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Abstract

In this paper, a competitive method for 3D face recognition (FR) using Spherical Harmonic Features

(SHF) is proposed. With this solution 3D face models are characterized by the energies contained in

spherical harmonics with different frequencies, thereby enabling the capture of both gross shape and

fine surface details of a 3D facial surface. This is in clear contrast to most 3D FR techniques which

are either holistic or feature-based using local features extracted from distinctive points. First, 3D face

models are represented in a canonical representation, namely Spherical Depth Map (SDM), by which

SHF can be calculated. Then, considering the predictive contribution of each SHF feature, especially

in the presence of facial expression and occlusion, feature selection methods are used to improve the

predictive performance and provide faster and more cost-effective predictors. Experiments have been

carried out on three public 3D face datasets, namely SHREC2007, FRGC v2.0 and Bosphorus, having

increasing difficulties in terms of facial expression, pose and occlusion, and which demonstrate the

effectiveness of the proposed method.
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I. INTRODUCTION

The face is a natural and non-intrusive biometrics which can be easily acquired contactlessly.

Unfortunately, despite the great strides made over the last thirty years, face recognition (FR) in

2D is still a great challenge due to factors as diverse as illumination variations, pose changes

and facial expressions [1]. With the advent of readily available 3D scanners, there has been an

increasing interest in using 3D data instead of, or in addition to 2D images to overcome the

limitations in 2D FR, in particular viewpoint and lighting variations[2], and to achieve better

recognition accuracy than 2D FR [3], [4], [5]. As 3D FR operates on 3D face scans delivered by

3D sensors and they are supposed to convey the accurate shape information of facial surfaces, 3D

FR needs to address two kinds of challenges in order to meet real-world application requirements,

namely 3D data sensing in unconstrained settings and improved algorithms with high recognition

accuracy while displaying strong robustness to various variations and factors of disturbance such

as facial expressions, partial face data and pose changes [4]. In this paper, we concentrate on

the second challenge and propose a competitive method for 3D face recognition using Spherical

Harmonic Features.

A. Related work

Face recognition is a pattern recognition problem which requires a proper representation of

face data highlighting interclass differences while decreasing intra-class variations in order to

facilitate the later stage of matching and recognition. In this subsection, we overview major 3D

facial representations and the corresponding matching algorithms. State of the art on feature

selection can be found in [6], [7], [8], [9].

1) 3D Face Representations and registration: 3D face data are the scans delivered by 3D

sensors which accurately capture the shape information of facial surfaces. As such, 3D FR

can theoretically make use of any existing shape representation used in 3D shape retrieval, e.g.,

Extended Gaussian Image [10], Shape Index [11], Spin Image [12], Shape Histogram [13], Shape

Distribution [14], Spherical Harmonic Representation [15], Representation based on surface

reconstruction [16]. Nevertheless, 3D face data has also its own particularities which need to be

taken into account. First of all, all 3D face scans are similar in their configuration. As compared to

the general issue of 3D shape-based retrieval which performs retrieval of fundamentally different

object classes, e.g., car, table, glass, etc., 3D FR performs the recognition within face models of a
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same class. As a result, a proper 3D face representation needs to highlight the distinctiveness of

3D facial surfaces for a better discriminating power. Moreover, some prior anatomical knowledge

of human faces can be utilized to enhance the performance of representation. Besides, 3D face

scans as delivered by current 3D sensors are generally partial face models having pose variations

and facial expressions.

3D FR algorithms can directly operate on the raw 3D point clouds of 3D face scans or depth

maps, also called range images, extracted from the latter in projecting the 3D depth data to

a 2D image according to the z-depth of the 3D points. However, a growing number of works

in literature have investigated alternative 3D facial representations robust to facial expressions

and/or highlighting the distinctiveness of human faces, including the isometric deformations of

a facial surface [17], geometry image [18], indexed facial level curves [19], ridge image [20],

Signed Shape Difference Map (SSDM) [21], Multi-Scale Extended LBP (MS-eLBP) [22], to

name a few.

Most 3D FR techniques require that 3D face scans be aligned before the generation of a

appropriate facial representation and the extraction of facial features for matching [3], [4].

Existing techniques on registration still need to be improved regarding their robustness and

accuracy. Gokberk et al. [23] reviewed popular algorithms of 3D face registration and recognition

based solely on shape information. In the thesis of Jebara [24], symmetric blob detection, limb

extraction and signature analysis were used to locate eyes, mouth and nose respectively. But its

success largely depends on anthropometry knowledge. Gordon [25] used a cylindrical coordinate

system to represent depth information under the assumption that the head was vertical. Colbry et

al. [26] used shape index to detect the anchor points in 3D face scans and achieved 99% success

rate in finding the anchor points in frontal images and 86% success rate in scans with large

variations in pose and expression. Conde et al. [27] successfully applied Spin Image to facial

normalization and face verification. Tang et al. [28] found the reference point and nose line for

face registration by computing the symmetry plane of the nose region using prior anatomical

knowledge. Pears et al. [2] gave an elaborate review of related work and applied radial basis

function (RBF) to creating a pose-normalized depth map.

2) Recognition algorithms: 3D FR algorithms can be categorized according to the nature

of their matching strategy, either holistic [29], [19], [30], [31], [32], [20], [33], [21], [34] or

feature-based [35] , even though this is highly dependent on the facial features extracted from
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a given facial representation. In this section, we only discuss some new state-of-the art 3D FR

techniques as a complement to the existing elaborate reviews [3], [4], [5].

Haar and Veltkamp [29] propose a 3D face matching framework by combining three curves of

45 face samples in SHREC2007 [36] database and achieve the highest mean average precision

(MAP) of 0.78.

Samir et al. [19] propose an intrinsic Riemannian framework for the analysis of facial surfaces.

Firstly, they represent facial surface as indexed facial curves derived from a surface distance

function. Then, a Riemannian metric denoted the differential geometry of face shapes is achieved

for the following purposes: computing the distances between faces, finding optimal deformations

between faces, defining and computing the average of a given set of faces.

Al-Osaimi et al. [30] present an automatic approach which can accurately discriminate between

expression deformations and interpersonal disparities. An expression deformations pattern is first

learnt from training data in PCA eigenvectors, by which they compute the similarity measures

between 3D faces and hence recognize faces under any facial expression. The verification rates

achieved on the FRGC2.0 database at 0.1% FAR are 98.35% and 97.73% for scans under neutral

and non-neutral expressions respectively.

Boehnen et al. [31] propose a fast face recognition method based on a vector representation

named 3D signature whose elements correspond to the fixed surface points in a face-centered

coordinates system. The proposed method runs more than three orders of magnitude faster than a

traditional ICP-based distance implementation, without sacrificing accuracy. Finally, they achieve

an improvement of 0.2% to 0.5% more than the previous highest performing on FRGC2.0 by a

new Match Sum Thresholding (MST) fusion approach.

Xu et al. [32] propose a novel face recognition system combining local Gabor wavelets features

extracted from depth and intensity images with a hierarchical feature selection scheme embedded

in linear discriminant analysis(LDA) and AdaBoost learning when expression and pose variations

are taken into account. Their experiments are performed on CASIA and FRGC2.0 databases.

The highest recognition accuracy on CASIA is 98.3% on neutral face set and 79.0% on face

set with large pose variations and smiling. The verification rate at 0.1% FAR in the protocol of

neutral vs. all on FRGC2.0 is 97.5%.

Mahoor et al. [20] propose a novel representation of 3D face called ridge image and utilize

two tools: robust Hausdorff distance (HD) and iterative closest points (ICP), for matching them.
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Their experimental results are reported on the GavabDB and FRGC2.0 databases. For neutral

frontal faces, the rank-one identification rate is 95% and 91.8% using ICP techniques on the

two databases, respectively. For faces with expressions and pose variations in GavabDB, the

identification rates are reduced to 83.6% and 88.6%, respectively. The verification rates at 0.1%

FAR for the ROC I, II, and III of the neutral versus neutral in FRGC2.0 are 90.69%, 88.5% and

85.75%, respectively, which is better than the FRGC baseline.

Llonch et al. [33] represent 3D face as signals on the 2-sphere and then reduce the dimension-

ality with simultaneous sparse approximations and subspace projection which captures the salient

facial characteristics for recognition. The experimental results conducted on FRGC1.0 show that

their methods outperform classical state-of-the-art solutions that work with depth images.

Queirolo et al. [37] firstly register 3D range face images using a Simulated Annealing-based

approach (SA). Then, the similarity measure of faces is obtained by combining the Surface

Interpenetration Measures corresponding to four different face regions: circular and elliptical

areas around the nose, forehead, and the entire face region. A verification rate of 96.5% at

0.1% FAR is achieved on FRGC2.0 database. The rank-one identification accuracy of 98.4% is

reported on the same data set.

Wang et al. [21] propose collective methods for 3D face recognition. After a self-dependent

alignment, 3D faces are represented as a mediate form named Signed Shape Difference Map

(SSDM), based on which, three kinds of features are calculated and trained by respectively

boosting for assembling three collective strong classifiers named Collective Shape Difference

Classifiers. Their experiments conducted on FRGC2.0 with the standard protocol report three

verification rates which are all better than 97.9% at 0.1% FAR,and a rank-one recognition rates

of 98%.

Berretti et al. [34] present a novel face representation in the form of graph, in which the

nodes represent equal width iso-geodesic facial stripes and the arcs refer to a new descriptor

of 3D Weighted Walkthroughs (3DWWs). The graph-based representation enables efficient face

matching in large data sets with the support of appropriate index structures. Finally, the proposed

method is evaluated on the FRGC2.0 and the SHREC08 databases and achieves competitive

results.

Huang et al. [35] propose a biological vision-based facial description, namely Perceived Facial

Images (PFIs), along with a local feature-based SIFT matching. They achieve 98% rank-one
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recognition rate on FRGC v2.0 and competitive results on the challenging 3D TEC dataset

consisting of 3D scans of 107 pairs of twins [38].

Holistic matching schemes are based on holistic facial representations which make use of all

the facial shape data for discrimination. They hence generally require an accurate normalization

step with respect to pose and scale changes. The disadvantage is also that they are vulnerable to

occlusions and facial shape deformations, e.g., facial expressions. Now feature-based approaches

achieve the matching procedure through local features which are extracted typically from the

prominent points on facial surfaces [39], [40], e.g., curvature extrema. Feature-based matching

has the potential advantage of being robust to facial expression, pose and lighting changes and

even to partial occlusions. The downside of this scheme is the difficulty in extracting sufficient

informative feature points from similar or smooth 3D facial surfaces.

B. Overview of the proposed approach

In this paper, we propose Shape-based Spherical Harmonic Features (SHF) for 3D FR. These

SHFs capture both gross shape and fine surface details of facial surfaces through the energies

contained in spherical harmonics at different frequencies. They are computed on a canonical

facial representation, namely Spherical Depth Map (SDM). Because the predictive contribution

of each feature in SHF is different, especially in the presence of facial expressions and possible

partial occlusions, we further investigate feature selection methods to improve the predictive

performance and provide faster and cost-effective predictors.

Shape-based Spherical Harmonic Features were successfully applied to 3D shape-based inter-

class retrieval [41], [15]. When applying SHF to 3D FR which is an intra-class problem, it is

necessary to properly address the following two issues. The first is how to reliably calculate

SHF for a 3D face scan. Funkhouser et al. [41] achieves a translation and pose normalized

3D shape descriptor by moving the model so that the center of mass lies at the origin and by

discarding phase information. However, such an approach is only suited to the context of whole-

object to whole-object matching [15]. In the context of 3D FR which has to perform partial 3D

face matching, the center of mass translation can not be expected to provide optimal results.

Therefore, we propose a novel representation of 3D face scans, subsequently named Spherical

Depth Map (SDM), to provide a canonical representation for arbitrary 3D scans represented

in unstructured point clouds. The second issue is how to improve the discirminating ability of
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SHF for 3D FR. Some researchers calculate the L2-norm of each frequency component at each

radius in order to obtain a rotation invariant shape descriptor, however, the information lost will

seriously deteriorate the performance of face recognition [41], [15]. Therefore, original SHF is

used in our method after an exact face alignment based on Spherical Depth Map [42].

Feature selection aims to find faster and more effective predictor while improving or main-

taining the prediction performance [6]. In contrast with other subspace-based dimensionality

reduction techniques, e.g., Principal Component Analysis (PCA) or Independent Component

Analysis (ICA), feature selection techniques do not change the original representation of the

features, but merely select a subset of them. As a result, feature selection techniques preserve the

original semantics of the features, which offers the advantage of interpretability [43]. According

to the relations with predictor, feature selection algorithms broadly fall into two categories:

filter and embedded methods. In this study, the representative methods of two categories are

investigated in order to select the most relevant SHF to a given predictor.

The proposed method consists of two stages: an off-line training stage for the selection of

relevant SHF features and an online 3D FR stage as Fig.1 illustrates. In both off-line and online

stage, 3D face data are first preprocessed, in particular to remove spikes and fill holes. Then

face-aligned Spherical Depth Map is generated by the proposed pipeline in our early work [44].

In the training stage (off-line), we calculate a large set of SHF on training face data for the

purpose of relevant feature selection. In the online 3D FR stage, only the selected subset of SHF

is involved in classification, thereby significantly reducing the computational burden so that the

process can work in real time.

The contributions of this work can be summarized as follows: (1) we have proposed the use

of Spherical Harmonic Features (SHF) computed on a canonical facial representation, namely

Spherical Depth Map (SDM), to capture both gross shape and fine surface details of 3D face

models. (2) A novel framework for 3D FR using SHF and feature selection methods have been

defined, yielding competitive performance on three public 3D face datasets. Under the combined

effect of the discriminating power of SHF and feature selection methods, the proposed framework

proves effective and displays robustness to facial expression and occlusion as shown by the

experimental results on FRGC v2.0 and Bosphorus. Furthermore, the feature selection methods

have helped to decrease the computational complexity by a factor of 3.

The rest of the paper is organized as follows. Section II introduces the generation of SDM
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Fig. 1. The flowchart of our methods.

and its distinctive advantages compared with traditional range image. In Section III, we present

Spherical Harmonic Features which are reliably calculated based on SDM. Section IV describes

briefly three representative algorithms of feature selection method. The experimental results are

then discussed in Section V. Finally, we conclude the paper in Section VI.

II. SPHERICAL DEPTH MAP

Before the calculation of Spherical Harmonic Features, 3D faces must be formalized as a

spherical function with the same translation scale. The center of mass translation as proposed

in [41], [15] only worked well in the context of whole-object to whole-object matching. In the

context of 3D FR where we have only frontal facial surfaces, the center of mass translation cannot

be the optimal solution. To overcome this defect, a novel method for face shape representation,

namely Spherical Depth Map (SDM), is proposed in this paper, which translates the face shape

so that the center of the fitting sphere rather than the center of mass is at the origin.

The basic assumption in the generation of a SDM associated with a 3D face scan is that

the shape of human head can be viewed as a sphere. Although the human head has a shape

rather close to an ellipsoid, which is also homeomorphic Riemannian manifold as the sphere, a

spherical fitting has similar performance but less computational complexity.

The generation of a SDM is achieved through the following steps as Fig.2 shows. More details

can be found in our earlier work [42], [44].

(1) A sphere is fitted to the point clouds of a 3D face scan as shown in Fig.3.
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Fig. 2. The generation of face-aligned SDM.

(2) 3D face shape is translated so that the center of the fitted sphere is at the origin.

(3) The scale of Cartesian coordinates is normalized into an uniform interval.

(4) The Cartesian coordinates of the input face point clouds is transformed into spherical

coordinates (r, θ, ϕ).

(5) To calculate the SHF, the face pose is automatically normalized into a uniform orientation

[44].

By interpolation on a grid of θ and ϕ, the SDM of a 3D face scan can be viewed in a rectangle

of [θ(0 ∼ π), ϕ(0 ∼ 2π)] as shown the last image in Fig.2.

Fig.3 shows the three-view drawings of a head shape after spherical fitting. As we can see,

the face shape can be now described using a coordinate system attached to the face shape.

(a) top view (b) front view (c) side view

Fig. 3. Three-view drawings of face shape with fitting sphere.

The Iterative Closest Point (ICP) algorithm has proved its effectiveness for 3D face alignment

by iteratively minimizing the Mean Square Error (MSE) of all point pairs between two face

scans [45]. However, the original ICP algorithm cannot handle the case of 3D face scans with

different scales. Fig.4 shows an example of face scale variations in which all faces are from the
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same subject in the FRGC2.0 database. Therefore, we achieve the generation of face-aligned

SDM of 3D face using the method that we proposed in an earlier work [44].

Fig. 4. Face scale variations in FRGC2.0 database. Faces are showed in same coordinates system.

SDM can work quite well on uncontaminated 3D face scans like the general model as shown

in Fig.3. Nevertheless, If an input face scan encompasses foreign matters such as shoulder part

or serious occlusion, the corresponding SDMs will be impacted as shown in Fig.5.

Fig. 5. The influence of the foreign matters on SDM. As the second column shows, the spherical scale of 3D face in SDM is

variant because of the foreign matters.

To improve the accuracy of face alignment for the generation of robust SDMs, we made use of

another landmark on 3D face scans in addition to the nose-tip. Although many other landmarks
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can be used which can automatically be accurately located [46] [47], the lowest point between

the nose-tip and the center of forehead is employed to control the scale of 3D face scans in

this work. Based on the previous work, the accuracy of the face alignment is improved by the

following process:

(1) Find the symmetry plane of the input 3D face scan.

(2) The point having the lowest spherical depth on the intersection of the symmetry plane and

the input 3D face scan is located as the required additional landmark as Fig.6 shows.

Fig. 6. The control of the scale of 3D face in SDM.

(3) The scale of the input 3D face scan is normalized by scaling the face so that the angle

between the nose-tip and the detected landmark is equal to that of a reference model.

Although the asymmetry of human faces can be seen as a biometric trait for person identi-

fication [48], the preprocessing step of finding 3D face symmetry plane in this work is quite

different from that work. We aim to locate a plane with which the input face can be divided into

two relative symmetric parts for alignment. In fact, such information is also required in [48] in

terms of ”midline” to calculate the face asymmetry.

All of the above precessing is conducted automatically except a few failures caused by 3D

face scans with an occlusion in the Bosphorus database. Finally, we obtain the face-aligned

SDM of each 3D face model. Fig.7 shows several examples of face-aligned SDMs from the

three databases.

The advantages of using SDMs can be summarized as follows:

• The generation of SDMs is a Mesh free method. The process of generating SDMs can

simply operate on scattered point clouds of a 3D face scan, so no mesh or triangulation is

required.

• Spherical scale invariance. Constrained by the configuration of the human head, the face

area on the fitted sphere is invariant (about π/2×π/2). Therefore, the face scale is naturally
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Fig. 7. SDM examples of 3D face models from SHREC2007 (left), FRGC v2.0 (middle) and Bosphorus (right). Face scans

in FRGC2.0 have varied facial expressions whereas those in Bosphorus have varied occulisions. The faces in SDM are cropped

by a square having the size of π/2× π/2.

normalized on the sphere.

• Dealing with face pose variation is as simple as a rigid rotation around the center of the

fitted sphere.

• Object-centered shape representation. The face shape is described by a coordinate system

attached to the 3D face. The origin of the coordinate system is the center of the fitted sphere

which is derived from the face model itself.

• Complete shape representation. Only coordinate transformation (one-to-one mapping) is

conducted on the point clouds during the generation process. There is no loss of information.

As a result, the original face model can be completely reconstructed.

• Robustness to noise, small occlusion and expression variations. The center of the fitted

sphere is calculated based on the global configuration of the head shape, which is insensitive

to local variations caused by point-level noise, small occlusion or facial expression.

The original SDM associated with a 3D face scan is still a discrete representation, i.e. the points

on a SDM bear no regular structure. This makes it difficult to be used directly. Nevertheless, by

interpolation, an implicit function radius = f(θ, φ) can be reconstructed from a given discrete

SDM. Similar to range images, SDMs can be used as preprocessing step in many methods and

applications, including Principal Components Analysis (PCA), Linear Discriminant Analysis

(LDA), Gabor filter, Support Vector Machines (SVM), boosting methods, SIFT and so on.
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III. SPHERICAL HARMONIC FEATURES

Based on the SDM representation, with the same spherical coordinate system, it is natural

to make use of spherical harmonics for the description of 3D facial surfaces. Although this

technique has been introduced to characterize general 3D objects, using spherical harmonics for

3D facial surface description has not been investigated yet in the literature. Indeed, 3D FR is

quite a different problem from that of general 3D object retrieval which is an inter-class retrieval

problem in the sense that it needs to retrieve fundamentally different object classes, e.g., glass,

chair, car. In the case of 3D FR, one needs to recognize different instances of the same class,

i.e. the human face, thus requiring features or descriptors having enough discriminating power

necessary for a fine-grained accuracy.

In mathematics, spherical harmonics [49], [50] are a set of solutions to Laplace’s equation in

spherical coordinates, that form a set of basis functions of an orthogonal space:

Yl
m(θ, ϕ) = Km

l pl
m(cos θ)eimϕ (1)

where the symbol pml denotes the associated Legendre polynomials that are real-valued and

defined over the range [−1, 1]. Km
l is simply a scaling factor to normalize the functions:

Kl
m =

√
(2l + 1)

4π

(l −m)!

(l +m)!
(2)

3D face in spherical depth map is a spherical function f(θ, φ) which can be expanded into a

linear combination of all spherical harmonics scaled by their associated coefficients hlm:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

hlmYl
m(θ, ϕ) (3)

Considering that 3D FR only requires real valued spherical harmonics, the equation of real

Spherical Harmonics can be set forth as follows:

yl
m(θ, ϕ) =


√

2Kl
m cos(mϕ)pl

m(cos θ),m > 0
√

2Kl
m sin(−mϕ)pl

−m(cos θ),m < 0

Kl
0pl

0(cos θ),m = 0

(4)

where pml and Km
l are the same as Equation (1).
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Finally, the associated coefficients hlm, i.e. the spherical harmonic features (SHF), are obtained

by the following equation:

hlm =

2π∫
0

π∫
0

f(θ, ϕ)yl
m(θ, ϕ) sin θdθdϕ (5)

where sinθ is a regulatory factor for the integral in spherical coordinates. This equation is

suitable for symbolic integration. The integral has to be evaluated numerically using Monte Carlo

integration [51]. The numerical solution for the above integral problem can then be rewritten as:

clm =
1

n

n∑
j=1

f(xj)yl
m(xj)4π =

4π

n

n∑
j=1

f(xj)yl
m(xj) (6)

where n is the number of sample points on f(θ, φ), i.e. the input 3D face model. 4π is a weight

in the Monte Carlo estimator for every sample with equal probability.

In the end, a 3D face model is thus characterized by the energies at different frequencies

of spherical harmonics. The energies at low frequencies capture the gross shape of the facial

surface whereas those at high frequencies describe the fine facial surface details. As a result, these

SHFs make it possible to capture both global and local facial shape information. This is in clear

contrast to most 3D FR techniques known so far in the literature, which are either holistic, thus

based on a global facial representation, or feature-based making use of local features extracted

from a number of distinctive points.

IV. FEATURE SELECTION

As SHFs at different frequencies capture different geometric properties of a given facial

surface, with the energies at low frequencies capturing the gross shape while those at high

frequencies describe the fine details, and given the fact that 3D face scans can convey variations

due to facial expression and partial occlusion, we proceed to learning the spherical harmonic

features (SHF) which best discriminate the identities of 3D face scans through a feature selection

method.

Feature selection, also known as variable selection or attribute selection, aims at selecting an

optimal subset of discriminative features for building a robust classifier. The purpose of feature

selection is three-fold: improving the prediction performance of the predictors, providing faster

and more cost-effective predictors, and providing a better understanding of the underlying process
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that generated the data [6]. Based on the relations with respect to predictors, feature selection

algorithms broadly fall into two categories: filter and embedded methods. The filter methods take

into account the general properties of training data and evaluate the relevance of features without

involving any predictor algorithm, whilst the embedded methods incorporate feature selection

as part of the training process, and the feature relevance is evaluated analytically according

to the associated predictor. In this work, three representative methods for feature selection,

namely Relief-F [52], mRmR [53] (filter model) and Random Forests [54] (embedded model),

are investigated. These three methods are different from each other as they achieve the selection

of discriminating features through different properties from the training data. Our aim is to

discover which kind of technique is most suitable for the selection of the most discriminating

SHFs.

A. Relief-F

Relief-F is a type of supervised feature weighting algorithm which belongs to the category of

filter methods. The key idea of Relief-F is to estimate the contribution of features according to

their ability to distinguish between the nearest instances. The scheme of Relief-F is summarized

as follows:

(0) Initialize W (a) = 0 for each feature a. m is a user-defined integer.

(1) Randomly select an instance Ri.

(2) Find k nearest neighbors Hj from the same class with Ri.

(3) Find k nearest neighbors Mj(C) from each class C 6= class(Ri).

(4) For each feature a, calculate the corresponding weight W (a) through the following equa-

tion:

W (a) = W (a)−
k∑
j=1

d(a,Ri, Hj)/(m · k)

+
∑
C

[K
k∑
j=1

d(a,Ri,Mj(C))]/(m · k) (7)

K =
P (C)

1− P (class(Ri))

where d(a, I1, I2) calculates the difference between two instances I1 and I2 with respect to feature

a. P (C) is the prior probability of class C. 1− P (class(Ri)) denotes the sum of probabilities

for class C 6= class(Ri).
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(5) Repeat the above process from (1) for m times. Finally return the weight vector W of all

features.

B. minimal-Redundancy-maximal-Relevance

mRmR selects a subset of best features according to the criterion of minimal-redundancy-

maximal-relevance based on mutual information. Given two variables x and y, their mutual

information can be defined as:

I(x, y) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy (8)

where p(·) is the probability density function. The criterion of maximal-relevance is to select

features S satisfying the following equation:

maxD(S, c), D(S, c) =
1

|S|
∑
xi∈S

I(xi, c) (9)

where c is a class label. However, it is well known that the combination of individually good

features does not necessarily lead to good classification performance because the features selected

according to maximal-relevance could have rich redundancy. To remedy this drawback, minimal-

redundancy criterion is added to reduce the redundancy between features:

minR(S), R(S) =
1

|S|2
∑

xi,xj∈S

I(xi, xj) (10)

The combination of the above two criteria is max(D−R). In practice, incremental search method

is normally used to select the near optimal subset of features. Given the selected subset Sm−1,

the mth feature can be selected from the set {X − Sm−1} by the following equation:

max[I(xj, c)−
1

m

∑
xi∈Sm−1

I(xj, xi)], xj ∈ X − Sm−1 (11)

C. Random Forests

Breiman [54] gives the definition of Random Forests as a classifier consisting of a collection of

decision trees (h(x,Θk), k = 1, 2, · · ·), where Θk are independent identically distributed random

vectors. Each decision tree casts a unit vote for the final output with respect to input x. The core

task of Random Forests is the construction of each decision tree. Further details can be found

in [54].
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V. EXPERIMENTAL RESULTS AND ANALYSIS

The effectiveness of the proposed method is evaluated in this section. First, we shortly describe

the three datasets on which the experiments were carried out. We then evaluate the discriminating

power of the proposed spherical harmonic features (SHF). This is followed by experiments

highlighting the usefulness of feature selection methods. Finally, 3D FR experiments using

selected SHF are performed and the results compared with the state of the art.

A. Face Databases

Our experiments are conducted on three popular face datasets, namely SHREC2007 [36],

FRGC2.0 [1] and Bosphorus [55]. Table I gives a comparative overview of these three datasets.

TABLE I

A COMPARATIVE OVERVIEW OF THE THREE PUBLIC 3D FACE DATASETS.

Databases SHREC2007 FRGC2.0 Bosphorus

Subject 64 466 105

Total 640 4007 4666

smile

Expression neutral surprise 35 expressions

angry

Pose NA NA 13 yaw, pitch,

cross rotations

Occlusion NA NA 4 occlusions

Because the computation of Spherical Harmonic Feature (SHF) at different frequencies through

Equation (5) and (6) requires the global description of a 3D shape, 3D face scans having only

the half face in Bosphorus are excluded from our experiments. Therefore, a total of 3954 faces

from 105 subjects in Bosphorus are used in the experiments.

B. Spherical Harmonic Features

As described in section III, there exists an infinity of spherical harmonics at different frequen-

cies. Therefore, the computation of all SHFs is infeasible and one needs to find out a tradeoff

between the descriptive power of SHFs and the associated computational cost. In this work, we
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have chosen l = (1 ∼ 25), which yields (25 + 1)2 = 676 coefficients, along with the Simple

euclidian distance to compute the similarity of two SHFs.

In order to test the discriminating power of SHF which is now approximated by a 676 dimen-

sional feature vector, we carried out face verification experiment on the three aforementioned

datasets, that is to say, the query set and the target set are all the faces in each dataset. Fig.8

gives the ROC curves of the proposed SHF. The verification rate on the three datasets at FAR

= 0.001 is 92%, 90% and 81.4%, for SHREC2007, FRGC2.0 and Bosphorus respectively.

Fig. 8. ROC curves of SHF on three datasets.

We compared SHF with some state-of-the-art methods on the FRGC2.0 dataset. All experi-

ments were performed under the same conditions, i.e. under ”All versus All” partition. Table II

shows the comparison of verification rate at FAR = 0.001. Our approach achieves the highest

verification rate when using a single feature.

C. Learning the Discriminating Spherical Harmonic Features

The next step is to test the usefulness of feature selection methods. Given that learning is

required for these feature section methods, it is important to check their skill of generalization

on unseen subjects [33]. To this end, we divided the subjects used for training and testing into

two disjoint sets in the experiments as shown in Table III. Given that the three datasets are

organized by subject and each subject has a similar distribution, our divisions were based on

subject. For example, the 64 subjects with 640 face scans of SHREC2007 were split into a
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TABLE II

THE COMPARISON OF VERIFICATION RATE AT FAR = 0.001 USING THE FRGC2.0 DATABASE.

Single feature-mode Fusion

Maurer et al. [56] 77.6% 86.9%

Cook et al. [57] - 92.31%

Mian et al. [58] 72.55%,74.31% 86.6%

Faltemier et al. [59] <84.8% 93.2%

Queirolo et al. [37] - 96.5%

Wang et al. [21] - 98.13%

Berretti et al. [34] 81.2% -

Our method 90% -

training and testing set of equal size, each having 320 face scans of 32 subjects. The other two

databases were divided in the same way.

TABLE III

DISJOINT SETS FOR TRAINING AND TESTING. THE NUMBERS IN THE TABLE ARE LISTED IN TERMS OF FACE

SCANS/SUBJECTS.

Databases SHREC2007 FRGC2.0 Bosphorus

Training set 320/32 1973/170 1977/58

Test set 320/32 2034/296 1977/47

Since Relief-F is a feature weighting algorithm [52], a feature list ranked by weight, rep-

resenting the discriminating ability of the corresponding feature, is returned by Relief-F. To

evaluate the effectiveness of Relief-F, KNN classifier was conducted on the selected feature

set by incrementally increasing the number of features used on the test set until the full list

of features was reached. For each dataset, 10-fold cross validation was used to guarantee the

reliability of the results. Fig.9 shows the accuracy curves on the three datasets. For the purpose

of comparison in order to highlight the generalization skill of the chosen features, accuracy on

the training sets was also calculated in the same manner.

Minimum-Redundancy-Maximum-Relevance (mRmR) selects a subset of features that have

higher correlation to the prediction performance [53]. In this study, 300 variables ranked by the

correlation were selected from the 676 Spherical Harmonic Features. The effectiveness of these
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Fig. 9. Performance evaluation of Relief-F on the three datasets by 10-fold cross validation using the KNN classifier.

features was then evaluated in the same way as Relief-F, as shown in Fig.10.

Fig. 10. Performance evaluation of mRmR on the three datasets by 10-fold cross validation using the KNN classifier.

By observing the curves in figure 9 and 10, we can draw the following conclusions:

• By comparing the results between the training set and testing set, it can be seen that the

features selected by Relief-F and mRmR have a very good generalization skill on unseen

subjects.

• The features selected by Relief-F and mRmR perform the best on SHREC2007, then on

FRGC v2.0 and lastly on Bosphorus. This accords with the increasing difficulties of these

three datasets in terms of face data, face expression variations, pose changes and even

occlusion.

• Relief-F performs consistently better than mRmR on the three datasets.

As we can see from Fig. 9 and 10, the recognition accuracy increases quite quickly and

attains a point of inflection when the number of features selected by both Relief-F and mRmR is

augmented. This recognition accuracy then remains stable with very slight improvement in the
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case of FRGC v2.0 and Bosphorus or even decreases in the case of SHREC2007 when the number

of selected features is further increased. The selection of relevant features in our case thus requires

a tradeoff between computational complexity and recognition accuracy. While the selection of

more features may lead to better recognition accuracy, it also leads to a higher computational

complexity of the predictor. Many solutions to this question exist, e.g., second derivative or

Receiver Operating Characteristic analysis, which automatically determine the number of selected

features to be used based on the requirements of the application in hand. In this work, based

on the performance of the features selected by Relief-F and mRmR on the testing set as shown

on Fig. 9 and 10, we simply manually selected the subset of features being used in the three

datasets. Table IV summarizes the number of selected features in each subset, per dataset and

per feature selection method.

TABLE IV

THE NUMBER OF SELECTED FEATURES IN EACH FEATURE SUBSET.

Databases SHREC2007 FRGC2.0 Bosphorus

Relief-F 148 188 171

mRmR 135 168 153

These feature subsets were then used in the task of face recognition.

D. Experiments on 3D FR

To validate the improvements of feature selection on 3D FR, both verification and identification

experiments were carried out. There are a series of well-known protocols in FRGC2.0 for face

recognition experiments. Unfortunately they are only suitable for FRGC2.0 data. As a result,

we designed some more general experiment protocols in order to enable the comparison of the

performance of the proposed methods on the three datasets. These experiment protocols are first

explained and are then followed by the experimental figures.

For face verification, the query set and the target set were all faces from the three testing sets.

Therefore, the size of the similarity matrixes on the three datasets is 320×320, 2034×2034 and

1977 × 1977, respectively. Fig.11 gives the ROC curves of the feature subsets by Relief-F and

mRmR in comparison with all features on the three test sets. As we can see from these curves,

Relief-F once again outperforms mRmR and the use of all features.
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(a) SHREC2007 (b) FRGC2.0 (c) Bosphorus

Fig. 11. The comparison of ROC curves between Relief-F, mRmR and All Features.

For face identification, 10-fold cross validation using KNN classifier was employed to calculate

the identification rate on the three datasets. Furthermore, this accuracy was compared with 10-

fold cross validation using SVM classifier. Table V shows the comparison of recognition rates.

The results of Random Forests are listed in the last line of the table.

TABLE V

THE COMPARISON OF IDENTIFICATION RATES. THE IDENTIFICATION RATES USING ALL SHF ARE ALSO CALCULATED AS

THE BASELINE.

SHREC2007 FRGC2.0 Bosphorus

KNN(all) 89.75% 88.24% 75.87%

SVM(all) 97.24% 96.85% 94.42%

Relief-F+KNN 96.53% 88.25% 76.61%

Relief-F+SVM 97.86% 96.94% 95.63%

mRmR+KNN 94.99% 86.27% 73.92%

mRmR+SVM 96.47% 89.52% 87.79%

RF 96.83% 92.97% 89.22%

As we can see from Table V, the best results, respectively 97.86%, 96.94% and 95.63% on

the three datasets, were achieved by Relief-F+SVM. Remember that SHREC2007, FRGC v2.0

and Bosphorus, as summarized in table I, are three datasets of increasing difficulties in terms

of the number of subjects, facial expression, pose and occlusion. Under the combined effect of

the discriminating power as provided by SHF and the feature selection method, the recognition

rate by Relief+SVM only decreases slightly on FRGC v2.0 with facial expression variations and
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Bosphorus with pose changes, facial expression variations and occlusions. These experimental

results demonstrate the effectiveness of the proposed method. In addition, the computation cost

is significantly reduced by using feature selection methods. The average time for the computation

of l = (1..25) band SHF (676 features) of a face scan in FRGC2.0 decreases from 2.72 seconds

to 0.8 seconds, thereby cutting the computational cost by a factor of 3. The experiments were

implemented using Matlab on a PC with Intel(R) Core(TM)2 Quad CPU 2.40 GHz CPU and

4G RAM. Therefore, there is still room to further acceleration of the computation process.

VI. CONCLUSIONS

In this paper a novel competitive method for 3D FR has been proposed, which is based on

Spherical Harmonic Features (SHF) reliably computed on a canonical 3D face representation,

namely Spherical Depth Map (SDM). Feature selection methods are further used to improve the

predictive performance and provide faster and more cost-effective predictors. The experimental

results on three public 3D face datasets, namely SHREC2007, FRGC v2.0 and Bosphorus,

highlight the discriminating power of the proposed Spherical Harmonic Features. Although there

is a slight decrease in performance when expression and occlusion are taken into account, proper

feature selection method can compensate for this defect. Finding or designing better feature

selection method for SHF will be our future objective.
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