
15res

Tight and Rigorous Error Bounds for Basic Building Blocks

of Double-Word Arithmetic

MIOARA JOLDES, LAAS CNRS Toulouse, France

JEAN-MICHEL MULLER, CNRS, LIP, Université de Lyon, France

VALENTINA POPESCU, ENS Lyon, LIP, Université de Lyon, France

We analyze several classical basic building blocks of double-word arithmetic (frequently called “double-double
arithmetic” in the literature): the addition of a double-word number and a floating-point number, the addi-
tion of two double-word numbers, the multiplication of a double-word number by a floating-point number,
the multiplication of two double-word numbers, the division of a double-word number by a floating-point
number, and the division of two double-word numbers. For multiplication and division we get better relative
error bounds than the ones previously published. For addition of two double-word numbers, we show that
the previously published bound was incorrect, and we provide a new relative error bound. We introduce new
algorithms for division. We also give examples that illustrate the tightness of our bounds.

CCS Concepts: • Mathematics of computing → Mathematical software; • Theory of computation →
Design and analysis of algorithms; Numeric approximation algorithms;

Additional Key Words and Phrases: Floating-point arithmetic, double-word arithmetic, double-double arith-
metic, error-free transforms

ACM Reference format:

Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. 2017. Tight and Rigorous Error Bounds for Basic
Building Blocks of Double-Word Arithmetic. ACM Trans. Math. Softw. 44, 2, Article 15res (October 2017),
27 pages.
https://doi.org/10.1145/3121432

1 INTRODUCTION AND NOTATION

Some calculations require a precision significantly higher than the one offered by the binary64
(also known as “double-precision”) format. A typical example is the evaluation of transcendental
functions in binary64 arithmetic with correct rounding: If all intermediate calculations are done
in the target precision, then it is very difficult to guarantee last-bit accuracy in the final result.
For instance, the CRLibm library of correctly rounded elementary functions uses “double-double”
or “triple-double” operations in critical parts (de Dinechin et al. 2005). Double-double arithmetic
has also been used with success in Basic Linear Algebra Subroutines (BLAS) (Li et al. 2002). Other

This work was supported by the FastRelax (ANR-14-CE25-0018-01) project of the French National Agency for Research
(ANR).
Authors’ addresses: M. Joldes, LAAS CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cédex 7, France; email:
joldes@laas.fr; J.-M. Muller, CNRS, Laboratoire LIP, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cédex
07, France; email: jean-michel.muller@ens-lyon.fr; V. Popescu, Laboratoire LIP, École Normale Supérieure de Lyon, 46 allée
d’Italie, 69364 Lyon Cédex 07, France; email: valentina.popescu@ens-lyon.fr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 0098-3500/2017/10-ART15res $15.00
https://doi.org/10.1145/3121432

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

https://doi.org/10.1145/3121432
mailto:permissions@acm.org.
https://doi.org/10.1145/3121432

15res:2 M. Joldes et al.

examples where higher-precision arithmetic has been useful, mentioned by Briggs (1998) or Bailey
et al. (2012), are studies of dynamical systems, the calculation of two-loop integrals for radiative
corrections in muon decay, experimental mathematics, supernova simulations, and studies of the
fine structure constant of physics.

There exist very good arbitrary precision libraries, such as GNU-MPFR (Fousse et al. 2007).
However, if one only needs calculations accurate within around 120 bits in a few critical parts of
a numerical program, using such libraries will involve a significant penalty in terms of speed and
memory consumption.

Although the binary128 format (frequently called “quad-precision”) was specified by the IEEE
754-2008 Standard on Floating-Point Arithmetic, it is seldom implemented in hardware. To our
knowledge, the only commercially significant platform that has supported binary128 in hardware
for the last decade has been the IBM z Systems (Lichtenau et al. 2016). Thus, one will be tempted
to use “double-double” arithmetic at times. Furthermore, even if hardwired binary128 arithmetic
becomes commonplace, there will be a need for “double-quad” operations for carefully implement-
ing very accurate binary128 elementary functions. Hence, designing and analyzing algorithms for
double-word arithmetic is of interest.

Double-word arithmetic, called “double-double” in most of the literature, consists in represent-
ing a real number as the unevaluated sum of two floating-point numbers. In all existing imple-
mentations, the underlying floating-point format is the binary64 format of the IEEE 754 Standard
on Floating-Point Arithmetic (IEEE Computer Society 2008; Muller et al. 2010), commonly called
“double-precision” (hence the name “double-double”).

Double-word arithmetic is not similar to a conventional, IEEE 754-like, floating-point arithmetic
with twice the precision. It lacks many nice properties such as Lemma 1.2 below, clearly defined
roundings, and so on. Furthermore, many algorithms have been published without a proof, or
with error bounds that are sometimes loose, sometimes fuzzy (the error is “less than a small inte-
ger times u2”), and sometimes unsure. Kahan qualifies double-double arithmetic as an “attractive
nuisance except for the BLAS” and even compares it to an unfenced backyard swimming pool!
He also mentions (Kahan 1996) that it “undermines the incentive to provide quadruple precision
correctly rounded.” The purpose of this article is to provide a rigorous error analysis of some
double-word algorithms and to introduce a few new algorithms. We cannot suppress all the draw-
backs mentioned by Kahan: Clearly, having in hardware a “real” floating-point arithmetic with
twice the precision would be a better option. And yet, if rigorously proven and reasonably tight
error bounds are provided, then expert programmers can rely on double-word arithmetic for ex-
tending the precision of calculations in critical places where the available floating-point arithmetic
does not suffice.

Throughout this article, we assume a radix-2, precision-p floating-point (FP) arithmetic system,
with unlimited exponent range and correct rounding. This means that our results will apply to
“real-world” binary floating-point arithmetic, such as the one specified by the IEEE 754-2008 Stan-
dard (IEEE Computer Society 2008; Muller et al. 2010), provided that and overflow do not occur.

The notation RN(t) stands for t rounded to the nearest FP number, ties-to-even. For instance,
RN(c · d) is the result of the FP multiplication c×d, assuming round-to-nearest rounding mode.
The number ulp(x), for x � 0 is 2�log2 |x |�−p+1, and u = 2−p = 1

2 ulp(1) denotes the roundoff error
unit. We will frequently use the three following, classical lemmas.

Lemma 1.1. Let t ∈ R. If |t | ≤ 2k , where k is an integer, then

|RN(t) − t | ≤ u

2
· 2k .

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:3

Lemma 1.2 (Sterbenz Lemma (Sterbenz 1974)). Let x and y be two positive FP numbers. If

x

2
≤ y ≤ 2x ,

then x − y is a floating-point number, so RN(x − y) = x − y.

Lemma 1.3. If t ∈ R, then there exist ϵ1 and ϵ2, both of absolute value less than or equal to u, such

that

RN(t) = t · (1 + ϵ1) =
t

1 + ϵ2
.

The algorithms analyzed in this article use as basic blocks Algorithms 1, 2, and 3 below. They
have been coined as “error-free transforms” by Rump (2009).

Algorithms 1 and 2, introduced by Møller (1965), Dekker (1971), and Knuth (1998) make it pos-
sible to compute both the result and the rounding error of a FP addition. We will choose between
them depending on the information that we have on the input numbers.

ALGORITHM 1: – Fast2Sum(a,b). The Fast2Sum algorithm (Dekker 1971).

s ← RN(a + b)
z ← RN(s − a)
t ← RN(b − z)

If a = 0 or b = 0, or if the floating-point exponents ea and eb satisfy ea ≥ eb , then s + t = a + b.
Hence, t is the error of the FP addition s ← RN(a + b). In practice, condition “ea ≥ eb ” may be hard
to check. However, if |a | ≥ |b |, then that condition is satisfied.

ALGORITHM 2: – 2Sum(a,b). The 2Sum algorithm (Knuth 1998; Møller 1965).

s ← RN(a + b)
a′ ← RN(s − b)
b ′ ← RN(s − a′)
δa ← RN(a − a′)
δb ← RN(b − b ′)
t ← RN(δa + δb)

Algorithm 2 gives the same results as Algorithm 1, but without any requirement on the expo-
nents of a and b. It uses six FP operations for computing the result (instead of three for Algo-
rithm 1), but on modern processors, comparing the absolute values of a and b and swapping them
if needed before calling Algorithm 1 will in general be more time consuming than directly calling
Algorithm 2. Hence, in general, Algorithm 1 is to be used only if we have preliminary information
on the respective orders of magnitude of a and b. However, in all the algorithms presented below,
a call to 2Sum can be replaced by a test and a call to Fast2Sum without changing the error bounds.

Let a and b be two FP numbers, with exponents ea and eb , respectively. Define π = RN(ab).
The number ρ = ab − π is a FP number. When the exponent range is not unbounded, this holds
provided that ea + eb ≥ emin + p − 1, where emin is the minimum exponent of the underlying FP
format. See Nievergelt (2003) for a proof. The first algorithm introduced for computing π and ρ
is in Dekker (1971) and Boldo (2006). It requires 17 FP operations. When an FMA instruction is
available, Algorithm Fast2Mult (Algorithm 3 below), mentioned by Kahan (1996), only requires 2
FP operations for computing the same values.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:4 M. Joldes et al.

ALGORITHM 3: – Fast2Mult(a,b). The Fast2Mult algorithm (see, for instance, Kahan (1996), Nievergelt

(2003), and Muller et al. (2010)). It requires the availability of a fused multiply-add (FMA) instruction for

computing RN(ab − π).

π ← RN(a · b)
ρ ← RN(a · b − π)

In the following, we will denote 2Prod an algorithm that computes π and ρ. It can be either
Dekker’s algorithm or Algorithm 3. However, when we count the number of floating-point op-
erations required by the various algorithms presented in this article (in Table 1), we assume that
Algorithm 3 is used.

Dekker (1971) was the first to suggest using algorithms similar to Algorithm 1 and the equivalent
(without FMA) of Agorithm 3 to manipulate numbers represented as unevaluated sums of two FP
numbers. He called such numbers doublelength numbers. Dekker presented algorithms for adding,
multiplying, and dividing double-word numbers. His addition and multiplication algorithms are
very similar (in fact, mathematically equivalent) to Algorithms 5 and 10, analyzed below. His divi-
sion algorithm was quite different (and less accurate) than the algorithms considered in this article.
Linnainmaa (1981) suggested similar algorithms, assuming that an underlying extended precision
format is available. We will not assume that hypothesis here.

Libraries that offer double-word arithmetic (with binary64 as the underlying floating-point for-
mat) have been written by Bailey (Hida et al. 2012) and Briggs (1998). Briggs no longer maintains his
library. Fairly recent functions for double-word arithmetic are included in the QD (“quad-double”)
library by Hida, Li, and Bailey (Hida et al. 2012, 2001).

In Definition 1.4, we formally introduce the concept of double-word representation.

Definition 1.4. A double-word number x is the unevaluated sum xh + x� of two floating-point
numbers xh and x� such that

xh = RN(x).

The sequel of the article is organized as follows: Section 2 deals with the sum of a double-word
number and a floating-point number; Section 3 is devoted to the sum of two double-word numbers;
in Section 4, we consider the product of a double-word number by a floating-point number; in
Section 5, we consider the product of two double-word numbers; Section 6 deals with the division
of a double-word number by a floating-point number; and Section 7 is devoted to the division
of two double-word numbers. All algorithms considered in this article return their results as a
double-word number. We summarize our results in Table 1, in the Conclusion section.

2 ADDITION OF A DOUBLE-WORD NUMBER AND A FLOATING-POINT NUMBER

The algorithm implemented in the QD library (Hida et al. 2012) for adding a double-word number
and a floating-point number is Algorithm 4 below.

Algorithm 4, or variants of it, implicitly appears in many “compensated summation” algorithms.
Compensated summation algorithms aim at accurately computing the sum of several FP numbers.
Most such algorithms implicitely represent, at intermediate steps of the summation, the sum of
all input numbers accumulated so far as a double-word number. For instance the first two lines
of Algorithm 4 constitute the internal loop of Rump, Ogita and Oishi’s “cascaded summation”
algorithm (Ogita et al. 2005).

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:5

ALGORITHM 4: – DWPlusFP(xh ,x� ,y). Algorithm for computing (xh ,x�) + y in binary, precision-p,

floating-point arithmetic, implemented in the QD library. The number x = (xh ,x�) is a double-word number

(i.e., it satisfies Definition 1.4).

1: (sh , s�) ← 2Sum(xh ,y)
2: v ← RN(x� + s�)
3: (zh , z�) ← Fast2Sum(sh ,v)
4: return (zh , z�)

To prove the correctness and bound the error of Algorithm 4 (and Algorithm 6 below), we will
need the following lemma. That lemma is an immediate consequence of Property (2.16) in Rump
et al. (2008).

Lemma 2.1 (see Property (2.16) in Rump et al. (2008)). Let a and b be FP numbers, and let

s = RN(a + b). If s � 0, then

|s | ≥ max
{ 1

2
ulp(a),

1

2
ulp(b)

}
.

Proof. Without l.o.g., assume |a | ≥ |b |, so ulp(a) ≥ ulp(b). The number |a + b | is the distance
between a and −b. Hence, since a � −b (otherwise s would be 0), |a + b | is larger than or equal
to the distance between a and the FP number nearest a, which is larger than or equal to 1

2 ulp(a).
Therefore |RN(a + b) | = RN(|a + b |) ≥ RN(1

2 ulp(a)) = 1
2 ulp(a). �

Let us now turn to the analysis of Algorithm 4. We have the following.

Theorem 2.2. The relative error ����� (zh + z�) − (x + y)

x + y

�����
of Algorithm 4 (DWPlusFP) is bounded by

2 · u2. (1)

Proof. First, the case xh + y = 0 is trivial, since sh = s� = 0 and the computation is errorless.
Now, without loss of generality, we can assume |xh | ≥ |y |. If this is not the case, since xh and y
play a symmetrical role in the algorithm, then we can exchange them in our proof: We add the
double word number (y,x�) and the floating-point number xh .1 We also assume that xh is positive
(otherwise we change the sign of all the operands) and that 1 ≤ xh ≤ 2 − 2u (otherwise we scale
the operands by a power of 2).

Define ϵ as the error committed at step 2, that is, ϵ = v − (x� + s�).

1. If −xh < y ≤ −xh/2, then Sterbenz Lemma implies sh = xh + y and s� = 0. It follows that
v = x� . Lemma 2.1 implies |sh | ≥ 1

2 ulp(xh), which implies |sh | ≥ |x� |. Hence Algorithm Fast2Sum
introduces no error at line 3 of the algorithm, so zh + z� = sh +v = x + y exactly.

2. If −xh/2 < y ≤ xh , then 1
2 ≤

xh

2 < xh + y ≤ 2xh , so sh ≥ 1/2. Since |x� + s� | ≤ 3u (see the two
cases considered below), we have |v | ≤ 3u, so sh > |v |: Algorithm Fast2Sum introduces no error at
line 3 of the algorithm. Therefore, zh + z� = sh +v = x + y + ϵ , and the relative error of algorithm 4
is |ϵ/(x + y) |.

1 (y, x�) may not be a double-word number, according to Definition 1.4, in the case x� =
1
2 ulp(y) = 1

2 ulp(xh). However,

one easily checks that in that case the algorithm returns an exact result.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:6 M. Joldes et al.

• If xh + y ≤ 2, then |s� | ≤ u, so |x� + s� | ≤ 2u, hence |ϵ | ≤ u2. If x + y ≥ 1/2, then this im-
mediately implies that the relative error is less than 2u2. Now, if x + y < 1/2, then xh + y <
1/2 + u, so xh/2 < 1/2 + u. The only solution compatible with the range of xh is xh = 1. In
such a case x = xh + x� ≥ 1 − u/2, hence we must have y < −1/2 + u/2, and, hence, since
y is a floating-point number, we must have y ≤ −1/2, which is not compatible with the
assumption −xh/2 < y.

• If xh + y > 2, then |s� | ≤ 2u, so |x� + s� | ≤ 3u, hence |ϵ | ≤ 2u2 and the relative error |ϵ |/|x +
y | of the calculation is bounded by

|ϵ |
2 − u ≤

2u2

2 − u < 2u2. �

Notice that the bound (1) is very sharp. In fact, it is asymptotically optimal. This is shown by
the following example: xh = 1, x� = (2p − 1) · 2−2p , and y = − 1

2 (1 − 2−p), for which the computed
sum is 1

2 + 3 · 2−p−1 and the exact sum is 1
2 + 3 · 2−p−1 − 2−2p , resulting in a relative error,

2u2

1 + 3u − 2u2
≈ 2u2 − 6u3.

In the binary64 format (p = 53), this generic example gives an error,

1.99999999999999933 · · · × 2−106.

3 ADDITION OF TWO DOUBLE-WORD NUMBERS

Algorithm 5 below was first given by Dekker (1971), under the name of add2, with a slightly differ-
ent presentation. Dekker did not use the 2Sum algorithm: Instead of Line 1, there was a comparison
of |xh | and |yh | followed by a possible swap of x and y and a call to Fast2Sum. However, from a
mathematical point of view, Dekker’s algorithm and Algorithm 5 are equivalent: They always re-
turn the same result. This algorithm was then implemented by Bailey in the QD library (Hida et al.
2012) under the name of “sloppy addition.”

ALGORITHM 5: – SloppyDWPlusDW(xh ,x� ,yh ,y�). “Sloppy” calculation of (xh ,x�) + (yh ,y�) in binary,

precision-p, floating-point arithmetic.

1: (sh , s�) ← 2Sum(xh ,yh)
2: v ← RN(x� + y�)
3: w ← RN(s� +v)
4: (zh , z�) ← Fast2Sum(sh ,w)
5: return (zh , z�)

Dekker proved an error bound on the order of (|x | + |y |) · 4u2. Notice the absolute values: When
x and y do not have the same sign, there is no proof that the relative error is bounded. Indeed, the

relative error can be so large that the obtained result has no significance at all. Consider, for instance,
the case xh = 1 + 2−p+3, x� = −2−p ,yh = −1 − 6 · 2−p , andy� = −2−p + 2−2p . It leads to a computed
value of the sum equal to zero, whereas the exact value is 2−2p : The relative error is equal to 1.
This is why the use of Algorithm 5 should be restricted to special cases such as, for instance, when
we know in advance that the operands will have the same sign. When accurate computations are
required, it is much more advisable to use the following algorithm, presented by Li et al. (2000,
2002) and implemented in the QD library under the name of “IEEE addition.”

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:7

ALGORITHM 6: – AccurateDWPlusDW(xh ,x� ,yh ,y�). Calculation of (xh ,x�) + (yh ,y�) in binary,

precision-p, floating-point arithmetic.

1: (sh , s�) ← 2Sum(xh ,yh)
2: (th , t�) ← 2Sum(x� ,y�)
3: c ← RN(s� + th)
4: (vh ,v�) ← Fast2Sum(sh , c)
5: w ← RN(t� +v�)
6: (zh , z�) ← Fast2Sum(vh ,w)
7: return (zh , z�)

Li et al. (2000, 2002) claim that in binary64 arithmetic (p = 53) the relative error of Algorithm 6
is upper bounded by 2 · 2−106. This bound is incorrect, as shown by the following example: If

xh = 9007199254740991,
x� = −9007199254740991/254,
yh = −9007199254740987/2, and
y� = −9007199254740991/256,

(2)

then the relative error of Algorithm 6 is

2.24999999999999956 · · · × 2−106.

Note that this example is somehow “generic”: In precision-p FP arithmetic, the choice xh =

2p − 1, x� = −(2p − 1) · 2−p−1,yh = −(2p − 5)/2, andy� = −(2p − 1) · 2−p−3 leads to a relative error
that is asymptotically equivalent (as p goes to infinity) to 2.25u2.

Now let us try to find a relative error bound. We are going to show the following result.

Theorem 3.1. If p ≥ 3, then the relative error of Algorithm 6 (AccurateDWPlusDW) is bounded

by
3u2

1 − 4u
= 3u2 + 12u3 + 48u4 + · · · , (3)

which is less than 3u2 + 13u3 as soon as p ≥ 6.

Note that the conditions on p (p ≥ 3 for the bound (3) to hold, p ≥ 6 for the simplified bound
3u2 + 13u3) are satisfied in all practical cases.

Proof. First, we exclude the straightforward case in which one of the operands is zero. We
can also quickly proceed with the case xh+yh = 0: The returned result is 2Sum(x�,y�), which is
equal to x + y, that is, the computation is errorless. Now, without loss of generality, we assume
1 ≤ xh < 2, x ≥ |y | (which implies xh ≥ |yh |), and xh + yh nonzero. Notice that 1 ≤ xh < 2 implies
1 ≤ xh ≤ 2 − 2u, since xh is a FP number.

Define ϵ1 as the error committed at Line 3 of the algorithm:

ϵ1 = c − (s� + th) (4)

and ϵ2 as the error committed at Line 5:

ϵ2 = w − (t� +v�). (5)

1. If −xh < yh ≤ −xh/2. Sterbenz Lemma, applied to the first line of the algorithm, implies
sh = xh + yh , s� = 0, and c = RN(th) = th .

Define

σ =

{
2 if yh ≤ −1,
1 if −1 < yh ≤ −xh/2.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:8 M. Joldes et al.

We have −xh < yh ≤ (1 − σ) + xh

2 (σ − 2), so 0 ≤ xh + yh ≤ 1 + σ · (xh

2 − 1) ≤ 1 − σu. Also, since
xh is a multiple of 2u andyh is a multiple of σu, sh = xh + yh is a multiple of σu. Since sh is nonzero,
we finally obtain

σu ≤ sh ≤ 1 − σu . (6)

We have |x� | ≤ u and |y� | ≤ σ
2u, so

|th | ≤
(
1 +

σ

2

)
u and |t� | ≤ u2. (7)

From Equation (6), we deduce that the floating-point exponent of sh is at least −p + σ − 1. From
Equation (7), the floating-point exponent of c = th is at most −p + σ − 1. Therefore, the Fast2Sum
algorithm introduces no error at line 4 of the algorithm, which implies

vh +v� = sh + c = sh + th = x + y − t� .

Equations (6) and (7) imply

|sh + th | ≤ 1 +
(
1 − σ

2

)
u ≤ 1 +

u

2
,

so |vh | ≤ 1 and |v� | ≤ u
2 . From the bounds on |t� | and |v� |, we obtain:

|ϵ2 | ≤
1

2
ulp(t� +v�) ≤ 1

2
ulp

(
u2 +

u

2

)
=
u2

2
(8)

and

|ϵ2 | ≤
1

2
ulp

[1

2
ulp(x� + y�) +

1

2
ulp

(
(x + y) +

1

2
ulp(x� + y�)

)]
. (9)

Lemma 2.1 and |sh | ≥ σu imply that either sh + th = 0, or |vh | = |RN(sh + c) | = |RN(sh + th) | ≥
σu2. If sh + th = 0, then vh = v� = 0 and the sequel of the proof is straightforward. Therefore, in
the following, we assume |vh | ≥ σu2.

Now,

• If |vh | = σu2, then |v� + t� | ≤ u |vh | + u2 = σu3 + u2, which implies |w | = |RN(t� +v�) | ≤
σu2 = |vh |;

• If |vh | > σu2, then, since vh is a FP number, |vh | is larger than or equal to the FP number
immediately above σu2, which is σ (1 + 2u)u2. Hence |vh | ≥ σu2/(1 − u), so |vh | ≥ u · |vh | +
σu2 ≥ |v� | + |t� |. So, |w | = |RN(t� +v�) | ≤ |vh |.

Therefore, in all cases, Fast2Sum introduces no error at line 6 of the algorithm, and we have

zh + z� = vh +w = x + y + ϵ2. (10)

Directly using Equation (10) and the boundu2/2 on |ϵ2 | to get a relative error bound would result in
a large bound, because x + y may be small. However, when x + y is very small, some simplification
occurs thanks to Sterbenz Lemma. First, xh + yh is a nonzero multiple of σu. Hence, since |x� +
y� | ≤ (1 + σ

2)u, we have |x� + y� | ≤ 3
2 (xh + yh). Let us now consider the two possible cases:

• If − 3
2 (xh + yh) ≤ x� + y� ≤ − 1

2 (xh + yh), which implies − 3
2sh ≤ th ≤ − 1

2sh , then Sterbenz
lemma applies to the floating-point addition of sh and c = th . Therefore line 4 of the al-
gorithm results in vh = sh and v� = 0. An immediate consequence is ϵ2 = 0, so zh + z� =
vh +w = x + y: the computation of x + y is errorless;

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:9

• If − 1
2 (xh + yh) < x� + y� ≤ 3

2 (xh + yh), then 5
2 (x� + y�) ≤ 3

2 (xh + yh + x� + y�) = 3
2 (x + y),

and − 1
2 (x + y) < 1

2 (x� + y�). Hence, |x� + y� | < |x + y |, so ulp(x� + y�) ≤ ulp(x + y). Com-
bined with Equation (9), this gives

|ϵ2 | ≤
1

2
ulp

(
3

2
ulp(x + y)

)
≤ 2−pulp(x + y) ≤ 2 · 2−2p · (x + y).

2. If −xh/2 < yh ≤ xh

Notice that we have xh/2 < xh + yh ≤ 2xh , so xh/2 ≤ sh ≤ 2xh . Also notice that we have
|x� | ≤ u.

• If 1
2 < xh + yh ≤ 2 − 4u. Define

σ =

{
1 if xh + yh ≤ 1 − 2u,
2 if 1 − 2u < xh + yh ≤ 2 − 4u .

We have
σ

2
(1 − 2u) ≤ sh ≤ σ (1 − 2u) and |s� | ≤

σ

2
u . (11)

When σ = 1, we necessarily have −xh/2 < yh < 0, so |y� | ≤ u/2. And when σ = 2, |yh | ≤
xh ≤ 2 − 2u implies |y� | ≤ u. Hence we always have |y� | ≤ σ

2u. This implies |x� + y� | ≤
(1 + σ/2)u, therefore

|th | ≤
(
1 +

σ

2

)
u and |t� | ≤ u2. (12)

Now, |s� + th | ≤ (1 + σ)u, so

|c | ≤ (1 + σ)u and |ϵ1 | ≤ σu2. (13)

Since sh ≥ 1/2 and |c | ≤ 3u, if p ≥ 3, then Algorithm Fast2Sum introduces no error at line
4 of the algorithm, that is,

vh +v� = sh + c .

Therefore |vh +v� | = |sh + c | ≤ σ (1 − 2u) + (1 + σ)u ≤ σ . This implies

|vh | ≤ σ and |v� | ≤
σ

2
u . (14)

Thus |t� +v� | ≤ u2 + σ
2u, so

|w | ≤ σ

2
u + u2 and |ϵ2 | ≤

σ

2
u2. (15)

From Equations (11) and (13), we deduce sh + c ≥ σ
2 − u (2σ + 1), so |vh | ≥ σ

2 − u (2σ + 1). If
p ≥ 3, then |vh | ≥ |w |, so Algorithm Fast2Sum introduces no error at line 6 of the algorithm,
that is, zh + z� = vh +w .
Therefore,

zh + z� = x + y + η,

with |η | = |ϵ1 + ϵ2 | ≤ 3σ
2 u

2. Since

x + y ≥ (xh − u) + (yh − u/2) >

{
1
2 −

3
2u if σ = 1,

1 − 4u if σ = 2,

the relative error |η |/(x + y) is upper bounded by

3u2

1 − 4u
.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:10 M. Joldes et al.

• If 2 − 4u < xh + yh ≤ 2xh , then 2 − 4u ≤ sh ≤ RN(2xh) = 2xh ≤ 4 − 4u and |s� | ≤ 2u. We
have

th + t� = x� + y�,

with |x� + y� | ≤ 2u, hence |th | ≤ 2u, and |t� | ≤ u2. Now, |s� + th | ≤ 4u, so |c | ≤ 4u, and
|ϵ1 | ≤ 2u2. Since sh ≥ 2 − 4u and |c | ≤ 4u, if p ≥ 3, then Algorithm Fast2Sum introduces
no error at line 4 of the algorithm. Therefore,

vh +v� = sh + c ≤ 4 − 4u + 4u = 4,

so vh ≤ 4 and |v� | ≤ 2u. Thus, |t� +v� | ≤ 2u + u2. Hence, either |t� +v� | < 2u and |ϵ2 | ≤
1
2 ulp(t� +v�) ≤ u2, or 2u ≤ t� +v� ≤ 2u + u2, in which case w = RN(t� +v�) = 2u and
|ϵ2 | ≤ u2. In all cases, |ϵ2 | ≤ u2. Also, sh ≥ 2 − 4u and |c | ≤ 4u imply vh ≥ 2 − 8u, and
|t� +v� | ≤ 2u + u2 implies |w | ≤ 2u. Hence if p ≥ 3, then Algorithm Fast2Sum introduces
no error at line 6 of the algorithm.

All this gives
zh + z� = vh +w = x + y + η,

with |η | = |ϵ1 + ϵ2 | ≤ 3u2.
Since x + y ≥ (xh − u) + (yh − u) > 2 − 6u, the relative error |η |/(x + y) is upper bounded
by

3u2

2 − 6u
,

The largest bound obtained in the various cases we have analyzed is

3u2

1 − 4u
.

Elementary calculus shows that foru ∈ [0, 1/64] (i.e.,p ≥ 6) this is always less than 3u2 + 13u3. �

The bound (3) is probably not optimal. The largest relative error we have obtain through
many tests is around 2.25 × 2−2p = 2.25u2. An example is the input values given in Equa-
tion (2), for which, with p = 53 (binary64 arithmetic), we obtain a relative error equal to
2.24999999999999956 · · · × 2−106.

4 MULTIPLICATION OF A DOUBLE-WORD NUMBER BY A

FLOATING-POINT NUMBER

We first consider the following algorithm, suggested by Li et al. (2000):

ALGORITHM 7: – DWTimesFP1(xh ,x� ,y). Calculation of (xh ,x�) × y in binary, precision-p, floating-

point arithmetic.

1: (ch , c�1) ← 2Prod(xh ,y)
2: c�2 ← RN(x� · y)
3: (th , t�1) ← Fast2Sum(ch , c�2)
4: t�2 ← RN(t�1 + c�1)
5: (zh , z�) ← Fast2Sum(th , t�2)
6: return (zh , z�)

Li et al. (2000, 2002) (with more detail in the technical report Li et al. (2000), which is a pre-
liminary version of the journal article Li et al. (2002)), give a relative error bound 4 · 2−106 for
Algorithm 7 when the underlying floating-point arithmetic is binary64 (i.e., p = 53). Below, we

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:11

prove an improved sharp relative error bound, even in the more general context of precision-p
arithmetic. More precisely, we have the following.

Theorem 4.1. If p ≥ 4, then the relative error of Algorithm 7 (DWTimesFP1) is bounded by
3
2u

2 + 4u3.

Proof. One easily notices that if x = 0, ory = 0, ory is a power of 2, the obtained result is exact.
Therefore, without loss of generality, we can assume 1 ≤ xh ≤ 2 − 2u and 1 + 2u ≤ y ≤ 2 − 2u.
This gives 1 + 2u ≤ xhy ≤ 4 − 8u + 4u2, so

1 + 2u ≤ ch ≤ 4 − 8u (16)

and

|c�1 | ≤
1

2
ulp(4 − 8u) = 2u . (17)

From |x� | ≤ u and y ≤ 2 − 2u, we deduce

|c�2 | ≤ 2u − 2u2, (18)

so ϵ1 = x�y − c�2 satisfies |ϵ1 | ≤ u2. From Equations (16) and (18), we deduce that Algorithm
Fast2Sum introduces no error at line 3 of the algorithm, that is, th + t�1 = ch + c�2. Also, we deduce
that

1 = RN(1 + 2u2) ≤ th ≤ RN(4 − 6u − 2u2) = 4 − 8u (19)

and

|t�1 | ≤
1

2
ulp(4 − 8u) = 2u . (20)

From Equations (17) and (20), we obtain

|t�2 | ≤ RN(4u) = 4u, (21)

and we find that ϵ2 = t�2 − (t�1 + c�1) satisfies |ϵ2 | ≤ 2u2. Define ϵ = ϵ2 − ϵ1. Using Equations (19)
and (21), we deduce that Algorithm Fast2Sum introduces no error at line 5 of the algorithm.
Therefore,

zh + z� = th + t�2

= th + t�1 + c�1 + ϵ2

= ch + c�2 + c�1 + ϵ2

= xhy + x�y − ϵ1 + ϵ2

= xy + ϵ .

(22)

Hence the absolute error of Algorithm 7 is |ϵ | ≤ |ϵ1 | + |ϵ2 | ≤ 3u2. Let us now consider two possible
cases:
1. If xhy ≥ 2, then xy ≥ xh (1 − u)y ≥ 2 − 2u. This leads to a relative error |ϵ/(xy) | bounded by

3u2

2 − 2u
=

3

2
u2 +

3

2
u3 +

3

2
u4 + · · · . (23)

2. If xhy < 2, which implies |ch | ≤ 2, then we easily improve on some of the previously obtained
bounds. We have |c�1 | ≤ u, and th ≤ RN(2 + 2u − 2u2) = 2.

The case th = 2 is easily handled: Equation (22) implies xy = th + t�2 − ϵ ≥ 2 − 4u − 3u2, and the
relative error |ϵ/(xy) | is bounded by

3u2

2 − 4u − 3u2
=

3

2
u2 + 3u3 +

33

4
u4 + · · · . (24)

If th < 2, then |t�1 | ≤ u, |t�2 | ≤ 2u, and |ϵ2 | ≤ u2. Hence, a first upper bound on |ϵ | is 2u2. However,
some refinement is possible.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:12 M. Joldes et al.

• First, if |c�2 | < u, then |ϵ1 | ≤ u2/2, which implies |ϵ | ≤ 3u2/2.
• Second, if |c�2 | ≥ u, then c�2 is a multiple of ulp(u) = 2u2, so t�1 is a multiple of 2u2. Also,

since xh and y are multiple of 2u, xhy is a multiple of 4u2, so c�1 is a multiple of 4u2. Hence,
t�1 + c�1 is a multiple of 2u2 of absolute value less than or equal to 2u. This implies that
t�1 + c�1 is a FP number, hence RN(t�1 + c�1) = t�1 + c�1 and ϵ2 = 0.

Therefore, when th < 2, |ϵ | is upper bounded by 3u2/2 so the relative error |ϵ/(xy) | is bounded
by

3
2u

2

(1 − u) (1 + 2u)
≤ 3

2
u2. (25)

The largest of the three bounds (Equations (23), (24), and (25)) is the second one. It is less than
3
2u

2 + 4u3 as soon as u ≤ 1/16. This proves the theorem. �

The bound given by Theorem 4.1 is very sharp. For instance, in binary32 arithmetic (p =
24), with xh = 8388609, x� = 4095/8192, and y = 8389633, the relative error of Algorithm 7 is
1.4993282 · · · × 2−48.

In Bailey’s QD library (Hida et al. 2012) as well as in Briggs’ library (Briggs 1998), another
algorithm (Algorithm 8 below) is suggested for multiplying a double-word number by a floating-
point number.

ALGORITHM 8: – DWTimesFP2(xh ,x� ,y). Algorithm for computing (xh ,x�) × y in binary, precision-p,

floating-point arithmetic, implemented in the QD library.

1: (ch , c�1) ← 2Prod(xh ,y)
2: c�2 ← RN(x� · y)
3: c�3 ← RN(c�1 + c�2)
4: (zh , z�) ← Fast2Sum(ch , c�3)
5: return (zh , z�)

Algorithm 8 is faster than Algorithm 7 (we save one call to Fast2Sum), but it is less ac-
curate: There are input values for which the error attained using Algorithm 8 is larger than
the bound given by Theorem 4.1. An example with p = 53 is xh = 4525788557405064, x� =
8595672275350437/254, andy = 5085664955107621, for which the relative error is 2.517 · · · × 2−106.

Hence, the relative error bound we are going to prove for Algorithm 8 is necessarily larger than
the one we had for Algorithm 7. More precisely, we have the following.

Theorem 4.2. If p ≥ 3, then the relative error of Algorithm 8 (DWTimesFP2) is less than or equal

to 3u2.

Proof. The proof is very similar to (in fact, simpler than) the proof of Theorem 4.1. Without
loss of generality, we can assume 1 ≤ xh ≤ 2 − 2u and 1 ≤ y ≤ 2 − 2u. Since the analysis of the case
y = 1 is straightforward, we even assume 1 + 2u ≤ y ≤ 2 − 2u. This gives 1 + 2u ≤ xhy ≤ 4 − 8u +
4u2, so 1 + 2u ≤ ch ≤ 4 − 8u and |c�1 | ≤ 2u. From |x� | ≤ u and y ≤ 2 − 2u we deduce |c�2 | ≤ 2u −
2u2, so ϵ1 = x�y − c�2 satisfies |ϵ1 | ≤ u2.

Now, |c�1 + c�2 | ≤ 4u − 2u2, hence |c�3 | ≤ 4u, and c�3 = c�1 + c�2 + ϵ2, with |ϵ2 | ≤ 2u2. From
|c�3 | ≤ 4u and ch ≥ 1 + 2u we deduce that Algorithm Fast2Sum introduces no error at line 4 of
the algorithm.

Hence,

zh + z� = ch + c�3 = xy − ϵ1 + ϵ2,

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:13

and | − ϵ1 + ϵ2 | ≤ 3u2. Since xy ≥ (xh − u)y ≥ (1 − u) (1 + 2u) ≥ 1, we deduce that the relative er-
ror of Algorithm 8 is less than 3u2. �

If an FMA instruction is available, then we can improve Algorithm 8 by merging lines 2 and 3
of the algorithm and obtain Algorithm 9:

ALGORITHM 9: – DWTimesFP3(xh ,x� ,y). Algorithm for computing (xh ,x�) × y in binary, precision-p,

floating-point arithmetic, assuming an FMA instruction is available.

1: (ch , c�1) ← 2Prod(xh ,y)
2: c�3 ← RN(c�1 + x�y)
3: (zh , z�) ← Fast2Sum(ch , c�3)
4: return (zh , z�)

This results in a better error bound as follows.

Theorem 4.3. If p ≥ 3, then the relative error of Algorithm 9 (DWTimesFP3) is less than or equal

to 2u2.

The proof is very similar to the proof of Theorem 4.2, so we omit it. The bound provided by
Theorem 4.3 is sharp. For instance, in binary64 arithmetic (p = 53), we attain error 1.984 · · · × 2−106

for xh = 4505619370757448, x� = −9003265529542491/254, and y = 4511413997183120.

5 MULTIPLICATION OF TWO DOUBLE-WORD NUMBERS

Algorithm 10 below was first suggested by Dekker (under the name mul2 in Dekker (1971)). It
has been implemented in the QD library (Hida et al. 2012) and in Briggs’ library (Briggs 1998) for
multiplying two double-word numbers.

Dekker proved a relative error bound 11u2. We are going to show the following:

ALGORITHM 10: – DWTimesDW1(xh ,x� ,yh ,y�). Algorithm for computing (xh ,x�) × (yh ,y�) in binary,

precision-p, floating-point arithmetic, implemented in the QD library.

1: (ch , c�1) ← 2Prod(xh ,yh)
2: t�1 ← RN(xh · y�)
3: t�2 ← RN(x� · yh)
4: c�2 ← RN(t�1 + t�2)
5: c�3 ← RN(c�1 + c�2)
6: (zh , z�) ← Fast2Sum(ch , c�3)
7: return (zh , z�)

Theorem 5.1. If p ≥ 4, then the relative error of Algorithm 10 (DWTimesDW1) is less than or

equal to 7u2/(1 + u)2 < 7u2.

In the proof of Theorem 5.1, we will use the following lemma:

Lemma 5.2. Leta andb be two positive real numbers. If ab ≤ 2, a ≥ 1 andb ≥ 1, thena + b ≤ 2
√

2.

The proof of the lemma is straightforward calculus. Let us focus on the proof of Theorem 5.1.

Proof. Without loss of generality, we assume that 1 ≤ xh ≤ 2 − 2u and 1 ≤ yh ≤ 2 − 2u. We
have xhyh < 4, and

ch + c�1 = xhyh ,

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:14 M. Joldes et al.

with |c�1 | ≤ 2u. We also have

t�1 = xhy� + ϵ1,

with |xhy� | ≤ 2u − 2u2, so |t�1 | ≤ 2u − 2u2 and |ϵ1 | ≤ u2; and

t�2 = x�yh + ϵ2,

with |x�yh | ≤ 2u − 2u2, so |t�2 | ≤ 2u − 2u2 and |ϵ2 | ≤ u2. Now, we have

c�2 = t�1 + t�2 + ϵ3,

with |t�1 + t�2 | ≤ 4u − 4u2, which implies |c�2 | ≤ 4u − 4u2 and |ϵ3 | ≤ 2u2. We finally obtain

c�3 = c�1 + c�2 + ϵ4,

and, from |c�1 + c�2 | ≤ 6u − 4u2, we deduce |c�3 | ≤ 6u and |ϵ4 | ≤ 4u2. Since ch ≥ 1, Algorithm
Fast2Sum introduces no error at line 6 of the algorithm. Therefore,

zh + z� = ch + c�3

= (xhyh − c�1) + c�1 + c�2 + ϵ4

= xhyh + t�1 + t�2 + ϵ3 + ϵ4

= xhyh + xhy� + x�yh + ϵ1 + ϵ2 + ϵ3 + ϵ4

= xy − x�y� + ϵ1 + ϵ2 + ϵ3 + ϵ4

= xy + η,

(26)

with |η | ≤ u2 + |ϵ1 + ϵ2 + ϵ3 + ϵ4 | ≤ 9u2. Let us consider the following cases.

• If xhyh > 2, then, since x ≥ xh (1 − u) and y ≥ yh (1 − u), the relative error is bounded by

9u2

2(1 − u)2
. (27)

• If xhyh ≤ 2, then |c�1 | ≤ u. Furthermore, Lemma 5.2 implies

xh + yh ≤ 2
√

2. (28)

We have

|t�1 | = |RN(xhy�) | ≤ RN(xhu) = xhu,

and, similarly, |t�2 | ≤ yhu, so, using Equation (28)

|t�1 + t�2 | ≤ xhu + yhu ≤ 2
√

2u .

Therefore, c�2 now satisfies

|c�2 | ≤ |t�1 + t�2 | + |ϵ3 | ≤ 2
√

2u + 2u2.

We now deduce

|c�1 + c�2 | ≤ u · (2
√

2 + 1) + 2u2 ≤ 4u

(as soon as u ≤ 1/16, that is, p ≥ 4). Therefore, |ϵ4 | ≤ 2u2. In Equation (26), this results in
|η | ≤ 7u2 instead of 9u2. Notice that if xh = 1 or yh = 1, then either ϵ1 = 0 or ϵ2 = 0, which
results in a significantly smaller bound for |η |. So we can assume that xh ≥ 1 + 2u (hence,
x > 1 + u) and yh ≥ 1 + 2u (hence, y > 1 + u). Therefore the relative error is bounded by

7u2

(1 + u)2
< 7u2. (29)

If p ≥ 4, then the bound of Equation (27) is less than the bound of Equation (29). This proves
the theorem. �

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:15

The bound 7u2 provided by Theorem 5.1 is probably too pessimistic. The largest relative error
we have encountered in our tests was 4.9916 × 2−106, obtained for p = 53, xh = 4508231565242345,
x� = −9007199254524053/254, yh = 4504969740576150, and y� = −4503599627273753/253. In
binary32 arithmetic (p = 24), the largest error obtained in our tests was 4.947 × 2−48 for
xh = 8399376, x� = 16763823/225, yh = 8414932, and y� = 16756961/225.

Now, if a fused multiply-add instruction (FMA) is available, then we can slightly improve
Algorithm 10, both in terms of speed and accuracy, by merging lines 3 and 4. Consider Algo-
rithm 11.

ALGORITHM 11: – DWTimesDW2(xh ,x� ,yh ,y�). Algorithm for computing (xh ,x�) × (yh ,y�) in binary,

precision-p, floating-point arithmetic, assuming an FMA instruction is available.

1: (ch , c�1) ← 2Prod(xh ,yh)
2: t� ← RN(xh · y�)
3: c�2 ← RN(t� + x�yh)
4: c�3 ← RN(c�1 + c�2)
5: (zh , z�) ← Fast2Sum(ch , c�3)
6: return (zh , z�)

We have the following.

Theorem 5.3. If p ≥ 5, then the relative error of Algorithm 11 (DWTimesDW2) is less than or

equal to

6u2 + 1
2u

3

(1 + u)2
< 6u2.

The proof is very similar to (in fact, simpler than) the proof of Theorem 5.1, and follows the
same structure, so we omit it.

We do not know if the bound given by Theorem 5.3 is sharp. The largest relative error
we have encountered during our intensive tests was, for binary64 (p = 53), 4.9433 × 2−106,
obtained for xh = 4515802244422058, x� = −2189678420952711/252, yh = 4503988428047019, and
y� = −2248477851812015/252. In binary32 arithmetic (p = 24), the largest error obtained in our tests
was 4.936 × 2−48, for xh = 8404039, x� = −8284843/224, yh = 8409182, and y� = −4193899/223.

The accuracy of the multiplication of two double-word numbers can be improved even more by
also computing the partial product x�y� . This gives Algorithm 12 below.

ALGORITHM 12: – DWTimesDW3(xh ,x� ,yh ,y�). Algorithm for computing (xh ,x�) × (yh ,y�) in binary,

precision-p, floating-point arithmetic, assuming an FMA instruction is available.

1: (ch , c�1) ← 2Prod(xh ,yh)
2: t�0 ← RN(x� · y�)
3: t�1 ← RN(xh · y� + t�0)
4: c�2 ← RN(t�1 + x� · yh)
5: c�3 ← RN(c�1 + c�2)
6: (zh , z�) ← Fast2Sum(ch , c�3)
7: return (zh , z�)

We have the following.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:16 M. Joldes et al.

Theorem 5.4. If p ≥ 4, then the relative error of Algorithm 12 (DWTimesDW3) is less than or

equal to

5u2 + 1
2u

3

(1 + u)2
< 5u2.

The proof is very similar to the proof of Theorem 5.1, and follows the same structure, so we omit
it. We do not know if the bound given by Theorem 5.4 is sharp. The largest relative error we have
encountered n intensive tests was (for p = 53) 3.936 × 2−106, obtained for xh = 4510026974538724,
x� = 4232862152422029/253, yh = 4511576932111935, and y� = 2250098448199619/252.

6 DIVISION OF A DOUBLE-WORD NUMBER BY A FLOATING-POINT NUMBER

Before presenting algorithms for dividing a double-word number by a floating-point number, let
us recall a classical result (see, for instance, Boldo and Daumas (2003)), easy to prove, and common
knowledge among the designers of Newton-Raphson-based division algorithms.

Property 6.1 (Theorem 4 in Boldo and Daumas (2003) with the additional assumption
that we have an unbounded exponent range). If x and y are FP numbers with y � 0, and if

t = RN(x/y), then yt − x is a FP number.

The algorithm suggested by Li et al. (2000) for dividing a double-word number by a floating-
point number is similar to Algorithm 13 below.

ALGORITHM 13: – DWDivFP1(xh ,x� ,y). Calculation of (xh ,x�) ÷ y in binary, precision-p, floating-point

arithmetic.

1: th ← RN(xh/y)
2: (πh ,π�) ← 2Prod(th ,y)
3: (δh ,δ

′) ← 2Sum(xh ,−πh)
4: δ ′′ ← RN(x� − π�)
5: δ� ← RN(δ ′ + δ ′′)
6: δ ← RN(δh + δ�)
7: t� ← RN(δ/y)
8: (zh , z�) ← Fast2Sum(th , t�)
9: return (zh , z�)

Algorithm 13 can be simplified. We have th = (xh/y) (1 + ϵ0) and πh = thy (1 + ϵ1), with
|ϵ0 |, |ϵ1 | ≤ u. Hence,

(1 − u)2xh ≤ πh ≤ (1 + u)2xh .

Therefore, as soon as p ≥ 2 (i.e., u ≤ 1/4), πh is within a factor 2 from xh . Sterbenz Lemma
(Lemma 1.2) therefore implies that xh − πh is a floating-point number. As a consequence, we al-
ways have δh = xh − πh , δ ′ = 0, line 3 of the algorithm can be replaced by a simple subtraction, and
we always have δ� = δ ′′ = RN(x� − π�). Therefore, the significantly simpler Algorithm 14 always
returns the same result as Algorithm 13.

The authors of Li et al. (2000) claim that their binary64 (i.e., p = 53) implementation of
Algorithm 13 has a relative error bounded by 4 · 2−106. It is possible to show a slightly better bound,
namely (7/2) · 2−p . The proof can be found in the Ph.D. dissertation of one of the authors of this
article (Popescu 2017). We will not detail it here, since we will suggest a slightly more accurate
algorithm,2 Algorithm 15, obtained by modifying lines 4 and 5 of Algorithm 14.

2The improvement was suggested by one of the anonymous reviewers. We are very grateful for that.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:17

ALGORITHM 14: – DWDivFP2(xh ,x� ,y). Calculation of (xh ,x�) ÷ y in binary, precision-p, floating-point

arithmetic.

1: th ← RN(xh/y)
2: (πh ,π�) ← 2Prod(th ,y)
3: δh ← RN(xh − πh) = xh − πh (exact operation)
4: δ� ← RN(x� − π�)
5: δ ← RN(δh + δ�)
6: t� ← RN(δ/y)
7: (zh , z�) ← Fast2Sum(th , t�)
8: return (zh , z�)

ALGORITHM 15: – DWDivFP3(xh ,x� ,y). Calculation of (xh ,x�) ÷ y in binary, precision-p, floating-point

arithmetic.

1: th ← RN(xh/y)
2: (πh ,π�) ← 2Prod(th ,y)
3: δh ← RN(xh − πh) = xh − πh (exact operation)
4: δt ← RN(δh − π�) = δh − π� (exact operation)
5: δ ← RN(δt + x�)
6: t� ← RN(δ/y)
7: (zh , z�) ← Fast2Sum(th , t�)
8: return (zh , z�)

Theorem 6.2. If p ≥ 4, then the relative error of Algorithm 15 (DWDivFP3) is bounded by 3u2.

The bound is sharp: In practice, the largest relative errors we have found in calculations were
slightly less than 3u2. For instance, for p = 53, relative error 2.95157083 · · · × 2−106 is attained for
xh = 4588860379563012, x� = −4474949195791253/253, and y = 4578284000230917.

Before proving Theorem 6.2, let us prove the following Lemma.

Lemma 6.3. Assume a radix-2, precision-p, FP arithmetic. Let a and b be FP numbers between 1
and 2. Let u = 2−p . The distance between RN(a/b) and a/b is less than{

u − 2u2/b if a/b ≥ 1;
u/2 − u2/b otherwise.

Proof. It suffices to estimate the smallest possible distance between a/b and a “midpoint” (i.e., a
number exactly halfway between two consecutive FP numbers). Leta = Ma · 2−p+1,b = Mb · 2−p+1,
with 2p−1 ≤ Ma ,Mb ≤ 2p − 1.

• If a/b ≥ 1, then a midpoint μ between 1 and 2 has the form (2Mμ + 1)/2p , with 2p−1 ≤ Mμ ≤
2p − 1. We have ����ab − μ

���� =
�����2

pMa −Mb (2Mμ + 1)

2pMb

����� .
The numerator, 2pMa−Mb (2Mμ+1), of that fraction cannot be zero: since 2Mμ+1 is odd,
having 2pMa = Mb (2Mμ + 1) would require Mb to be a multiple of 2p , which is impossible
since Mb ≤ 2p − 1. Hence that numerator has absolute value at least 1. Hence

����ab − μ
���� ≥ 1

2pMb
=

2u2

b
.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:18 M. Joldes et al.

• If a/b < 1, then the proof is similar. The only change is that a midpoint is of the form
(2Mμ + 1)/2p+1.

In a recent article (see Jeannerod and Rump (2016, Table 1)), a similar bound is given for floating-
point division. It could be used instead of Lemma 6.3, but we included the lemma for completeness.
Let us now prove Theorem 6.2.

Proof. The case where y is a power of 2 is straightforward, so we omit it. Without loss of
generality, we assume 1 ≤ xh ≤ 2 − 2u, so |x� | ≤ u; and 1 + 2u ≤ y ≤ 2 − 2u. Therefore, we have

1

2 − 2u
≤ xh

y
≤ 2 − 2u

1 + 2u
. (30)

The quotient 1/(2 − 2u) is always larger than 1/2 + u/2, and, as soon as p ≥ 4, (2 − 2u)/(1 + 2u) is
less than 2 − 5u. Therefore,

1

2
+ u ≤ th = RN

(
xh

y

)
≤ 2 − 6u . (31)

We have already proved, when discussing Algorithm 13, that δh = xh − πh . An immediate con-
sequence is

δh − π� = (xh − πh) − (thy − πh) = xh − thy.
Property 6.1 implies that xh − thy is an FP number. Hence δt = RN(δh − π�) = δh − π� = xh − thy.
We immediately deduce

δ = RN(δh − π� + x�)
= RN(xh + x� − πh − π�)
= RN(x − thy).

Define ϵ1 and ϵ2 as the errors committed at lines 5 and 6 of the algorithm, more precisely,{
ϵ1 = δ − (x − thy),
ϵ2 = t� − δ/y.

Lemma 6.3 implies |th − xh/y | ≤ u − 2u2/y, hence |thy − xh | ≤ uy − 2u2 and hence |thy − x | ≤
u (y + 1) − 2u2. An immediate consequence of this is |thy − x | < 3u, so |ϵ1 | ≤ 2u2. Also�����δy

����� ≤
�����xy − th + ϵ1

y

�����
≤
�����xh

y
− th

����� +
�����xh

y
− x

y

����� +
�����ϵ1

y

�����
≤

(
u − 2u2

y

)
+
u

y
+

2u2

y

= u +
u

y
< 2u .

This gives |ϵ2 | ≤ u2 and |t� | ≤ 2u. Using this and Equation (31) we deduce that Fast2Sum returns a
correct result at Line 7 of the algorithm, that is, zh + z� = th + t� . It remains to bound the relative
error ������

(th + t�) − x
y

x
y

������ =
����ϵ1

x
+ ϵ2 ·

y

x

���� . (32)

Let us now consider two possible cases.

(1) If x ≥ y, then from Equation (32) we immediately deduce that the relative error of Algo-
rithm 15 is bounded by |ϵ1 | + |ϵ2 | ≤ 3u2.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:19

(2) If x < y, which implies xh ≤ y and th ≤ 1. The case xh = y is easily handled. It leads
to th = 1, πh = xh , π� = 0, δ = x� , and zh + z� = th + t� = x/y + η, with |η | ≤ u |x� |/y ≤
u2x/y. We can now focus on the case xh < y. Lemma 6.3 now implies |th − xh/y | ≤ u

2 −
u2/y, so |thy − xh | ≤ u

2 · y − u
2 ≤ u − 2u2. Therefore |thy − x | ≤ 2u − 2u2, which implies

|ϵ1 | ≤ u2. From Equation (32) we deduce that the relative error of Algorithm 15 is bounded
by u2 + 2u2 = 3u2. �

7 DIVISION OF TWO DOUBLE-WORD NUMBERS

The algorithm implemented in the QD library for dividing two double-word numbers is the fol-
lowing.

ALGORITHM 16: – DWDivDW1(xh ,x� ,yh ,y�). Calculation of (xh ,x�) ÷ (yh ,y�) in binary, precision-p,

floating-point arithmetic.

1: th ← RN(xh/yh)
2: (rh , rl) ← DWTimesFP1(yh ,y� , th) {approximation to (yh + y�) · th using Alg. 7}
3: (πh ,π�) ← 2Sum(xh ,−rh)
4: δh ← RN(π� − r�)
5: δ� ← RN(δh + x�)
6: δ ← RN(πh + δ�)
7: t� ← RN(δ/yh)
8: (zh , z�) ← Fast2Sum(th , t�)
9: return (zh , z�)

Let us quickly analyze the beginning of Algorithm 16. This will lead us to suggest another
algorithm, faster yet mathematically equivalent as soon as p ≥ 3. Without loss of generality, we
assume xh > 0 and yh > 0. Define ϵx and ϵy such that xh = x (1 + ϵx) and yh = y/(1 + ϵy). These
two numbers ϵx and ϵy have an absolute value less than or equal to u. We have

th =
xh

yh
(1 + ϵ0),with |ϵ0 | ≤ u, (33)

and, from Theorem 4.1,

rh + r� = thy (1 + η),with|η | ≤ 3

2
u2 + 4u3. (34)

There exists |ϵ1 | ≤ u such that rh = (rh + r�) (1 + ϵ1). This can be rewritten r� = −ϵ1 (rh + r�), so,
using Equation (34), r� = −ϵ1thy (1 + η). We finally obtain

rh = thyh (1 + ϵy) (1 + ϵ1) (1 + η)
= xh (1 + ϵy) (1 + ϵ0) (1 + ϵ1) (1 + η),

(35)

so

(1 − u)3 (1 − 2u2)xh ≤ rh ≤ (1 + u)3
(3

2
u2 + 4u3

)
xh ,

from which we deduce

|xh − rh | ≤
(
3u +

9

2
u2 +

19

2
u3 +

33

2
u4 +

27

2
u5 + 4u6

)
· xh ,

which implies
|xh − rh | ≤ (3u + 6u2) · xh (36)

as soon as p ≥ 3. One easily checks that for p ≥ 3 (i.e., u ≤ 1/8), 3u + 6u2 is less than 1/2. Hence,
from Sterbenz Lemma (Lemma 1.2), the number xh − rh is a floating-point number. Therefore the

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:20 M. Joldes et al.

number π� obtained at line 3 of Algorithm 16 is always 0, and that line can be replaced by a
simple, errorless, subtraction. This gives πh = xh − rh , and δh = −r� . Hence, without changing the
final result, we can replace Algorithm 16 by the simpler Algorithm 17, below.

ALGORITHM 17: – DWDivDW2(xh ,x� ,yh ,y�). Calculation of (xh ,x�) ÷ (yh ,y�) in binary, precision-p,

floating-point arithmetic: Improved version of Algorithm 16. Useless operations have been removed. The

result is exactly the same.

1: th ← RN(xh/yh)
2: (rh , rl) ← DWTimesFP1(yh ,y� , th) {approximation to (yh + y�) · th using Algorithm 7}
3: πh ← RN(xh − rh) = xh − rh (exact operation)
4: δ� ← RN(x� − r�)
5: δ ← RN(πh + δ�)
6: t� ← RN(δ/yh)
7: (zh , z�) ← Fast2Sum(th , t�)
8: return (zh , z�)

If an FMA instruction is available, then Algorithm 9 can be used at line 2 instead of Algorithm 7
without changing much the error bound provided by Theorem 7.1 below. We have

Theorem 7.1. If p ≥ 7, then the relative error of Algorithms 16 (DWDivDW1) and 17 (DWDi-

vDW2) is upper bounded by 15u2 + 56u3.

Proof. For reasons of symmetry, we can assume that x and y are positive. We will use the
results of Equations (33) to (36) obtained when analyzing the beginning of Algorithm 16. Assume
p ≥ 7. We have

δ� = (x� − r�) (1 + ϵ2),with |ϵ2 | ≤ u .

We have |x� | ≤ u · xh and |r� | ≤ u · rh , so

|x� − r� | ≤ |x� | + |r� |
≤ u · xh + u · rh

≤ u · xh + u · ((rh − xh) + xh)
≤ u · xh + u · (|rh − xh | + xh) .

Therefore, using Equation (36),

|x� − r� | ≤ u · xh + u ·
(
(3u + 6u2)xh + xh

)
,

which gives

|x� − r� | ≤ (2u + 3u2 + 6u3) · xh . (37)

We have

δ = (πh + δ�) (1 + ϵ3),with |ϵ3 | ≤ u,

so
δ = xh − rh + x� − r� + (x� − r�) (ϵ2 + ϵ3 + ϵ2ϵ3) + (xh − rh) · ϵ3,
= x − (rh + r�) + α · xh ,

with (using Equation (36) and (37))

|α | ≤ (2u + 3u2 + 6u3) (2u + u2) + (3u + 6u2)u
≤ 7u2 + 15u3 (38)

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:21

as soon as p ≥ 4. Hence δ = x − thy (1 + η) + αxh , so

δ

yh
=

x − thy
y

· y
yh
− ηthy

yh
+ α

xh

yh
. (39)

The number x − thy is equal to xh − thyh + x� − thy� . From Equation (33), xh − thyh is equal to
−xhϵ0. Also, |x� | is less than or equal to uxh , and

|thy� | ≤ |uthyh | ≤ u (1 + u)xh .

Hence,

|x − thy | ≤ xh · (u + u + u (1 + u)) = xh · (3u + u2). (40)

From Equation (39), we deduce

δ

yh
=

x − thy
y

· (1 + ϵy) − ηth (1 + ϵy) + α
xh

yh
,

=
x − thy

y
+ β,

(41)

with

|β | =
�����ϵy ·

x − thy
y

− th (1 + ϵy)η +
xh

yh

�����
≤ u (3u + u2)

xh

y
+ (1 + u) (2u2)

xh

yh
+ (7u2 + 15u3)

xh

yh

≤ u (3u + u2) (1 + u)
x

y
+ (1 + u)3 (2u2)

x

y
+ (7u2 + 15u3) (1 + u)2x

y

= (12u2 + 39u3 + 44u4 + 17u5) · x
y
.

(42)

Hence,

t� = RN

(
δ

yh

)

=
δ

yh
(1 + ϵ4) with |ϵ4 | ≤ u,

=

(
x − thy

y
+ β

)
(1 + ϵ4)

=
x − thy

y
+ γ ,

(43)

with

|γ | =
�����x − thyy

ϵ4 + β + ϵ4β
�����

≤ xh

y
(3u + u2)u + β + βu

≤ (3u + u2)u (1 + u)
x

y
+ β + βu

= (15u2 + 55u3 + 84u4 + 61u5 + 17u6) · x
y
.

(44)

Hence,

th + t� =
x

y
+ γ .

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:22 M. Joldes et al.

Since we straightforwardly have

th ≥
x

y
· (1 − u)3, (45)

we deduce

|t� | ≤
x

y
·
(
(15u2 + 55u3 + 84u4 + 61u5 + 17u6) + (3u − 3u2 + u3)

)
. (46)

From Equations (45) and (46) we easily deduce that as soon as p ≥ 4 (i.e., u ≤ 1/16), th is larger
than |t� |, so Algorithm Fast2Sum introduces no error at line 7 of the algorithm. Therefore,

zh + z� = th + t� =
x

y
+ γ ,

so the relative error of Algorithm 17 (and Algorithm 16) is upper bounded by

15u2 + 55u3 + 84u4 + 61u5 + 17u6,

which is less than 15u2 + 56u3 as soon as p ≥ 7 (i.e., u ≤ 128), which always holds in practice. �

The bound provided by Theorem 7.1 is almost certainly not optimal. However, during our
intensive tests, we have encountered cases for which the relative error, although significantly
less than the bound 15u2 + 56u3 of Theorem 7.1, remains of a similar order of magnitude—
that is, more than half the bound. For instance, for p = 53, relative error 8.465 · · · × 2−106 is at-
tained for xh = 4503607118141812, x� = 4493737176494969/253, yh = 4503600552333684, and y� =
−562937972998161/250.

If an FMA instruction is available, then one can design a more accurate algorithm. What makes
it work is Property 6.1, applied in the special case x = 1.

ALGORITHM 18: – DWDivDW3(xh ,x� ,yh ,y�). Calculation of (xh ,x�) ÷ (yh ,y�) in binary, precision-p,

floating-point arithmetic: more accurate algorithm that requires the availability of an FMA instruction

1: th ← RN(1/yh)
2: rh ← (1 − yhth) = 1 − yhth (exact operation)
3: r� ← −RN(y� · th)
4: (eh , e�) ← Fast2Sum(rh , r�)
5: (δh ,δ�) ← DWTimesFP3(eh , e� , th) {Approximation to (eh + e�) · th with relative error ≤ 2u2 using

Algorithm 9}
6: (mh ,m�) ← DWPlusFP(δh ,δ� , th){Approximation to δh + δ� + th with relative error ≤ 2u2 using

Algorithm 4}
7: (zh , z�) ← DWTimesDW2(xh ,x� ,mh ,m�){Approximation to (xh + x�) (mh +m�) with relative error
≤ 5u2 using Algorithm 12}

8: return (zh , z�)

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:23

We have the following.

Theorem 7.2. As soon as p ≥ 13, and if y � 0, the relative error of Algorithm 18 (DWDivDW3) is

bounded by 9.8u2.

Proof. Roughly speaking, Algorithm 18 first approximates 1/y by th = RN(1/yh), then im-
proves that approximation to 1/y by performing one step of Newton-Raphson iteration, and then
multiplies the obtained approximation (mh ,m�) by x .

Without loss of generality, we assume 1 ≤ yh ≤ 2 − 2u, so 1/2 ≤ th ≤ 1. We have�����th − 1

yh

����� ≤ u

2
,

and (from Property 6.1)
rh = 1 − yhth .

We also easily check that (
th (2 − yth) − 1

y

)
= −y ·

(
th −

1

y

)2

. (47)

Now, from |y� | ≤ u and |th | ≤ 1, we deduce |y�th | ≤ u, so |r� | ≤ u, and |r� + y�th | ≤ u2/2. This
gives

eh + e� = rh + r� = 1 − yhth − y�th + η, with |η | ≤ u2

2
. (48)

Also, since |yhth − 1| = yh · |th − 1/yh | ≤ u, we have |rh | ≤ u, and hence |rh + r� | ≤ 2u. This im-
plies |eh | ≤ 2u and |e� | ≤ u2. Define e = eh + e� = rh + r� ; we have |e | ≤ 2u.

Now, from Theorem 4.3, we have

δh + δ� = eth (1 + ω1),with |ω1 | ≤ 2u2, (49)

and from Theorem 2.2 we have

mh +m� = (th + δh + δ�) (1 + ω2),with |ω2 | ≤ 2u2. (50)

Combining Equations (49) and (50), we obtain

mh +m� = (th + eth (1 + ω1)) (1 + ω2)
= th + eth + ethω1 + ω2th + ω2eth + ω2ω1eth
= th + eth + αth ,

(51)

with
|α | = |eω1 + ω2 + ω2e + ω2ω1e |
≤ (2u) (2u2) + (2u2) + (2u2) (2u) + (2u2) (2u2) (2u)
= 2u2 + 8u3 + 8u5

≤ 2u2 + 9u3 as soon as p ≥ 2.

(52)

Therefore,
mh +m� = th + eth + αth

= th + th (1 − yth + η) + αth
= th (2 − yth) + th (η + α),

which implies �����(mh +m�) − 1

y

����� =
�����th (2 − yth) − 1

y
+ th (η + α)

����� ,
so, using Equation (47) and the bounds on η and α ,�����(mh +m�) − 1

y

����� ≤ y

(
th −

1

y

)2

+ th ·
����52u2 + 9u3���� . (53)

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:24 M. Joldes et al.

Let us now consider y2 (th − 1/y) . That term is less than

y2

((
th −

1

yh

)
+
y − yh

yyh

)2

,

which is less than

y2u2

(
1

2
+

1

y (y − u)

)2

.

The largest value of

y2

(
1

2
+

1

y (y − u)

)2

for 1 ≤ y < 2 is always attained for y = 1, so as soon as p ≥ 6 (i.e., u ≤ 1/64), we have

y2

(
th −

1

y

)
≤ ��

1

2
+

1

1 − 1
64

��
2

u2 =
36481

15876
u2 ≤ 2.298u2.

Hence, from Equation (53), we obtain�����(mh +m�) − 1

y

����� ≤ 1

y
· 2.298u2 + th

(5

2
u2 + 9u3

)
,

which implies �����x (mh +m�) − x

y

����� ≤ x

y
· 2.298u2 + xth

(5

2
u2 + 9u3

)
.

Notice that |th | ≤ (1 + u)/yh ≤ (1 + u)2/y, so�����x (mh +m�) − x

y

����� ≤ x

y
· φ (u), (54)

with φ (u) = 2.298u2 + (1 + u)2
(

5
2u

2 + 9u3
)
. Now, from Theorem 5.4, we have

|zh + z� − x (mh +m�) | ≤ 5u2 |x (mh +m�) |

≤ 5u2x

y
+ 5u2

�����xy − x (mh +m�)
����� (55)

≤ x

y

(
5u2 + 5u2φ (u)

)
.

Combining Equations (54) and (55), we finally obtain�����zh + z� −
x

y

����� ≤ x

y
(5u2 + φ (u) + 5u2φ (u))

≤ x

y

(
9.798u2 + 14u3 + 44.49u4 + 79u5 + 102.5u6 + 45u7

)

≤ 9.8u2x

y
as soon as p ≥ 13. �

This relative error bound is certainly a large overestimate, since we cumulate in its calcula-
tion the overestimates of the errors of Algorithms 9, 4, and 12. In practice, Algorithm 18 is rather
accurate: the largest relative error found so far in our tests for p = 53, is 5.922 · · · × 2−106, ob-
tained for xh = 4528288502329187, x� = 1125391118633487/251, yh = 4522593432466394, and y� =
−9006008290016505/254.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:25

Table 1. Summary of the Results Presented in This Paper

Largest

Previously relative error

known observed in � of FP

Operation Algorithm bound Our bound experiments ops

DW + FP Algorithm 4 ? 2u2 2u2 − 6u3 10

DW + DW Algorithm 5 N/A N/A 1 11

Algorithm 6 2u2 (incorrect) 3u2 + 13u3 2.25u2 20

DW × FP Algorithm 7 4u2 3
2u

2 + 4u3 1.5u2 10

Algorithm 8 ? 3u2 2.517u2 7

Algorithm 9 N/A 2u2 1.984u2 6

DW × DW Algorithm 10 11u2 7u2 4.9916u2 9

Algorithm 11 N/A 6u2 4.9433u2 8

Algorithm 12 N/A 5u2 3.936u2 9

DW ÷ FP Algorithm 13 4u2 3.5u2 2.95u2 16

Algorithm 14 N/A 3.5u2 2.95u2 10

Algorithm 15 N/A 3u2 2.95u2 10

DW ÷ DW Algorithm 16 ? 15u2 + 56u3 8.465u2 24

Algorithm 17 N/A 15u2 + 56u3 8.465u2 18

Algorithm 18 N/A 9.8u2 5.922u2 31

For each algorithm, we give the previously known bound (when we are aware of it, and when the algorithm
already existed), the bound we have proved, the largest relative error observed in our fairly intensive tests,
and the number of floating-point operations required by the algorithm.

8 CONCLUSION

We have proven relative error bounds for several basic building blocks of double-word arithmetic,
suggested a new algorithm for multiplying two double-word numbers, suggested an improvement
of the algorithms used in the QD library for dividing a double-word number by a floating-point
number and for dividing two double-word numbers. We have also suggested a new algorithm for
dividing two double-word numbers when an FMA instruction is available. Table 1 summarizes the
obtained results. For the functions for which an error bound was already published, we always
obtain a significantly smaller bound, except in one case, for which the previously known bound
turned out to be slightly incorrect. Our results make it possible to have more trust in double-word
arithmetic. They also allow us to give some recommendations in what follows.

• For adding two double-word numbers, never use Algorithm 5, unless you are certain that
both operands have the same sign. Double-word numbers can be added very accurately
using the (unfortunately more expensive) Algorithm 6.

• For multiplying a double-word number by a floating-point number, Algorithm 8 is less ac-
curate, yet slightly faster, than Algorithm 7. Hence one cannot say that one is really better
than the other one. Choose between them depending on whether you mainly need speed
or accuracy. If an FMA instruction is available, then Algorithm 9 is a good candidate.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

15res:26 M. Joldes et al.

• For multiplying two double-word numbers, if an FMA instruction is available, then
Algorithm 12 is to be favored. It is more accurate both from a theoretical (better error bound)
and from a practical (smaller observed errors in our intensive testings) points of view.

• There is no point in using Algorithm 13 for dividing a double-word number by a floating-
point number: Algorithm 15 is faster and has a better error bound.

• There is no point in using Algorithm 16 for dividing two double-word numbers:
Algorithm 17, presented in this article, always returns the same result and is faster. If an
FMA instruction is available, depending whether the priority is speed or accuracy, then
one might prefer Algorithm 18. It is almost certainly significantly more accurate (although
we have no full proof of that: We can just say that our bounds are smaller, as well as the
observed errors); however, it is slower.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their very detailed and helpful comments and suggestions.

REFERENCES

D. H. Bailey, R. Barrio, and J. M. Borwein. 2012. High-precision computation: Mathematical physics and dynamics. Appl.

Math. Comput. 218, 20 (2012), 10106–10121. https://doi.org/10.1016/j.amc.2012.03.087
S. Boldo. 2006. Pitfalls of a full floating-point proof: Example on the formal proof of the veltkamp/dekker algorithms. In

Proceedings of the 3rd International Joint Conference on Automated Reasoning (Lecture Notes in Computer Science), U.
Furbach and N. Shankar (Eds.), Vol. 4130. 52–66.

S. Boldo and M. Daumas. 2003. Representable correcting terms for possibly underflowing floating point operations. In
Proceedings of the 16th Symposium on Computer Arithmetic, J.-C. Bajard and M. Schulte (Eds.). IEEE Computer Society
Press, Los Alamitos, CA, 79–86.

K. Briggs. 1998. The doubledouble library. Retrieved from http://www.boutell.com/fracster-src/doubledouble/
doubledouble.html.

Florent de Dinechin, Alexey V. Ershov, and Nicolas Gast. 2005. Towards the post-ultimate libm. In Proceedings of the 17th

IEEE Symposium on Computer Arithmetic (ARITH’05). IEEE Computer Society, Washington, DC, 288–295. https://doi.
org/10.1109/ARITH.2005.46

T. J. Dekker. 1971. A floating-point technique for extending the available precision. Numer. Math. 18, 3 (1971), 224–242.
L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A multiple-precision binary floating-point

library with correct rounding. ACM Trans. Math. Softw. 33, 2 (2007). https://doi.org/10.1145/1236463.1236468.
Y. Hida, X. S. Li, and D. H. Bailey. 2012. C++/Fortran-90 double-double and quad-double package, release 2.3.17. Retrieved

from http://crd-legacy.lbl.gov/∼dhbailey/mpdist/.
Y. Hida, X. S. Li, and D. H. Bailey. 2001. Algorithms for quad-double precision floating-point arithmetic. In Proceedings of

the IEEE Symposium on Computer Arithmetic (ARITH’16). 155–162. https://doi.org/10.1109/ARITH.2001.930115
IEEE Computer Society. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008. Retrieved from

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.
Claude-Pierre Jeannerod and Siegfried M. Rump. 2016. On relative errors of floating-point operations: optimal bounds and

applications. Retrieved from https://hal.inria.fr/hal-00934443
W. Kahan. 1996. Lecture Notes on the Status of IEEE-754. Retrieved from http://www.cs.berkeley.edu/∼wkahan/

ieee754status/IEEE754.PDF.
D. Knuth. 1998. The Art of Computer Programming (3rd ed.). Vol. 2. Addison-Wesley, Reading, MA.
X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo. 2000.

Design, Implementation and Testing of Extended and Mixed Precision BLAS. Technical Report 45991. Lawrence Berkeley
National Laboratory. Retrieved from http://crd.lbl.gov/∼xiaoye/XBLAS.

X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo. 2002.
Design, implementation and testing of extended and mixed precision BLAS. ACM Trans. Math. Software 28, 2 (2002),
152–205.

C. Lichtenau, S. Carlough, and S. M. Mueller. 2016. Quad precision floating point on the IBM z13. In Proceedings of the 2016

IEEE 23rd Symposium on Computer Arithmetic (ARITH’23). 87–94. https://doi.org/10.1109/ARITH.2016.26
S. Linnainmaa. 1981. Software for doubled-precision floating-point computations. ACM Trans. Math. Softw. 7, 3 (1981),

272–283. https://doi.org/10.1145/355958.355960
O. Møller. 1965. Quasi double-precision in floating-point addition. BIT 5 (1965), 37–50.

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

https://doi.org/10.1016/j.amc.2012.03.087
http://www.boutell.com/fracster-src/doubledouble/doubledouble.html
https://doi.org/10.1109/ARITH.2005.46
https://doi.org/10.1145/1236463.1236468
http://crd-legacy.lbl.gov/protect $elax sim $dhbailey/mpdist/
https://doi.org/10.1109/ARITH.2001.930115
http://ieeexplore.ieee.org/servlet/opac?punumber$=$4610933
https://hal.inria.fr/hal-00934443
http://www.cs.berkeley.edu/protect $elax sim $wkahan/ieee754status/IEEE754.PDF
http://crd.lbl.gov/protect $elax sim $xiaoye/XBLAS
https://doi.org/10.1109/ARITH.2016.26
https://doi.org/10.1145/355958.355960

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:27

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume
Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser
Boston. 572 pages.

Y. Nievergelt. 2003. Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to
the penultimate digit. ACM Trans. Math. Softw. 29, 1 (2003), 27–48.

T. Ogita, S. M. Rump, and S. Oishi. 2005. Accurate sum and dot product. SIAM J. Sci. Comput. 26, 6 (2005), 1955–1988.
https://doi.org/10.1137/030601818

Valentina Popescu. 2017. Towards Fast and Certified Multiple-precision Libraries. Ph.D. Dissertation. Université de Lyon,
École Normale Supérieure de Lyon.

S. M. Rump. 2009. Transformations and ill-conditioned problems. In Proceedings of the International Workshop on Verified

Computations and Related Topics.
S. M. Rump, T. Ogita, and S. Oishi. 2008. Accurate floating-point summation part I: Faithful rounding. SIAM J. Sci. Comput.

31, 1 (2008), 189–224. https://doi.org/10.1137/050645671
P. H. Sterbenz. 1974. Floating-Point Computation. Prentice-Hall, Englewood Cliffs, NJ.

Received September 2016; revised March 2017; accepted July 2017

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15res. Publication date: October 2017.

https://doi.org/10.1137/030601818
https://doi.org/10.1137/050645671

