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a b s t r a c t

Challenges for the next generation of Brain Computer Interfaces (BCI) are to mitigate the common
sources of variability (electronic, electrical, biological) and to develop online and adaptive systems fol-
lowing the evolution of the subject's brain waves. Studying electroencephalographic (EEG) signals from
their associated covariance matrices allows the construction of a representation which is invariant to

study of all estimators conducted on real EEG recording. Working in Euclidean space with covariance
matrices is known to be error-prone, one might take advantage of algorithmic advances in Riemannian
geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices.
Nonetheless, existing classification algorithms in Riemannian spaces are designed for offline analysis. We
propose a novel algorithm for online and asynchronous processing of brain signals, borrowing principles
from semi-unsupervised approaches and following a dynamic stopping scheme to provide a prediction
as soon as possible. The assessment is conducted on real EEG recording: this is the first study on Steady-
State Visually Evoked Potential (SSVEP) experimentations to exploit online classification based on Rie-
mannian geometry. The proposed online algorithm is evaluated and compared with state-of-the-art
SSVEP methods, which are based on Canonical Correlation Analysis (CCA). It is shown to improve both
the classification accuracy and the information transfer rate in the online and asynchronous setup.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Human–machine interactions without relying on muscular
capabilities is possible with Brain–Computer Interfaces (BCI) [1]
They are the focus of a large scientific interest [2–4], especially
those based on electroencephalography (EEG) [5]. From a large
literature based on the BCI competition datasets [6–8], one can
identify the two most challenging BCI problems: on the one hand,
the inter-individual variability plagues the models and leads to
BCI-inefficiency effect [9–11], on the other hand, the intra-
individual changes calls for the development of online algo-
rithms and adaptive systems following the evolution of the sub-
ject's brain waves [12–14]. To alleviate these variations, several
signal processing and machine learning techniques have been
proposed, such as filtering, regularization or clustering [15,16]
without the emergence of an obvious “best candidate”
methodology.

A common vision is shared by all the most successful approa-
ches to reduce signal variabilities: they are applied on covariance
matrices instead of working in the input signal space. Common
Spatial Pattern (CSP) [17–19], which is the most known pre-
processing technique in 2-class BCI, try to maximize the covar-
iance of one class while minimizing the covariance of the other.
Similarly, Principal Components Analysis (PCA) [6,7], also applied
for spatial filtering in BCI, is based on the estimation of covariance
matrices. Canonical Correlation Analysis (CCA) is another example
of a technique relying on covariance estimates successfully applied
on EEG for spatial filtering [15,20]. Covariance matrices are also
found in classifiers such as the Linear Discriminant Analysis (LDA),
which is largely used in BCI. In all cases, they are handled as ele-
ments of an Euclidean space. However, being Symmetric and
Positive-Definite (SPD), covariance matrices lie on a subset of the
Euclidean space, with reduced dimensionality and specific prop-
erties, the Riemannian manifold. Considering covariance matrices
in their original space would reduce the search area for an opti-
mization problem [21,22]. As Riemannian manifolds inherently
define a metric, the distance between SPD matrices takes into
account the space where they lie on; approximating it to an
Euclidean space introduces inaccuracies and results in ill-
conditioned matrices.
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Recently, studies have been done to consider covariance
matrices obtained frommultichannel brain signals in their original
space [23–25]. Covariance matrices are the input features of the
BCI system and the classifier algorithms rely on Riemannian metric
for partitioning the feature space. The authors propose building
specific covariance matrices in order to emphasize the spatial and
frequential information of the multichannel brain signals [25]. The
outcome of this approach is a simple processing tool chain, which
achieves state-of-the-art classification performances.

This paper introduces an online version of the minimum dis-
tance to Riemannian mean (MDRM) algorithm [23], with an
application to Steady-State Visually Evoked Potential (SSVEP) sig-
nals. In SSVEP, the subjects concentrate on stimuli blinking at fixed
frequencies. Depending on the focus of their attention, brain waves
will arise with the same phase and frequency as the stimulus
chosen by the subject. The signals are recorded in an application of
assistive robotics,1 with a shared control scheme relying on an
SSVEP-based BCI and a 3D touchless interface based on IR-sensors
to operate an arm exoskeleton [26]. The long term objective is to
equip a home environment with assistive technologies, including
BCI, as proposed in [27,28]. In this context, it is important to
design an online system, i.e. that adapt continuously to the user's
brain signals, and asynchronous, i.e. that could be activated “on
demand”.

Our online implementation2 is similar to the unsupervised or
semi-unsupervised learning scheme proposed in [29,30]; that has
the potential of shortening (or even removing) the calibration
phase. We apply a similar approach to the dynamic stopping cri-
terion used in [31] to increase the speed of the BCI system. This
approach allows to dynamically determine the trial length and
ensure robustness in classification results. Our MDRM approach
outperforms state-of-the-art algorithms in the offline setup.
Moreover, these state-of-the-art algorithms, that are based on
CCA, are inherently limited as they could not handle resting state.
They must rely on an external command to be turn on or off, and
are thus only suitable to lab environment.

When working with covariance matrices, a crucial point is to
correctly estimate the covariance when the number of samples is
small or heavily corrupted by noise. Several approaches have been
proposed to build the covariance matrices, relying on normal-
ization or regularization of the sample covariances. To assess the
quality of the covariance matrices obtained from EEG samples, a
comparative study of these estimators is conducted.

Hence, the contributions of this works are:

� a comprehensive review of the literature on Riemannian geo-
metry applied to EEG and time-series,

� a thorough analysis of the covariance estimators and their
impact on tools derived from information geometry,

� first online application of a Riemannian classification algorithm
on SSVEP-based BCI,

� introduction of a novel algorithm for online and asynchronous
BCI, including a resting state class, yielding better performance
than state-of-the-art SSVEP algorithms. No phase synchroniza-
tion is required for the SSVEP.

The paper is divided as follows: Section 2 reviews the state of
the art in SSVEP-based BCI and the applications of Riemannian
geometry in machine learning for BCI. Section 3 presents concepts
of Riemannian geometry relevant to this work and estimators of
covariance. In Section 4, the proposed classification algorithm for
1 This dataset is freely available from https://github.com/sylvchev/dataset-
ssvep-exoskeleton.

2 The open source code is available on https://github.com/emmanuelkalunga/
Online-SSVEP.
online SSVEP is introduced and the experimental results are pre-
sented in Section 5 for offline and online setups as well as without
and with a resting state class.
2. State of the art

2.1. Steady-state visually evoked potential

Sensory evoked potentials often oppose Event Related Potential
(ERP) and Steady-State Response (SSR) [32]. This distinction ori-
ginates from the idea that the SSR may be generated by neural
oscillations elicited by the repeated stimulations [33] whereas the
ERP is the transient response to an event occurring at sufficiently
long time interval to allow the system to return to its initial state
[34]. We will focus on the visual SSR, called SSVEP and its appli-
cation to BCI.

The SSVEP-based BCI is often employed as a dependent BCI
[35], that is, some residual muscular capabilities are required to
move the eye toward the blinking stimulus as opposed to inde-
pendent BCI, such as Motor Imagery (MI), where the commu-
nication does not rely on any motor capability. It has been shown
that SSVEP could be used as an independent BCI [36,37] as the
brain oscillations are strongly related to the focus of attention.
Using covert attention, i.e. shifting the focus of attention without
moving the eyes, subjects can generate different SSVEP responses.

BCI have highly variable subject-specific performances. 20–30%
of the subjects cannot operate correctly brain interfaces. This
phenomenon is referred to as BCI illiteracy [9–11]. It affects SSVEP-
based BCI and it is correlated with age and gender, male subjects
being more afflicted than female ones [38]. Offline BCI, that is
approaches where the learning algorithms are trained on a large
dataset of subject's EEG recording, are also afflicted which indicate
that a source of variability at the subject level is not handled
correctly by the existing approaches. BCI illiteracy is also afflicting
online approaches, where the algorithms are adapted to the sub-
ject's EEG as the experiment goes by.

Visual stimulus plays a crucial role, affecting the BCI perfor-
mance, and should be designed carefully. An in-depth review of
the literature [39] shows that LED stimuli provide better results
than those obtained on computer screen. A cognitive study [40]
indicates that any stimulation between 2 and 50 Hz induces visible
oscillations in the visual cortex. Another study shows that a peak
in signal to noise ratio is visible at around 15 Hz [41]. Common
values employed in SSVEP studies are between 12 and 25 Hz, as
they induce oscillations with higher amplitudes [39]. One should
note that safety of the subject should be taken into account as
some frequency ranges of the stimulation train could trigger epi-
leptic seizure [42].

The phase of the stimulation signal can also be modulated,
enhancing the BCI performance by boosting the Information
Transfer Rate (ITR) [43,44]. An important constraint in that case is
that the experimental setup requires a synchronization between
the display and the recording system, to ensure the correct esti-
mation of the stimulus' phase. Better alternatives are available
when considering systems with such constraints: code-modulated
VEP (c-VEP) has yield the highest ITR in BCI [45,46]. In c-VEP, the
sole difference is that the stimulus flickering is based on pseu-
dorandom sequences instead of the fixed frequencies of SSVEP. All
these successful approaches in SSVEP and c-VEP rely on CCA. Given
two sets of signals, CCA aims at finding the projection space that
maximizes their cross-covariance while jointly minimizing their
covariance [20,15,44]. The common methodology is to find the
canonical space between the multichannel EEG trial on the one
hand and reference signals, usually sine and cosine of target fre-
quencies and harmonics, on the other hand.

https://github.com/sylvchev/dataset-ssvep-exoskeleton
https://github.com/sylvchev/dataset-ssvep-exoskeleton
https://github.com/emmanuelkalunga/Online-SSVEP
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E.K. Kalunga et al. / Neurocomputing 191 (2016) 55–68 57
This study is part of our efforts to conceive a smart and adapted
environment for people with disabilities, with a standing point
similar to [27,28]. In our case, the device generating flickering
stimulus should not be connected to the EEG processing system, to
allow, for example, the design of “smart switches” distributed in
the home environment in further studies. Hence, we could not rely
on phase-dependent setups, such as c-VEP or phase-
modulated SSVEP.

Another requirement of our system is to be self-paced, a
property also called asynchronous, to provide the user with the
ability to use the system “on demand”, i.e. when needed. As
pointed out by [47], it is thus necessary to provide a “no-control”
state to cope with situation where the user does not want to
produce any command. Several methods could be considered, such
as including a reject threshold in the system, as in [47], or directly
provide the system with a reject class, see for example [48]. This
“no-control” state or “resting” state is not always included in the
existing studies, see for example [27,20,44]. The high ITR obtained
with these systems are thus confined to the lab environment and
could not be directly applied to realistic assistive scenarios.

2.2. Riemannian geometry in BCI

Information geometry provides useful tools for various
machine learning and optimization problems. In machine learning,
SPD matrices have been used in various applications where fea-
tures and data are only considered in the Euclidean space. Indeed,
covariance matrices lie in the space of SPD matrices which is a
subset of the Euclidean space when considered with the scalar
product. But the same space of SPD matrices, endowed with a
differential structure, induces a Riemannian manifold.

Riemannian geometry can improve machine learning algo-
rithms, taking explicitly into consideration the underlying struc-
ture of the considered space. Three kinds of approaches in the
literature use the geometry of data in machine learning. The first
one relies on the mapping of the Riemannian manifold onto an
Euclidean vector space. One such mapping, called logarithmic
mapping, exists between the manifold and its tangent space,
which is an Euclidean space, and has been used in classification
task for BCI [24]. Some kernels have been applied successfully to
this end: Stein kernel, Log-Euclidean kernels as well as their nor-
malized versions [49]. The main idea is to map the input data to a
high dimensional feature space, providing a rich and hopefully
linearly separable representation. The so-called kernel trick is to
provide a kernel function, which computes an inner product in the
feature space directly from points lying in the input space, defining
a Reproducing Kernel Hilbert Space (RKHS). The family of kernels
defined on the Riemannian manifold allows the implementation of
extensions of all kernel-based methods, such as SVM, kernel-PCA
or kernel k-means [50]. Apart from the kernel approaches, once
the data are mapped onto a vector space, any machine learning
algorithm working in Euclidean space, such as LDA, could be
applied [23].

A second kind of machine learning approach exploits the
underlying geometry of the data. Instead of mapping the data to
an Euclidean space, either a tangent space or an RKHS, the algo-
rithms are adapted to Riemannian space. For instance, sparse
coding algorithm has been adapted to Riemannian manifold, using
the geodesic distance to estimate the data point and its sparse
estimate [51]. Similarly nonlinear dimensionality reduction tech-
niques have been adapted to Riemannian manifold, such as
Laplacian Eigenmaps (LE), Locally Linear Embedding (LLE), and
Hessian LLE. This adaptation was used to cluster data using their
probability density functions (pdf) [52] or covariance matrices [53]
as features. Another example is the adaptation of interpolation and
filtering of data to Riemannian space performed in [54], where an
affine-invariant Riemannian metric is also proposed to offer a
geodesically complete manifold i.e. a manifold with no edge and
no singular point that can be reached in finite time.

In the last kind of approach, instead of adapting existing algo-
rithm from Euclidean to Riemannian geometry, new algorithms
are developed directly for Riemannian manifolds. The minimum
distance to Riemannian mean (MDRM) relies on a Riemannian
metric to implement a multi-class classifier and have been applied
on EEG. New EEG trials are assigned to the class whose average
covariance matrix is the closest to the trial covariance matrix [23].
The MDRM classification can be preceded by a filtering of covar-
iance matrices, like in [55] where covariance matrices are filtered
with LDA component in the tangent space, then brought back to
the Riemannian space for classification with MDRM. Another
example is the Riemannian Potato [56], an unsupervised and
adaptive artifact detection method, providing an online adaptive
EEG filtering (i.e. outliers removal). Incoming signals are rejected if
their covariance matrix lies beyond a predefined z-score, com-
puted from a sliding window. With the same objective of achiev-
ing robustness to noise that affects covariance matrices, Rie-
mannian geometry is used to solve divergence functions of pdfs
[57]. This allows to reformulate the CSP as the maximization of the
divergence between the distributions of data from two different
classes corresponding to two cognitive states [58,59]. Using the
beta divergence the obtained CSP is robust to outliers in sample
covariance matrices and this algorithm is successfully applied to
EEG filtering for BCI. Riemannian metrics are also used for EEG
channel selection [60] and the selection of the most discriminatory
spatial filters in CSP [61].

In MI experiment, the subject is asked to imagine a movement
(usually hand, feet or tongue), generating Event-Related Syn-
chronization and Desynchronization (ERD/ERS) in pre-motor brain
area. Riemannian BCI is well suited for MI experiment as the
spatial information linked with synchronization is directly
embedded in covariance matrices obtained from multichannel
recordings. However, for BCI that rely on Evoked Potential such as
SSVEP or Event Related Potential (ERP), as P300, both frequential
and temporal information are needed; the spatial covariance
matrix does not contain these information. To apply Riemannian
geometry to SSVEP and ERP, the sample covariance matrices can
be defined from a rearrangement of the recorded data. The rear-
rangement is done such that the temporal or frequency informa-
tion are captured [25]. With similar motivations, [62,63] defined a
new Riemannian distance between SPD matrices that would take
into account a weighting factor on matrices. They use this new
distance as a dissimilarity between weighted matrices of power
spectral density to classify EEG into different sleep state by k-
nearest neighbors.
3. Covariance matrices and their geometry

This section presents some formal definitions for the informa-
tion geometry concepts used in this paper. The link with the
covariance matrices is explicated in Section 3.2, along with the
covariance estimators proposed in the literature.

3.1. Riemannian manifold

An m-dimensional manifold M is a Hausdorff space for which
every point has a neighborhood that is homeomorphic to an open
subset of Rm [64]. When a tangent space is defined at each point,
M is called a differential manifold. A geodesic γ is the shortest
smooth curve between two points, Σ1 and Σ2. The tangent space
TΣM at point Σ is the vector space spanned by the tangent vectors
of all geodesics on M passing through Σ. A Riemannianmanifold is



Fig. 1. Comparison of covariance estimators in terms of classification accuracy
obtained with MDRM with increasing EEG trial length. For each trial length, the
average accuracy across all subjects and across all replications is shown. Bars
indicate the error of the mean, i.e. standard deviation divided by the square root of
n�1, n ¼ number of samples.
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a manifold endowed with an inner product defined on the tangent
space, which varies smoothly from point to point.

For the rest of this paper, we will restrict to the analysis of the
manifold MC of the C � C symmetric positive definite matrices,
defined as:

MC ¼ ΣARC�C : Σ ¼Σ > and x>Σx40; 8xARC⧹0
n o

:

The tangent space TΣMC is identified to the Euclidean space of
symmetric matrices:

SC ¼ ΘARC�C : Θ¼Θ>
n o

:

The dimension of the manifoldMC , and its tangent space TΣMC , is
m¼ CðCþ1Þ=2.

The mapping from a point Θi of the tangent space to the
manifold is called the exponential mapping ExpΣ ðΘiÞ: TΣMC-

MC and is defined as:

ExpΣðΘiÞ ¼Σ
1
2ExpðΣ� 1

2ΘiΣ
� 1

2ÞΣ1
2: ð1Þ

Its inverse mapping, from the manifold to the tangent space is the
logarithmic mapping Log ΣðΣ iÞ: MC-TΣMC and is defined as:

Log Σ ðΣ iÞ ¼Σ
1
2Log ðΣ � 1

2Σ iΣ
� 1

2ÞΣ1
2: ð2Þ

Expð�Þ and Log ð�Þ are the matrix exponential and matrix logarithm,
respectively. The computation of these operators is straightfor-
ward for SPD matrices of MC . They are obtained from their
eigenvalue decomposition (EVD):

Σ ¼ U diagðλ1;…; λCÞU> ;

ExpðΣÞ ¼ U diagðlog ðλ1Þ;…; log ðλCÞÞU> ;

Log ðΣÞ ¼ U diagðexpðλ1Þ;…; expðλCÞÞU> ;

where λ1;…; λC are the eigenvalues and U the matrix of eigen-
vectors of Σ. As any SPD matrix can be diagonalized with strictly
positive eigenvalues, Log ð�Þ is always defined. Similarly the square
root Σ

1
2 is obtained as:

Σ
1
2 ¼U diagðλ

1
2
1;…; λ

1
2
CÞU> ;

and is unique. The same goes for Σ � 1
2.

The tangent vector of the geodesic γðtÞ between Σ1 and Σ2,

where γð0Þ ¼Σ1 and γð1Þ ¼Σ2 is defined as v¼Σ1Σ2
���!¼ Log

Σ1ðΣ2Þ. A Riemannian distance between Σ1 and Σ2 can thus be
defined as [65]:

δðΣ1;Σ2Þ ¼ JLog ðΣ �1
1 Σ2ÞJF ¼

XC
c ¼ 1

log 2λc

" #1=2
; ð3Þ

where λc , c¼ 1;…;C, are the eigenvalues of Σ �1
1 Σ2. From Eq. (3),

the geometric mean of I points Σ i on the manifold, i¼ 1;…; I, can
be defined as the point that minimizes the sum of squared dis-
tances to all Σ i:

μðΣ1;…;Σ IÞ ¼ arg min
ΣAMC

XI
i ¼ 1

δ2ðΣ i;ΣÞ: ð4Þ

This mean has no closed form, and can be computed iteratively
[66].

3.2. Covariance matrix estimation

Let xnARC , n¼ 1;…;N, denotes a sample of a multichannel EEG
trial recorded on C electrodes. N is the trial length. Let XARC�N be
the EEG trial such as X ¼ ½x1;…; xN �. Under the hypothesis that all
N samples xn are randomly drawn from a distribution, it follows
that x is a variable of random vectors and its expected vector is
ω¼ Efxg [67]. The covariance matrix of the random variable x is
defined by Σ ¼ Efðx�ωÞðx�ωÞ> g and is unknown, thus an
estimate Σ̂ should be computed. The choice of the appropriate
estimator is crucial to verify that the obtained covariance matrices
fulfill the following properties: they should be accurate, SPD, and
well-conditioned. The last property requires that the ratio
between the maximum and minimum singular value is not too
large. Moreover, to ensure the computational stability of the
algorithm, the estimator should provide full-rank matrices, and its
inversion should not amplify estimation errors.

3.2.1. Sample covariance matrix estimator
The most usual estimator is the empirical sample covariance

matrix (SCM), defined as:

Σ̂ scm ¼ 1
N�1

XN
n ¼ 1

ðxn�xÞðxn�xÞ> ¼ 1
N�1

X IN�
1
N
1N1

>
N

� �
X> ; ð5Þ

where xARC is the sample mean vector x ¼ 1
N

PN
n ¼ 1 xn. In the

matrix notation, IN is the N � N identity matrix and 1N is the
vector ½1;…;1�. The SCM is often normalized [67] as:

Σ̂nscm ¼ C
N

XN
n ¼ 1

ðxn�xÞðxn�xÞ>
σ2
xn

; ð6Þ

with the inter-channel variance at time ndefined as σ2
xn ¼

ðxn�xÞ> ðxn�xÞ. Other normalization techniques could be used.
This estimation is fast and computationally simple. However

when C �N, the SCM is not a good estimator of the true covar-
iance. In the case C4N, the SCM is not even full rank.

3.2.2. Shrinkage covariance matrix estimators
To overcome the shortcomings of SCM, the shrinkage estima-

tors have been developed as a weighted combination of the SCM
and a target covariance matrix, which is often chosen to be close to
the identity matrix, i.e. resulting from almost independent vari-
ables of unit variance.

Σ̂ shrink ¼ κΓþð1�κÞΣ̂ scm; ð7Þ
where 0rκo1. This estimator provides a regularized covariance
that outperforms the empirical Σ̂ scm for small sample size, that is
C �N. The shrinkage estimator has the same eigenvectors as the
SCM, but the extreme eigenvalues are modified i.e. the estimator is
shrunk or elongated toward the average.

The different shrinkage estimators differ in their definition of
the target covariance matrix Γ. Ledoit and Wolf [68] (Σ̂ shrink_ledoit

in Fig. 1) have proposed Γ ¼ vIC , with v¼ TrðΣ̂ scmÞ. Blankertz
[69] (Σ̂ shrink_blank) defines Γalso as vIC but with v¼ TrðΣ̂ scmÞ

C . Schäfer
ðΣ̂ shrink_schaf Þ proposes several ways of defining Γdepending on the
observed Σ̂ scm [70].
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3.2.3. Fixed point covariance matrix estimator
The Fixed Point Covariance Matrix [71] is based on the max-

imum likelihood estimator ℓ̂ which is a solution to the following
equation:

Σ̂ fp ¼ ℓ̂ ¼ C
N

XN
n ¼ 1

ðxn�xÞðxn�xÞ>

ðxn�xÞ> ℓ̂�1ðxn�xÞ

 !
: ð8Þ

As there is no closed form expression to Eq. (8), it can be written as
a function of ℓ̂ : gðℓ̂Þ ¼ Σ̂ fp. g admits a single fixed point ℓ̂

n
, where

gðℓ̂nÞ ¼ ℓ̂
n
, which is a solution to Eq. (8). Using ℓ̂0≔Σ̂nscm as the

initial value of ℓ̂, it is solved recursively as ℓ̂t⟶
t-1

ℓ̂
n
.

Inp

Inp

Inp

Ou
1:
2:
3:
4:
5:

6:

7:

8:

9:
10:
11:
12:
13:
4. Online adaptation of the Riemannian classifier

Concerning Riemannian classification of SSVEP, the offline
methodology is explained in [25]. In this paper, we propose an
online classifier for SSVEP, composed of an offline training phase
and an online and asynchronous test phase. This analysis is per-
formed for each subject independently.

4.1. Offline Riemannian classification

The proposed classifier relies on the Minimum Distance to
Riemannian Mean (MDRM) introduced in [55] and extended in
[25,72] for possible offline applications on SSVEP signals. Let us
consider an experimental SSVEP setup with F stimulus blinking at
F different frequencies. It is a multiclass classification with K ¼ F
þ1 classes: one class per stimulus and one resting state class. The
covariance matrices are estimated from a modified version of the
input signal X:

XARC�N-

Xfreq1

⋮
XfreqF

2
64

3
75ARFC�N ; ð9Þ

where Xfreqf
is the input signal X band-pass filtered around fre-

quency freqf , f ¼ 1;…; F . Thus the resulting covariance matrix Σ̂
belongs to MFC . Henceforth, all EEG signals will be considered as
filtered and modified by Eq. (9).

From I labelled training trials Xif gIi ¼ 1 recorded per subject, K
centers of class ΣðkÞ

μ are estimated using Algorithm 1. When an
unlabelled test trial Y is given, it is classified as belonging to the
class whose center ΣðkÞ

μ is the closest to the trial's covariance
matrix (Algorithm 2, step 2).

Algorithm 1. Offine estimation of Riemannian centers of classes.
Inp
Inp

Ou

1:
2:

3:
4:

Inp

Inp
Ou

1:

2:
uts: XiARFC�N , for i¼ 1;…; I, a set of labelled trials.
uts: I ðkÞ, a set of indices of trials belonging to class k.

tput: ΣðkÞ
μ , k¼ 1;…;K , centers of classes.

Compute covariance matrices Σ̂ i of Xi

for k¼1 to K do

ΣðkÞ
μ ¼ μðΣ̂ i : iAI ðkÞÞ, Eq. (4)

end

return ΣðkÞ
μ
5:

Algorithm 2. Minimum distance to Riemannian mean.
uts: ΣðkÞ
μ , K centers of classes from Algorithm 1.

ut: YARFC�N , an unlabelled test trial.
tput: kn, the predicted label of Y .

Compute covariance matrix Σ̂ of Y

kn ¼ arg minkδðΣ̂ ;ΣðkÞ
μ Þ
return kn
3:

4.2. Curve-based online classification

In offline synchronous BCI paradigm, cue onset are used as
reference for the localization of a brain response, e.g. an evoked
potential. Nonetheless most of the BCI applications are online and
asynchronous; cue onsets are not known, thus designing online
version of BCI algorithms is not a trivial task. The approach
introduced here identifies a period (i.e. time interval) in the online
EEG χARFC�N , where N is the number of recorded samples,
associated with a high probability (above threshold) of observing
an SSVEP at a specific frequency, as illustrated in Algorithm 3.

Algorithm 3. Curve-based online classification.
uts: hyper-parameters w;Δn;D; and ϑ.

uts: ΣðkÞ
μ , k¼ 1;…;K , centers of classes from Algorithm 1

(offline training).
uts: Online EEG recording χðnÞ.
tput: ~kðnÞ, online predicted class.
d¼ 1
for n¼w to N step Δn
Epoch Xd, Eq. (10), and classify it with Algorithm 2
if dZD
Find the most recurrent class in K¼ knjAJ ðdÞ:

k ¼ arg maxkρðkÞ, Eq. (11)
if ρðkÞ4ϑ

Compute ~δk , Eq. (12)

if ~δk o0

return ~k ¼ k
end
end

end
d¼ dþ1

end
14:

To locate this interval, we focus on the last D recorded EEG
overlapping epochs XjARFC�w� �

jAJ ðdÞ, with the set of indices
J ðdÞ ¼ d�Dþ1;…; d�1; d; where d is the index of the current
epoch Xd in the online recording χðnÞ. Epochs have size w, and the
interval between two consecutive epochs is Δn, with w4Δn:

Xd ¼ χðn�w;…;nÞ: ð10Þ
To obtain the first D epochs XjAJ ðdÞ, at least wþðD�1ÞΔn samples
of χ should be recorded (step 4).

The classification outputs knjAJ ðdÞ obtained in step 3 by applying
Algorithm 2 on XjAJ ðdÞ are stored in a vector K, which always
contains the latest D classification outputs. The class that occurs
the most in K (step 5), with an occurrence probability ρðkÞ above a
defined threshold ϑ, is considered to be the class, denoted k, of the
ongoing EEG recording χðnÞ. The vector ρ is defined as:

ρðkÞ ¼#fknjAJ ðdÞ ¼ kg
D

; for k¼ 1;…;K; ð11Þ

with k ¼ arg maxk ρðkÞ; then ρðkÞ is compared to the threshold ϑ.
If ϑ is not reached within the last D epochs, the classification
output is held back, and the sliding process continues until ϑ is
reached. In the last D epochs, once a class k has been identified, a
curve direction criterion is introduced to enforce the robustness of
the result. For class k to be validated, this criterion requires that
the direction taken by the displacement of covariance matrices
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Σ̂ jAJ ðdÞ be toward the center of class ΣðkÞ
μ . Hence ~δk , the sum of

gradients (i.e. differentials) of the curve made by distances from

Σ̂ jAJ ðdÞ to ΣðkÞ
μ should be negative (step 8):

~δk ¼
X

jAJ ðdÞ

Δδk ðjÞ
Δj

¼
Xd

j ¼ d�Dþ2

δk ðjÞ�δk ðj�1Þo0 with

δk ðjÞ ¼
δðΣ̂ j;Σ

ðkÞ
μ ÞPK

k ¼ 1 δðΣ̂ j;Σ
ðkÞ
μ Þ

: ð12Þ

The occurrence criterion is inspired by the dynamic stopping of
[31]; there is no fixed trial length for classification. The occurrence
criterion ensures that the detected user intention is unaffected by
any short time disturbances due to noise or subject's inattention,
as presented in Algorithm 3. This approach offers a good com-
promise to obtain robust results within a short and flexible time.

The curve direction criterion solves both the problems of
latency in the EEG synchronization and of the delays inserted by
the EEG epochs processing. Indeed, some EEG epochs gather sig-
nals from different classes and might be wrongfully classified if the
decision is solely based on the distance with the center of the
class. This situation and the effect of the curve direction criterion
are well shown in Section 5.4. Ensuring that the covariance
matrices are displaced toward the center of the detected class
provides a guarantee that it matches with the current EEG state.
Inversely, if the direction of the curve is moving away from the
center of the detected class, it might indicate that there has been a
change in the EEG state that has not been detected.

Algorithm 3 has 4 hyperparameters: w;Δn;D, and ϑ. The values
of w;D, and ϑ are set through cross validation and are given in
Section 5.4. Although a large window size w is expected to
increase the classification accuracy, it increases the response time,
thus reducing the time resolution, and extends the overlap
between different EEG states. The step size Δn should be set to a
minimum value to allow a maximum number of overlapping
epochs (D) within a short time. However, it should be large enough
to avoid too many calculations within a time interval with small or
inexistent changes in EEG states. If the number of epoch D is too
small, the classification will be sensitive to non-intentional and
abrupt changes in the EEG. A too large D will increase the
momentum and reinforce the influence of the past EEG signals. It
should also be mentioned that both the occurrence and the curve
direction criteria cannot have a significant impact if the value of D
is too small. The probability threshold parameter ϑ acts like a
rejection parameter: high ϑ values correspond to a high
rejection rate.

4.3. Outliers removal with Riemannian potato

Outliers in the training data might affect the Riemannian mean
of classes in the MDRM classification scheme. To alleviate this
effect, an approach called the Riemannian potato, introduced in
[56], is exploited. In this approach, all trials are represented by
their covariance matrices Σ i. A reference covariance matrix is
estimated, e.g. Riemannian mean of all trials Σμ. The Riemannian
distances δi between each Σ i and Σμ are computed. Any trial that
lies too far, i.e. beyond a certain threshold, from the reference
matrix Σμ in terms of Riemannian distance is rejected. In [56], the
distance z-score thresholding is defined as:

zðδiÞ ¼
δi�μ
σ

4zth ð13Þ

where μ and σ are respectively the mean and standard deviation of
distances δi

� �I
i ¼ 1. In other words, any trial Σ i whose z-score zðδiÞ

is larger than the threshold zth ¼ 2:5 is rejected.
In this work, we propose a slightly different application of the
Riemannian potato where the outliers are removed per class.
Hence for K class, K Riemannian potatoes are defined

Σk
μ;μ

k;σk
n oK

k ¼ 1
. Since Riemannian distances to geometric mean

do not have a Gaussian distribution, we make use of the geometric
mean for μ, the geometric standard deviation for σ and the geo-
metric z-score. They are defined as follows [72]:

μk ¼ exp
1
I

X
i

lnðδki Þ
 !

σk ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
I

X
i

ln δki =μk
� 	� 	2s !

zðδki Þ ¼
ln δki =μ

k
� 	
lnðσkÞ : ð14Þ

Through cross-validation, the z-score threshold is set to zth ¼ 2:2.
Moreover, outliers are removed iteratively. Each time outliers

are rejected, a new center of class is computed and used as
reference for the next iteration. Iterations continue until con-
vergence, i.e. no more outlier found.
5. Experimental validation

Covariance matrix estimators, Algorithms 2 and 3 are applied
to SSVEP signals for offline and online analysis. This section pre-
sents the analysis and results obtained.

5.1. Data description

The signals are recorded from 12 subjects during an SSVEP
experiment. EEG are measured on C ¼ 8 channels: OZ, O1, O2, POZ,
PO3, PO4, PO7, and PO8. The ground and the reference electrodes
were placed respectively on FZ and the right hear mastoid
respectively. The acquisition rate is Ts ¼ 256 Hz on a gTec MobiLab
Amp (gTec, Graz, Austria). The subjects are presented with F ¼ 3
visual target stimuli blinking respectively at freq¼ 13 Hz; 17 Hz
and 21 Hz. It is a K ¼ 4 classes BCI setup made of the F ¼ 3 stimulus
classes and one resting class (no-SSVEP). In a session, which lasts
5 min, 32 trials are recorded: 8 for each visual stimulus and 8 for
the resting class. The number of sessions recorded per subject
varies from 2 to 5. Thus the longest EEG recorded for a single
subject is 25 min or 160 trials. The trial length is 6 s, that is N¼ 6�
Ts ¼ 1536 samples. Since data are rearranged as detailed in (9),
trials XARFC�N , where FC ¼ 24 corresponding to 8 channel times
3 stimulus frequencies. For each subject, a test set is made of 32
trials whereas the remaining trials (which might vary from 32 to
128) make up for the training set.

5.2. Covariance estimators comparison

In this section, the effectiveness of covariance matrix estima-
tors is evaluated for SSVEP signals. The evaluation is done in terms
of classification accuracy and integrated discrimination improve-
ment (IDI), obtained by each estimator (see Section 3.2) with
respect to SCM estimator while using the offline MDRM classifier.
The different conditioning of covariance matrices are also
investigated.

A bootstrapping with 1000 replications is performed to assess
the performances of each estimator. Estimators are compared on
10 trial lengths tAf0:5;1:0;…;5:0g s, as these are known to affect
the estimators performance. Here NAf128;256;…;1280g is com-
puted as N¼ t � Ts.

Fig. 1 shows the classification accuracies of each estimator
computed across all subjects. Even if the error bars show an
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important inter-subject variability, the increase in the accuracy can
be attributed to the fact that the relevant patterns in EEG accu-
mulate with the trial length, producing better estimation of the
covariance matrices. This is known to be particularly true for the
SCM estimator and it could be seen in Fig. 1. It appears that
shrinkage estimators (especially Ledoit and Schäfer) are less
affected by the reduction of epoch sizes than the other estimators.
This is a direct consequence of the regularization between the
sample covariance matrices and the targeted (expected) covar-
iance matrix of independent variables.

For computational purposes, it is important to look at the
matrix conditioning. Fig. 2 shows the ratio C between the largest
and smallest eigenvalues: in well-conditioned matrices, C is small.
Shrinkage estimators offer better conditioned matrices whereas
the SCM, NSCM, and Fixed Point matrices are ill-conditioned
below 2 s of trial length, and may result in singular matrices.

In Fig. 2b, the Integrated Discrimination Improvement (IDI), as
defined in [73], is computed for the different estimators and trial
lengths. The SCM is used as a reference for improvement, as this is
the most popular estimator in the literature. Negative IDI means a
deterioration in the method discrimination ability. It is clear that
shrinkage estimators increase the discrimination power of the
classifier. However, despite being more complex than the SCM, the
Fig. 2. (a) Covariance matrices condition expressed as the ratio C between largest
and smallest eigenvalues for the different covariance estimators. The comparison is
done for increasing EEG trial length. (b) Integrated discrimination improvement
brought to the classification task by various estimators along varying trail length.
The indicated IDI values are multiplied by 102. Σ̂ scm is used as a baseline.
NSCM and the Fixed Point estimators decrease the discrimination
ability of classifiers. From Figs. 1 and 2b, it is apparent that the
difference in performance between the SCM and shrinkage esti-
mators reduces as the trial length increases. The simplicity of the
SCM plays a favorable role: it is an attractive method for longer
trials. The p-values under the hypothesis that there is no
improvement (i.e. IDI¼0) from one estimator to another are all
inferior to 10�47, (po10�3 indicating a statistically significant
discriminatory improvement); hence the improvement is sig-
nificant. It should be noted that the estimation of covariance
matrices is a trade-off between the quality of the estimate and the
computation time required; this should be considered for real-
time processing.

5.3. Effect of outliers on center estimations

Outliers can affect the offline training of the K centers of class
ΣðkÞ
μ by Algorithm 1, which is crucial for the evaluation phase and

online application. Fig. 3 shows representations of training cov-
ariance matrices Σ i in the tangent space ðΘiÞ, projected at the
mean of all training trials, for the subjects with the lowest (Fig. 3a
and b) and the highest (Fig. 3c and d) BCI performance. To obtain
this visualization, the first two principal components of a PCA
applied on Θi

� �I
i ¼ 1 are selected. In Fig. 3b and d, the Riemannian

potato presented in Section 4.3 is applied; outliers in each class are
removed. The interest of using a Riemannian potato is well seen in
Fig. 3a and b. In Fig. 3a, the outliers are so distant from the rest of
the class matrices that the center of class is stretched away.
Applying a Riemannian potato removes the outliers, and the
center of class is better estimated (Fig. 3b).

When training trials are not noisy, their covariance matrices are
compact around their Riemannian mean. In this case the removal
of outliers by the Riemannian potato does not influence, at least
not significantly, the Riemannian mean. This is the case in Fig. 3c
and d. Thus, applying the Riemannian potato is crucial for noisy
data and will have a limited effect on clean data. The impact of the
Riemannian potato on the classification accuracy is discussed in
Section 5.4.

5.4. Classification results and analysis

In this section, the performance of the proposed method is
presented. First, the performance of the MDRM approach in an
offline setup is analyzed, then the results of the online algorithm
are presented. In the offline analysis, the relevance of identifying
the latency between cue onset and SSVEP response is shown. The
results of the MDRM approach are compared to two state-of-the-
art methods [20,44]. The online evaluation is divided into two
parts: in the first one the algorithm discriminates between K ¼ F
¼ 3 SSVEP classes (i.e. 13, 17 and 21 Hz) and in the second one is
applied on K ¼ 4 classes, i.e. the F ¼ 3 SSVEP class and the
resting class.

5.4.1. Offline analysis
A close inspection of the filtered signals shows that almost all

signals are synchronized with the trial frequency 2 s after cue
onset τ0 ¼ 0, as shown in Fig. 4. This delay is mainly due to pro-
tocol design and user specific cognitive processes. The protocol is
aimed to provide an asynchronous setup close to real application.
The user are not required to look at a fixation point or to directly
gaze toward the target, as in [74,44], during inter-trial periods.
This is a tentative explanation for the higher delay observed in our
study and it is consistent with literature observations [75,76]. In
fact, before τ0þ2 s, for some users the signal could still be syn-
chronized with the previous trial frequencies. An important



Fig. 3. Scatter plot of covariance matrices for all trials mapped on the tangent space. The distance between each trial covariance matrix Σi and its Riemannian mean class ΣðkÞ
μ

is shown as connection line. The black/thick star represents the Riemannian mean of all trials. Matrices of resting class, 13Hz class, 21Hz class, and 17Hz class are represented
with starts in black, grey, dark grey, and light grey respectively. Subject with lowest BCI performance, (3a) before and (3b) after Riemannian potato filtering. Subject with
highest BCI performance, (3c) before and (3d) after Riemannian potato filtering.

Fig. 4. Signal amplitude at each stimulus frequency, showing synchronization of EEG with respect to time (seconds). The raw signal of the trial measured on Oz is band
filtered using a Butterworth of order 8 at each stimulus frequency and the resulting signals are shown in blue (light grey), green (grey), and red (dark grey) for the same
signal filtered respectively at 13, 17, and 21 Hz. The cue onset τ0 at time 0 on the x-axis is shown with a vertical discontinued line. 4 trials are shown, one for each class.
Signals are from the subjects with the highest (4a) and with the lowest BCI performance (4b). (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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increase in average classification accuracy (almost 10%) could be
obtained by taking the trial from 2 s after cue onset. It is therefore
crucial to consider the latency between the cue onset of trial and
the actual synchronization of SSVEP at stimulus frequency. Thus in
the offline synchronous processing, the confident window for
classification is set 2 s after the cue onset ðτ0þ2Þ.

Table 1 shows the offline classification accuracies for each
subject obtained by the application of the MDRM as described in



Table 1
Offline performance in terms of accuracy and ITR. Five methods are compared: (1) CCA approach introduced by Lin et al. [20], (2) CCA approach introduced by Nakanishi et al.
[44], (3) MDRM described in Section 4.1 (Algorithm 2), (4) MDRMwhere processed epochs are taken 2 s from the beginning of the trial, and (5) MDRM-Potato, where outliers
are removed using the Riemannian potato approach described in Section 4.3.

Offline algorithms

Lin et al. [20] Nakanishi et al. [44] MDRM ðτ0Þ MDRM MDRM-Potato

acc (%) itr (bpm) acc (%) itr (bpm) acc (%) itr (bpm) acc (%) itr (bpm) acc (%) itr (bpm)

S1 91.7 16.3 84.7 12.2 67.6 3.5 84.7 12.2 84.5 12.1
S2 45.8 0.7 47.9 1.0 66.0 3.2 79.4 9.7 79.3 9.6
S3 100.0 23.8 93.0 17.2 90.2 10.3 99.3 22.7 99.3 22.7
S4 97.9 21.3 96.6 20.0 78.3 6.1 89.7 15.0 89.7 15.0
S5 83.3 11.5 82.2 11.0 76.0 5.5 89.5 14.9 89.4 14.9
S6 77.1 8.7 76.2 8.3 72.2 4.5 87.2 13.6 87.2 13.6
S7 98.6 22.0 96.7 20.1 90.0 10.2 99.8 23.5 99.8 23.4
S8 97.9 21.3 65.5 4.7 90.4 10.3 99.7 23.2 99.7 23.2
S9 91.7 16.3 77.9 9.0 64.0 2.8 85.8 12.8 85.7 12.7
S10 80.2 10.0 76.9 8.6 79.2 6.4 93.1 17.3 93.0 17.2
S11 89.6 15.0 82.7 11.2 54.8 1.4 78.2 9.2 78.2 9.1
S12 95.8 19.4 93.8 17.8 82.3 7.4 98.6 22.0 98.6 22.0

Mean 87.5715.1 15.576.8 81.2714.1 11.876.0 75.9711.4 6.073.1 90.477.8 16.375.3 90.477.8 16.375.3

Fig. 5. Evaluation of the online algorithm parameters. 5a shows the decrease of the average classification error over all subjects during the successive epochs after the
beginning of the trial. 5b is an example taken from the subject with the best performance showing how the probability of the actual class varies with epoch position from
beginning of trial. The groundtruth class probability is represented with a thick-and-star line, while other classes probability lines are thin-and-diamond. 5c shows the
variation of the average classification error for different probability threshold ð0rϑo1Þ and its influence on the classifier output (Algorithm 3 step 6). 5d shows how the
average online performance varies with respect to the epoch size (w). It shows both the classification accuracy (left y-axis, black curve) and the ITR (right y-axis, grey curve).
In 5a, 5c, and 5d, the bars represent the error of the mean i.e. standard deviation divided by the square root of n�1, n¼ number of samples.
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Algorithm 2, with the epochs taken at τ0þ2. Column MDRM ðτ0Þ
shows the results obtained when the epochs are taken from cue
onset. The Riemannian potato technique presented in Section 4.3
was applied for outliers removal (MDRM-Potato). The performance
of the MDRM approach is compared to two CCA-based state-of-
the-art methods proposed by Lin et al. [20] and Nakanishi et al.



Fig. 6. Covariance matrices trajectory during a 4-class SSVEP online recording. The
circles represent class centers. The triangles mark the beginning in the experiment
of a new trial whose class is indicated by the triangle's color. Matrices of resting
class, 13Hz class, 21Hz class, and 17Hz class are represented in black, grey, dark
grey, and light grey respectively. 6a shows the first 7 trials. The first 3 trials are from
the resting class, the remaining are respectively class 13 Hz, 17 Hz, and 21 Hz. 6b
shows the entire recording. Data are taken from the subject with the highest BCI
performance.

Table 2
Classification performances (accuracy in %, delay before valid and confident classificati

column indicates the subjects. The following three columns show the results obtained w
taken to be the valid class. The next three columns contain the results of the complete o
removed in the training phase using the Riemannian potato technique described in Sec

Online ðρðkÞ4ϑÞ Online (full Algori

acc (%) delay (s) itr (bpm) acc (%)

S1 68.8 0.8 26.3 77.1
S2 64.6 0.7 21.6 77.1
S3 81.2 0.7 54.3 95.8
S4 83.3 0.8 53.2 91.7
S5 72.9 0.7 37.1 83.3
S6 66.7 0.7 24.5 72.9
S7 93.1 0.7 89.6 98.6
S8 87.5 0.6 76.2 100.0
S9 60.4 0.7 15.7 77.1
S10 64.6 0.7 21.5 87.5
S11 54.2 0.7 9.9 87.5
S12 52.5 0.7 8.0 99.2

Mean 70.8713 0.770.0 36.5726.3 87.379.8
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[44] respectively. In the implementation of these methods, the
epochs are also taken from τ0þ2.

The MDRM approach outperforms both CCA-based method
with an average classification accuracy of 90.477.8% and ITR of
16.375.3 bits/min. Lin et al. rank second with 87.5715.1% and
15:576:8 bits=min. The method proposed by Nakanishi et al.,
which could be expected to achieve better results as reported in
[44], only ranks third. This is mainly due to the fact that this
method requires information on the phase of the stimuli. In fact,
Nakanishi et al. use the average of all training trials belonging to a
unique class as reference signal in the CCA. When SSVEP trials
belonging to a unique trial are not in-phase, which is the case in
the current work, averaging them will cancel the signal.

Within the MDRM approach, it is shown that taking into account
the latency between the cue onset and the SSVEP response sig-
nificantly increases the classification performances: accuracy and ITR
rises from 75.9711.4% and 6.073.1 bits/min to 90.477.8% and
16:375:3 bits=min. In turn removing outliers with the Riemannian
potato does not bring significant change. This could be attributed to
the fact that the recording have been conducted in controlled envir-
onment, with small or little external noise.

5.4.2. Online analysis without resting class
In an online asynchronous experiment, there is no cue onset,

and the delay before SSVEP synchronization might differ from one
trial to another and from one subject to another. To locate the trust
EEG region for the classification, D and ϑ are set respectively to
5 and 0.7 through cross-validation. The performance of this online
setup are analyzed and Fig. 5 shows the results. From the analysis
shown in Fig. 5d, the epoch size is set to w¼ 2:6 s. The step size is
set to Δn¼ 0:2 s, that is a new epoch is classified every 0.2 s.

In Fig. 5a, the classification error is plotted against the epoch
index. It shows that the error decreases as epochs move from the
beginning of the trial. The error increases in the last epochs of the
trial, corresponding to the end of the SSVEP task. Fig. 5b details the
evolution of the probability for each class as epochs index
increases. It appears clearly that the class of the EEG trial (thick-
and-star line) has the largest probability only a few epochs after
the beginning of the trial. Moreover, one can see that this is an
increasing trend over the whole trial. Thus by setting an appro-
priate probability threshold ϑ, the actual class can be identified
with enough confidence. Fig. 5c shows the influence of the prob-
ability threshold ϑ on the classification error. The error is reduced
when the probability threshold ϑ is increased. Fig. 5d shows how
on in seconds, and ITR in bits/min) achieved using the online algorithm. The first

ithout the curve direction criterion (Algorithm 3 up to 6): by stopping at step 6, k is
nline algorithm. The last three columns report the results obtain when outliers are
tion 4.3.

thm 3) Online-Potato

delay (s) itr (bpm) acc (%) delay (s) itr (bpm)

1.1 27.9 77.1 1.1 27.9
1.2 26.8 77.1 1.2 26.8
1.0 73.0 95.8 1.0 73.0
1.0 58.6 95.8 1.0 69.2
1.0 42.5 83.3 1.0 42.5
1.1 24.3 72.9 1.1 24.3
0.9 87.0 98.6 0.9 86.8
0.9 95.9 100.0 0.9 95.9
1.2 27.6 77.1 1.2 27.6
1.1 45.3 87.5 1.1 45.3
1.3 38.9 87.5 1.3 38.9
1.2 71.7 99.2 1.2 71.8

1.170.1 51.6725.1 87.7710 1.170.1 52.5725.5



Table 3
This table summarizes the performance achieved with the online algorithm with resting class identification, as in Table 2.

Online ðρðkÞ4ϑÞ Online (full Algorithm3) Online-Potato

acc (%) delay (s) itr (bpm) acc (%) delay (s) itr (bpm) acc (%) delay (s) itr (bpm)

S1 67.2 0.7 37.6 71.4 1.1 32.4 71.4 1.1 32.4
S2 78.1 0.7 59.0 75.0 1.0 39.2 75.0 1.0 39.2
S3 89.1 0.8 85.2 89.1 1.0 67.6 89.1 1.0 67.6
S4 75.0 0.7 52.2 75.0 0.9 42.9 75.0 0.9 43.4
S5 71.9 0.7 46.7 70.3 1.1 31.0 70.3 1.1 31.0
S6 87.5 0.8 80.2 87.3 1.1 58.7 87.3 1.1 58.7
S7 84.4 0.7 76.3 85.4 1.0 62.5 88.5 1.0 69.1
S8 85.9 0.8 76.4 89.1 1.0 68.1 89.1 1.0 68.1
S9 67.2 0.7 37.2 75.0 1.0 39.6 76.6 1.1 40.3
S10 62.5 0.7 30.3 69.5 1.0 32.0 69.5 1.0 32.0
S11 59.4 0.8 23.5 68.8 1.1 29.1 68.8 1.1 29.1
S12 69.4 0.7 44.8 93.8 1.0 79.4 93.8 1.0 79.9

Mean 74.8710.2 0.770.0 54.1721.0 79.179.1 1.070.1 48.6717.6 79.579.3 1.070.1 49.2718.2

Fig. 7. (a) Confusion matrix for K¼4 classes with Online-Potato. (b): ROC curve indicating the influence of the ϑ parameter.
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the average online performance varies with respect to the epoch
size (w). Both the classification accuracy and the ITR are shown.
With short w values, the epoch size does not capture enough
feature for a correct classification, and with long w, the epoch
loses temporal resolution. The ITR increases with the classification
rate but drops sensibly after a peak value.

The observation of Fig. 6 provides a visualization of the prin-
ciple guiding the online implementation of Eq. (12). This figure
shows the trajectory on the tangent space taken by covariance
matrices during a 4-class SSVEP experiment, and how they are
classified epoch by epoch. It can be seen (encircled in Fig. 6a) that
a change in the SSVEP stimulus might not be detected instanta-
neously by the classifier. The trials are erroneously attributed with
confidence to the previous class. The proposed online algorithm,
described in Algorithm 3, mitigates this issue and increases the
classification accuracy as shown in Table 2. The “Online ðρðkÞ4ϑÞ”
column shows the results of the online algorithm without the
curve direction criterion (i.e., without steps 6–11), and “Online
(full Algorithm 3)” shows the improvement brought by this cri-
terion. The performances are in terms of average classification
accuracy (acc (%)), average time taken into the trial before classi-
fication (delay (s)), and the ITR (itr (bits/min)).

The curve direction criterion increases the rejection of epochs that
could be wrongly classified, it thus significantly increases the classifi-
cation accuracy of the online algorithm (70.8713% to 87.379.8%),
while increasing the delay (0.7–1.1 s) before classification. When
compared to the state-of-the-art offline MDRM, the online curve-
based classification yields better results in terms of ITR as the delay
before classification is much shorter in the latter than the trial length
used in the former; classification outputs are reached faster with the
online algorithm. Moreover, the online algorithm can be applied in
both synchronous and asynchronous paradigms, whereas the offline
algorithms are limited to synchronous paradigms which provide
strongly limited user interaction.

Last, the impact of the Riemannian potato is analyzed. A
bootstrapping with 50 replications was performed on the offline
data to assess the effect of applying the Riemannian potato. The
results show that for most subjects the results are unchanged
when the Riemannian potato is applied: due to the fact that data
are recorded in a controlled environment, most of them are thus
clean. It does however improve the results of few subjects. It was
then applied in the training phase of the online application, and a
similar observation is made. We can conclude that the Riemannian
potato can be used as a safety guard to ensure that the Riemannian
mean used in the MDRM classification scheme is not affected by
outliers, especially for BCI used in less controlled environment.

5.4.3. Online analysis with resting class
Using the MDRM approach it is possible to identify the resting

class. In fact, covariance matrices of signal recorded during resting
periods can be characterized with their own Riemannian mean. As
such, they can be identified as any other class using the MDRM
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approach. The state-of-the-art methods, Lin et al. [20] and Naka-
nishi et al. [44], are both based on CCA where a reference signal is
needed. These methods do not handle resting class, since there is
no reference signal for them. In this section, the performance of
the proposed approach including the identification of the resting
class is presented. Table 3 summarizes the classifier performance
in the same format as Table 2, in terms of classification accuracy,
delay before valid classification and ITR. Like in Table 2, the best
performance is achieved by the complete online algorithm pre-
ceded with outliers removal with the Riemannian potatoes (i.e.
Online-Potato). The identification of the resting class induces a
drop of the overall classification accuracy by 8.2%, and a drop of
ITR from 52.5725.5 to 49.2718.2.

The effect of the resting class is seen with more details in Fig. 7.
Fig. 7a shows the classification confusion matrix. There are few mis-
classifications between SSVEP classes compared to the misclassifica-
tions between the resting class and any SSVEP class: the largest per-
centages are located in the first row and the first column, apart from
the diagonal block. Fig. 7b displays a ROC curve showing how the
classifier performs in discriminating each class versus the others
depending on the value of the ϑ parameter. On this ROC curve, the
performance of the Online�Potato algorithm are indicated in terms of
False Positive Rate (FPR) and True Positive Rate (TPR).

Confirming the observation from the confusion matrix, the ROC
curve indicates that the resting is the most prone to false positive.
Despite the drop in performance, the identification of resting class
is crucial for online BCI setup, allowing the subject to use the
system at his own pace.
6. Conclusion

This work investigated the efficiency of Riemannian geometry
when dealing with covariance matrices as classification features. A
novel algorithm based on MDRM, enhanced by class probability
and the curve direction in the space of covariance EEG signals, was
introduced and applied on an SSVEP classification task for a 4-class
brain computer interface. Existing covariance matrix estimators
were investigated and their robustness was assessed on multi-
channel SSVEP signals to ensure that the obtained matrices are
accurate estimates of data covariance, are well conditioned, and
verify the positive-definiteness property. The Schäfer shrinkage
estimator was found to be the best as it yielded the highest clas-
sification accuracy with the MDRM algorithm.

The MDRM approach is first analyzed in a offline classification
setup. To prevent the effect of noisy signals on the MDRM
approach, outliers in the training set of are removed using a
modified version of the Riemannian potato. This approach is
compared to two CCA-based state-of-the-art methods. The results
show that offline MDRM achieves better classification perfor-
mances than any of the CCA-based methods.

In the online setup, the proposed online algorithm enhances
the stability of the BCI system, balancing between classification
speed and prediction accuracy. The evaluation of the classification
confidence over several epochs mitigates the short term pertur-
bations in the experimental conditions and the attentional varia-
tions of the subject. The curve direction overcomes the mis-
classification of EEG trials that are still synchronized with past
stimuli frequencies at classification time.

Unlike the CCA-based state-of-the-art methods considered in this
work, the proposed online algorithm is capable of identifying the
resting periods during an online EEG recording. These resting periods
are considered as an additional class in the classification task.

All these contributions help to pave the way towards BCI used
in non-controlled, assistive environment.
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