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Abstract

To enforce a widespread use of efficient and easy to use brain-computer interfaces (BCIs), the inter-subject robustness
should be increased and the number of electrodes should be reduced. These two key issues are addressed in this
contribution, proposing a novel method to identify subject-specific time-frequency characteristics with a minimal
number of electrodes. In this method, two alternative criteria, time-frequency discrimination factor (TFDF) and F score,
are proposed to evaluate the discriminative power of time-frequency regions. Distinct from classical measures (e.g.,
Fisher criterion, r2 coefficient), the TFDF is based on the neurophysiologic phenomena, on which the motor imagery
BCI paradigm relies, rather than only from statistics. F score is based on the popular Fisher’s discriminant and purely data
driven; however, it differs from traditional measures since it provides a simple and effective measure for quantifying
the discriminative power of a multi-dimensional feature vector. The proposed method is tested on BCI competition IV
datasets IIa and IIb for discriminating right and left hand motor imagery. Compared to state-of-the-art methods, our
method based on both criteria led to comparable or even better classification results, while using fewer electrodes (i.e.,
only two bipolar channels, C3 and C4). This work indicates that time-frequency optimization can not only improve the
classification performance but also contribute to reducing the number of electrodes required in motor imagery BCIs.

Keywords: Brain-computer interface; Electroencephalography; Time-frequency analysis; Electrode reduction; Feature
extraction

1 Introduction
After several decades of development, current brain-
computer interface (BCI) systems can now be driven
based on various types of brain signals obtained by
techniques such as electroencephalography (EEG) [1],
functional magnetic resonance imaging (fMRI) [2], near-
infrared spectroscopy (NIRS) [3], etc. Thanks to its low-
cost, non-invasivity, and high temporal resolution, the
scalp EEG is a popular technique for BCIs [1]. One typical
paradigm of EEG-based BCI is motor imagery BCI, which
classifies subject’s motor intention based on the spatial
difference of EEG patterns. The underlying physiological
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phenomenon is that motor imagery of a specific body part
(e.g., left hand) induces an event-related desynchroniza-
tion (ERD) and/or synchronization (ERS) in the μ and β

bands over the corresponding functional area in the sen-
sorimotor cortex [4]. Thus, the essential task of a motor
imagery BCI is to extract the task-relevant ERD/ERS pat-
terns from EEG signals for classifying subject’s motor
intentions.
However, poor signal-to-noise ratio (SNR) of raw EEG

signal and mixture of different EEG rhythms (e.g., α and
μ rhythms) make it difficult to extract ERD/ERS features
for BCI classification [5]. One popular solution is to apply
a data-driven spatial filtering technique, such as com-
mon spatial pattern (CSP) [6], on multi-channel (e.g. 64
or 128 channels) monopolar recording EEG data, which
can improve the SNR of signal and extract discrimina-
tive features from the mixture of signals, especially for
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two-class discriminations [7]. But such a multi-channel
setting inevitably reduces the portability and practicability
of BCIs, which represents a main drawback for end users.
Thus, bipolar recordings are recommended in portable

BCI systems to reduce the number of electrodes [8,9]. A
bipolar channel of EEG is obtained by subtracting two
monopolar EEG signals [10]. This acquisition improves
the SNR by eliminating shared artifacts between two
monopolar channels (for details, see [9]). Therefore, they
may achieve as good performances as usual multi-channel
monopolar settings, using only a few electrodes (i.e., two
or three pairs of active electrodes) placed around task-
relevant sensorimotor areas. The positions of electrodes
in bipolar recording can be optimized algorithmically or
using prior knowledge on the spatial location of brain
activity during motor imagery [9]. Typically, the bipolar
electrodes are placed on locations C3 and C4 of the inter-
national 10-20 system [11] (see Figure 1) for hand-related
motor imagery tasks since these places correspond to the
hand representation areas in the cerebral cortex [12].
However, ERD/ERS patterns are typically short-lasting

(half to few seconds) and their frequency range may vary
with subjects [13]. Thus, only optimizing the position
of electrodes may not be sufficient to achieve a good

Figure 1 Positions of C3 and C4. This figure shows positions of C3
and C4 (indicated by ellipses) according to the international 10-20
system [11].

classification, and a BCI system using bipolar recording
also requires more precise user-specific time-frequency
parameterization in the feature extraction step. To address
this problem, a number of approaches were proposed to
estimate time-frequency characteristics of motor imagery
EEG [13-16], but only a few were successfully applied to
bipolar recording data. Among those methods, the fil-
ter bank CSP (FBCSP) method seems to be the most
effective one, yielding the best BCI performances on BCI
competition datasets [17]. FBCSP was initially proposed
only for frequency band optimization and then extended
to include an optimal temporal selection process [14].
However, FBCSP-based methods involve feature selection
procedures based on mutual information, which require
tedious iterative steps that greatly increase their com-
plexity. Moreover, the latest version of FBSCP selects the
optimal time segment from only a few different options,
which did not yield better results on bipolar recording
data (BCI competition IV dataset IIb) compared to previ-
ous versions [14].
In this paper, we address the issue of time-frequency

optimization with only two bipolar channels (C3 and
C4) for the discrimination between right and left hand
motor imagery tasks. On the contrary to the coarse selec-
tion of the time segment in FBSCP, we propose to take
into account fine subject-specific time-frequency charac-
teristics for feature extraction. Moreover, our approach
is neither based on CSP algorithm nor combined with
complex algorithms, such as mutual information-based
algorithms, and employs less electrodes than CSP-based
methods. The strategy of subject-specific time-frequency
optimization builds on our preliminary work in [18]
and includes three steps: (1) the time-frequency domain
of the input bipolar channels is divided into a set of
overlapping regions with different time segments and
frequency bands, (2) the discriminative power of each
time-frequency region is measured, and (3) the optimal
time-frequency region is selected by finding the region
with the largest discriminative power. Once the optimal
time-frequency region for each subject is found, the clas-
sification is performed using a simple linear classifier, i.e.,
Fisher’s linear discriminant analysis (LDA). This classi-
fier has a very low computational cost and usually yields
good results for motor imagery BCIs [19]. Two novel
criteria are proposed for the evaluation step (2). One
is based on domain-specific knowledge of neurophysi-
ology and is called time-frequency discrimination factor
(TFDF), while the other is purely data driven and is named
F score. Different from classical criteria (e.g., Fisher cri-
terion, r2 coefficient) used for ranking one-dimensional
observations [20], the proposed criteria are more suitable
to quantify how informative a multi-dimensional feature
vector is for distinguishing two classes. The comparison
between these two criteria, as well as with state-of-the-art
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methods, is performed on a standard bipolar dataset (the
BCI competition IV IIb), and their contribution to elec-
trode reduction is evaluated on BCI Competition IV IIa
dataset.

2 Time-frequency optimization for classification
The EEG signals at C3 and C4 (see Figure 1) are decom-
posed into signal components first, in a series of overlap-
ping time-frequency regions (ωm × τn), m ∈ {1, , . . . ,M},
n ∈ {1, . . . ,N} with different frequency bands ωm =
[ fm, fm + F − 1] , fm+1 = fm + Fs (F is the bandwidth, Fs is
the frequency step), and time intervals τn = [tn, tn + T −
1] , tm+1 = tm + Ts (T is the interval width, Ts is the time
step). The aim of time-frequency optimization is to find a
time-frequency region that contains the most discrimina-
tive information, so-called the region of interest (ROI), for
a given subject. The selected ROI is then used to extract
key features for classification.
A measure evaluating the discriminative power of a

region should be defined as an increasing function of the
discriminative power. This criterion is denoted S. The best
ROI (ω∗ × τ ∗) is estimated by exhaustively searching the
largest value of S(ωm, τn) among all regions:

S(ω∗, τ ∗)=max{S(ωm, τn) |m∈{1, 2, . . . ,M} , n ∈ {1, 2, . . . ,N}}
(1)

The exhaustive search is reasonable with the chosen val-
ues of M and N (1,224 regions in our experiments, as
detailed in the next section).
The authors in [20] have reviewed the popular mea-

sures, such as Fisher criterion, t-scaled difference, r2 coef-
ficient, which are often used in feature selection for BCI
systems. However, those measures are typically used for
quantifying the discriminative power of one-dimensional
feature and are not appropriate for multi-dimensional
feature vector evaluation, in particular for our time-
frequency optimization. Thus, two novel criteria, TFDF
and F score, are designed to address this problem. Dif-
ferent from those statistical measures often used in BCIs,
TFDF is based on neurophysiological background rather
than only statistical distribution of features. F score is
based on the popular Fisher’s discriminant, which can be
considered as an extended version of Fisher criterion, but
more suitable for estimating the discriminative power of a
multi-dimensional feature vector.

2.1 Time-frequency discrimination factor
The proposed criterion for finding the ROI is based on
two neurophysiological principles:

1. Motor imagery of one hand typically generates ERD
in the contralateral side of brain, so it is possible to
discriminate between the imaginations of right and
left hand movements by using bipolar electrodes

placed over corresponding hand representation
areas, i.e., C3 and C4 [12]. To achieve good
classification performances, (1) the pattern difference
between imaginations of left and right hand
movements should exist in the selected
time-frequency region (ROI) at each channel, and (2)
the difference between C3 and C4 should also exist in
the ROI for both motor imageries.

2. Electrophysiological studies have emphasized the
role of volume conduction, so that neural activities in
one area are distributed on multiple electrode
positions [21]. Due to this effect, the signals of some
undesirable EEG rhythms (i.e., common components)
are also recorded and mixed with the specific signals
of different hand movements, which may deteriorate
the classification results [7]. Although bipolar
recording can eliminate this effect to some extent, it
cannot completely remove all of those common
components. Thus, we should consider the influence
of those common components in selecting the ROI.

In BCI signal classification, ERD patterns are often esti-
mated by the logarithm of the variance of band-pass
filtered EEG in a specific time interval, the so-called log-
arithmic band power (BP) estimator [22]. The variance of
EEG segment in the time domain for each trial i and each
channel e is computed as:

ve(i) = 1
T − 1

tn+T−1∑
j=tn

(
xij − x̄i

)2 (2)

where xij is the jth sample in the time interval τn = [tn, tn+
T−1] of the ith trial of theωm-bandpass filtered EEG data,
and x̄i is the mean value over all samples of filtered EEG in
the time interval τn of the ith trial. Then, the band power
feature in each channel is defined as:

BPe(i) = log(ve(i)) (3)

The logarithm is applied to make the distribution of BP
features approximately normal, so as to feed the linear
classifier, Fisher’s LDA.
According to this definition, the overall BP, B̃Pχ

e , for
each class (χ = L, R) and each channel (e = C3, C4) is
defined by taking the logarithm of themedian or themean
of data variances over trials [18]. Here, we use the median
value because it is more robust to outliers. The overall BP
then writes:

B̃Pχ
e = log

(
ṽχ
e
)

(4)

where ṽχ
e denotes the median of data variances ve(i) over

all trials for class χ .
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Thus, the pattern difference (PDe) between two con-
ditions (left vs. right hand) in a time-frequency region
(ωm × τn) in each channel is expressed as:

PDC3(ωm, τn) = B̃PLC3(ωm, τn) − B̃PRC3(ωm, τn) (5)

PDC4(ωm, τn) = B̃PLC4(ωm, τn) − B̃PRC4(ωm, τn) (6)

The sign of PDe reflects the tendency (increase or
decrease) of the BP modulation from condition L (imag-
ination of left hand movement) to condition R (imagina-
tion of right hand movement) in channel e.
Imagination of left and right hand movements usu-

ally elicit contrary contralateral dominance of ERD
at channels C3 and C4 [12,23]. These task-related
spatial discriminative modulations can be measured
by |PDC3(ωm, τn) − PDC4(ωm, τn)|, called discriminative
force Fd(ωm, τn), to estimate this positive contribution in a
time-frequency region (ωm × τn). A large Fd(ωm, τn) indi-
cates that large discriminative modulations occur in the
time-frequency region (ωm × τn).
On the other hand, it has been proven that other sources

(non-target motor imagery sources) will generate signals
(e.g., α-rhythm from the visual cortex) in the same fre-
quency as ERD during the motor imagery (for details, see
[7,9]). For example, subjects are looking at the screen dur-
ing both motor imagery tasks, which can generate visually
related common modulations at C3 and C4. Although
these sources are not near C3 and C4, they will conduct
through scalp and be mixed with discriminative compo-
nents because of the volume conduction [24]. Meanwhile,
neural activities at C3 and C4 will also affect the contralat-
eral channels due to volume conduction. These are what
we call common components. They overlap with the dis-
criminative modulations, which present a negative effect
on the classification. Thus, we define the blurring force
Fb(ωm, τn) = |PDC3(ωm, τn) + PDC4(ωm, τn)| to estimate
those common modulations in the time-frequency region
(ωm × τn). A small Fb(ωm, τn) indicates that small com-
mon modulations happen in the time-frequency region
(ωm × τn).
Finally, a TFDF(ωm, τn) is defined as the difference

between Fd(ωm, τn) and Fb(ωm, τn) to evaluate the over-
all contribution of the data in the time-frequency area
(ωm, τn) from electrodes C3 and C4 for two-class discrim-
ination:
TFDF(ωm, τn) = Fd(ωm, τn) − Fb(ωm, τn)

= |PDC3(ωm, τn) − PDC4(ωm, τn)|
− |PDC3(ωm, τn) + PDC4(ωm, τn)|

(7)

An ideal time-frequency region for classification should
have large discriminative modulations (large Fd(ωm, τn))
and small commonmodulations (small Fb(ωm, τn)), so the
ROI (ω∗ ×τ ∗) is estimated by seeking the maximum value

of TFDF(ωm, τn) among the givenM × N time-frequency
regions:

TFDF(ω∗, τ ∗) = max
{
TFDF(ωm, τn) | m ∈ {1, 2, . . . ,M} ,

n ∈ {1, 2, . . . ,N} }
(8)

To examine the behavior of TFDF, we provide its pos-
sible values in Table 1 for different cases and present in
Figure 2 the ERD/ERS maps and the corresponding TFDF
values of 4 Hz, 2-s wide time-frequency regions for an
example from a standard dataset. FromTable 1, we can see
that (1) the values of TFDF are larger for PDC3 · PDC4 < 0
than for PDC3 · PDC4 ≥ 0, and (2) the values of TFDF are
determined by min {|PDC3| , |PDC4|}. Thus, this method
tends to seek the time-frequency region where PDC3 and
PDC4 have different signs and large absolute values.
In the ROI, the right hand motor imagery elicits more

significant ERD at C3 compared to the left hand motor
imagery, which leads to B̃PLC3(ω∗, τ ∗) > B̃PRC3(ω∗, τ ∗),
while left hand motor imagery generates more significant
ERD at C4 compared to the right hand motor imagery, so
we have B̃PLC4(ω∗, τ ∗) < B̃PRC4(ω∗, τ ∗). Thus,

PDC3(ω
∗, τ ∗) = B̃PLC3(ω∗, τ ∗) − B̃PRC3(ω∗, τ ∗) > 0 (9)

PDC4(ω
∗, τ ∗) = B̃PLC4(ω∗, τ ∗)−B̃PRC4(ω∗, τ ∗) < 0 (10)

These different signs of PDC3 and PDC4 reflect the spa-
tial difference of significant ERD between right and left
hand motor imageries. On the other hand, large absolute
values of PDe represent the large magnitudes of task-
related (i.e., right vs. left hand) difference at channel e
(i.e., C3, C4), which also contributes to the discrimination
between two tasks.
In the literature, a broad frequency band (i.e., 8 to 30Hz)

EEG segments (0.5 to 2.5 s after cue on-set) was typically
chosen for feature extraction because it covers theμ and β

bands and usually generates good classification results [6].
For this data example, the frequency band (23 to 27 Hz)
of the ROI selected by TFDF is in the range of β band (18
to 25 Hz) but does not completely cover it, and the time
segment (1.5 to 3.5 s) is different from the typically used
one.
Figure 3A,B shows the distributions of the BP fea-

tures extracted from the time-frequency region with the

Table 1 Values of TFDF for different pairs of PDC3 and PDC4

|PDC3| > |PDC4| |PDC3| ≤ |PDC4|
PDC3 · PDC4 ≥ 0 TFDF = −2 |PDC4| TFDF = −2 |PDC3|
PDC3 · PDC4 < 0 TFDF = 2 |PDC4| TFDF = 2 |PDC3|
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Figure 2 ERD/ERS and TFDF values.Maps of ERD/ERS and TFDF values for a subject. (A) ERD/ERS maps of one example: time-frequency selection
was performed within the large rectangle (solid line). The small rectangle (dashed line) shows the time-frequency region with the largest TFDF
value. (B) TFDF values of the time-frequency regions with 4-Hz wide frequency bands and 2-s wide time segments. The largest value is marked out
by a small rectangle.

Figure 3 Distributions of BP features. This figure shows distributions of BP features extracted from different time-frequency regions for two
classes (circle represents left hand, asterisk represents right hand). (A) Distribution of BP features extracted from the time-frequency region with the
largest TFDF. (B) Distribution of BP features extracted from a time-frequency region (8 to 30 Hz, 0.5 to 2.5 s after cue on-set) in the μ band. (C)
Distribution of BP features extracted from the time-frequency region with the largest F score. (D) Distribution of BP features extracted from the
time-frequency region with the largest Euclidean distance. The line shows the best linear separation boundary in each case.
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largest TFDF and of the ones extracted from the rec-
ommended broad frequency band EEG segment in a
real data example. The linear separation boundary is
obtained by Fisher’s LDA in the figure. From the figure,
we can see that the BP features extracted from the
time-frequency region with the largest TFDF seem more
linearly separable than the ones extracted from the rec-
ommended broad frequency band EEG segment. The
comparison on classification results will be made in the
result section to assess the contribution of TFDF to
the discrimination between left and right hand motor
imageries.

2.2 A criterion based on Fisher’s discriminant
Fisher’s discriminant analysis (Fisher’s LDA) is a very
popular classification algorithm in BCI research [19]. It
projects high-dimensional data onto a direction and then
performs a linear classification in this one-dimensional
space. The optimal projection is found by maximizing the
separation between two classes. In a one-dimensional fea-
ture space, the separation between two classes L and R is
defined using the Fisher criterion [20]:

FC = (μL − μR)2

(σ L)2 + (σR)2
(11)

where μL and μR are the mean values of the feature over
all trials for classes L and R, respectively, and (σ L)2 and
(σR)2 are the trial-wise variances of the feature.
In feature selection, FC can be used to evaluate the dis-

criminative power of each single feature [20]. However, it
is not suitable to evaluate the discriminative power of a
group of features. Thus, we propose a novel and simplified
criterion based on Fisher’s discriminant, called F score, F̂ ,
and we use it to estimate the discriminative power of a
group of features:

F̂ =
∥∥ �μL − �μR∥∥2

2
tr(�L) + tr(�R)

(12)

where � denotes the covariance matrix of the feature vec-
tor, �μ denotes the mean of the feature vector, ‖·‖2 denotes
the L2-norm (Euclidean norm), and tr(·) the trace of a
matrix.
Without loss of generality, let us discuss this novel cri-

terion in a two-dimensional space with the feature vector
�f (i) = [f1(i), f2(i)], i = 1, . . . ,K , where K is the number of
samples (trials) for one class. Thus, themean of the feature
vector for the class is �μ = [μ1,μ2], where μ1 and μ2 are
the mean values of f1(i) and f2(i), respectively. We denote
by σ 2

1 and σ 2
2 , the variances of f1(i) and f2(i) for the class,

respectively. The trace of the covariance matrix for each
class is computed as:

tr(�) = σ 2
1 + σ 2

2

= 1
K − 1

K∑
i=1

(f1(i) − μ1)
2 + 1

K − 1

K∑
i=1

(f2(i) − μ2)
2

= 1
K − 1

K∑
i=1

[
(f1(i) − μ1)

2 + (f2(i) − μ2)
2]

(13)

Thus, the trace of the covariance matrix for each class is
the mean Euclidean distance between samples to the class
center, which reflects intra-class spread.
Compared to FC, F̂ is a derived version relying on the

Euclidean distance between class centers,
∥∥ �μL − �μR∥∥

2, to
estimate the difference between classes and employing the
trace of the covariance matrix to evaluate the variance
within a class. Note that this simple expression avoids esti-
mating a projection direction as required by the general
multi-dimensional expression of Fisher’s discriminant.
In this paper, the BP features [BPC3(i), BPC4(i)] (defined

in Equation 3) extracted from the time-frequency ROI are
used for classification, so it is also a two-dimensional fea-
ture space. We use F̂ to estimate the separation between
left hand vs. right hand motor imagery in this feature
space:

F̂ = (BPLC3 − BPRC3)2 + (BPLC4 − BPRC4)2

S̄LC3 + S̄LC4 + S̄RC3 + S̄RC4
(14)

with:

BPχ

e = 1
Kχ

Kχ∑
i=1

BPχ
e (i) (15)

S̄χ
e = 1

Kχ − 1

Kχ∑
i=1

(BPχ
e (i) − BPχ

e )2 (16)

where Kχ the number of trials for class χ (χ ∈ {L,R}).
We calculate the value of this criterion, F̂(ωm, τn), for

each time-frequency region (ωm × τn), so as to measure
whether (ωm×τn) contains the most discriminative infor-
mation. The time-frequency ROI (ω∗, τ ∗) is estimated by
seeking the maximum value of F̂(ωm, τn) among allM×N
time-frequency regions:

F̂(ω∗, τ ∗)=max
{
F̂(ωm, τn) |m∈{1, 2, . . . ,M} , n∈{1, 2, . . . ,N}

}
(17)

Note that outliers are taken into account in the TFDF
calculation but not in the F score. The reason is that some
outliers (whichmay be caused bymusclemovement of one
side of face/body during the experiments) may increase
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the difference between the two sides of brain [7]. In this
case, the TFDF value will abnormally increase when using
the mean value. As a result, the time-frequency area con-
taminated by noise may be selected by error, which may
deteriorate classification results when using Fisher’s LDA.
On the contrary, for the F score, outliers will increase the
intra-class variance, so they will lower the F score. Thus,
the time-frequency area contaminated by noise will not be
selected (due to a low F score value), though we do not
account for the outliers in the calculation of the F score.
As opposed to the TFDF, the F score is purely based on

statistical characteristics of the features, regardless of neu-
rophysiological phenomena linked to a specific task. So,
it can be applied in the absence of prior knowledge about
task-related neural response.
Figure 4A,B shows the F score and the Euclidean dis-

tance between two classes
∥∥ �μL − �μR∥∥

2 (which reflects
only inter-class difference between two classes) in the
time-frequency regions with 4-Hz wide frequency bands
and 2-s wide time segments for the data example. The
large values of F score mainly appear in the frequency
band over 20 Hz for this example, which is quite simi-
lar to the distribution of Euclidean distance. However, the
maximum value appears in different regions. Figure 3C,D
shows the distributions of the BP features extracted from
the time-frequency regions with the largest F score, and
with the largest Euclidean distance, respectively. The lin-
ear separation boundary is also obtained by Fisher’s LDA
in the figure. From Figure 3, we can see that the features

extracted from the time-frequency region with the largest
F score and the largest Euclidean distance are more lin-
early separable than the ones extracted from the broad
frequency band EEG segment when using Fisher’s LDA
as the classifier. Compared to the features from the time-
frequency region with the largest Euclidean distance, the
intra-class difference is smaller for the features from the
time-frequency region with the largest F score. As it con-
siders the intra-class difference, the F score is more ade-
quate than the Euclidean distance as a two-class separa-
tion measurement. The overlap area between two classes
is smaller for the F score than for the TFDF, so that using
the features from the time-frequency region selected by
F score has less misclassified data (error rate = 11.25% )
than by TFDF (error rate = 13.13%) on the example. This
phenomenon indicates that the F score might be more
effective than the TFDF. However, the BCI problem is
more complicated than a general classification problem
[19,20], in particular when training data and testing data
are recorded in different sessions [8,25]. Thus, further
analysis and comparisons of classification performances
with respect to the two criteria on more real data is
provided in the ‘Experimental results’ section.

3 Data description and preprocessing
In this study, we used data of the BCI competition IV
dataset IIa [26] and IIb [8]. Dataset IIa was recorded in
a multi-channel monopolar setting (22 monopolar chan-
nels). The parameters of bipolar channels can be adapted

Figure 4Maps of the F score and of the value of Euclidean distance. This figure shows maps of the F score and of the value of Euclidean
distance for the same subject in Figure 2. (A) F score of the time-frequency regions with 4-Hz wide frequency bands and 2-s wide time segments.
The largest value is marked out by a small rectangle. (B) Euclidean distance of the time-frequency regions with 4-Hz wide frequency band and 2-s
wide time segments. The largest value is marked out by a small rectangle.
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to the experiments. Dataset IIb was recorded over three
bipolar channels, C3, Cz, and C4. Details of these two
datasets are provided in the following paragraphs.

3.1 Dataset IIa
BCI competition IV dataset IIa [26] contains one training
session and one evaluation session of EEG data from nine
subjects who performed four classes of cue-driven motor
imagery tasks (left hand, right hand, both feet and tongue).
Each trial began with a fixation cross and an additional
short acoustic warning tone. After 2 s, a cue in the form
of an arrow pointing either to the left, right, down, or up
(corresponding to left hand, right hand, foot, or tongue)
appeared and stayed on the screen for 1.25 s. The subjects
were asked to carry out the motor imagery task until 4 s
after cue on-set. No feedback was provided.
The EEG signals were recorded by 22 Ag/AgCl elec-

trodes (with inter-electrode distances of 3.5 cm) using the
left mastoid as reference and the right mastoid as ground
(sampling rate 250 Hz). The electrode montage is shown
in Figure 5A. For extracting a bipolar channel at the posi-
tion of C3 or C4, three different pairs of electrodes can be
used, marked as a, p, and l in Figure 5A. Thus, nine possi-
ble channel combinations for C3 and C4 are generated for
time-frequency optimization.

3.2 Dataset IIb
This dataset consists of two classes (left vs. right hand)
cue-driven motor imagery BCI data from nine subjects.
The EEG data are recorded in three bipolar channels, i.e.,
at positions C3, Cz, and C4 (see Figure 5B). The distances
between the two bipolar electrodes forming a channel are

pre-determined in this dataset (for details, see [8]). For
each subject, five sessions are provided, including three
training sessions and two evaluation sessions. The first
two training sessions consist of 240 single trials (120 sin-
gle trials per session) totally without visual feedback. Each
trial started with a fixation cross and an additional short
acoustic warning tone. Later, a visual cue was given to
guide the subject to execute the corresponding imagina-
tion of hand movement over a period of 4 s. The last
training session (160 single trials) and both evaluation ses-
sions (160 trials per session) were recorded with visual
feedback from 0.5 to 4.5 s after the cue on-set (for details,
see [8]).

3.3 Experimental goals
The proposed time-frequency optimization methods
based on different criteria will first be applied on dataset
IIb using only two bipolar channels (C3, C4). The goal
of this experiment is to evaluate the effectiveness of the
methods in improving the performances of BCI based on
few channels only.We first train themethods for each sub-
ject on the training data and then evaluate them on the
testing data for this subject. Note that training and test-
ing sessions are recorded on different days [8,26]. This
is called session-to-session transfer [25]. The results of
our methods in session-to-session transfers from train-
ing sessions to testing sessions will be compared with the
winners on this dataset in BCI competition IV. Then, we
will apply our methods on two bipolar channels (C3, C4)
selected from the 22 monopolar channels of dataset IIa.
The classification results obtained on dataset IIa will be
compared with those obtained by CSP algorithms using 22

Figure 5Montage of electrodes. This figure shows the montage of electrodes in the two BCI competition datasets. (A) The montage of electrodes
in the BCI competition IV dataset IIa [26]. The arrows between the EEG electrodes show the three possible bipolar derivation pairs for bipolar
recording of C3 and C4: a, p, and l. (B) The montage of electrodes in the BCI competition IV dataset IIb [8]. The arrows between the EEG electrodes
show the bipolar derivation, where ⊕ is the signal electrode and � is the reference. The distance between two bipolar electrodes forming a channel
for each subject is pre-determined (for details, see [8]). Only C3 and C4 (marked by ellipses) are used in this study for discrimination between
imaginations of left and right hand movements.
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monopolar channels to evaluate the interest of themethod
for electrode reduction.

3.4 Visualization of ERD/ERS maps
The ERD/ERS patterns are usually expressed as percent-
age power decrease (ERD) or power increase (ERS) refer-
ring to the 1-s interval before the warning tone (for details,
see [27]). The time-frequency maps of ERD/ERS for both
left (L) and right (R) hands in the bipolar channels C3
and C4 were generated by the Biosig Toolbox using over-
lapping 2 Hz bands (step = 1 Hz) in the frequency range
between 6 and 32 Hz [28]. The statistical significance of
the power increases (ERD) and decreases (ERS) was ver-
ified by a t-percentile bootstrap test with the confidence
interval of α = 0.05 [27]. Only the significant ERD/ERS are
shown in the maps.

3.5 Data preprocessing for time-frequency optimization
Electrooculogram (EOG), originating from ocular activ-
ities (e.g., eye movement, blinks), is the most important
source of artifacts in BCI. To prevent the influence of EOG
artifacts on the classification results, an automated EOG
removal method (for details, see [29]) is first applied on
the data as required in the BCI competition [30]. Then,
for each bipolar channel, 5th order Butterworth filters are
applied to compute 19 successive 4-Hz wide frequency
bands of signals (F = 4 Hz, Fs = 1 Hz): 8 to 12, 9 to 13, 10
to 14 Hz, . . ., 26 to 30 Hz, and 15 successive 8-Hz wide fre-
quency bands of signals (F = 8Hz, Fs = 1Hz): 8 to 16, 9 to
17, 10 to 18Hz, . . ., 22 to 30Hz. Then, 36 overlapping time
segments in each frequency band were obtained through
2-, 2.5-, and 3-s wide (i.e., T = 2, 2.5, and 3 s, respectively)
sliding windows (12 segments for each sliding window)
with 0.2-s step (i.e. Ts = 0.2) moving from 0.5 s after the
cue on-set. Those parameters are set based on the expe-
rience from competitors reported in BCI competition IV
[31] and led to good performances in our previous work
[18]. Therefore, there are (19 + 15) × 36 = 1, 224 time-
frequency areas for subject-specific selection. It has to be
mentioned that the selection procedure is not very time-
consuming (2 min and 21 s in average, usingMatlab 7.10.0
on Window 7 Professional 64bits, CPU 2.66G Hz, RAM
2.0G) and is done offline, so the computational cost is
acceptable.

4 Experimental results
In the experiments, the paired sample t test was employed
to reveal the statistical significance of the difference
between the performances of different methods. The test
rejects the null hypothesis at the 0.05 significance level.

4.1 Improving classification performance for dataset IIb
The time-frequency ROI (ωROI × τROI) of each training
dataset is obtained by maximizing the TFDF and the F

score criteria, respectively. Results are reported in Table 2.
These results show that (1) the estimated time-frequency
ROIs vary among different subjects, (2) even for the same
subject, the estimated ROIs vary among different train-
ing sessions, and (3) the two criteria picked out different
ROIs for the same training session. The fact that the esti-
mation results depend on the subjects is also reflected
in the individual differences of timing and frequency of
ERD/ERS patterns. Even for the same subject, the tim-
ing and frequency of ERD/ERS may shift across sessions
[12], which leads to the intra-subject difference in the esti-
mation of ROIs between sessions. A typical example of
time-frequency maps displaying significant ERD (red) and
ERS (blue) in a training session (session 3) for a subject
(subject 6) in the dataset is shown in Figure 6. The ROIs
estimated by the TFDF are marked out by solid rectangles
(10 to 14 Hz, 0.7 to 2.7 s), while the ROIs selected by the
F score are displayed as dashed rectangles (11 to 15 Hz,
1.1to 4.1 s). Although the ROIs estimated by the two cri-
teria are different, both ROIs contain discriminative ERD
patterns between the two classes, indicating that these two
criteria could successfully capture the discriminative part
of the signal.
To evaluate the contribution of the proposed time-

frequency optimization to classification, ten repetitions
of cross-validation are performed on each training ses-
sion for each subject, using the BP features extracted from
the estimated time-frequency ROIs by TFDF and F score,
respectively. In each run, we randomly separated the data
into calibration (90%) and test (10%) sets and classified the
test data using the Fisher’s LDA obtained from the calibra-
tion set. The classification accuracy (Acc) is defined as the
observed agreement between classification outputs and
true labels [32]. The cross-validation results are obtained
by averaging Acc over 10 runs.
The results are compared to those obtained by using the

BP features from the broad band (8 to 30 Hz) EEG seg-
ments (0.5 to 2.5 s) with or without CSP filtering. The
number of spatial filters used in CSP-based classification
for this dataset is two (one pair) because only three bipo-
lar channels (C3, Cz, and C4) are provided in this dataset.
The comparisons between different methods are shown
in Figure 7 using scatter plots. We can see that using
the time-frequency ROI estimated by each criterion can
greatly improve the accuracy in most sessions compared
to using a broad band EEG segment with or without CSP
filtering. Using the F score generates higher accuracy than
using the TFDF for most sessions (63.0%), indicating that
the F score may bemore effective than the TFDF in select-
ing optimal time-frequency regions for discrimination. In
addition, we also observe that using classic CSP filtering
generates the worst results in the cross-validations, indi-
cating that classic CSP filtering is not very useful for the
data recorded by a very few number of electrodes.
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Table 2 Time-frequency ROIs selected by the TFDF and F score criteria on dataset IIb

Subject Session ω∗(Hz) τ∗(s)

TFDF F score TFDF F score

1 1 10 to 14 11 to 15 2.9 to 4.9 0.9 to 3.4

2 10 to 14 10 to 14 2.3 to 4.3 0.9 to 3.9

3 10 to 14 17 to 25 1.5 to 3.5 0.9 to 3.9

2 1 18 to 22 11 to 19 1.5 to 3.5 2.1 to 4.1

2 11 to 15 18 to 22 2.7 to 5.2 1.3 to 4.3

3 11 to 15 9 to 13 2.7 to 5.2 2.9 to 5.4

3 1 8 to 12 12 to 16 0.5 to 3.0 2.3 to 4.3

2 9 to 13 21 to 25 0.5 to 2.5 2.9 to 5.4

3 8 to 12 11 to 15 3.5 to 6.5 2.1 to 5.1

4 1 8 to 12 18 to 26 0.5 to 2.5 0.7 to 2.7

2 9 to 13 10 to 18 0.9 to 2.9 0.7 to 2.7

3 8 to 12 8 to 12 0.9 to 2.9 0.9 to 2.9

5 1 26 to 30 22 to 30 0.9 to 2.9 0.7 to 2.7

2 26 to 30 22 to 30 0.7 to 3.2 0.5 to 3.0

3 23 to 27 22 to 30 1.5 to 3.5 0.5 to 3.5

6 1 11 to 15 11 to 15 1.3 to 3.8 1.9 to 4.4

2 10 to 14 11 to 15 1.7 to 3.7 0.7 to 3.7

3 10 to 14 11 to 15 0.7 to 2.7 1.1 to 4.1

7 1 12 to 16 12 to 16 2.7 to 4.7 2.1 to 5.1

2 12 to 16 11 to 15 3.1 to 5.1 2.9 to 5.4

3 11 to 15 12 to 16 1.1 to 3.1 0.9 to 2.9

8 1 11 to 15 9 to 13 1.3 to 3.3 1.5 to 4.5

2 9 to 13 13 to 17 1.1 to 3.1 1.1 to 3.6

3 10 to 14 8 to 16 0.9 to 2.9 1.3 to 3.3

9 1 22 to 26 21 to 25 1.9 to 4.4 1.1 to 3.1

2 9 to 13 8 to 12 3.1 to 5.1 3.1 to 6.1

3 22 to 26 23 to 27 0.9 to 2.9 0.9 to 3.4

To further examine the contributions of these two cri-
teria, session-to-session transfers are performed using the
training session which has the best classification result in
the cross-validation for each subject. As the independent
evaluation data are recorded on a different day than the
training sessions, EEG signals of the subjects may change
significantly from the training data to the evaluation data.
This test aims at evaluating the robustness of the methods
to non-stationary signals.
In this test, the classifier is parameterized from the

selected training session using the BP features from the
corresponding (ω∗ × τ ∗). The ω∗ bandpass-filtered EEG
segments with the same time length as τ ∗ (i.e., T) are
obtained from each entire single trial of testing data via
a 0.2 s step sliding window to generate continuous clas-
sification outputs (see Figure 8). According to the BCI
competition requirement, the classification performances

in the session-to-session transfers are measured by kappa
coefficient [32]:

κ = (Acc − Pe)/(1 − Pe) (18)

where Pe is the chance level for agreement (i.e. Pe = 0.5
for two-class problems, so here κ = 2Acc − 1). Thus,
a larger κ value indicates a better classification perfor-
mance. The mean kappa value over all subjects of the
dataset is denoted by κ̄ .
For this dataset, six BCI groups have reported their

results of session-to-session transfers in the BCI compe-
tition [30]. We provide information on the methods of
the first three winners in Table 3, since their classifica-
tion results are better than the other three. The first place
winner used FBCSP [17], which we have briefly intro-
duced in the introduction section. Except our method
based on TFDF [18], no one has generated better results
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Figure 6 ERD/ERS for subject 6. These time-frequency maps display significant ERD (red) and ERS (blue) for subject 6 (a typical example) in BCI
competition IV IIb. The areas in the rectangles are the time-frequency ROI selected by the proposed methods based on TFDF (solid line) and F score
(dashed line), respectively.

than FBCSP on this dataset until now [30]. The second
place winner employed common spatial subspace decom-
position (CSSD) with frequency band and time segment
selections [30]. The third place winner applied CSP on
spectrally filtered neural time series prediction prepro-
cessing (NTSPP) signals [30]. Note that these methods
involved frequency and/or time optimization process(es).
The results of session-to-session transfers for all meth-
ods are provided in Table 4. The κ values and the number
of electrodes (#E) used in the classification are given.
TFDF generates the best mean κ value (κ̄ = 0.62) among
all methods in the independent evaluation. Although the
improvements of κ values yielded by TFDF compared to
the first place winner (κ̄ = 0.60, p = 0.12) and the sec-
ond place winner (κ̄ = 0.58, p = 0.18) are not statistically
significant due to the limited number of subjects, TFDF
outperforms the first place winner for six out of nine sub-
jects (except subjects 4, 5, and 8), and the second place
winner for six out of nine subjects (except subjects 4, 7,
and 9) too. The mean kappa value obtained by the F score
(κ̄ = 0.60) is relatively lower than the one obtained by
TFDF (not significantly, p = 0.29), but comparable to the
first place winner and higher than the second place win-
ner (not significantly, p = 0.52). It has to be mentioned
that the F score yields the best κ values for most subjects
(four subjects) among all methods. Further examination
of the results show that the poor performance for sub-
ject 3 led to a remarkable decrease in mean performance
of the F score. In fact, the performances for subject 3

are much poorer than those for the other subjects for all
methods, so that results averaged over all subjects might
not be representative. Both time-frequency criteria (TFDF
and F score) yield better performances than the third place
winner (κ̄ = 0.46, both p < 0.01) and those obtained
by broad band (8 to 30 Hz) EEG segments (0.5 to 2.5 s)
with CSP (κ̄ = 0.41, both p = 0.01) and without CSP
(κ̄ = 0.53, both not significant by p > 0.05, even if TFDF
and F score outperform it for seven and five out of nine
subjects, respectively). Thus, both criteria are promising
for seeking optimal time-frequency patterns to improve
classification performance of BCIs based on a few bipolar
channels.
As all of the first three BCI competition winners have

used all three bipolar channels (C3, Cz, and C4) pro-
vided by the dataset, our methods not only generate
good performances but also use less channels, which
indicates that they may also be helpful for channel reduc-
tion. This potential contribution is validated in the next
subsection.

4.2 Electrode reduction for dataset IIa
In this dataset, the time-frequency ROIs are estimated by
the two criteria, respectively, for nine possible channel
combinations of C3 and C4 (see Figure 5, C3-C4: a-a, a-p,
a-l, p-a, p-p, p-l, l-a, l-p, l-l). The scatter plot of classifica-
tion accuracies (Acc) obtained by using the TFDF vs. those
obtained by using the F score in time-frequency optimiza-
tion for all channel combinations and all subjects is shown
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Figure 7 Comparison of method performances in the cross-validation on dataset IIb. This figure shows comparisons of method performances
in the cross-validation on dataset IIb. (A, B) Scatter plots of classification accuracies (Acc) obtained by using TFDF in time-frequency selection vs.
those obtained by broad band (8 to 30 Hz) EEG in a fixed time segment (0.5 to 2.5 s) without and with CSP, respectively. (C, D) Scatter plots of Acc
obtained by using F score in time-frequency selection vs. those obtained by broad band (8 to 30 Hz) EEG in a fixed time segment (0.5 to 2.5 s)
without and with CSP, respectively. (E) Scatter plots of Acc obtained by using TFDF vs. those obtained by using F score in time-frequency selection.
(F) Scatter plot of Acc obtained by broad band (8 to 30 Hz) EEG in the fixed time segment (0.5 to 2.5 s) with CSP filtering vs. those obtained by the
same EEG but without CSP filtering. For the points above the diagonal in each scatter plot, the method in y-axis outperforms the method in x-axis in
the cross-validation on the corresponding training session.

in Figure 9. Using the F score generates higher accuracy
than using the TFDF for most cases (74.1%).
The optimal channel combinations are selected by com-

paring the classification accuracies (choosing the best
one) among different combinations in the 10 × 10-fold
cross-validation. Optimal channel combinations of C3-
C4 and the corresponding estimated time-frequency ROI

for different criteria and different subjects are listed in
Table 5.
In session-to-session transfers, the optimal channel

combinations are used. The classifier is obtained from
the whole training session using the BP features from
the corresponding (ω∗ × τ ∗). The ω∗-bandpass filtered
EEG segments with the same time length as τ ∗ (i.e., T)
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Figure 8 Strategy of session-to-session transfers. This figure shows the strategy of session-to-session transfers for BCI competition IV dataset IIa
and IIb. This strategy is the same as what other players used on the same datasets for BCI competition IV [30].

are obtained from each entire single-trial of testing data
via a 0.2-s step sliding window to generate continuous
classification outputs (see Figure 8).
As this study focuses on the two-class (right vs. left

hand) problem, it is difficult to compare with BCI com-
petition winners’ results (reported based on a four-class
problem including tongue and feet motor imagery data)
on this dataset. Here, we compared the results obtained by
our method with those obtained by FBCSPa [17], sparse
CSP (SCSP) [33], and classic CSP, respectively. Note that
FBCSP is believed to be an effective method that well
solves the frequency and/or time optimization [14], which
has achieved the best classification performance on at
least two datasets including dataset IIa in BCI competition
IV [30]. SCSP is an optimized CSP that selects the least
number of channels in CSP-based classification under
a constraint of classification accuracy. SCSP has gener-
ated better performances than other channel reduction
methods (based on the usual Fisher ratio, mutual infor-
mation, SVM, CSP coefficients) and the regularized CSP
(RCSP) on BCI competition IV dataset IIa for the right

vs. left hand problem (for details, see [33]). The compar-
isons of classification results and the number of electrodes
(#E) used in classification between different methods are
given in Table 6. As other researchers provided their clas-
sification results as classification accuracy values (Acc,
defined in section ‘Improving classification performance
for dataset IIb’) for the right vs. left hand problem on this
dataset, we also provide Acc values for the sake of com-
parison. Table 6 shows that all methods generate better
mean performances than the classical CSP algorithm with
all 22 monopolar channels (mean classification accuracy,
Acc = 77.26%), indicating the interest of time-frequency
selection and electrode reduction. Our method based on
F score (Acc = 79.67%) yields slightly better results than
FBCSP (Acc = 79.17%) and SCSP (Acc = 79.07%) but
using far less electrodes on this dataset: our method used
only the two bipolar channels C3 and C4 (equivalent to
four monopolar channels); FBCSP used all 22 monopo-
lar channels, and SCSP used 8.55 monopolar channels
in average [33]. Further examination of individual results
shows that our method based on F score generates the

Table 3 Comparison between our method and the first three winners on BCI competition IV dataset IIb

Time-frequency selection Electrodes used Features Classifier

Our method Selected by TFDF or F score C3, C4 BP LDA

First winner [17] Mutual information-based selec-
tion

C3, Cz, C4 FBCSP Naïve Bayes Parzen Window
classifier

Second winner [30] Selected by classification perfor-
mance in cross-validation

C3, Cz, C4 CSSD LDA

Third winner [30] Selected by a heuristic search
and a selection criterion based on
overall classification accuracy in
cross-validation.

C3, Cz, C4 CSP Using the best classifier among
three variants of LDA and two
variants of SVM
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Table 4 Performances of different methods in session-to-session transfers on BCI competition IV dataset IIb

κ values for subjects Mean

#E 1 2 3 4 5 6 7 8 9 κ

TFDF 4 0.44 0.24 0.25 0.93 0.86 0.70 0.55 0.85 0.75 0.62

F score 4 0.39 0.25 0.13 0.93 0.88 0.63 0.55 0.88 0.78 0.60

Without CSP 6 0.40 0.24 0.18 0.94 0.39 0.66 0.52 0.81 0.68 0.53

With CSP 6 0.28 0.13 0.11 0.47 0.56 0.13 0.58 0.76 0.67 0.42

FBCSP (first) [17] 6 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74 0.60

CSSD (second) [30] 6 0.43 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78 0.58

NTSPP (third) [30] 6 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61 0.46

Best scores are indicated in italics.

best Acc for most subjects (four subjects), indicating that
it is the most effective on this dataset. Although the mean
classification result of our method based on TFDF (Acc =
78.00%) is slightly lower than those of FBCSP and SCSP,
the differences are not statistically significant (p > 0.05).
Comparing individual performances, our method based
on TFDF outperforms FBCSP and SCSP for five out of
nine subjects. Moreover, our method based on TFDF
also employs less electrodes than FBCSP and SCSP in
the classification. Thus, the method based on TFDF still
meets the goal of electrode reduction without a significant
drop of classification accuracy. Generally speaking, our
method based on both criteria can effectively select time-
frequency ROI for BCI classification based on only a few
channels and therefore contributes to electrode reduction.
Let us mention that four electrodes (two bipolar chan-

nels) are the smallest set of electrodes required for a good

Figure 9 Comparison between performances of TFDF and F
score in the cross-validation on dataset IIa. This figure shows the
comparison between performances of TFDF and F score in the
cross-validation on dataset IIa. F score generated better performance
than TFDF in most cases.

performance in left vs. right hand motor imagery discrim-
ination on these data. Although using a common reference
(e.g., Cz) for C3 and C4 can further reduce the number
of electrodes to three, this monopolar setting will signif-
icantly deteriorate the classification performances (p <

0.05, see Figure 10). This result, to some extent, also indi-
cates that the bipolar setting is more effective than the
monopolar setting in a BCI with only few channels.

5 Discussion
A possible widespread use of BCI is limited by many
issues, such as the inter-subject variability and the num-
ber of electrodes used. Individual differences of brain
pattern will deteriorate the performance of BCI when
using a general parameter setting, such as features from
a broad frequency band (8 to 30 Hz), for all subjects. In
this paper, subject-specific time-frequency characteristics
are captured by the proposed method to solve this prob-
lem, so as to increase the inter-subject robustness. By this
subject-specific time-frequency optimization, ourmethod
improves the performance of BCI, in particular when only
a few channels of data are available. As our method is
applied with only two bipolar channels, it also reduces the
number of electrodes required in a BCI system.
In the proposed method, two alternative criteria, TFDF

and F score, are proposed for measuring the discrimina-
tion power of each possible time-frequency region. Both
criteria have their novelties and contributions.
Different from classical criteria, TFDF measures the

discrimination power of features based on neurophysio-
logic phenomena (task-relevant ERD), on which a motor
imagery BCI relies, considering both discriminative and
common modulations instead of only the statistical dis-
tribution of features. Like the CSP algorithm, the method
based onTFDF is effective to extract discriminative spatial
patterns for motor imagery BCI. However, the proposed
method requires less electrodes than the CSP algorithm
and its variants. Please note that the TFDF can be adopted
in other motor imagery BCI problems by placing the elec-
trodes on the task-relevant areas (e.g., using C3 and Cz
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Table 5 Optimal channel combinations of C3-C4 and the selected time-frequency ROI on BCI competition IV dataset IIa

Subject C3-C4 ω∗(Hz) τ∗(s)

TFDF F TFDF F score TFDF F score

1 a-a a-l 12 to 16 11 to 15 1.3 to 3.8 0.5 to 3.0

2 l-l a-l 10 to 14 22 to 26 1.1 to 3.1 0.5 to 3.5

3 a-a a-a 10 to 14 11 to 15 0.7 to 2.7 0.7 to 3.2

4 p-p a-a 21 to 25 11 to 19 0.5 to 2.5 1.1 to 3.1

5 p-l p-a 25 to 29 26 to 30 1.5 to 3.5 1.3 to 4.3

6 l-l l-p 22 to 26 23 to 27 0.5 to 2.5 0.7 to 2.7

7 a-a a-l 19 to 23 18 to 22 0.7 to 2.7 1.1 to 4.1

8 l-l l-p 8 to 12 8 to 12 0.7 to 2.7 0.7 to 3.2

9 a-l p-a 11 to 15 10 to 18 0.5 to 2.5 0.7 to 2.7

for discrimination between foot and right hand motor
imagery).
The F score is a data-driven criterion and easy to com-

pute. As an improvement to the Fisher criterion, which is
typically used to measure the discriminative power of a
single feature in BCI [20], the F score provides an effec-
tive measure for evaluating the discriminative power of a
group of features (a multi-dimensional feature vector), in
particular for time-frequency selection in motor imagery-
based BCI. As the F score does not require any prior
knowledge of neurophysiology, it might be possible to
extend its applications on other problems outside the BCI
field.
The comparison between the two criteria shows that the

F score generated better cross-validation performances
than the TFDF on both datasets (see Figures 7E and 9).
As the F score tends to select the time-frequency region
by minimizing the overlapping area between two classes
(see Figure 3), it is not surprising to have these results
when the testing and training data are from the same
session and recorded during the same day. However, as
we mentioned, a real BCI problem can be more compli-
cated than the cross-validation within one session. When
the testing and training data are recorded in two sepa-
rate days, the unpredictable data evaluation may happen
due to slight shift of electrode positions and impedances

and possible changes in the subject’s motivation level
[25]. This phenomenon gives TFDF a chance to outper-
form the F score for some subjects (such as subjects 1, 3,
and 6 on dataset IIb and subject 4 on dataset IIa), since
TFDF selects the time-frequency region not just based
on the statistical distribution of features but more on
task-relevant ERD, whose frequency characteristics may
not change a lot between different days for the same
subject.
Although TFDF and F score alternatively outperformed

each other on two different datasets, both of them gen-
erated better individual performances than the state-of-
the-art methods in most subjects for both datasets as
we mentioned in the ‘Experimental results’ session. Thus,
generally speaking, our method, either based on TFDF
or F score, is robust to session-to-session transfers. As
a result, the training data only need to be collected
one time for learning the subject-specific time-frequency
region and training the classifier, and then the param-
eters can be used on the same subject for a long-term
on-line classification. The time for collecting the training
data, on the one hand, depends on the amount of train-
ing data required for well describing the different classes;
on the other hand, it is affected by the time needed for
skin preparation and electrode placing. As the proposed
method uses less electrodes than other methods, it will

Table 6 Performances of different methods in session-to-session transfers on BCI competition IV dataset IIa

Acc (%) for subjects Mean

Method #E 1 2 3 4 5 6 7 8 9 Acc

TFDF 4 87.23 66.20 97.81 68.97 64.44 69.44 68.57 96.27 83.08 78.00

F score 4 89.36 69.01 97.81 66.38 66.67 72.22 68.57 97.01 90.00 79.67

FBCSPa 22 94.44 52.77 93.05 65.97 88.19 60.41 70.13 94.44 93.05 79.17

SCSP [33] 8.55 91.66 60.41 97.14 70.83 63.19 61.11 78.47 95.13 93.75 79.07

CSP [34] 22 83.51 56.53 97.50 70.00 54.50 62.49 84.50 95.57 90.77 77.26

aThe results of FBCSP on this dataset for right vs. left hand problem are provided by the BCI lab at Institute for Infocomm Research, Singapore, using all 22 monopolar
channels and the Naïve Bayes Parzen Window classifier. Best scores are indicated in italics.
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Figure 10 Comparison between using four electrodes and using three electrodes on dataset IIa. This figure shows the comparison between
performances of using four electrodes (two bipolar channels) and using three electrodes (two monopolar channels using Cz as common reference)
for TFDF and F score, respectively, in session-to-session transfers on dataset IIa. Reducing the number of electrodes to three significantly deteriorates
the classification performance (P < 0.05).

save time during skin preparation and electrode placing.
The amount of training data required is affected by the
dimensionality of features, Df , and the artifacts, since the
classifier will fail to give a good performance when the
ratio of useful training trials (Numtr) to the dimensional-
ity of features, Numtr/Df , is too small [19]. Note that most
artifacts in BCI are from EOG, which can be removed by
the EOG removal technique, we used in this work tomain-
tain the amount of useful training trials [29]. Our method
reduces the dimensionality of features by using less chan-
nels of data, so from this view, it will, to some extent, either
improve the classifier training by increasing Numtr/Df or
save the time for collecting the training data if keeping the
same Numtr/Df as other methods.
Algorithm computational complexity is also an impor-

tant factor when considering a real application of BCI.
Before further discussion on this issue, we first need to
distinguish the computational complexity of off-line anal-
ysis and online classification since the importance of these
two computational complexities are not at the same level.
A time-consuming off-line analysis may not be a real
problem for some BCI applications [33], but the speed
of online classification does affect the usage of a BCI
system. Note that the time-frequency optimization is an
off-line analysis; thus, its computational complexity may
not be a key issue. Nevertheless, compared to FBCSP
[14], this off-line analysis is indeed inexpensive in terms
of computational cost in our method, neither involving
mutual information calculation nor eigenvalue decompo-
sition. In the online classification, band power features are
directly extracted from the optimal time-frequency area
in our method. This feature extraction step in our method
does not involve matrix multiplication, which is needed in
CSP-based methods [7]. Furthermore, the computational
complexity of the on-line classification is proportional to
the dimensionality of feature, Df , when using a classifier
like LDA [35]. Our method only uses two channel data,

i.e., Df = 2, which is not larger than any CSP-based
methods (Df = 2p, where p is the number of paired CSP
filters). Therefore, thanks to its simplicity, our method is
inexpensive in terms of computational complexity for BCI
usage.
Last but not least, the proposed method may also con-

tribute to reduce the hardware cost in a BCI system since
less electrodes are required for a good classification.

6 Conclusions
Previous studies have shown the importance of subject-
specific parametrization in the preprocessing steps of
motor imagery BCI, especially in terms of time segment
and frequency band selection. This contribution, through
the proposition of a novel algorithm and two new crite-
ria, addresses subject-specific time-frequency optimiza-
tion for motor imagery BCIs. Experimental results show
that our method can achieve comparable or even better
classification results than state-of-the-art methods, using
fewer electrodes (only four active electrodes for compos-
ing two bipolar channels around C3 and C4 for discrim-
inating right and left hand motor imagery). Thus, this
work, on the one hand, provides an effective method for
time-frequency optimization; on the other hand, it shows
the potential contribution of time-frequency optimiza-
tion to electrode reduction that is reducing the number
of electrodes required in a BCI system without dete-
riorating its classification performance. Thanks to its
simplicity and few electrodes requirement, the proposed
method is promising for portable BCI systems. Addi-
tionally, two novel criteria were also proposed in this
paper to overcome the disadvantage of classical measures
often used in BCIs, in particular for time-frequency opti-
mization. In this paper, the applications of our method
focused on the most popular motor imagery BCI task:
the discrimination between right and left hand motor
imagery data. In the future, this study should be extended
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to address time-frequency optimization for multi-class
motor imagery BCIs.

Endnote
aThe results of FBCSP on this dataset for right vs. left

hand problem are provided by the BCI lab at Institute for
Infocomm Research, Singapore, using all 22 monopolar
channels and the Naïve Bayes Parzen Window classifier.
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