
HAL Id: hal-01351529
https://hal.science/hal-01351529v2

Submitted on 29 Mar 2017 (v2), last revised 18 Oct 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight and rigourous error bounds for basic building
blocks of double-word arithmetic

Mioara Joldes, Jean-Michel Muller, Valentina Popescu

To cite this version:
Mioara Joldes, Jean-Michel Muller, Valentina Popescu. Tight and rigourous error bounds for basic
building blocks of double-word arithmetic. ACM Transactions on Mathematical Software, 2017. �hal-
01351529v2�

https://hal.science/hal-01351529v2
https://hal.archives-ouvertes.fr

Tight and rigorous error bounds for basic

building blocks of double-word arithmetic

Mioara Joldes
LAAS CNRS Toulouse

France
joldes@laas.fr

Jean-Michel Muller
CNRS, ENS Lyon

Université de Lyon, France
jean-michel.muller@ens-lyon.fr

Valentina Popescu
ENS Lyon

Université de Lyon, France
valentina.popescu@ens-lyon.fr

March 24, 2017

Abstract

We analyze several classical basic building blocks of double-word arith-
metic (frequently called “double-double arithmetic” in the literature): the
addition of a double-word number and a floating-point number, the ad-
dition of two double-word numbers, the multiplication of a double-word
number by a floating-point number, the multiplication of two double-word
numbers, the division of a double-word number by a floating-point num-
ber, and the division of two double-word numbers. For multiplication
and division we get better relative error bounds than the ones previously
published. For addition of two double-word numbers, we show that the
previously published bound was incorrect, and we provide a new relative
error bound. We introduce new algorithms for division. We also give
examples that illustrate the tightness of our bounds.

Keywords. Floating-point arithmetic; double-word arithmetic; double-
double arithmetic; error-free transforms.

1 Introduction and notation

Some calculations require a precision significantly higher than the one offered
by the binary64 (also known as “double-precision”) format. A typical example
is the evaluation of transcendental functions in binary64 arithmetic with correct
rounding: if all intermediate calculations are done in the target precision, it is
very difficult to guarantee last-bit accuracy in the final result. For instance,

1

the CRLibm library of correctly rounded elementary functions uses “double-
double” or “triple-double” operations in critical parts [4]. Double-double arith-
metic has also been used with success in BLAS [14]. Other examples where
higher-precision arithmetic has been useful, mentioned by Briggs [3] or Bailey
et al. [1], are studies of dynamical systems, the calculation of two-loop integrals
for radiative corrections in muon decay, experimental mathematics, supernova
simulations, and studies of the fine structure constant of physics.

There exist very good arbitrary precision libraries, such as GNU-MPFR [6].
However, if one only needs calculations accurate within around 120 bits in a
few critical parts of a numerical program, using such libraries will involve a
significant penalty in terms of speed and memory consumption.

Although the binary128 format (frequently called “quad-precision”) was
specified by the IEEE 754-2008 Standard on Floating-Point Arithmetic, it is
seldom implemented in hardware. To our knowledge, the only commercially
significant platform that has supported binary128 in hardware for the last
decade has been the IBM z Systems [15]. Thus, one will be tempted to use
“double-double” arithmetic at times. Furthermore, even if hardwired binary128
arithmetic becomes commonplace, there will be a need for “double-quad” oper-
ations for carefully implementing very accurate binary128 elementary functions.
Hence, designing and analyzing algorithms for double-word arithmetic is of in-
terest.

Double-word arithmetic, called “double-double” in most of the literature,
consists in representing a real number as the unevaluated sum of two floating-
point numbers. In all existing implementations, the underlying floating-point
format is the binary64 format of the IEEE 754 Standard on Floating-Point
Arithmetic [9, 18], commonly called “double-precision” (hence the name “double-
double”).

Double-word arithmetic is NOT similar to a conventional, IEEE 754-like,
floating-point arithmetic with twice the precision. It lacks many nice properties
such as Lemma 1.2 below, clearly defined roundings, etc. Furthermore, many
algorithms have been published without a proof, or with error bounds that are
sometimes loose, sometimes fuzzy (the error is “less than a small integer times
u2”), and sometimes unsure. Kahan qualifies double-double arithmetic as an
“attractive nuisance except for the BLAS” and even compares it to an unfenced
backyard swimming pool! He also mentions [11] that it “undermines the in-
centive to provide quadruple precision correctly rounded”. The purpose of this
paper is to provide a rigorous error analysis of some double-word algorithms,
and to introduce a few new algorithms. We cannot suppress all the drawbacks
mentioned by Kahan: clearly, having in hardware a “real” floating-point arith-
metic with twice the precision would be a better option. And yet, if rigorously
proven and reasonably tight error bounds are provided, expert programmers
can rely on double-word arithmetic for extending the precision of calculations
in critical places where the available floating-point arithmetic does not suffice.

Throughout this paper, we assume a radix-2, precision-p floating-point (FP)
arithmetic system, with unlimited exponent range and correct rounding. This
means that our results will apply to “real-world” binary floating-point arith-

2

metic, such as the one specified by the IEEE 754-2008 Standard [9, 18], provided
that underflow and overflow do not occur.

The notation RN(t) stands for t rounded to the nearest FP number, ties-
to-even. For instance RN(c · d) is the result of the FP multiplication c×d,
assuming round-to-nearest rounding mode. The number ulp(x), for x 6= 0 is
2blog2 |x|c−p+1, and u = 2−p = 1

2ulp(1) denotes the roundoff error unit. We will
frequently use the three following, classical lemmas.

Lemma 1.1. Let t ∈ R. If |t| ≤ 2k, where k is an integer, then

|RN(t)− t| ≤ u

2
· 2k.

Lemma 1.2 (Sterbenz Lemma [23]). Let x and y be two positive FP numbers.
If

x

2
≤ y ≤ 2x,

then x− y is a floating-point number, so that RN(x− y) = x− y.

Lemma 1.3. If t ∈ R, there exist ε1 and ε2, both of absolute value less than or
equal to u, such that

RN(t) = t · (1 + ε1) =
t

1 + ε2
.

The algorithms analyzed in this paper use as basic blocks Algorithms 1, 2,
and 3 below. They have been coined as “error free transforms” by Rump [21].

Algorithms 1 and 2, introduced by Moller [17], Dekker [5], and Knuth [12]
make it possible to compute both the result and the rounding error of a FP
addition. We will choose between them depending on the information that we
have on the input numbers.

Algorithm 1 – Fast2Sum(a, b). The Fast2Sum algorithm [5].

s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

If a = 0 or b = 0, or if the floating-point exponents ea and eb satisfy ea ≥ eb,
then s+ t = a+ b. Hence, t is the error of the FP addition s← RN(a+ b). In
practice, condition “ea ≥ eb” may be hard to check. However, if |a| ≥ |b| then
that condition is satisfied.

Algorithm 2 – 2Sum(a, b). The 2Sum algorithm [17, 12].

s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)

3

Algorithm 2 gives the same results as Algorithm 1, but without any re-
quirement on the exponents of a and b. It uses 6 FP operations for computing
the result (instead of 3 for Algorithm 1), but on modern processors compar-
ing the absolute values of a and b and swapping them if needed before calling
Algorithm 1 will in general be more time-consuming than directly calling Algo-
rithm 2. Hence, in general, Algorithm 1 is to be used only if we have preliminary
information on the respective orders of magnitude of a and b. However, in all
the algorithms presented below, a call to 2Sum can be replaced by a test and a
call to Fast2Sum without changing the error bounds.

Let a and b be two FP numbers, with exponents ea and eb, respectively.
Define π = RN(ab). The number ρ = ab−π is a FP number. When the exponent
range is not unbounded, this holds provided that ea + eb ≥ emin + p− 1, where
emin is the minimum exponent of the underlying FP format. See [19] for a proof.
The first algorithm introduced for computing π and ρ is due to Dekker [5, 2]. It
requires 17 FP operations. When an FMA instruction is available, Algorithm
Fast2Mult (Algorithm 3 below), mentioned by Kahan [11], only requires 2 FP
operations for computing the same values.

Algorithm 3 – Fast2Mult(a, b). The Fast2Mult algorithm (see for in-
stance [11, 19, 18]). It requires the availability of a fused multiply-add (FMA)
instruction for computing RN(ab− π).

π ← RN(a · b)
ρ← RN(a · b− π)

In the following, we will denote 2Prod an algorithm that computes π and ρ.
It can be either Dekker’s algorithm or Algorithm 3. However, when we count the
number of floating-point operations required by the various algorithms presented
in this paper (in Table 1), we assume that Algorithm 3 is used.

Dekker [5] was the first to suggest using algorithms similar to Algorithm 1
and the equivalent (without FMA) of Agorithm 3 in order to manipulate num-
bers represented as unevaluated sums of two FP numbers. He called such num-
bers doublelength numbers. Dekker presented algorithms for adding, multiply-
ing, and dividing double-word numbers. His addition and multiplication algo-
rithms are very similar (in fact, mathematically equivalent) to Algorithms 5
and 10, analyzed below. His division algorithm was quite different (and less ac-
curate) than the algorithms considered in this paper. Linnainmaa [16] suggested
similar algorithms, assuming that an underlying extended precision format is
available. We will not assume that hypothesis here.

Libraries that offer double-word arithmetic (with binary64 as the underlying
floating-point format) have been written by Bailey [8] and Briggs [3]. Briggs no
longer maintains his library. Fairly recent functions for double-word arithmetic
are included in the QD (“quad-double”) library by Hida, Li, and Bailey [7, 8].

In Definition 1.4 we formally introduce the concept of double-word represen-
tation.

4

Definition 1.4. A double-word number x is the unevaluated sum xh + x` of
two floating-point numbers xh and x` such that

xh = RN(x).

The sequel of the paper is organized as follows: Section 2 deals with the
sum of a double-word number and a floating-point number; Section 3 is devoted
to the sum of two double-word numbers; in Section 4 we consider the product
of a double-word number by a floating-point number; in Section 5 we consider
the product of two double-word numbers; Section 6 deals with the division of
a double-word number by a floating-point number, and Section 7 is devoted
to the division of two double-word numbers. All algorithms considered in this
paper return their results as a double-word number. We summarize our results
in Table 1, in the Conclusion section.

2 Addition of a double-word number and a floating-
point number

The algorithm implemented in the QD library [8] for adding a double-word
number and a floating-point number is Algorithm 4 below.

Algorithm 4 – DWPlusFP(xh, x`, y). Algorithm for computing (xh, x`) + y
in binary, precision-p, floating-point arithmetic, implemented in the QD library.
The number x = (xh, x`) is a double-word number (i.e., it satisfies Defini-
tion 1.4).

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN(x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

Algorithm 4, or variants of it, implicitely appears in many “compensated
summation” algorithms. Compensated summation algorithms aim at accurately
computing the sum of several FP numbers. Most such algorithms implicitely
represent, at intermediate steps of the summation, the sum of all input numbers
accumulated so far as a double-word number. For instance the first two lines of
Algorithm 4 constitute the internal loop of Rump, Ogita and Oishi’s “cascaded
summation” algorithm [20].

To prove the correctness and bound the error of Algorithm 4 (and Algo-
rithm 6 below), we will need the following lemma. That lemma is an immediate
consequence of Property (2.16) in [22].

Lemma 2.1. (see Property (2.16) in [22]) Let a and b be FP numbers, and let
s = RN(a+ b). If s 6= 0 then

|s| ≥ max

{
1

2
ulp(a),

1

2
ulp(b)

}
.

5

Proof. Without l.o.g., assume |a| ≥ |b|, so that ulp(a) ≥ ulp(b). The number
|a + b| is the distance between a and −b. Hence, since a 6= −b (otherwise
s would be 0), |a + b| is larger than or equal to the distance between a and
the FP number nearest a, which is larger than or equal to 1

2ulp(a). Therefore
|RN(a+ b)| = RN(|a+ b|) ≥ RN(1

2ulp(a)) = 1
2ulp(a).

Let us now turn to the analysis of Algorithm 4. We have,

Theorem 2.2. The relative error∣∣∣∣ (zh + z`)− (x+ y)

x+ y

∣∣∣∣
of Algorithm 4 (DWPlusFP) is bounded by

2 · u2

1− 2u
= 2u2 + 4u3 + 8u4 + · · · , (1)

which is less than 2u2 + 5u3 as soon as p ≥ 4.

Proof. First of all, the case xh + y = 0 is trivial since sh = s` = 0 and the
computation is errorless. Now, without loss of generality, we can assume |xh| ≥
|y|. If this is not the case, since xh and y play a symmetrical role in the algorithm
we can exchange them in our proof: we add the double word number (y, x`) and
the floating-point number xh.1 We also assume that xh is positive (otherwise
we change the sign of all the operands), and that 1 ≤ xh ≤ 2 − 2u (otherwise
we scale the operands by a power of 2).

Define ε as the error committed at step 2, i.e., ε = v − (x` + s`).

1. If −xh < y ≤ −xh/2, then Sterbenz Lemma implies sh = xh + y and
s` = 0. It follows that v = x`. Lemma 2.1 implies |sh| ≥ 1

2ulp(xh), which
implies |sh| ≥ |x`|. Hence Algorithm Fast2Sum introduces no error at line 3 of
the algorithm, so that zh + z` = sh + v = x+ y exactly.

2. If −xh/2 < y ≤ xh, then 1
2 ≤

xh

2 < xh + y ≤ 2xh, so that sh ≥ 1/2.
Since |x` + s`| ≤ 3u (see the two cases considered below), we have |v| ≤ 3u,
so that sh > |v|: Algorithm Fast2Sum introduces no error at line 3 of the
algorithm. Therefore zh + z` = sh + v = x+ y + ε.

• If xh + y ≤ 2 then |s`| ≤ u, so that |x` + s`| ≤ 2u, hence |ε| ≤ u2, and the
relative error |ε|/|x+ y| of the calculation is bounded by

|ε|
1
2 − u

≤ 2u2

1− 2u
.

1(y, x`) may not be a double-word number, according to Definition 1.4, in the case x` =
1
2

ulp(y) = 1
2

ulp(xh). However, one easily checks that in that case the algorithm returns an
exact result.

6

• If xh + y > 2 then |s`| ≤ 2u, so that |x` + s`| ≤ 3u, hence |ε| ≤ 2u2, and
the relative error |ε|/|x+ y| of the calculation is bounded by

|ε|
2− u

≤ 2u2

2− u
.

Notice that the bound (1) is very sharp. In fact, it is asymptotically optimal.
This is shown by the following example: xh = 1, x` = (2p − 1) · 2−2p, and
y = − 1

2 (1 − 2−p), for which the computed sum is 1
2 + 3 · 2−p−1 and the exact

sum is 1
2 + 3 · 2−p−1 − 2−2p, resulting in a relative error

2u2

1 + 3u− 2u2
≈ 2u2 − 6u3.

In the binary64 format (p = 53), this generic example gives an error

1.99999999999999933 · · · × 2−106.

3 Addition of two double-word numbers

Algorithm 5 below was first given by Dekker [5], under the name of add2, with a
slightly different presentation. Dekker did not use the 2Sum algorithm: instead
of Line 1 there was a comparison of |xh| and |yh| followed by a possible swap
of x and y and a call to Fast2Sum. However, from a mathematical point of
view, Dekker’s algorithm and Algorithm 5 are equivalent: they always return
the same result. This algorithm was then implemented by Bailey in the QD
library [8] under the name of “sloppy addition”.

Algorithm 5 – SloppyDWPlusDW(xh, x`, yh, y`). “Sloppy” calculation of
(xh, x`) + (yh, y`) in binary, precision-p, floating-point arithmetic.

1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: (zh, z`)← Fast2Sum(sh, w)
5: return (zh, z`)

Dekker proved an error bound on the order of (|x| + |y|) · 4u2. Notice the
absolute values: when x and y do not have the same sign, there is no proof
that the relative error is bounded. Indeed, the relative error can be so large
that the obtained result has no significance at all. Consider for instance the case
xh = 1 + 2−p+3, x` = −2−p, yh = −1 − 6 · 2−p, and y` = −2−p + 2−2p. It
leads to a computed value of the sum equal to zero, whereas the exact value is
2−2p: the relative error is equal to 1. This is why the use of Algorithm 5 should
be restricted to special cases such as, for instance, when we know in advance

7

that the operands will have the same sign. When accurate computations are
required, it is much more advisable to use the following algorithm, presented by
Li et al. [13, 14] and implemented in the QD library under the name of “IEEE
addition”.

Algorithm 6 – AccurateDWPlusDW(xh, x`, yh, y`). Calculation of
(xh, x`) + (yh, y`) in binary, precision-p, floating-point arithmetic.

1: (sh, s`)← 2Sum(xh, yh)
2: (th, t`)← 2Sum(x`, y`)
3: c← RN(s` + th)
4: (vh, v`)← Fast2Sum(sh, c)
5: w ← RN(t` + v`)
6: (zh, z`)← Fast2Sum(vh, w)
7: return (zh, z`)

In [13, 14], Li et al. claim that in binary64 arithmetic (p = 53) the relative
error of Algorithm 6 is upper-bounded by 2 · 2−106. This bound is incorrect, as
shown by the following example: if

xh = 9007199254740991,
x` = −9007199254740991/254,
yh = −9007199254740987/2, and
y` = −9007199254740991/256,

(2)

then the relative error of Algorithm 6 is

2.24999999999999956 · · · × 2−106.

Note that this example is somehow “generic”: in precision-p FP arithmetic,
the choice xh = 2p − 1, x` = −(2p − 1) · 2−p−1, yh = −(2p − 5)/2, and y` =
−(2p − 1) · 2−p−3 leads to a relative error that is asymptotically equivalent (as
p goes to infinity) to 2.25u2.

Now let us try to find a relative error bound. We are going to show the
following result:

Theorem 3.1. If p ≥ 3, the relative error of Algorithm 6 (AccurateDW-
PlusDW) is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · , (3)

which is less than 3u2 + 13u3 as soon as p ≥ 6.

Note that the conditions on p (p ≥ 3 for the bound (3) to hold, p ≥ 6 for
the simplified bound 3u2 + 13u3) are satisfied in all practical cases.

Proof. First of all, we exclude the straightforward case in which one of the
operands is zero. We can also quickly proceed with the case xh + yh = 0: the

8

returned result is 2Sum(x`, y`), which is equal to x + y, i.e., the computation
is errorless. Now, without loss of generality, we assume 1 ≤ xh < 2, x ≥ |y|
(which implies xh ≥ |yh|), and xh + yh nonzero. Notice that 1 ≤ xh < 2 implies
1 ≤ xh ≤ 2− 2u, since xh is a FP number.

Define ε1 as the error committed at Line 3 of the algorithm:

ε1 = c− (s` + th), (4)

and ε2 as the error committed at Line 5:

ε2 = w − (t` + v`). (5)

1. If −xh < yh ≤ −xh/2. Sterbenz Lemma, applied to the first line of
the algorithm, implies sh = xh + yh, s` = 0, and c = RN(th) = th.

Define

σ =

{
2 if yh ≤ −1,
1 if −1 < yh ≤ −xh/2.

We have −xh < yh ≤ (1−σ)+ xh

2 (σ−2), so that 0 ≤ xh+yh ≤ 1+σ ·
(
xh

2 − 1
)
≤

1−σu. Also, since xh is a multiple of 2u and yh is a multiple of σu, sh = xh+yh
is a multiple of σu. Since sh is nonzero, we finally obtain

σu ≤ sh ≤ 1− σu. (6)

We have |x`| ≤ u and |y`| ≤ σ
2u, so that

|th| ≤
(

1 +
σ

2

)
u and |t`| ≤ u2. (7)

From (6), we deduce that the floating-point exponent of sh is at least −p+σ−1.
From (7), the floating-point exponent of c = th is at most −p+σ−1. Therefore,
the Fast2Sum algorithm introduces no error at line 4 of the algorithm, which
implies

vh + v` = sh + c = sh + th = x+ y − t`.
Eq. (6) and (7) imply

|sh + th| ≤ 1 +
(

1− σ

2

)
u ≤ 1 +

u

2
,

so that |vh| ≤ 1 and |v`| ≤ u
2 . From the bounds on |t`| and |v`| we obtain:

|ε2| ≤
1

2
ulp(t` + v`) ≤

1

2
ulp
(
u2 +

u

2

)
=
u2

2
, (8)

and

|ε2| ≤
1

2
ulp

[
1

2
ulp(x` + y`) +

1

2
ulp

(
(x+ y) +

1

2
ulp(x` + y`)

)]
. (9)

Lemma 2.1 and |sh| ≥ σu imply that either sh + th = 0, or |vh| = |RN(sh +
c)| = |RN(sh + th)| ≥ σu2. If sh + th = 0 then vh = v` = 0 and the sequel of
the proof is straightforward. Therefore, in the following, we assume |vh| ≥ σu2.

Now,

9

• if |vh| = σu2 then |v` + t`| ≤ u|vh| + u2 = σu3 + u2, which implies
|w| = |RN(t` + v`)| ≤ σu2 = |vh|;

• if |vh| > σu2 then, since vh is a FP number, |vh| is larger than or equal
to the FP number immediately above σu2, which is σ(1 + 2u)u2. Hence
|vh| ≥ σu2/(1 − u), so that |vh| ≥ u · |vh| + σu2 ≥ |v`| + |t`|. So, |w| =
|RN(t` + v`)| ≤ |vh|.

Therefore, in all cases, Fast2Sum introduces no error at line 6 of the algorithm,
and we have

zh + z` = vh + w = x+ y + ε2. (10)

Directly using (10) and the bound u2/2 on |ε2| to get a relative error bound
would result in a large bound, because x + y may be small. However, when
x + y is very small, some simplification occurs thanks to Sterbenz Lemma.
First, xh + yh is a nonzero multiple of σu. Hence, since |x` + y`| ≤

(
1 + σ

2

)
u,

we have |x` + y`| ≤ 3
2 (xh + yh). Let us now consider the two possible cases:

• if − 3
2 (xh+yh) ≤ x`+y` ≤ − 1

2 (xh+yh), which implies − 3
2sh ≤ th ≤ −

1
2sh,

then Sterbenz lemma applies to the floating-point addition of sh and c =
th. Therefore line 4 of the algorithm results in vh = sh and v` = 0. An
immediate consequence is ε2 = 0, so that zh + z` = vh + w = x + y: the
computation of x+ y is errorless;

• if− 1
2 (xh+yh) < x`+y` ≤ 3

2 (xh+yh) then 5
2 (x`+y`) ≤ 3

2 (xh+yh+x`+y`) =
3
2 (x+ y), and − 1

2 (x+ y) < 1
2 (x` + y`). Hence |x` + y`| < |x+ y|, so that

ulp(x` + y`) ≤ ulp(x+ y). Combined with (9), this gives

|ε2| ≤
1

2
ulp

(
3

2
ulp(x+ y)

)
≤ 2−pulp(x+ y) ≤ 2 · 2−2p · (x+ y).

2. If −xh/2 < yh ≤ xh

Notice that we have xh/2 < xh + yh ≤ 2xh, so that xh/2 ≤ sh ≤ 2xh. Also
notice that we have |x`| ≤ u.

• If 1
2 < xh + yh ≤ 2− 4u. Define

σ =

{
1 if xh + yh ≤ 1− 2u,
2 if 1− 2u < xh + yh ≤ 2− 4u.

We have
σ

2
(1− 2u) ≤ sh ≤ σ(1− 2u) and |s`| ≤

σ

2
u. (11)

When σ = 1, we necessarily have −xh/2 < yh < 0, so that |y`| ≤ u/2.
And when σ = 2, |yh| ≤ xh ≤ 2 − 2u implies |y`| ≤ u. Hence we always
have |y`| ≤ σ

2u. This implies |x` + y`| ≤ (1 + σ/2)u, therefore

|th| ≤
(

1 +
σ

2

)
u and |t`| ≤ u2. (12)

10

Now, |s` + th| ≤ (1 + σ)u, so that

|c| ≤ (1 + σ)u and |ε1| ≤ σu2. (13)

Since sh ≥ 1/2 and |c| ≤ 3u, if p ≥ 3 then Algorithm Fast2Sum introduces
no error at line 4 of the algorithm, i.e.,

vh + v` = sh + c.

Therefore |vh + v`| = |sh + c| ≤ σ(1− 2u) + (1 + σ)u ≤ σ. This implies

|vh| ≤ σ and |v`| ≤
σ

2
u. (14)

Thus |t` + v`| ≤ u2 + σ
2u, so that

|w| ≤ σ

2
u+ u2 and |ε2| ≤

σ

2
u2. (15)

From (11) and (13), we deduce sh + c ≥ σ
2 − u(2σ + 1), so that |vh| ≥

σ
2 − u(2σ + 1). If p ≥ 3 then |vh| ≥ |w|, so that Algorithm Fast2Sum
introduces no error at line 6 of the algorithm, i.e., zh + z` = vh + w.

Therefore,
zh + z` = x+ y + η,

with |η| = |ε1 + ε2| ≤ 3σ
2 u

2. Since

x+ y ≥ (xh − u) + (yh − u/2) >

{
1
2 −

3
2u if σ = 1,

1− 4u if σ = 2,

the relative error |η|/(x+ y) is upper-bounded by

3u2

1− 4u
.

• If 2 − 4u < xh + yh ≤ 2xh then 2 − 4u ≤ sh ≤ RN(2xh) = 2xh ≤ 4 − 4u
and |s`| ≤ 2u. We have,

th + t` = x` + y`,

with |x` + y`| ≤ 2u, hence |th| ≤ 2u, and |t`| ≤ u2. Now, |s` + th| ≤ 4u,
so that |c| ≤ 4u, and |ε1| ≤ 2u2. Since sh ≥ 2− 4u and |c| ≤ 4u, if p ≥ 3
then Algorithm Fast2Sum introduces no error at line 4 of the algorithm.
Therefore,

vh + v` = sh + c ≤ 4− 4u+ 4u = 4,

so that vh ≤ 4 and |v`| ≤ 2u. Thus, |t` + v`| ≤ 2u + u2. Hence, either
|t` + v`| < 2u and |ε2| ≤ 1

2ulp(t` + v`) ≤ u2; or 2u ≤ t` + v` ≤ 2u + u2,
in which case w = RN(t` + v`) = 2u and |ε2| ≤ u2. In all cases |ε2| ≤ u2.
Also, sh ≥ 2− 4u and |c| ≤ 4u imply vh ≥ 2− 8u. And |t` + v`| ≤ 2u+ u2

11

implies |w| ≤ 2u. Hence if p ≥ 3 then Algorithm Fast2Sum introduces no
error at line 6 of the algorithm.

All this gives
zh + z` = vh + w = x+ y + η,

with |η| = |ε1 + ε2| ≤ 3u2.

Since x+ y ≥ (xh − u) + (yh − u) > 2− 6u, the relative error |η|/(x+ y)
is upper-bounded by

3u2

2− 6u
,

The largest bound obtained in the various cases we have analyzed is

3u2

1− 4u
.

Elementary calculus shows that for u ∈ [0, 1/64] (i.e., p ≥ 6) this is always less
than 3u2 + 13u3.

The bound (3) is probably not optimal. The largest relative error we have
obtain through many tests is around 2.25 × 2−2p = 2.25u2. An example is the
input values given in Eq. (2), for which, with p = 53 (binary64 arithmetic), we
obtain a relative error equal to 2.24999999999999956 · · · × 2−106.

4 Multiplication of a double-word number by a
floating-point number

We first consider the following algorithm, suggested by Li et al [13]:

Algorithm 7 – DWTimesFP1(xh, x`, y). Calculation of (xh, x`)×y in binary,
precision-p, floating-point arithmetic.

1: (ch, c`1)← 2Prod(xh, y)
2: c`2 ← RN(x` · y)
3: (th, t`1)← Fast2Sum(ch, c`2)
4: t`2 ← RN(t`1 + c`1)
5: (zh, z`)← Fast2Sum(th, t`2)
6: return (zh, z`)

In [13, 14] (with more detail in the technical report [13], which is a prelim-
inary version of the journal paper [14]), Li et Al. give a relative error bound
4 · 2−106 for Algorithm 7 when the underlying floating-point arithmetic is bi-
nary64 (i.e., p = 53). Below, we prove an improved sharp relative error bound,
even in the more general context of precision-p arithmetic. More precisely, we
have:

12

Theorem 4.1. If p ≥ 4, the relative error of Algorithm 7 (DWTimesFP1) is
bounded by 3

2u
2 + 4u3.

Proof. One easily notices that if x = 0, or y = 0, or y is a power of 2, the
obtained result is exact. Therefore, without loss of generality, we can assume
1 ≤ xh ≤ 2−2u and 1+2u ≤ y ≤ 2−2u. This gives 1+2u ≤ xhy ≤ 4−8u+4u2,
so that

1 + 2u ≤ ch ≤ 4− 8u, (16)

and

|c`1| ≤
1

2
ulp(4− 8u) = 2u. (17)

From |x`| ≤ u and y ≤ 2− 2u we deduce

|c`2| ≤ 2u− 2u2, (18)

so that ε1 = x`y − c`2 satisfies |ε1| ≤ u2. From (16) and (18) we deduce
that Algorithm Fast2Sum introduces no error at line 3 of the algorithm, i.e.,
th + t`1 = ch + c`2. Also, we deduce that

1 = RN(1 + 2u2) ≤ th ≤ RN(4− 6u− 2u2) = 4− 8u, (19)

and

|t`1| ≤
1

2
ulp(4− 8u) = 2u. (20)

From (17) and (20), we obtain

|t`2| ≤ RN(4u) = 4u, (21)

and we find that ε2 = t`2 − (t`1 + c`1) satisfies |ε2| ≤ 2u2. Define ε = ε2 − ε1.
Using (19) and (21), we deduce that Algorithm Fast2Sum introduces no error
at line 5 of the algorithm. Therefore,

zh + z` = th + t`2
= th + t`1 + c`1 + ε2
= ch + c`2 + c`1 + ε2
= xhy + x`y − ε1 + ε2
= xy + ε.

(22)

Hence the absolute error of Algorithm 7 is |ε| ≤ |ε1| + |ε2| ≤ 3u2. Let us now
consider two possible cases:

1. If xhy ≥ 2, then xy ≥ xh(1 − u)y ≥ 2 − 2u. This leads to a relative error
|ε/(xy)| bounded by

3u2

2− 2u
=

3

2
u2 +

3

2
u3 +

3

2
u4 + · · · , (23)

2. If xhy < 2, which implies |ch| ≤ 2, we easily improve on some of the
previously obtained bounds. We have, |c`1| ≤ u, and th ≤ RN(2+2u−2u2) = 2.

13

The case th = 2 is easily handled: (22) implies xy = th+t`2−ε ≥ 2−4u−3u2,
and the relative error |ε/(xy)| is bounded by

3u2

2− 4u− 3u2
=

3

2
u2 + 3u3 +

33

4
u4 + · · · . (24)

If th < 2 then |t`1| ≤ u, |t`2| ≤ 2u, and |ε2| ≤ u2. Hence, a first upper bound
on |ε| is 2u2. However, some refinement is possible.

• first, if |c`2| < u then |ε1| ≤ u2/2, which implies |ε| ≤ 3u2/2;

• second, if |c`2| ≥ u, then c`2 is a multiple of ulp(u) = 2u2, so that t`1 is a
multiple of 2u2. Also, since xh and y are multiple of 2u, xhy is a multiple
of 4u2, so that c`1 is a multiple of 4u2. Hence, t`1 + c`1 is a multiple of
2u2 of absolute value less than or equal to 2u. This implies that t`1 + c`1
is a FP number, hence RN(t`1 + c`1) = t`1 + c`1 and ε2 = 0.

Therefore, when th < 2, |ε| is upper-bounded by 3u2/2 so that the relative error
|ε/(xy)| is bounded by

3
2u

2

(1− u)(1 + 2u)
≤ 3

2
u2. (25)

The largest of the three bounds (23), (24), and (25) is the second one. It is less
than 3

2u
2 + 4u3 as soon as u ≤ 1/16. This proves the theorem.

The bound given by Theorem 4.1 is very sharp. For instance, in binary32
arithmetic (p = 24), with xh = 8388609, x` = 4095/8192, and y = 8389633, the
relative error of Algorithm 7 is 1.4993282 · · · × 2−48.

In Bailey’s QD library [8] as well as in Briggs’ library [3], another algorithm
(Algorithm 8 below) is suggested for multiplying a double-word number by a
floating-point number.

Algorithm 8 – DWTimesFP2(xh, x`, y). Algorithm for computing (xh, x`)×
y in binary, precision-p, floating-point arithmetic, implemented in the QD li-
brary.

1: (ch, c`1)← 2Prod(xh, y)
2: c`2 ← RN(x` · y)
3: c`3 ← RN(c`1 + c`2)
4: (zh, z`)← Fast2Sum(ch, c`3)
5: return (zh, z`)

Algorithm 8 is faster than Algorithm 7 (we save one call to Fast2Sum),
but it is less accurate: there are input values for which the error attained us-
ing Algorithm 8 is larger than the bound given by Theorem 4.1. An exam-
ple with p = 53 is xh = 4525788557405064, x` = 8595672275350437/254, and
y = 5085664955107621, for which the relative error is 2.517 · · · × 2−106.

Hence, the relative error bound we are going to prove for Algorithm 8 is
necessarily larger than the one we had for Algorithm 7. More precisely, we
have:

14

Theorem 4.2. If p ≥ 3, the relative error of Algorithm 8 (DWTimesFP2) is
less than or equal to 3u2.

Proof. The proof is very similar to (in fact, simpler than) the proof of The-
orem 4.1. Without loss of generality, we can assume 1 ≤ xh ≤ 2 − 2u and
1 ≤ y ≤ 2− 2u. Since the analysis of the case y = 1 is straightforward, we even
assume 1 + 2u ≤ y ≤ 2 − 2u. This gives 1 + 2u ≤ xhy ≤ 4 − 8u + 4u2, so that
1 + 2u ≤ ch ≤ 4− 8u and |c`1| ≤ 2u. From |x`| ≤ u and y ≤ 2− 2u we deduce
|c`2| ≤ 2u− 2u2, so that ε1 = x`y − c`2 satisfies |ε1| ≤ u2.

Now, |c`1 + c`2| ≤ 4u − 2u2, hence |c`3| ≤ 4u, and c`3 = c`1 + c`2 + ε2,
with |ε2| ≤ 2u2. From |c`3| ≤ 4u and ch ≥ 1 + 2u we deduce that Algorithm
Fast2Sum introduces no error at line 4 of the algorithm.

Hence,
zh + z` = ch + c`3 = xy − ε1 + ε2,

and | − ε1 + ε2| ≤ 3u2. Since xy ≥ (xh − u)y ≥ (1− u)(1 + 2u) ≥ 1, we deduce
that the relative error of Algorithm 8 is less than 3u2.

If an FMA instruction is available, we can improve Algorithm 8 by merging
lines 2 and 3 of the algorithm, and obtain Algorithm 9:

Algorithm 9 – DWTimesFP3(xh, x`, y). Algorithm for computing (xh, x`)×
y in binary, precision-p, floating-point arithmetic, assuming an FMA instruction
is available.

1: (ch, c`1)← 2Prod(xh, y)
2: c`3 ← RN(c`1 + x`y)
3: (zh, z`)← Fast2Sum(ch, c`3)
4: return (zh, z`)

This results in a better error bound:

Theorem 4.3. If p ≥ 3, the relative error of Algorithm 9 (DWTimesFP3) is
less than or equal to 2u2.

The proof is very similar to the proof of Theorem 4.2, so we omit it. The
bound provided by Theorem 4.3 is sharp. For instance, in binary64 arithmetic
(p = 53), we attain error 1.984 · · · × 2−106 for xh = 4505619370757448, x` =
−9003265529542491/254, and y = 4511413997183120.

5 Multiplication of two double-word numbers

Algorithm 10 below was first suggested by Dekker (under the name mul2 in [5]).
It has been implemented in the QD library [8] and in Briggs’ library [3] for
multiplying two double-word numbers.

15

Algorithm 10 – DWTimesDW1(xh, x`, yh, y`). Algorithm for computing
(xh, x`)× (yh, y`) in binary, precision-p, floating-point arithmetic, implemented
in the QD library.

1: (ch, c`1)← 2Prod(xh, yh)
2: t`1 ← RN(xh · y`)
3: t`2 ← RN(x` · yh)
4: c`2 ← RN(t`1 + t`2)
5: c`3 ← RN(c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)

Dekker proved a relative error bound 11u2. We are going to show:

Theorem 5.1. If p ≥ 4, the relative error of Algorithm 10 (DWTimesDW1) is
less than or equal to 7u2/(1 + u)2 < 7u2.

In the proof of Theorem 5.1, we will use the following lemma:

Lemma 5.2. Let a and b be two positive real numbers. If ab ≤ 2 then a+ b ≤
2
√

2.

The proof of the lemma is straightforward calculus. Let us focus on the
proof of Theorem 5.1.

Proof. Without loss of generality, we assume that 1 ≤ xh ≤ 2 − 2u and 1 ≤
yh ≤ 2− 2u. We have xhyh < 4, and

ch + c`1 = xhyh,

with |c`1| ≤ 2u. We also have

t`1 = xhy` + ε1,

with |xhy`| ≤ 2u− 2u2, so that |t`1| ≤ 2u− 2u2 and |ε1| ≤ u2; and

t`2 = x`yh + ε2,

with |x`yh| ≤ 2u− 2u2, so that |t`2| ≤ 2u− 2u2 and |ε2| ≤ u2. Now, we have

c`2 = t`1 + t`2 + ε3,

with |t`1 + t`2| ≤ 4u − 4u2, which implies |c`2| ≤ 4u − 4u2 and |ε3| ≤ 2u2. We
finally obtain

c`3 = c`1 + c`2 + ε4,

and, from |c`1 + c`2| ≤ 6u − 4u2, we deduce |c`3| ≤ 6u and |ε4| ≤ 4u2. Since
ch ≥ 1, Algorithm Fast2Sum introduces no error at line 6 of the algorithm.

16

Therefore,

zh + z` = ch + c`3
= (xhyh − c`1) + c`1 + c`2 + ε4
= xhyh + t`1 + t`2 + ε3 + ε4
= xhyh + xhy` + x`yh + ε1 + ε2 + ε3 + ε4
= xy − x`y` + ε1 + ε2 + ε3 + ε4
= xy + η,

(26)

with |η| ≤ u2 + |ε1 + ε2 + ε3 + ε4| ≤ 9u2. Let us consider the following cases.

• if xhyh > 2 then, since x ≥ xh(1−u) and y ≥ yh(1−u), the relative error
is bounded by

9u2

2(1− u)2
. (27)

• If xhyh ≤ 2 then |c`1| ≤ u. Furthermore, Lemma 5.2 implies

xh + yh ≤ 2
√

2. (28)

We have,
|t`1| = |RN(xhy`)| ≤ RN(xhu) = xhu,

and, similarly, |t`2| ≤ yhu, so that, using (28),

|t`1 + t`2| ≤ xhu+ yhu ≤ 2
√

2u.

Therefore, c`2 now satisfies

|c`2| ≤ |t`1 + t`2|+ |ε3| ≤ 2
√

2u+ 2u2.

We now deduce

|c`1 + c`2| ≤ u · (2
√

2 + 1) + 2u2 ≤ 4u

(as soon as u ≤ 1/16, i.e., p ≥ 4). Therefore, |ε4| ≤ 2u2. In (26), this
results in |η| ≤ 7u2 instead of 9u2. Notice that if xh = 1 or yh = 1 then,
either ε1 = 0 or ε2 = 0, which results in a significantly smaller bound for
|η|. So we can assume that xh ≥ 1+2u (hence, x > 1+u) and yh ≥ 1+2u
(hence, y > 1 + u). Therefore the relative error is bounded by

7u2

(1 + u)2
< 7u2. (29)

If p ≥ 4 the bound (27) is less than the bound (29). This proves the
theorem.

17

The bound 7u2 provided by Theorem 5.1 is probably too pessimistic. The
largest relative error we have encountered in our tests was 4.9916 × 2−106, ob-
tained for p = 53, xh = 4508231565242345, x` = −9007199254524053/254,
yh = 4504969740576150, and y` = −4503599627273753/253. In binary32 arith-
metic (p = 24), the largest error obtained in our tests was 4.947 × 2−48, for
xh = 8399376, x` = 16763823/225, yh = 8414932, and y` = 16756961/225.

Now, if a fused multiply-add instruction (FMA) is available, we can slightly
improve Algorithm 10, both in terms of speed and accuracy, by merging lines 3
and 4. Consider Algorithm 11 below.

Algorithm 11 – DWTimesDW2(xh, x`, yh, y`). Algorithm for computing
(xh, x`)× (yh, y`) in binary, precision-p, floating-point arithmetic, assuming an
FMA instruction is available.

1: (ch, c`1)← 2Prod(xh, yh)
2: t` ← RN(xh · y`)
3: c`2 ← RN(t` + x`yh)
4: c`3 ← RN(c`1 + c`2)
5: (zh, z`)← Fast2Sum(ch, c`3)
6: return (zh, z`)

We have,

Theorem 5.3. If p ≥ 5, the relative error of Algorithm 11 (DWTimesDW2) is
less than or equal to

6u2 + 1
2u

3

(1 + u)2
< 6u2.

The proof is very similar to (in fact, simpler than) the proof of Theorem 5.1,
and follows the same structure, so omit it.

We do not know if the bound given by Theorem 5.3 is sharp. The largest rel-
ative error we have encountered during our intensive tests was, for binary64 (p =
53), 4.9433×2−106, obtained for xh = 4515802244422058, x` = −2189678420952711/252,
yh = 4503988428047019, and y` = −2248477851812015/252. In binary32 arith-
metic (p = 24), the largest error obtained in our tests was 4.936 × 2−48, for
xh = 8404039, x` = −8284843/224, yh = 8409182, and y` = −4193899/223.

The accuracy of the multiplication of two double-word numbers can be im-
proved even more, by also computing the partial product x`y`. This gives
Algorithm 12 below.

18

Algorithm 12 – DWTimesDW3(xh, x`, yh, y`). Algorithm for computing
(xh, x`)× (yh, y`) in binary, precision-p, floating-point arithmetic, assuming an
FMA instruction is available.

1: (ch, c`1)← 2Prod(xh, yh)
2: t`0 ← RN(x` · y`)
3: t`1 ← RN(xh · y` + t`0)
4: c`2 ← RN(t`1 + x` · yh)
5: c`3 ← RN(c`1 + c`2)
6: (zh, z`)← Fast2Sum(ch, c`3)
7: return (zh, z`)

We have,

Theorem 5.4. If p ≥ 4, the relative error of Algorithm 12 (DWTimesDW3) is
less than or equal to

5u2 + 1
2u

3

(1 + u)2
< 5u2.

The proof is very similar to the proof of Theorem 5.1, and follows the
same structure, so we omit it. We do not know if the bound given by The-
orem 5.4 is sharp. The largest relative error we have encountered n intensive
tests was (for p = 53) 3.936× 2−106, obtained for xh = 4510026974538724, x` =
4232862152422029/253, yh = 4511576932111935, and y` = 2250098448199619/252.

6 Division of a double-word number by a floating-
point number

The algorithm suggested by Li et al. in [13] for dividing a double-word number
by a floating-point number is similar to Algorithm 13 below.

Algorithm 13 – DWDivFP1(xh, x`, y). Calculation of (xh, x`)÷ y in binary,
precision-p, floating-point arithmetic.

1: th ← RN(xh/y)
2: (πh, π`)← 2Prod(th, y)
3: (δh, δ

′)← 2Sum(xh − πh)
4: δ′′ ← RN(x` − π`)
5: δ` ← RN(δ′ + δ′′)
6: δ ← RN(δh + δ`)
7: t` ← RN(δ/y)
8: (zh, z`)← Fast2Sum(th, t`)
9: return (zh, z`)

Algorithm 13 can be simplified. We have th = (xh/y)(1 + ε0) and πh =

19

thy(1 + ε1), with |ε0|, |ε1| ≤ u. Hence,

(1− u)2xh ≤ πh ≤ (1 + u)2xh.

Therefore, as soon as p ≥ 2 (i.e., u ≤ 1/4), πh is within a factor 2 from xh.
Sterbenz Lemma (Lemma 1.2) therefore implies that xh−πh is a floating-point
number. As a consequence, we always have δh = xh − πh, δ′ = 0, line 3 of
the algorithm can be replaced by a simple subtraction, and we always have
δ` = δ′′ = RN(x` − π`). Therefore, the significantly simpler Algorithm 14,
below, always returns the same result as Algorithm 13.

Algorithm 14 – DWDivFP2(xh, x`, y). Calculation of (xh, x`)÷ y in binary,
precision-p, floating-point arithmetic.

1: th ← RN(xh/y)
2: (πh, π`)← 2Prod(th, y)
3: δh ← RN(xh − πh) = xh − πh (exact operation)
4: δ` ← RN(x` − π`)
5: δ ← RN(δh + δ`)
6: t` ← RN(δ/y)
7: (zh, z`)← Fast2Sum(th, t`)
8: return (zh, z`)

The authors of [13] claim that their binary64 (i.e., p = 53) implementation
of Algorithm 13 has a relative error bounded by 4 · 2−106. That bound can be
slightly improved. We are going to prove:

Theorem 6.1. If p ≥ 4, the relative error of Algorithm 14 (DWDivFP2) is
bounded by

7

2
u2.

That bound also holds for Algorithm 13 (DWDivFP1) since both algorithms
return the same result. The bound is reasonably sharp: in practice the largest
relative errors we have found in calculations were slightly less than 3u2. For
instance, for p = 53, relative error 2.95157083 · · · × 2−106 is attained for xh =
4588860379563012, x` = −4474949195791253/253, and y = 4578284000230917.

Before proving Theorem 6.1, let us prove the following Lemma.

Lemma 6.2. Assume a radix-2, precision-p, FP arithmetic. Let a and b be FP
numbers between 1 and 2. Let u = 2−p. The distance between RN(a/b) and a/b
is less than {

u− 2u2/b if a/b ≥ 1;

u/2− u2/b otherwise.

Proof. It suffices to estimate the smallest possible distance between a/b and a
“midpoint” (i.e., a number exactly halfway between two consecutive FP num-
bers). Let a = Ma · 2−p+1, b = Mb · 2−p+1, with 2p−1 ≤Ma,Mb ≤ 2p − 1.

20

• If a/b ≥ 1, a midpoint µ between 1 and 2 has the form (2Mµ+1)/2p, with
2p−1 ≤Mµ ≤ 2p − 1. We have∣∣∣a

b
− µ

∣∣∣ =

∣∣∣∣2pMa −Mb(2Mµ+ 1)

2pMb

∣∣∣∣ .
The numerator, 2pMa −Mb(2Mµ + 1), of that fraction cannot be zero:
since 2Mµ+ 1 is odd, having 2pMa = Mb(2Mµ+ 1) would require Mb to
be a multiple of 2p, which is impossible since Mb ≤ 2p − 1. Hence that
numerator has absolute value at least 1. Hence∣∣∣a

b
− µ

∣∣∣ ≥ 1

2pMb
=

2u2

b
.

• If a/b < 1 the proof is similar. The only change is that a midpoint is of
the form (2Mµ + 1)/2p+1.

In a recent paper (see [10, Table 1]), a similar bound is given for floating-
point division. It could be used instead of Lemma 6.2, but we included the
lemma for completeness. Let us now prove Theorem 6.1.

Proof. The case where y is a power of 2 is straightforward, so we omit it. With-
out loss of generality, we assume 1 ≤ xh ≤ 2 − 2u, so that |x`| ≤ u; and
1 + 2u ≤ y ≤ 2− 2u. Therefore, we have

1

2− 2u
≤ xh

y
≤ 2− 2u

1 + 2u
. (30)

The quotient 1/(2− 2u) is always larger than 1/2 + u/2, and, as soon as p ≥ 4,
(2− 2u)/(1 + 2u) is less than 2− 5u. Therefore

1

2
+ u ≤ th = RN

(
xh
y

)
≤ 2− 6u. (31)

We have already proved, when discussing Algorithm 13, that δh = xh − πh.
Define ε1, ε2, and ε3 as the errors committed at steps 4, 5, and 6 of the

algorithm. More precisely,

ε1 = δ` − (x` − π`),

ε2 = δ − (δh + δ`),

and

ε3 = t` −
δ

y
.

21

Also define ε = ε1 + ε2. We have,

δ = (xh − πh) + (x` − π`) + δ` − (x` − π`)︸ ︷︷ ︸
ε1

+ δ − (δh + δ`)︸ ︷︷ ︸
ε2

,

= x− thy + ε,

(32)

and
th + t` =

x

y
+
ε

y
+ ε3. (33)

Lemma 6.2 implies ∣∣∣∣th − xh
y

∣∣∣∣ ≤ u− 2u2

y
, (34)

so that
|thy − xh| ≤ uy − 2u2 ≤ 2u− 4u2, (35)

and
thy ≤ |thy − xh|+ |xh| ≤ (2u− 4u2) + (2− 2u) = 2− 4u2. (36)

This implies

|π`| ≤
1

2
ulp(thy) = u.

From this and |x`| ≤ u, we deduce |δ`| ≤ 2u and

|ε1| ≤ u2. (37)

Also, (35) implies xh − 2u ≤ thy ≤ xh + 2u, and, since xh − 2u and xh + 2u are
floating-point numbers,

xh − 2u ≤ πh = RN(thy) ≤ xh + 2u. (38)

Therefore, |δh| = |xh − πh| ≤ 2u. Now, since |δh + δ`| ≤ 4u, we obtain

|ε2| ≤ 2u2, (39)

and |δ| ≤ 4u, which implies |δ/y| < 4u and |t`| ≤ 4u. Using this and (31) we
deduce that Fast2Sum returns a correct result at Line 7 of the algorithm, i.e.,
zh + z` = th + t`. Let us now consider two possible cases.

1. If x ≥ y, which implies xh ≥ y and th ≥ 1, then (38) implies

πh = RN(thy) ∈ {xh − 2u, xh, xh + 2u}.

One might think that πh could be xh − u in the case xh = 1, but xh = 1 is
not compatible with our assumptions, x ≥ y and y ≥ 1 + 2u. In all cases,
δh = xh − πh ∈ {−2u, 0, 2u}.

• If δh = −2u then xh − πh = −2u, so that

π` = thy − πh = (thy − xh) + (xh − πh) ≤ (2u− 4u2) + (−2u) = −4u2.

Hence −u ≤ π` ≤ −4u2, so that −u+ 4u2 ≤ δ` ≤ 2u.

22

– if u ≤ δ` ≤ 2u then Sterbenz’s Lemma implies that δh + δ` is a FP
number, so that ε2 = 0;

– if −u+ 4u2 ≤ δ` < u then the bound (37) is improved and becomes
|ε1| ≤ u2/2.

Hence, if δh = −2u, we have |ε1 + ε2| ≤ 5u2/2.

• Symmetrically, if δh = 2u we also have |ε1 + ε2| ≤ 5u2/2.

• If δh = 0 then |δh + δ`| = |δ`| ≤ 2u. Since there is no error when adding
δh and δ`, we have ε2 = 0.

Hence, we always have |ε| = |ε1 + ε2| ≤ 5u2/2. From (32) we deduce

δ

y
=
x

y
− th +

ε

y
. (40)

Let us now bound the error committed when rounding δ/y. For that purpose,
let us first try to find a reasonably tight bound on δ/y. We have∣∣∣xy − th∣∣∣ ≤ ∣∣∣xh

y − th
∣∣∣+
∣∣∣x`

y

∣∣∣
≤ u− 2u2

y + u
y ,

and ∣∣∣∣ εy
∣∣∣∣ ≤ 5u2

2y
.

Therefore, using (40),∣∣∣∣ δy
∣∣∣∣ ≤ u+

u2

2y
+
u

y
≤ u+

u2

2(1 + 2u)
+

u

1 + 2u
=

4u+ 5u2

2 + 4u
< 2u.

Hence |t`| ≤ 2u, and

|ε3| =
∣∣∣∣t` − δ

y

∣∣∣∣ =

∣∣∣∣RN

(
δ

y

)
− δ

y

∣∣∣∣ ≤ u2.
Using (33), we finally conclude that∣∣∣∣(zh + z`)−

x

y

∣∣∣∣ =

∣∣∣∣(th + t`)−
x

y

∣∣∣∣ ≤ 5u2

2y
+ u2, (41)

so that the relative error is bounded by

y

x

(
5u2

2y
+ u2

)
≤ 5u2

2x
+
u2y

x
≤ 7u2

2
= 3.5u2,

since y/x ≤ 1.

23

2. If x < y, which implies xh ≤ y and th ≤ 1.
The case xh = y is easily handled. It leads to th = 1, πh = xh, π` = 0,

δ = x`, and zh + z` = th + t` = x/y + η, with |η| ≤ u|x`|/y ≤ u2x/y.
We can now focus on the case xh < y. It implies xh ≤ y − 2u, so that

x ≤ y − u. This gives x/y ≤ 1− u/y ≤ 1− u/(2− 2u) < 1− u/2, which implies
th ≤ 1− u.

The remainder of the proof is very similar to the proof of the case x > y,
so we give it with less details. Lemma 6.2 makes it possible to improve on the
bound (34): we now have, ∣∣∣∣th − xh

y

∣∣∣∣ ≤ u

2
− u2

y
,

so that |thy − xh| ≤ (u/2) · y − u2 ≤ u − 2u2. This implies πh = RN(thy) ∈
{xh − u, xh}, so that δh ∈ {0, u}. The case RN(thy) = xh − u (i.e., δh = u)
being possible only when xh = 1. We again consider two possible cases

• If δh = 0 then ε2 = 0.

• If δh = u (which implies xh = 1), then, since πh = 1−u, we have thy < 1.
This implies |π`| ≤ 1

2ulp(thy) ≤ u
2 . We also have

π` = thy − πh = (thy − xh) + (xh − πh) ≥ (−u+ 2u2) + u = 2u2,

hence,

2u2 ≤ π` ≤
u

2
. (42)

Also, xh = 1 implies −u2 ≤ x` ≤ u. Therefore −u ≤ x` − π` ≤ u− 2u2, so
that −u ≤ δ` ≤ u− 2u2, and |ε1| ≤ u2/2. From

0 ≤ δ` + δh ≤ 2u− 2u2,

we deduce |ε2| ≤ u2.

Hence, we always have |ε| = |ε1 + ε2| ≤ 3u2/2. We deduce from (32) that∣∣∣∣ δy
∣∣∣∣ ≤ ∣∣∣∣xhy − th

∣∣∣∣+

∣∣∣∣x`y
∣∣∣∣+

∣∣∣∣ εy
∣∣∣∣ ≤ u

2
+
u2

2y
+
u

y
< 2u,

so that |t`| ≤ 2u, and

|ε3| =
∣∣∣∣t` − δ

y

∣∣∣∣ ≤ u2.
Using (33), we finally conclude that∣∣∣∣(zh + z`)−

x

y

∣∣∣∣ =

∣∣∣∣(th + t`)−
x

y

∣∣∣∣ ≤ 3u2

2y
+ u2,

hence zh + z` = th + t` approximates x/y with a relative error bounded by

y

x
·
(

3u2

2y
+ u2

)
≤ 3u2

2x
+ u2

y

x
≤ 3.5u2.

24

7 Division of two double-word numbers

The algorithm implemented in the QD library for dividing two double-word
numbers is the following.

Algorithm 15 – DWDivDW1(xh, x`, yh, y`). Calculation of (xh, x`)÷(yh, y`)
in binary, precision-p, floating-point arithmetic.

1: th ← RN(xh/yh)
2: (rh, rl) ← DWTimesFP1(yh, y`, th) {approximation to (yh + y`) · th using

Alg. 7}
3: (πh, π`)← 2Sum(xh,−rh)
4: δh ← RN(π` − r`)
5: δ` ← RN(δh + x`)
6: δ ← RN(πh + δ`)
7: t` ← RN(δ/yh)
8: (zh, z`)← Fast2Sum(th, t`)
9: return (zh, z`)

Let us quickly analyze the beginning of Algorithm 15. This will lead us
to suggest another algorithm, faster yet mathematically equivalent as soon as
p ≥ 3. Without loss of generality, we assume xh > 0 and yh > 0. Define εx and
εy such that xh = x(1 + εx) and yh = y/(1 + εy). These two numbers εx and εy
have an absolute value less than or equal to u. We have

th =
xh
yh

(1 + ε0), with |ε0| ≤ u, (43)

and, from Theorem 4.1,

rh + r` = thy(1 + η), with |η| ≤ 3

2
u2 + 4u3 (44)

There exists |ε1| ≤ u such that rh = (rh + r`)(1 + ε1). This can be rewritten
r` = −ε1(rh + r`), so that, using (44), r` = −ε1thy(1 + η). We finally obtain

rh = thyh(1 + εy)(1 + ε1)(1 + η)
= xh(1 + εy)(1 + ε0)(1 + ε1)(1 + η),

(45)

so that

(1− u)3(1− 2u2)xh ≤ rh ≤ (1 + u)3
(

3

2
u2 + 4u3

)
xh,

from which we deduce

|xh − rh| ≤
(

3u+
9

2
u2 +

19

2
u3 +

33

2
u4 +

27

2
u5 + 4u6

)
· xh,

which implies
|xh − rh| ≤ (3u+ 6u2) · xh (46)

25

as soon as p ≥ 3. One easily checks that for p ≥ 3 (i.e., u ≤ 1/8), 3u + 6u2

is less than 1/2. Hence, From Sterbenz Lemma (Lemma 1.2), the number
xh − rh is a floating-point number. Therefore the number π` obtained at line 3
of Algorithm 15 is always 0 and that line can be replaced by a simple, errorless,
subtraction. This gives πh = xh − rh, and δh = −r`. Hence, without changing
the final result, we can replace Algorithm 15 by the simpler Algorithm 16, below.

Algorithm 16 – DWDivDW2(xh, x`, yh, y`). Calculation of (xh, x`)÷(yh, y`)
in binary, precision-p, floating-point arithmetic: improved version of Algo-
rithm 15. Useless operations have been removed. The result is exactly the
same.

1: th ← RN(xh/yh)
2: (rh, rl) ← DWTimesFP1(yh, y`, th) {approximation to (yh + y`) · th using

Alg. 7}
3: πh ← RN(xh − rh) = xh − rh (exact operation)
4: δ` ← RN(x` − r`)
5: δ ← RN(πh + δ`)
6: t` ← RN(δ/yh)
7: (zh, z`)← Fast2Sum(th, t`)
8: return (zh, z`)

If an FMA instruction is available, Algorithm 9 can be used at line 2 instead
of Algorithm 7 without changing much the error bound provided by Theorem 7.1
below. We have

Theorem 7.1. If p ≥ 7, the relative error of Algorithms 15 (DWDivDW1)
and 16 (DWDivDW2) is upper-bounded by 15u2 + 56u3.

Proof. For reasons of symmetry, we can assume that x and y are positive. We
will use the results (43) to (46) obtained when analyzing the beginning of Al-
gorithm 15. Assume p ≥ 7. We have

δ` = (x` − r`)(1 + ε2), with |ε2| ≤ u,

We have |x`| ≤ u · xh and |r`| ≤ u · rh, so that

|x` − r`| ≤ |x`|+ |r`|
≤ u · xh + u · rh
≤ u · xh + u · ((rh − xh) + xh)
≤ u · xh + u · (|rh − xh|+ xh) .

Therefore, using (46),

|x` − r`| ≤ u · xh + u ·
(
(3u+ 6u2)xh + xh

)
,

which gives
|x` − r`| ≤ (2u+ 3u2 + 6u3) · xh. (47)

26

We have
δ = (πh + δ`)(1 + ε3), with |ε3| ≤ u,

so that

δ = xh − rh + x` − r` + (x` − r`)(ε2 + ε3 + ε2ε3) + (xh − rh) · ε3,
= x− (rh + r`) + α · xh,

with (using (46) and (47))

|α| ≤ (2u+ 3u2 + 6u3)(2u+ u2) + (3u+ 6u2)u
≤ 7u2 + 15u3

(48)

as soon as p ≥ 4. Hence δ = x− thy(1 + η) + αxh, so that

δ

yh
=
x− thy

y
· y
yh
− ηthy

yh
+ α

xh
yh
. (49)

The number x− thy is equal to xh − thyh + x` − thy`. From (43), xh − thyh is
equal to −xhε0. Also, |x`| is less than or equal to uxh, and

|thy`| ≤ |uthyh| ≤ u(1 + u)xh.

Hence,
|x− thy| ≤ xh · (u+ u+ u(1 + u)) = xh · (3u+ u2). (50)

From (49), we deduce

δ
yh

= x−thy
y · (1 + εy)− ηth(1 + εy) + αxh

yh
,

= x−thy
y + β,

(51)

with

|β| =
∣∣∣εy · x−thyy − th(1 + εy)η + xh

yh

∣∣∣
≤ u(3u+ u2)xh

y + (1 + u)(2u2)xh

yh
+ (7u2 + 15u3)xh

yh

≤ u(3u+ u2)(1 + u)xy + (1 + u)3(2u2)xy + (7u2 + 15u3)(1 + u)2 xy

=
(
12u2 + 39u3 + 44u4 + 17u5

)
· xy .

(52)
Hence,

t` = RN
(
δ
yh

)
= δ

yh
(1 + ε4) with |ε4| ≤ u,

=
(
x−thy
y + β

)
(1 + ε4)

= x−thy
y + γ,

(53)

27

with

|γ| =
∣∣∣x−thyy ε4 + β + ε4β

∣∣∣
≤ xh

y (3u+ u2)u+ β + βu

≤ (3u+ u2)u(1 + u)xy + β + βu

=
(
15u2 + 55u3 + 84u4 + 61u5 + 17u6

)
· xy .

(54)

Hence
th + t` =

x

y
+ γ.

Since we straightforwardly have

th ≥
x

y
· (1− u)3, (55)

we deduce

|t`| ≤
x

y
·
(
(15u2 + 55u3 + 84u4 + 61u5 + 17u6) + (3u− 3u2 + u3)

)
. (56)

From (55) and (56) we easily deduce that as soon as p ≥ 4 (i.e., u ≤ 1/16), th
is larger than |t`|, so that Algorithm Fast2Sum introduces no error at line 7 of
the algorithm. Therefore,

zh + z` = th + t` =
x

y
+ γ,

so that the relative error of Algorithm 16 (and Algorithm 15) is upper-bounded
by

15u2 + 55u3 + 84u4 + 61u5 + 17u6,

which is less than 15u2 + 56u3 as soon as p ≥ 7 (i.e., u ≤ 128), which always
holds in practice.

The bound provided by Theorem 7.1 is almost certainly not optimal. How-
ever, during our intensive tests, we have encountered cases for which the rel-
ative error, although significantly less than the bound 15u2 + 56u3 of The-
orem 7.1, remains of a similar order of magnitude—i.e., more than half the
bound. For instance, for p = 53, relative error 8.465 · · · × 2−106 is attained for
xh = 4503607118141812, x` = 4493737176494969/253, yh = 4503600552333684,
and y` = −562937972998161/250.

If an FMA instruction is available, one can design a more accurate algorithm.
What makes it work is the following property (easy to prove, and common
knowledge among the designers of Newton-Raphson-based division algorithms):

Property 7.2. If y is a nonzero FP number, and if t = RN(1/y), then yt− 1
is a FP number.

28

Proof. Without l.o.g., assume 1 ≤ y ≤ 2−2u, which implies that y is a multiple
of 2−p+1 = 2u. The number 1/y is between 1/(2− 2u) = 1/2 +u/2 +u2/2 + · · ·
and 1, so that t is between 1/2 and 1, so that t is a multiple of 2−p = u. From

1− u
y
≤ t ≤ 1 + u

y

we deduce
−u ≤ 1− yt ≤ u.

Hence, 1−yt is a multiple of 2−2p+1 of absolute value less than or equal to 2−p,
which implies that it is a FP number.

Now, let us suggest a new division algorithm, that makes use of that property.

Algorithm 17 – DWDivDW3(xh, x`, yh, y`). Calculation of (xh, x`)÷(yh, y`)
in binary, precision-p, floating-point arithmetic: more accurate algorithm that
requires the availability of an FMA instruction

1: th ← RN(1/yh)
2: rh ← (1− yhth) = 1− yhth (exact operation)
3: r` ← −RN(y` · th)
4: (eh, e`)← Fast2Sum(rh, r`)
5: (δh, δ`) ← DWTimesFP3(eh, e`, th) {Approximation to (eh + e`) · th with

relative error ≤ 2u2 using Algorithm 9}
6: (mh,m`) ← DWPlusFP(δh, δ`, th){Approximation to δh + δ` + th with rel-

ative error ≤ 2u2 + 5u3 using Algorithm 4}
7: (zh, z`)← DWTimesDW2(xh, x`,mh,m`){Approximation to (xh+x`)(mh+
m`) with relative error ≤ 5u2 using Algorithm 12}

8: return (zh, z`)

We have,

Theorem 7.3. As soon as p ≥ 14, and if y 6= 0, the relative error of Algo-
rithm 17 (DWDivDW3) is bounded by 9.8u2.

Proof. Roughly speaking, Algorithm 17 first approximates 1/y by th = RN(1/yh),
then improves that approximation to 1/y by performing one step of Newton-
Raphson iteration, and then multiplies the obtained approximation (mh,m`) by
x.

Without loss of generality, we assume 1 ≤ yh ≤ 2−2u, so that 1/2 ≤ th ≤ 1.
We have ∣∣∣∣th − 1

yh

∣∣∣∣ ≤ u

2
,

and (from Property 7.2)
rh = 1− yhth.

29

We also easily check that(
th(2− yth)− 1

y

)
= −y ·

(
th −

1

y

)2

. (57)

Now, from |y`| ≤ u and |th| ≤ 1, we deduce |y`th| ≤ u, so that |r`| ≤ u, and
|r` + y`th| ≤ u2/2. This gives

eh + e` = rh + r` = 1− yhth − y`th + η, with |η| ≤ u2

2
. (58)

Also, since |yhth−1| = yh ·|th−1/yh| ≤ u, we have |rh| ≤ u, hence |rh+r`| ≤ 2u.
This implies |eh| ≤ 2u and |e`| ≤ u2. Define e = eh + e` = rh + r`, we have
|e| ≤ 2u.

Now, from Theorem 4.3, we have

δh + δ` = eth(1 + ω1), with |ω1| ≤ 2u2, (59)

and from Theorem 2.2, we have

mh +m` = (th + δh + δ`)(1 + ω2), with |ω2| ≤ 2u2 + 5u3. (60)

Combining (59) and (60), we obtain

mh +m` = (th + eth(1 + ω1))(1 + ω2)
= th + eth + ethω1 + ω2th + ω2eth + ω2ω1eth
= th + eth + αth,

(61)

with

|α| = |eω1 + ω2 + ω2e+ ω2ω1e|
≤ (2u)(2u2) + (2u2 + 5u3) + (2u2 + 5u3)(2u) + (2u2 + 5u3)(2u2)(2u)
= 2u2 + 13u3 + 10u4 + 8u5 + 20u6

≤ 2u2 + 14u3 as soon as p ≥ 4.
(62)

Therefore,
mh +m` = th + eth + αth

= th + th(1− yth + η) + αth
= th(2− yth) + th(η + α),

which implies ∣∣∣∣(mh +m`)−
1

y

∣∣∣∣ =

∣∣∣∣th(2− yth)− 1

y
+ th(η + α)

∣∣∣∣ ,
so that, using (57) and the bounds on η and α,∣∣∣∣(mh +m`)−

1

y

∣∣∣∣ ≤ y(th − 1

y

)2

+ th ·
∣∣∣∣52u2 + 14u3

∣∣∣∣ . (63)

30

Let us now consider y2 (th − 1/y) . That term is less than

y2
((

th −
1

yh

)
+
y − yh
yyh

)2

,

which is less than

y2u2
(

1

2
+

1

y(y − u)

)2

.

The largest value of

y2
(

1

2
+

1

y(y − u)

)2

for 1 ≤ y < 2 is always attained for y = 1, so that as soon as p ≥ 6 (i.e.,
u ≤ 1/64), we have

y2
(
th −

1

y

)
≤
(

1

2
+

1

1− 1
64

)2

u2 =
36481

15876
u2 ≤ 2.298u2.

Hence, from (63), we obtain∣∣∣∣(mh +m`)−
1

y

∣∣∣∣ ≤ 1

y
· 2.298u2 + th

(
5

2
u2 + 14u3

)
,

which implies∣∣∣∣x(mh +m`)−
x

y

∣∣∣∣ ≤ x

y
· 2.298u2 + xth

(
5

2
u2 + 14u3

)
.

Notice that |th| ≤ (1 + u)/yh ≤ (1 + u)2/y, so that∣∣∣∣x(mh +m`)−
x

y

∣∣∣∣ ≤ x

y
· ϕ(u), (64)

with ϕ(u) = 2.298u2 + (1 + u)2
(
5
2u

2 + 14u3
)
. Now, from Theorem 5.4, we have

|zh + z` − x(mh +m`)| ≤ 5u2|x(mh +m`)|
≤ 5u2 xy + 5u2

∣∣∣xy − x(mh +m`)
∣∣∣

≤ x
y

(
5u2 + 5u2ϕ(u)

)
.

(65)

Combining (64) and (65) we finally obtain∣∣∣zh + z` − x
y

∣∣∣ ≤ x
y (5u2 + ϕ(u) + 5u2ϕ(u))

≤ x
y

(
9.798u2 + 19u3 + 54.49u4 + 109u5 + 152.5u6 + 70u7

)
≤ 9.8u2 xy as soon as p ≥ 14.

This relative error bound is certainly a large overestimate, since we cu-
mulate in its calculation the overestimates of the errors of Algorithms 9, 4,
and 12. In practice, Algorithm 17 is rather accurate: the largest relative er-
ror found so far in our tests for p = 53, is 5.922 · · · × 2−106, obtained for
xh = 4528288502329187, x` = 1125391118633487/251, yh = 4522593432466394,
and y` = −9006008290016505/254.

31

Conclusion

We have proven relative error bounds for several basic building blocks of double-
word arithmetic, suggested a new algorithm for multiplying two double-word
numbers, suggested an improvement of the algorithms used in the QD library
for dividing a double-word number by a floating-point number, and for dividing
two double-word numbers. We have also suggested a new algorithm for dividing
two double-word numbers when an FMA instruction is available. Table 1 sum-
marizes the obtained results. For the functions for which an error bound was
already published, we always obtain a significantly smaller bound, except in one
case, for which the previously known bound turned out to be slightly incorrect.
Our results make it possible to have more trust in double-word arithmetic. They
also allow us to give some recommendations in what follows.

• For adding two double-word numbers, never use Algorithm 5, unless you
are certain that both operands have the same sign. Double-word numbers
can be added very accurately using the (unfortunately more expensive)
Algorithm 6.

• For multiplying a double-word number by a floating-point number, Algo-
rithm 8 is less accurate, yet slightly faster, than Algorithm 7. Hence one
cannot say that one is really better than the other one. Choose between
them depending on whether you mainly need speed or accuracy. If an
FMA instruction is available, Algorithm 9 is a good candidate.

• For multiplying two double-word numbers, if an FMA instruction is avail-
able, Algorithm 12 is to be favored. It is more accurate both from a
theoretical (better error bound) and from a practical (smaller observed
errors in our intensive testings) points of view.

• There is no point in using Algorithm 13 for dividing a double-word number
by a floating-point number: Algorithm 14, presented in this paper, always
returns the same result and is faster.

• There is no point in using Algorithm 15 for dividing two double-word
numbers: Algorithm 16, presented in this paper, always returns the same
result and is faster. If an FMA instruction is available, depending whether
the priority is speed or accuracy, one might prefer Algorithm 17. It is
almost certainly significantly more accurate (although we have no full
proof of that: we can just say that our bounds are smaller, as well as the
observed errors), however, it is slower.

32

Table 1: Summary of the results presented in this paper. For each algorithm,
we give the previously known bound (when we are aware of it, and when the
algorithm already existed), the bound we have proved, the largest relative error
observed in our fairly intensive tests, and the number of floating-point operations
required by the algorithm.

Operation Algorithm
Previously

known
bound

Our bound

Largest
relative error
observed in
experiments

] of FP
ops

DW + FP Algorithm 4 ? 2u2 + 5u3 2u2 − 6u3 10
DW + DW Algorithm 5 N/A N/A 1 11

Algorithm 6 2u2 (incorrect) 3u2 + 13u3 2.25u2 20
DW × FP Algorithm 7 4u2 3

2u
2 + 4u3 1.5u2 10

Algorithm 8 ? 3u2 2.517u2 7
Algorithm 9 N/A 2u2 1.984u2 6

DW × DW Algorithm 10 11u2 7u2 4.9916u2 9
Algorithm 12 N/A 5u2 3.936u2 9

DW ÷ FP Algorithm 13 4u2 3.5u2 2.95u2 16
Algorithm 14 N/A 3.5u2 2.95u2 10

DW ÷ DW Algorithm 15 ? 15u2 + 56u3 8.465u2 24
Algorithm 16 N/A 15u2 + 56u3 8.465u2 18
Algorithm 17 N/A 9.8u2 5.922u2 31

References

[1] D.H. Bailey, R. Barrio, and J.M. Borwein. High-precision computation:
Mathematical physics and dynamics. Applied Mathematics and Computa-
tion, 218(20):10106 – 10121, 2012.

[2] S. Boldo. Pitfalls of a full floating-point proof: example on the formal proof
of the Veltkamp/Dekker algorithms. In U. Furbach and N. Shankar, editors,
Proceedings of the 3rd International Joint Conference on Automated Rea-
soning, volume 4130 of Lecture Notes in Computer Science, pages 52–66,
2006.

[3] K. Briggs. The doubledouble library, 1998. Available at http://www.

boutell.com/fracster-src/doubledouble/doubledouble.html.

[4] Florent de Dinechin, Alexey V. Ershov, and Nicolas Gast. Towards the
post-ultimate libm. In Proceedings of the 17th IEEE Symposium on Com-
puter Arithmetic, ARITH ’05, pages 288–295, Washington, DC, USA, 2005.
IEEE Computer Society.

[5] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18(3):224–242, 1971.

33

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR:
A Multiple-Precision Binary Floating-Point Library with Correct Round-
ing. ACM Transactions on Mathematical Software, 33(2), 2007. available
at http://www.mpfr.org/.

[7] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision
floating-point arithmetic. In ARITH-16, pages 155–162, June 2001.

[8] Y. Hida, X.S. Li, and D.H. Bailey. C++/fortran-90 double-double and
quad-double package, release 2.3.17. Accessible electronically at http://

crd-legacy.lbl.gov/~dhbailey/mpdist/, March 2012.

[9] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. available at http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933.

[10] Claude-Pierre Jeannerod and Siegfried M. Rump. On relative er-
rors of floating-point operations: optimal bounds and applications.
https://hal.inria.fr/hal-00934443, 2016.

[11] W. Kahan. Lecture notes on the status of IEEE-754. PDF file
accessible at http://www.cs.berkeley.edu/~wkahan/ieee754status/

IEEE754.PDF, 1996.

[12] D. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[13] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Ka-
han, A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, imple-
mentation and testing of extended and mixed precision BLAS. Techni-
cal Report 45991, Lawrence Berkeley National Laboratory, 2000. http:

//crd.lbl.gov/~xiaoye/XBLAS.

[14] X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation
and testing of extended and mixed precision BLAS. ACM Transactions on
Mathematical Software, 28(2):152–205, 2002.

[15] C. Lichtenau, S. Carlough, and S. M. Mueller. Quad precision floating point
on the ibm z13. In 2016 IEEE 23nd Symposium on Computer Arithmetic
(ARITH), pages 87–94, July 2016.

[16] S. Linnainmaa. Software for doubled-precision floating-point computations.
ACM Transactions on Mathematical Software, 7(3):272–283, 1981.

[17] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

34

[18] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010.

[19] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-point
matrix arithmetic provably accurate to the penultimate digit. ACM Trans-
actions on Mathematical Software, 29(1):27–48, 2003.

[20] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

[21] S. M. Rump. Transformations and ill-conditioned problems. In Proceedings
of the International workshop on verified computations and related topics,
March 2009.

[22] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summa-
tion part I: Faithful rounding. SIAM Journal on Scientific Computing,
31(1):189–224, 2008.

[23] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

35

