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Flatness of two-input control-affine systems linearizable via a
two-fold prolongation

Florentina Nicolaua and Witold Respondekb

Abstract— We study flatness of two-input control-affine
systems, defined on an n-dimensional state-space. We give
a geometric characterization of systems that become static
feedback linearizable after a two-fold prolongation of a
suitably chosen control. They form a particular class of flat
systems: they are of differential weight n + 4. We present
a normal form compatible with the minimal flat outputs.

I. INTRODUCTION

In this paper, we study flatness of nonlinear control
systems of the form

Ξ : ẋ = F(x, u),

where x is the state defined on a open subset X of Rn

and u is the control taking values in an open subset
U of Rm (more generally, an n-dimensional manifold
X and an m-dimensional manifold U, respectively).
The dynamics F are smooth and the word smooth will
always mean C∞-smooth.

The notion of flatness has been introduced in control
theory in the 1990’s, by Fliess, Lévine, Martin and
Rouchon [5], [6], see also [10], [11], [13], [21], and
has attracted a lot of attention because of its multiple
applications in the problem of constructive controlla-
bility and motion planning (see, e.g. [7], [22], [25], [20],
[14], [23], [24]). Flat systems form a class of control
systems whose set of trajectories can be parametrized
by m functions and their time-derivatives, m being
the number of controls. More precisely, the system
Ξ : ẋ = F(x, u) is flat if we can find m functions,
ϕi(x, u, . . . , u(l)) such that

x = γ(ϕ, . . . , ϕ(s−1)) and u = δ(ϕ, . . . , ϕ(s)), (1)

for a certain integer s, where ϕ = (ϕ1, . . . , ϕm) is called
a flat output. Therefore the time-evolution of all state
and control variables can be determined from that of
flat outputs without integration and all trajectories of
the system can be completely parameterized. A similar
notion, of systems of undetermined differential equa-
tions integrable without integration, has been studied
by Hilbert [8] and Cartan [3], see also [25], where
connections between Cartan prolongations and flatness
were studied.

Flatness is closely related to the notion of feedback
linearization. It is well known that systems linearizable
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via invertible static feedback are flat. Their descrip-
tion (1) uses the minimal possible, which is n + m,
number of time-derivatives of the components of the
flat output ϕ. In general, a flat system is not linearizable
by static feedback, with the exception of the single-
input case where flatness reduces to static feedback lin-
earization, see [4] and [21]. For any flat system, that is
not static feedback linearizable, the minimal number of
time-derivatives of ϕi needed to express x and u (which
is called the differential weight [23]) is thus bigger
than n+m and measures actually the smallest possible
dimension of a precompensator linearizing dynami-
cally the system. The simplest systems for which the
differential weight is bigger than n+m are systems lin-
earizable via one-dimensional precompensator (namely
one-fold prolongation), thus of differential weight n +
m + 1. That class of systems have been studied in
details in [16], [15], see also [17], [18], [19], where the
authors presented a complete geometric verifiable char-
acterization, gave normal forms, computed all minimal
flat outputs and discussed their uniqueness. The goal of
this paper is to generalize those results to control-affine
systems that become static feedback linearizable after
a two-fold prolongation (thus of differential weight
n + m + 2). We will consider the case of two-input
control systems only. Our aim is to give necessary and
sufficient conditions for flatness of differential weight
n + m + 2 = n + 4 and to describe and understand the
geometry of that class of systems. Solving that problem
in the simplest case of two controls is interesting for
few reasons; firstly, it yields a complete analysis of
flatness for a well defined class of systems, secondly,
it shows what kind of difficulties one must face when
trying to characterize flatness for more general systems
(like those requiring more than two prolongations),
thirdly, it allows to observe new phenomena like the
necessity of distinguishing a special drift.

The paper is organized as follows. In Section II,
we recall the definitions of flatness and of differential
weight of a flat system as well as the results de-
scribing flatness of differential weight n + 3 for two-
input control-affine systems. In Section III, we give
our main results: we characterize control-affine systems
that become static feedback linearizable after a two-
fold prolongation, that is, flat systems of differential
weight n + 4. We also present a normal forms and
explain how to compute the to-be-prolonged control.
Finally, we provide the proof of our main theorem in



Section IV.

II. FLATNESS: DEFINITION AND KNOWN RESULTS

The fundamental property of flat systems is that
all their solutions may be parametrized by a finite
number of functions and their time-derivatives. Fix
an integer l ≥ −1 and denote Ul = U × Rml and
ūl = (u, u̇, . . . , u(l)). For l = −1, the set U−1 is empty
and ū−1 in an empty sequence.

Definition 1: The system Ξ : ẋ = F(x, u) is flat
at (x0, ūl

0) ∈ X × Ul , for l ≥ −1, if there exists a
neighborhood Ol of (x0, ūl

0) and m smooth functions
ϕi = ϕi(x, u, u̇, . . . , u(l)), 1 ≤ i ≤ m, defined in Ol ,
having the following property: there exist an integer s
and smooth functions γi, 1 ≤ i ≤ n, and δj, 1 ≤ j ≤ m,
such that

xi = γi(ϕ, ϕ̇, . . . , ϕ(s−1)) and uj = δj(ϕ, ϕ̇, . . . , ϕ(s))

for any Cl+s-control u(t) and corresponding trajectory
x(t) that satisfy (x(t), u(t), . . . , u(l)(t)) ∈ Ol , where
ϕ = (ϕ1, . . . , ϕm) and is called a flat output.

Whenever necessary to specify the number of deriva-
tives of u on which the components of the flat outputs
ϕ depend, we say that the system Ξ is (x, u, . . . , u(r))-
flat if ϕi = ϕi(x, u, . . . , u(r)), for 1 ≤ i ≤ m, and at least
one of them depends explicitly on u(r). In the particular
case ϕi = ϕi(x), we say that the system is x-flat.

In general, r is not bigger than the integer l needed
to define the neighborhood Ol . In our study, r will be
proved to be -1, i.e., the flat outputs depend on x only,
and l is -1 or 0.

The minimal number of derivatives of components
of a flat output, needed to express x and u, will be
called the differential weight of that flat output and is
formalized as follows. By definition, for any flat output
ϕ of Ξ there exist integers s1, . . . , sm such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ).

Moreover, we can choose (s1, . . . , sm), γ and δ such
that (see [23]) if for any other m-tuple (s̃1, . . . , s̃m) and
functions γ̃ and δ̃, we have

x = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m ),

then si ≤ s̃i, for 1 ≤ i ≤ m. We will call ∑m
i=1(si + 1) =

m+∑m
i=1 si the differential weight of ϕ. A flat output of

Ξ is called minimal if its differential weight is the lowest
among all flat outputs of Ξ. We define the differential
weight of a flat system to be equal to the differential
weight of a minimal flat output.

Consider a control-affine system

Σ : ẋ = f (x) +
m

∑
i=1

uigi(x), (2)

where f and g1, · · · , gm are smooth vector fields on X.
The system Σ is linearizable by static feedback if it
is equivalent via a diffeomorphism z = φ(x) and an
invertible static feedback transformation, u = α(x) +
β(x)v, to a linear controllable system Λ : ż = Az + Bv.

The problem of static feedback linearization was
solved by Brockett [1] (for a smaller class of transfor-
mations) and then by Jakubczyk and Respondek [12]
and, independently, by Hunt and Su [9], who gave
geometric necessary and sufficient conditions. The fol-
lowing theorem recalls their result and, furthermore,
gives an equivalent way of describing static feedback
linearizable systems from the point of view of differ-
ential weight.

Define inductively the sequence of distributions
Di+1 = Di + [ f ,Di], where D0 is given by D0 =
span {g1, · · · , gm} and [ f ,Di] = {[ f , g] : g ∈ Di}.

Theorem 1: The following conditions are equivalent:
(FL1) Σ is locally static feedback linearizable, around

x0 ∈ X;
(FL2) Σ is locally static feedback equivalent, around

x0 ∈ X, to the Brunovský canonical form

(Br) :

{
żj

i = zj+1
i

żρi
i = vi

where 1 ≤ i ≤ m, 1 ≤ j ≤ ρi− 1, and ∑m
i=1 ρi = n;

(FL3) For any q ≥ 0, the distributions Dq are of
constant rank, around x0 ∈ X, involutive and
Dn−1 = TX;

(FL4) Σ is flat at x0 ∈ X, of differential weight n + m.
The geometry of static feedback linearizable systems

is given by the following sequence of nested involutive
distributions:

D0 ⊂ D1 ⊂ · · · ⊂ Dn−1 = TX.

It is well known that a feedback linearizable sys-
tem is static feedback equivalent to the Brunovský
canonical form, see [2], and is clearly flat with ϕ =
(ϕ1, · · · , ϕm) = (z1

1, · · · , z1
m) being a minimal flat out-

put (of differential weight n + m). Therefore, for static
feedback linearizable systems, the representation of all
states and controls uses the minimal possible, which
is n + m, number of time-derivatives of ϕi and an
equivalent way of describing them is that they are flat
systems of differential weight n + m.

In general, a flat system is not linearizable by static
feedback, with the exception of the single-input case.
Any single input-system is flat if and only if it is
static feedback linearizable, see [4], [21], and thus of
differential weight n + 1. Flat systems can be seen as a
generalization of static feedback linearizable systems.
Namely they are linearizable via dynamic, invertible
and endogenous feedback, see [6], [5], [13], [22]. In [16],
[17], the authors described the simplest flat systems
that are not static feedback linearizable: control-affine



systems that become static feedback linearizable after a
one-fold prolongation (which is the simplest dynamic
feedback) thus of differential weight n + m + 1. In this
paper we will characterize systems (with two controls,
i.e. m = 2) that become static feedback linearizable after
a two-fold prolongation, that is of differential weight
n + 4.

III. MAIN RESULTS

Throughout, we will consider two-input control-
affine systems of the form

Σ : ẋ = f (x) + u1g1(x) + u2g2(x), (3)

where x ∈ X, u = (u1, u2)
t ∈ R2 and f , g1, and g2 are

C∞-smooth vector fields on X. We make the following
assumption:

Assumption 1: From now on, unless stated otherwise,
we assume that all ranks are constant in a neighbor-
hood of a given x0 ∈ X. All results presented here are
thus valid on an open and dense subset of either X or
X ×U, where all ranks are constant, and hold locally,
around any point of that set.

Throughout, we deal only with systems that are not
static feedback linearizable. Therefore one of distribu-
tions Di fails to satisfy the condition (FL3) of Theo-
rem 1. Flat systems are always accessible so Dn−1 = TX
holds and all distributions Di are supposed of constant
rank according to Assumption 1. So there exists an
integer k such that Dk is not involutive. Suppose that
k is the smallest integer satisfying that property.

Flat systems of differential weight n + 4 form a par-
ticular class of dynamic feedback linearizable systems,
namely, they become static feedback linearizable after
two-fold prolongations of a suitably chosen control.
More precisely, we have the following result:

Proposition 1: Consider the system Σ, given by (3).
The following conditions are equivalent:

(i) Σ is flat at (x0, u0, u̇0, . . . , u(l)
0 ), of differential

weight n + 4, for a certain l ≥ −1;
(ii) Σ is x-flat at either x0 or (x0, u0), of differential

weight n + 4;
(iii) There exists, around x0, an invertible static feed-

back transformation u = α(x) + β(x)ũ, bringing
the system Σ into the form Σ̃ : ẋ = f̃ (x) +
ũ1 g̃1(x) + ũ2 g̃2(x), such that the prolongation

Σ̃(2,0) :

 ẋ = f̃ (x) + y1 g̃1(x) + v2 g̃2(x)
ẏ1 = y2
ẏ2 = v1

is locally static feedback linearizable at (x0, y0),
with y1 = ũ1, v2 = ũ2, f̃ = f + αg and g̃ = gβ,
where g = (g1, g2) and g̃ = (g̃1, g̃2).

A system Σ satisfying (iii) will be called dynamically
linearizable via an invertible two-fold prolongation.
Notice that Σ̃(2,0) is, indeed, obtained by applying
an invertible static feedback u = α + βũ and then

prolonging the first control ũ1 twice as v1 = ¨̃u1 and
not prolonging ũ2 (which explains the notation). The
above result asserts that, as for flatness of differential
weight n + 3 (see [16]), for systems of differential
weight n + 4, flatness and x-flatness coincide and that,
moreover, they are equivalent to linearizability via two-
fold prolongations of a suitably chosen control.

Before giving our main results, we state the following
proposition needed in the proofs, but also having an
independent interest.

Proposition 2: Consider the system Σ, given by (3),
dynamically linearizable via invertible two-fold prolon-
gation and let Dk be its first noninvolutive distribution.
Then the distribution Dk is feedback invariant and
cork (Dk ⊂ Dk

) ≤ 2.
According to the above proposition, at most two

directions of Dk
stick out of Dk. In this paper, we will

study only the case when the noninvolutivity of Dk is
maximal, i.e., when cork (Dk ⊂ Dk

) = 2. The particular
case cork (Dk ⊂ Dk

) = 1 needs a separate analysis, it
reminds the results for flatness of differential weight
n + 3, but it has a slightly different geometry. In order
to respect the length of conference paper, we do not
discuss it here. Moreover, we suppose Dk 6= TX. The
particular cases, cork (Dk ⊂ Dk

) = 1 and Dk
= TX will

be presented in a future paper. Thus, from now on, we
make the following assumption

Assumption 2: We assume cork (Dk ⊂ Dk
) = 2 and

Dk 6= TX.
Remark 1: If cork (Dk ⊂ Dk

) = 2, then it can be
shown that we necessarily have rkDk = 2k + 2 (see
Proposition 4, in Section IV).

Our main result describing flat systems of differential
weight n + 4 is given by the three following theorems
corresponding to the first noninvolutive distribution
Dk being either D0, i.e., k = 0 (Theorem 3) or D1, i.e.,
k = 1 (Theorem 4) or Dk, for k ≥ 2 (Theorem 2). For all
theorems, we assume that Assumptions 1 and 2 hold.

Theorem 2: Assume that k ≥ 2 and consider the two-
input control system Σ, given by (3). The system Σ is
flat at x0, of differential weight n + 4, if and only if the
following conditions hold:

(A1) rk (Dk
+ [ f ,Dk]) = 2k + 5, implying the existence

of a non-zero vector field g2c ∈ D0 such that
adk+1

f g2c ∈ D
k
;

(A2) adk+2
f g2c ∈ D

k
+Dk+1;

(A3) The distribution Lk = span {adq
fc

g1c, adr
fc

g2c, 0 ≤
q ≤ k − 2, 0 ≤ r ≤ k} is involutive, where
g2c is defined by condition (A1), g1c ∈ D0 is
independent of g2c and such that [g1c, g2c] =

0 mod span {g2c} and fc satisfies adk+2
fc

g2c ∈ D
k
;

(A4) The distributions Li+1 = Li + [ fc,Li], for i ≥ k,
are involutive;



(A5) There exists ρ such that Lρ = TX.
The geometry of the systems described by the pre-

vious theorem can be summarized by the following
sequence of inclusions:

D0⊂
2
· · · ⊂

2
Dk−1⊂

2
Dk ⊂

2
Dk

2 ⊂ 1 ⊂ =

Lk ⊂
2
Lk+1 ⊂

2
Lk+2 · · ·⊂

2
Lµ⊂

1
Lµ+1· · ·⊂

1
Lρ = TX

where all distributions, except Dk, are involutive and
the integers beneath the inclusion symbol “⊂” indicate
coranks. According to condition (A1), if we take the
brackets of Dk with f , we gain only one new direction
with respect to Dk

implying the existence of a distin-
guished vector field g2c in D0 that allows us to define
another vector field g1c ∈ D0 and a distinguished
drift fc that is used to define the involutive subdis-
tribution Lk of corank two in Dk (which is essential
for flatness of differential weight n + 4). While, the
computation of g2c involves derivations and algebraic
operations only, calculating g1c and fc requires solving
two partial differential equations (which always admit
solutions), defined and discussed in Section III-A. Con-
trary to flatness of differential weight n + 3, for which
only the definition of a control vector field g2c is needed
(see [16]), for flatness of differential weight n + 4, it
is necessary to distinguish also g1c and fc. Indeed, it
can be shown that not all control vector fields g1 and
not all drifts f lead to a static feedback linearizable
prolongation Σ(2,0). This can also be observed when
proving the above theorem, see Section IV.

The geometry of flat systems of differential weight
n + 4 recalls very much that of flat systems of differ-
ential weight n + 3, see [16]. Similarly to flat systems
of differential weight n + 3, for which the the main
structural condition is the existence of an involutive
subdistribution Hk of corank one in Dk, see [16], the
most important structural property of flat systems of
differential weight n + 4 is the existence of an involu-
tive subdistribution Lk of corank two in Dk. Indeed,
similarly to Hk, the distribution Lk is essential: it takes
the role of the noninvolutive distribution Dk and, more-
over, its successive brackets with the distinguished
drift fc are again involutive (replacing the distribu-
tions Dk+i). Contrary toHk, the definition of Lk is more
involved since, in order to construct Lk, we have to
compute the vector fields g1c and fc and, therefore, to
solve some PDE’s (that always admit solutions). The
involutive subdistribution Lk is invariant under feed-
back transformations consistent with the definitions of
g1c, g2c and fc. Notice that the sequence of inclusions
between the distributions Li and Di is no longer as
simple as between Hi and Di. Indeed, in the latter case,
we simply have Dk−1 ⊂

1
Hk ⊂

1
Dk ⊂

1
Dk

= Hk+1, while

the counterpart of that sequence, in the case of Li and
Di, can be written as

Dk

⊂ 2
⊂

2
Dk−2⊂

2
Lk Dk

= Lk+2

⊂
2 ⊂ 2Lk+1

It is easy to check that Dk
= Lk+2. Indeed, by defi-

nition, Lk+2 = Dk + span {adk+1
fc

g2c, adk+2
fc

g2c} and its
involutivity is given by (A4). Moreover, rkLk+2 = 2k+
4, otherwise Dk would be involutive or cork (Dk ⊂ Dk

)

would be one. It follows that Dk
= Lk+2. Thus the

directions completing Dk to Dk
are, modulo Dk, in the

plane spanned by adk+1
fc

g2c and adk+2
fc

g2c.
If k = 0 or k = 1, i.e., the first noninvolutive

distribution is D0 or D1, then a similar result holds, but
in the chain of involutive subdistributions L1 ⊂ L2 ⊂
· · · (playing the role of Lk ⊂ Lk+1 ⊂ Lk+2 ⊂ · · · ),
the distributions L1 and L2 are not defined as Lk+1

and Lk+2 (see condition (A4)′ of Theorem 3, resp. the
statement of Theorem 4). Moreover, flat systems with
k = 0 or k = 1 exhibit singularities in the control
space (created by a two-fold prolongation of the to-
be-prolonged control and excluded by condition (RC))
which are defined by

Using(x) = {u ∈ R2 : (g1c ∧ g2c ∧ ad fc+gcug2c ∧
ad2

fc+gcug2c)(x) = 0},

with fc + gcu = fc + g1cu1 + g2cu2, where the vector
fields fc, g1c and g2c are defined in the statements of
Theorems 3 and 4.

Theorem 3: Assume that k = 0 and consider the two-
input control system Σ, given by (3). The system Σ is
flat at (x0, u0), of differential weight n + 4, if and only
if the following conditions hold:

(A1)’ The ranks of the distributions G0 = D0, G1 =
G0 + [G0,G0], and G2 = G1 + [G0,G1] are, respec-
tively two, three, and four implying the existence
of a characteristic vector field g2c ∈ D0 for the
distribution G1, i.e., [g2c,G1] ∈ G1;

(A2)’ ad f g2c ∈ G1;

(A3)’ ad f [g1, g2c], ad2
f g2c ∈ D

0
+ [ f ,D0];

(A4)’ The distributions Li, for i ≥ 2, are involutive,
where L2 = D0

and Li+1 = Li + [ f ,Li], for i ≥ 2;
(A5)’ There exists ρ such that Lρ = TX;
(RC) u0 /∈ Using(x0), where g2c is defined by condition

(A1), g1c ∈ D0 is independent of g2c and such
that span {g2c, [g1c, g2c]} is involutive and fc sat-
isfies ad fc g2c ∈ span {g2c, [g1c, g2c]}.

Notice that the involutive distribution
span {g2c, [g1c, g2c] plays the role of Lk+1 for the
case k ≥ 2. Since the distribution D0 is supposed
noninvolutive, the vector field g1c cannot be defined
in the same way as for the case k ≥ 2. Consequently,
the definition of fc changes as well.



Theorem 4: Assume k = 1 and consider the two-
input control system Σ, given by (3). The system
Σ is flat at (x0, u0), of differential weight n + 4, if
and only if conditions (A1)-(A5) of Theorem 2 hold
for k = 1, with L1 = span {g2c, ad fc g2c}, L2 =

span {g1c, g2c, ad fc g2c, ad2
fc

g2c, [g1c, ad fc g2c]}, and Li, for
i ≥ 3, defined as in (A4), and u0 /∈ Using(x0).

The conditions of our theorems enable us to define
the control to be prolonged in order to obtain a locally
static feedback linearizable prolongation Σ̃(2,0). We ex-
plain in the next subsection, the construction of that
control.

A. To-be-prolonged control

In this section, we will define the control u1p to
be prolonged (preintegrated) in order to dynamically
linearize the system. We will study only the cases k ≥ 2
and k = 1. If the first noninvolutive distribution is D0,
then a similar analysis can be done.

Let us first show that under the condition (A1) of
Theorem 2, there exists a non-zero vector field g2c ∈ D0

such that adk+1
f g2c ∈ D

k
. We have rkDk

= 2k + 4

and, acccording to (A1), rk (Dk
+ [ f ,Dk]) = 2k + 5,

thus we can always assume (permute g1 and g2, if
necessary) that adk+1

f g1 6∈ D
k
. Hence there exists a

smooth function ν, defined in a neighborhood of x0,
such that adk+1

f g2 = νadk+1
f g1 modDk

. The vector
field g2c = g2 − νg1 is obviously nonzero (since g1
and g2 are independent everywhere on X) and satisfies
adk+1

f g2c ∈ Dk
and it is clear that any vector field

g̃2c = β1g1 + β2g2, collinear with g2 − νg1 satisfies
adk+1

f g̃2c ∈ D
k
. It follows that g2c is not unique and

all vector fields g2c form a subdistribution of D0 =
span {g1, g2} of rank one.

We explain next how to find the vector field g1c =
βg1 + γg2c ∈ D0, independent of g2c, and such that
[g1c, g2c] = 0 mod span {g2c}. Since k ≥ 1, the dis-
tribution D0 is involutive and there exists a smooth
function λ such that [g1, g2c] = λg1 mod span {g2c}.
Then the function β has to satisfy Lg2c β − βλ = 0
(which always admits solutions, so β always exists)
and γ can be any. It is immediate that any vector
field g̃1c = β̃g1c + γ̃g2c, where the function β̃ is non
zero and satisfies that Lg2c β̃ = 0 and γ̃ is any, verifies
[g̃1c, g2c] = 0 mod span {g2c}.

Now, we are looking for a couple of functions
(α1, α2) such that fc = f + α1g1c + α2g2c satis-
fies adk+2

fc
g2c ∈ D

k
. Using Proposition 5 (see Sec-

tion IV), it can be proven that adk+2
fc

g2c = adk+2
f g2c −

(Lg2c α1)adk+1
f g1c modDk

. According to item (A2) of
Theorem 2, there exists a smooth function δ such that
adk+2

f g2c = δadk+1
f g1c modDk

. We deduce that the
function α1 has to satisfy Lg2c α1 = δ (which always

admits solutions, so α1 always exists) and α2 can be
any. Notice that any vector field f̃c = fc + α̃1g1c + α̃2g2c,
where α̃1 is such that Lg2c α̃1 = 0 and α̃2 is any, verifies
adk+2

f̃c
g2c ∈ D

k
.

We define the to-be-prolonged control by the relation:(
u1
u2

)
=

(
α1(β− γν)− να2

α1ν + α2

)
+

(
β− γν −ν

γ 1

)(
u1p
u2p

)
.

Consider the system

Σc : ẋ = fc + u1pg1c + u2pg2c

which is static feedback equivalent to the original
system Σ, and its prolongation

Σ(2,0)
c :


ẋ = fc(x) + u0

1pg1c(x) + v2g2c(x)
u̇0

1p = u1
1p

u̇1
1p = v1

controlled by (v1, v2) = (ü1p, u2p) and evolving on
the prolonged state space Xp = X × R2, where
(x, u0

1p, u1
1p) ∈ X × R2. We can now restate all our

theorems using just one statement for the prolonged
system.

Theorem 5: The control system Σ is flat at (x0, u0)
of differential weight n + 4 if and only if the pro-
longed system Σ(2,0)

c is locally static feedback lineariz-
able around (x0, u0

p0, u1
p0), i.e., it satisfies the equivalent

conditions of Theorem 1.

B. Normal form
The following proposition gives a normal form for

the class of two-input flat systems of differential weight
n + 4. The integers ρi that show up in the normal form
are related to ρ and µ defined via the nested sequence
of distributions Li. Let µ be the smallest integer such
that corank (Lµ ⊂ Lµ+1) is one and ρ is the smallest
integer such that Lρ = TX. It follows that ρ + µ = n.
Define the pair of indices (ρ1, ρ2) by ρ = max(ρ1, ρ2 +
2) and µ = min(ρ1, ρ2 + 2). We have ρ1 + ρ2 + 2 =
n, implying ρi ≥ k + 1, and since we have supposed
Dk 6= TX, at least one of them is greater than k + 2.
For i = 1, 2, denote z̄j

i = (z1
i , · · · , zj

i).
Proposition 3: The system Σ is flat at x0 (at (x0, u0),

such that u0 = (u10, u20) /∈ Using(x0), if k = 0 or 1)
of differential weight n + 4 if and only if it is locally,
around x0, static feedback equivalent to the following
normal form in a neighborhood Z of z0 ∈ Rn:

(NF)



ż1
1 = z2

1 ż1
2 = z2

2
...

...
żρ1−1

1 = zρ1
1 żρ2−1

2 = zρ2
2

żρ1
1 = ũ1 żρ2

2 = a(z̄ρ1
1 , z̄ρ2+1

2 )+b(z̄ρ1
1 , z̄ρ2+1

2 )ũ1

żρ2+1
2 = c(z) + d(z)ũ1

żρ2+2
2 = ũ2

where



- either k = 0 and then b = zρ2+1
2 , d = zρ2+2

2 , a and
c are any functions (a not depending on zρ2+2

2 ) sat-
isfying ∂a

∂zρ2+1
2

(z0) + u10 6= 0, ∂c
∂zρ2+2

2

(z0) + u10 6= 0;

- or k = 1 and then c = zρ2+2
2 , d = d(z̄ρ1

1 , z̄ρ2+1
2 ) and

either a = zρ2+1
2 and b is any function, not depend-

ing on zρ2+2
2 , and satisfying u10

∂b
∂zρ2+1

2

(z0) + 1 6= 0

or b = zρ2+1
2 and a is any function, not depending

on zρ2+2
2 , and satisfying ∂a

∂zρ2+1
2

(z0) + u10 6= 0;

- or k ≥ 2 and then a = zρ2+1
2 , c = zρ2+2

2 ,
b = b(z̄ρ1−k+2

1 , z̄ρ2−k+2
2 ), d = d(z̄ρ1−k+2

1 , z̄ρ2−k+2
2 )

and ∂b
∂z

ρ1−k+2
1

+ b ∂b
∂zρ2−k+2

2

= 0, ∂d
∂z

ρ1−k+2
1

− ∂b
∂z

ρ1−k+1
1

−

b ∂b
∂zρ2−k+1

2

+ b ∂d
∂zρ2−k+2

2

− d ∂b
∂zρ2−k+2

2

= 0;

and with a, b, c and d such that the distribution Dk is
noninvolutive and cork (Dk ⊂ Dk

) = 2, for k ≥ 1.

Moreover, the minimal x-flat outputs and the normal
form (NF) are compatible: if (ϕ1, ϕ2) is a minimal x-
flat output at x0, then there exists an invertible static
feedback transformation bringing the system Σ into
(NF) with ϕ1 = z1

1 and ϕ2 = z1
2.

At first sight there are four arbitrary functions involved
in the normal form, but, in fact, we can always nor-
malize two of them. This is due to the fact that Dk

is squeezed between two involutive distributions Lk

and Dk
= Lk+2 and both inclusions are of corank

two (see the sequence of inclusions summarizing the
geometry of flat systems of differential weight n + 4),
so only two directions of Dk

stick out of Dk. The
normal form (NF) is valid around z0 ∈ Rn, which
may be zero or not. Therefore it can be used around
any point (equilibrium or not). It is immediate to see
that (NF) is flat with ϕ = (z1

1, z1
2) being a minimal

flat output and a simple computation shows that its
differential weight is, indeed, n+ 4. It is clear that (NF)
becomes locally static feedback linearizable after a two-
fold prolongation of ũ1. The normal form applies to all
cases k ≥ 2, k = 1 and k = 0, and it is clear that in
the cases k = 1 and k = 0 (and only in those cases!),
the precompensator creates singularities in the control
space (depending on the state). Indeed, the controls ũ0
satisfying ∂a

∂zρ2+1
2

(z0) + ũ10 = 0 or ∂c
∂zρ2+2

2

(z0) + u10 = 0

(resp. ∂a
∂zρ2+1

2

(z0) + ũ10
∂b

∂zρ2+1
2

(z0) = 0, where either a =

zρ2+1
2 or b = zρ2+1

2 ) are singular for (NF), if k = 0 (resp.
if k = 1). We do not give here explicit conditions for a,
b, c and d such that the distribution Dk is noninvolutive
and cork (Dk ⊂ Dk

) = 2 for the cases k ≥ 2 and k = 1.
They can be found by a straightforward computation.

IV. PROOFS

A. Notations and useful results
Consider a control system of the form Σ : ẋ =

f (x) + u1g1(x) + u2h2(x). By Σ(2,0) we will denote
the system Σ with two-fold prolongation of the first
control, that is,

Σ(2,0) :

 ẋ = f (x) + y1g1(x) + +v2h2(x)
ẏ1 = y2
ẏ2 = v1,

with y1 = u1 and v2 = u2. The first control is pro-
longed, but the second is not, thus the corresponding
vector fields do not play the same role and hence we
denote them by g1 and h2 instead of g1 and g2. Denote
by fp, g1p and g2p, respectively, the drift and the control
vector fields of the prolonged canonical system Σ(2,0),
i.e., fp = ∑n

i=1( fi + y1g1i)
∂

∂xi
+ y2

∂
∂y1

, g1p = ∂
∂y2

and
g2p = ∑n

i=1 h2i
∂

∂xi
. To Σ(2,0), we associate the distribu-

tions D0
p = span {g1p, g2p} and Di+1

p = Di
p + [ fp,Di

p],
for i ≥ 0 (the subindex p referring to the prolonged
system Σ(1,0)).

We start by stating two propositions needed in the
proofs of our main results, but also having an inde-
pendent interest. Proposition 4 is a complete version of
Proposition 2.

Proposition 4: Consider the system Σ, given by (3),
dynamically linearizable via invertible two-fold prolon-
gation and let Dk be its first noninvolutive distribution.
Then the following conditions are satisfied

(i) Dk is feedback invariant;
(ii) If k ≥ 2, then cork (Dk−2 ⊂ Dk−1) = 2;

(iii) cork (Dk ⊂ Dk
) ≤ 2;

(iv) If cork (Dk ⊂ Dk
) = 2, then rkDk = 2k + 2.

Proposition 5: Consider the system Σ, given by (3),
and let Dk be its first noninvolutive distribution. As-
sume k ≥ 2 and that conditions (A1) − (A3) of The-
orem 2 are satisfied. Then the distribution Hk−1 =
Dk−2 + span {adk−1

f g2c} is involutive and its involu-
tivity implies that of all istributions Hi = Di−1 +
span {adi

f g2c}, for 1 ≤ i ≤ k− 2. Moreover, all distribu-
tions Li = span {adq

fc
g1c, adr

fc
g2c, 0 ≤ q ≤ i− 2, 0 ≤ r ≤

i}, for 1 ≤ i ≤ k− 1 (where L1 = span {g2c, ad fc g2c}),
are involutive.

B. Proof of Theorem 2
Necessity. Consider the control system Σ : ẋ =

f (x) + u1g1(x) + u2g2(x) and assume that it is flat of
differential weight n + 4. According to Proposition 1,
there exists an invertible static feedback transformation
u = α(x) + β(x)ũ, bringing Σ into the form Σ̃ : ẋ =
f̃ (x) + ũ1 g̃1(x) + ũ2h̃2(x), such that the prolongation

Σ̃(2,0) :

 ẋ = f̃ (x) + y1 g̃1(x) + v2h̃2(x)
ẏ1 = y2
ẏ2 = v1,



with y1 = ũ1 and v2 = ũ2, is locally static feedback
linearizable. For simplicity of notation, we will drop
the tildes, but we will keep distinguishing g1 from h2
(which could also be denoted g2) whose control is not
preintegrated.

Since Σ(2,0) is locally static feedback linearizable, for
any i ≥ 0, the distributions Di

p are involutive, of
constant rank, and there exists an integer ρ such that
rkDρ

p = n + 1. We have

D0
p = span { ∂

∂y2
, h2},

D1
p = span { ∂

∂y1
, ∂

∂y2
, h2, ad f h2 + y1[g1, h2]}.

Since k ≥ 2 and rkD1 = 4, we deduce
from the involutivity of D1

p, that we necessarily
have [g1, h2] = 0 mod span {h2} and that D1

p =

span { ∂
∂y1

, ∂
∂y2

, h2, ad f h2}. The distribution

D2
p = span { ∂

∂y1
,

∂

∂y2
, g1, h2, ad f h2, ad2

f h2 + y1[g1, ad f h2]}

is involutive, thus we actually have D2
p =

span { ∂
∂y1

, ∂
∂y2

, g1, h2, ad f h2, ad2
f h2, [g1, ad f h2]}. Since

k ≥ 2, the distribution D1 = span {g1, h2, ad f g1, ad f h2}
is involutive, and thus there exists a smooth function α
such that [g1, ad f h2] = α ad f g1 mod span {g1, h2, ad f h2}.
We will show that α is identically zero. According
to our assumptions rkD2 = 6 (because k ≥ 2 and
rkDk = 2k + 2 as a direct consequence of the corank
assumption cork (Dk ⊂ Dk

) = 2) and, if α is non zero,
we would have rkD2

p = 7 which is impossible. Hence

D2
p = span { ∂

∂y1
,

∂

∂y2
, g1, h2, ad f h2, ad2

f h2}.

It is easy to prove (by an induction argument) that, for
i ≥ 2,

Di
p = span { ∂

∂y1
,

∂

∂y2
, g1, · · · , adi−2

f g1, h2, · · · , adi
f h2}.

Since the intersection of involutive distributions is an
involutive distribution, it follows that Di

p ∩ TX =

span {g1, · · · , adi−2
f g1, h2, · · · , adi

f h2} is involutive, for
1 ≤ i ≤ k. We deduce that

Lk = span {g1, · · · , adk−2
f g1, h2, · · · , adk

f h2}

is involutive (below we will justify denoting
this distribution by Lk). It is immediate that
Dk−2 ⊂ Lk ⊂ Dk, where both inclusions are
of corank two. The involutivity of Dk+2

p =

span { ∂
∂y1

, g1, · · · , adk
f g1, h2, · · · , adk

f h2, adk+1
f h2, adk+2

f h2}
implies that of Dk + span {adk+1

f h2, adk+2
f h2} and, since

we have supposed cork (Dk ⊂ Dk
) = 2, it yields

Dk
= Dk + span {adk+1

f h2, adk+2
f h2}, where Dk

is the
involutive closure of Dk.

We show next that rk (Dk
+ [ f ,Dk]) = 2k +

5. We have Dk+2
p = span { ∂

∂y1
, ∂

∂y2
} + Dk

. Assume

adk+1
f g1 ∈ D

k
, if not, the rank in question is, indeed,

2k + 5. Hence for any vector field ξ ∈ Dk, we have
[ f , ξ] ∈ Dk

. By successive applications of the Jacobi
identity, it follows immediately that Dk

+ [ f ,Dk
] = Dk

.
Therefore, for the prolonged system we obtain

Dk+3
p = span { ∂

∂y1
}+Dk

+ [ f ,Dk
] = Dk+2

p ,

thus contradicting the existence of ρ such that rkDρ
p =

n + 1 (recall that Dk 6= TX) and implying that Σ(2,0) is
not static feedback equivalent to a controllable linear
system. By Proposition 1, the system Σ would not
be flat of differential weight n + 4 and thus rk (Dk

+
[ f ,Dk]) = 2k + 5 and (A1) holds.

At the beginning of Section III-A, we have shown
that (A1) implies the existence of g2c ∈ D0 such that
adk+1

f g2c ∈ D
k
. We noticed above that adk+1

f g1 6∈ D
k
,

therefore g2c = h2. Furthermore, we have adk+2
f h2 ∈ D

k
,

thus (A2) holds and, moreover, we have fc = f , with fc
defined by item (A3). At the beginning of the proof,
we have also observed that [g1, h2] = 0 mod span {h2},
thus g1c = g1. It follows that

Lk = span {adq
fc

g1c, adr
fc

g2c, 0 ≤ q ≤ k− 2, 0 ≤ r ≤ k}
= span {adq

f g1, adr
f h2, 0 ≤ q ≤ k− 2, 0 ≤ r ≤ k}

which justifies denoting the above involutive distribu-
tion by Lk and shows (A3). Recall that Li = Li−1 +
[ fc,Li−1], for i ≥ k + 1. We thus have

Dk+1
p = span { ∂

∂y1
, ∂

∂y2
}+ Lk + [ f ,Lk]

= span { ∂
∂y1

, ∂
∂y2
}+ Lk+1

and, by an induction argument,

Dk+i
p = span { ∂

∂y1
,

∂

∂y2
}+ Lk+i, i ≥ 2.

Consequently, the involutivity of Dk+i
p implies that

of Lk+i, for i ≥ 1. Moreover, rkDρ
p = n + 2, implying

that rkLρ = n, i.e., Lρ = TX, which proves (A4) and
(A5).

Sufficiency. Consider the control system Σ : ẋ =
f (x)+ u1g1(x)+ u2g2(x) satisfying (A1)− (A5). Trans-
form Σ via a static feedback transformation into the
form Σ̃ : ẋ = fc(x) + ũ1g1c(x) + ũ2g2c(x), where
g1c, g2c and fc are defined by conditions (A1) and
(A3). By Proposition 5, the involutivity of Li =
span {adq

f g1, adr
f h2, 0 ≤ q ≤ i − 2, 0 ≤ r ≤ i} follows

for 1 ≤ i ≤ k − 1. It is immediate to see that the
prolongation

Σ(2,0) :

 ẋ = fc(x) + y1g1c(x) + v2g2c(x)
ẏ1 = y2
ẏ2 = v1



with y1 = ũ1 and v2 = ũ2 is locally static feedback lin-
earizable. Indeed, the linearizability distributions Di

p,
associated to Σ(2,0), are of the form

Di
p = span { ∂

∂y1
, ∂

∂y2
}+ Li, i ≥ 1.

The involutivity of Li implies that of Di
p. Moreover,

rkLρ = n, thus rk Dρ
p = n + 2 and Σ(2,0) is locally static

feedback linearizable. By Proposition 1, the system Σ
is flat of differential weight n + 4.
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