € Ty, we define a small ball iiR3, B(qg,r) centered

. , . at g with radiusr. We then calculate the curvature measures
First, we apply Ruppert’'s Delaunay refinement method to ge 5(B(q,r)) and @ (B(q,r)) using the formulae Eqn. 1 and
erate the triangulatioi3 with good quality on the unit disk. £k ’ k ’

The tri lati the diskl i 410 atri lati Eqn. 2, respectively.
1e riangulation on the disk; is mapped °§‘ rlanogu aloN  we also compute the curvature measures on the smooth
Tg on the rectangle by the PL mappirfg: Ty — Tg. The

faceM, ¢S(B dg(B ing the followi
connectivity of T2 is the same as that oFL. The vertices —or oo @ (B(qg,r)) and g3 (B(q,r)) using the following

: . method,
of T3 are the images of the vertices df under the PL

mapping f, which are calculated as follows. Suppogds @S (B(q,r)) == / G(u,v)g(u,v)dudy
a Delaunay vertex off3 on the disk, covered by a triangle y(uv)€B(a,r)

[Po, P1, p2] € TS. Assume the barycentric coordinatescpére wherey(u,v) is the point on the spline surfacg(u,v) is the

(a0, 01, 02), 4= Yk AkPx, then Gaussian curvature fu,v), andg(u,v) is the determinant of
f_(q) _ ka_(pk) the metric tensor. Because the spline surfacg?isontinuous,
Z ' all the differential geometric quantities can be directiynput-

ed using the traditional formulas. Note that, becadsend Ty
are very close, we usg(q,r) N Ty to replacer(B(q,r))NM in
practice. In all our experiments, we seto be 005area(M)%
and 008area(M)% for Gaussian and mean curvature measures,

The triangulationT3 induces a triangle mesf, whose
connectivity is that ofT3, vertices ofTy; are the images of
those of T3 under the spline mapping. The discrete PL
conformal mapping is given by

B respectively.
f=yof: T3 =T We define the average errors between curvature measures
as
The triangle mesh generated by the Delaunay refinement based c_ 1 G G
on conformal parameterization ;. & = Vil 4 n|(n\,,(B(v,r)) or (BN,

Fig. 9 shows the meshing results using the proposed method
for a car model. In this experiment, the conformal paramet@Pd
domain 2 is also a rectangle. Frame (a) shows a B-spline el = A @ (B(v,T)) — @ (B(v,r))],
surface patciv; Frame (b) shows the initial triangle me$g; Ml vevn
Frame (c) shows the triangulations on the conformal parameivhereV, is the vertex set off,.
domain,T@O on the top andl'é at the bottom; Frames (d), (e) Figure 11 shows the errors between curvature measures with
and (f) illustrate the triangle meshes generated by theuDaka respect to sampling densities, or equivalently, the nunaber
refinement on a conformal parameter domain with a differesamples and the average circumradius. Frames (a) and (b)
number of samples,Kl, 2K, and &, respectively. show that the curvature measure errors are approximately
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Fig. 9: Remeshing of the Car spline surface model.
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mesh

T

T T3 Ta

Ts Te T7 Tg To Tio T

# vertex

1021 2045 4093 6141 8189 10237 12285 14333 163819184276
# triangle 1904 3910 7950 11973 16040 20118 24192 28249 328382 43202

TABLE 2: The numbers of vertices and triangles of the seqaesfanesheqT,} with different resolutions.
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Fig. 10: The maximal and average circumragii} (a-b), and the minimal and average of minimal angle$ % (c-d).
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Fig. 11: Curvature errore® ande! of {T,} converge to zeros as the number of sample points goes totynfab), and as
the average of the circumradje,} goes to zero (c-d).

proportional to the inverse of the square root of the numbgight column). The histograms show the distributions & th
of sample points; Frames (c) and (d) show the curvaturelative curvature errors at the vertices of the mesh. Fiwan t
measure errors are approximately linear with respect to ttveo left-hand columns, we can see that the curvatures! of
circumradius. This again matches our main Theorem 3.4. look very similar to their counterparts dn;. Moreover, from

the right-hand column, we can find that the overwhelming

Figure 12 visualizes the curvature distributions on the oty of vertices have relative curvature errors verysel

smooth patchM (left column), and the triangle mesh
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(b) Gaussian curvature df;
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Fig. 12: lllustration of the curvature values on the Utatptaaspline surface patdkl, (a, d), and on its approximate mesh
(b, ). Their relative curvature error distribution histaigys are shown in (c) and (f).

to zeros. In particular, for Gaussian curvature measureg me]
than 97% of vertices are fall into the relative error range of
(-0.05, 0.05). For mean curvature measure, more than 95% of
vertices are included in the relative error range of (-@Q@H). [3]
This demonstrates the accuracy of the proposed method.
(4]

7 CONCLUSION 5]
This work analyzes the surface meshing algorithm based on
the conformal parameterization and the Delaunay refinement
method. By using the normal cycle theory and the conforml
geometry theory, we rigorously prove the convergence pf
curvature measures, and estimate the Hausdorff distartte an
the normal deviation. According to [50], these theoretic
results also imply the convergence of the Riemannian metric
and the Laplace-Beltrami operator. [9]

The method can be generalized to prove the curvature cop-
vergence of other meshing algorithms, such as the centroi%%
voronoi tessellation method, and so on. The normal cycle
theory is general to arbitrary dimension. We will genematize [11]
theoretical results of this work to include higher dimensib |1,
discretizations, such as volumetric shapes. We will explor
these directions in the future. (3]
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