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Fixed-sequence single machine scheduling and outbound delivery

problems

Azeddine Cheref ∗ Alessandro Agnetis † Christian Artigues ‡

Jean-Charles Billaut §

Abstract

In this paper, we consider an integrated production and outbound delivery scheduling prob-
lem. In particular, we address the situation in which the scheduling sequence and the delivery
sequence are the same and predefined. A set of jobs are processed on a single machine and
finished jobs are delivered to the customers by a single capacitated vehicle. Each job has a
processing time and transportation times between customers are taken into account. Since the
sequence is given, the problem consists to form batches of jobs and our objective is to minimize
the sum of the delivery times or general functions of the delivery times. The NP-hardness of the
general problem is established and a pseudopolynomial time dynamic programming algorithm
is given. Some particular cases are treated, for which complexity proofs or polynomial time
algorithms are given.

1 Introduction

This paper deals with a model for coordinating production and delivery schedules. In many
production systems, finished products are delivered from the factory to multiple customer loca-
tions, warehouses, or distribution centers by delivery vehicles. An increasing amount of research
has been devoted, during the last twenty years, to devise integrated models for production and
distribution. These models have been largely analyzed and reviewed by [Chen, 2010], who pro-
posed a detailed classification scheme. The models reflect the variety of issues, including systems
structure, vehicle/transportation system characteristics, delivery modes, various types of time
constraints. In the large majority of the models in the literature, the coordination of production
and distribution is achieved through the creation of batches, i.e., several parts are shipped to-
gether and delivered to their respective destinations during a single trip. When forming batches,
one must therefore take into account both production information (such as processing time, re-
lease dates etc) and delivery information (such as customer location, time windows etc). Most
of the models presented in the literature explicitly take into account transportation times to
reach the customers’ location, but there are no proper routing decisions, since the number of
distinct customers is typically very small. Hence, the focus of the analysis is often on scheduling
and batching.
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Many studies consider delivery as a separate step after production, but do not model it in
details, e.g. assuming that a sufficiently large number of vehicles is available to deliver the
products at any time or assuming that it has only one customer. We briefly discuss some
works related to integrated scheduling and delivery decisions. [Li et al., 2005] analyze the joint
problem of production sequencing and batch formation, in order to minimize total delivery
time, given that delivery is performed by a single vehicle. Total delivery time is a meaningful
indicator of the overall efficiency of the delivery process. They show that in general the problem
is NP-hard, and then give polynomial time algorithms for the problem with a fixed number of
distinct destinations. In [Chen and Lee, 2008], there are various destinations but a batch can
only contain jobs of the same destination. [Fan et al., 2015], consider a non availability time
interval on the machine, several vehicles without capacity constraint and only transportation
costs (no vehicle routing problem associated to the delivery). A single vehicle with a storage area
and one or two customers is considered in [Chang and Lee, 2004]. The authors show that the
problem is NP-hard for the makespan objective. Other complexity results are provided as well as
polynomial time algorithms for special cases. For the same objective function, [Li and Ou, 2005]
study the pickup and delivery problem in which a single vehicle travels between the machine
and the warehouse, whereas [Wang and Cheng, 2009] study a similar problem in which three
different locations and two vehicles are considered. The first vehicle transports unprocessed jobs
between the warehouse and the factory and the second one transports finished jobs between the
factory and the customer. [Hall et al., 2001] consider the problem in which the delivery dates
are fixed in advance. In order to minimize the makespan, [Gao et al., 2015] consider the problem
on a single machine scheduling and a unique capacitated vehicle with a no wait constraint, i.e.,
the batch must be delivered as soon as it is completed. They show that the problem is NP-hard,
and then give polynomial time algorithms for the special case with constant travel times.

The cases where the delivery problem is between machines (inbound delivery) are reported
by [Lee and Chen, 2001] and [Hurink and Knust, 2001], where the authors consider multiple
machines and transportation time between them. [Lee and Chen, 2001] consider also the case
where the finished jobs are delivered to one customer location. Some complexity results are given.
In [Agnetis et al., 2014], [Agnetis et al., 2015] there are two machines and the transportation is
made between these machines, various cases are treated and the objective is to minimize the
total transportation cost.

Using the terminology of [Chen, 2010], the models presented in this paper concern batch
delivery with routing, i.e., orders going to different customers can be delivered together in the
same shipment (batch).

However, a distinctive feature of the problems is studied. We consider a fixed sequence
of production and delivery, i.e. the jobs must be delivered in the same order in which they
are produced. Examples of situations in which the customer sequence is fixed are reported
by [Armstrong et al., 2008] and [Viergutz and Knust, 2014]. For maximizing the total satisfied
demand in a single round trip, the authors consider that the products expire in a constant
time after their completion time and that a delivery time window exists for each product. In
[Lenté and Kergosien, 2014], the authors search for a batching of jobs where a single capacitated
vehicle is used for the delivery. Polynomial time algorithms are proposed for minimizing the
makespan, the maximum lateness and the number of tardy jobs but the sum of delivery times
is not treated. [Tsirimpas et al., 2008] minimize the overall distance traveled for the single
vehicle routing with a predefined customer sequence. This problem can be seen as one of
the problems treated in [Lenté and Kergosien, 2014] for the makespan minimization with zero
processing times (no scheduling problem). In [Agnetis et al., 2014] and [Agnetis et al., 2015]
and [Li and Ou, 2005], special cases with a predefined sequence are addressed and for each of
them, polynomial time algorithms are given.

Here we will mainly focus on the problem of deciding how to form batches with a given
production sequence (problem P1). The more general problem in which the sequence is not
fixed and has to be decided (proved NP-hard in [Li et al., 2005])) is denoted by P2.

Our contributions are as follows. We completely characterize the complexity of Problem P1,
showing that when the objective function Z is to minimize the total delivery time, it is NP-hard
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in the ordinary sense, and that it can be solved in pseudopolynomial time for any sum-type
function of the delivery times. Then, we focus on the special case in which all transportation
times are identical (constant travel times), and we show that when Z is the total delivery
time minimization, both problems P1 and P2 can be solved in polynomial time. The paper is
organized as follows. In Section 2 we present the problem formally and show that the problem
is NP-hard when Z is the total delivery time, and that it can be solved in pseudopolynomial
time when Z is any sum-type objective function. In Section 3, we study two particular cases
that remain NP-hard: the case where preemption is allowed and the case where the number of
locations is smaller than the number of jobs. In Section 4 we study two polynomially solvable
cases: the case where the number of locations is fixed and the case where travel times are
constant. Finally, some conclusions and future research directions are presented in Section 5.

2 Problem definition and complexity

2.1 Problem definition and notation

The problem considered in this paper can be described as follows. A set of n jobs is given and
their production sequence is known. Each job Jj , j = 1, . . . , n, requires a certain processing
time pj on a single machine, and must be delivered to a certain location site. For the sake of
simplicity, when it does not create confusion, we use j to refer to the destination of job Jj . We
denote by ti,j the transportation time from destination i to destination j. For analogy with
vehicle routing problems, we refer to the manufacturer’s location as the depot. We use M to
denote the depot (manufacturer), hence tM,j = tj,M is the transportation time between the
depot and destination j. Unless otherwise specified, we assume that transportation times are
symmetric and satisfy the triangle inequality.

Deliveries are carried out by a single vehicle. The vehicle loads a certain number of jobs that
have been produced and departs towards the corresponding destinations. Once all the jobs have
been delivered, it returns to the depot, hence completing a round trip. The set of jobs delivered
during a single round trip constitutes a batch. The capacity c of the vehicle is the maximum
number of jobs it can load and hence deliver in a round trip. The jobs must be delivered in the
order in which they are produced, hence the production sequence also specifies the sequence in
which the customers have to be reached.

The problem consists in deciding a partition of all jobs into batches, i.e., a batching scheme.
Each batch will be routed according to the manufacturing sequence.

In general, the performance of the system depends on all the concurrent decisions: production
scheduling, batching and vehicle routing. This requires therefore an integrated model, allowing
one to coordinate all these aspects. A solution to our problem with fixed sequence, is the
specification of a batching scheme.

Given a solution, we denote by Cj the completion time of job Jj on the single machine,
which is also the time at which the job is released for delivery, i.e., the batch including job Jj
cannot start before Cj . We denote by Dj the delivery time of Jj , i.e., the time at which the job
Jj is delivered at its destination.

The performance measures we consider in this paper depend on such delivery times. In
particular, denoting with Z the performance measure, in this paper we consider:

• the total delivery time, i.e., Z =
∑n
j=1Dj

• a general sum-type performance index, i.e., Z =
∑n
j=1 fj(Dj), where fj(Dj) is a general,

nondecreasing function of Dj , j = 1, . . . , n.

Note that the latter case includes total (weighted) delivery time, total (weighted) tardiness,
etc.

We consider the following problem:

Problem P1(Z). Given n jobs of length pj, j = 1, . . . , n, transportation times ti,j for all i, j,
and a sequence σ, find a batching scheme B such that Z is minimized.
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2.2 Complexity

Since the production sequence is given, and since jobs are delivered to the respective customers
in the same given order, we assume that the job sequence is σ = (J1, J2, ..., Jn). Only travel
times tj,j+1 are relevant, as well as times tj,M = tM,j , representing the travel time between
customer j and the manufacturer and vice-versa.

Let us first consider the problem where the objective function is the total delivery time, i.e.,
problem P1(

∑n
j=1Dj). For our purposes, we introduce the following problem.

Even-Odd Partition (EOP). A set of n pairs of positive integers (a1, b1), (a2, b2), . . . , (an, bn)
is given, in which, for each i, ai > bi. Letting K =

∑n
i=1(ai + bi), is there a partition (S, S̄) of

the index set I = {1, 2, . . . , n} such that∑
i∈S

ai +
∑
i∈S̄

bi = K/2? (1)

EOP is NP-hard in the ordinary sense [Garey et al., 1988]. In the following, we will actually
use the following slightly modified version of the problem.

Modified Even-Odd Partition (MEOP). A set of n pairs of positive integers (a1, b1), (a2, b2),
. . . , (an, bn) is given, in which, for each i, ai > bi. Letting Q =

∑n
i=1(ai−bi), is there a partition

(S, S̄) of the index set I = {1, 2, . . . , n} such that∑
i∈S

(ai − bi) = Q/2? (2)

Note that the two problems are indeed equivalent. In fact, suppose that EOP has a partition
(S, S̄). The corresponding instance of MEOP also admits the same partition. In fact, subtracting∑n
i=1 bi =

∑
i∈S bi +

∑
i∈S̄ bi from both sides of (1), one obtains

∑
i∈S

(ai − bi) = K/2−
n∑
i=1

bi (3)

Now, from the definitions of K and Q it turns out that

Q = K − 2

n∑
i=1

bi

and hence (3) is indeed (2). We next show the following result.

Theorem 2.1 P1(
∑n
j=1Dj) is NP-hard.

Proof. The problem is obviously in NP. Given an instance of MEOP, we build an instance of
P1 as follows. There are 3n+ 3 jobs. The processing times of the jobs are defined as follows:

p1 = 0, p2 = 0, p3 = 0

p3i+1 = 1, p3i+2 = 1, p3i+3 = 4xi + bi − 2 for all i = 1, . . . , n− 1,

p3n+1 = 4xn + bn +Q/2, p3n+2 = 0, p3n+3 = 0

where the xi are defined as.

xi = (3ai − 2bi + 3(n− i)(ai − bi))/2 for all i = 1 . . . n (4)

and xn+1 = 0.
In the following, we refer to the set of jobs (J3i+1, J3i+2, J3i+3), i = 0, . . . , n, as the triple

Ti+1.
For what concerns the travel times, we let:

• for each i = 0, 1, . . . , n− 1, one has
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– tM,3i+1 = t3i+1,M = tM,3i+2 = t3i+2,M = tM,3i+3 = t3i+3,M = xi+1,

– t3i+1,3i+2 = ai+1, t3i+2,3i+3 = bi+1, t3i+3,3i+4 = xi+1 + xi+2.

• tM,3n+1 = 0, t3n+1,M = 0, tM,3n+2 = 0, t3n+2,M = 0, tM,3n+3 = 0.

• t3n+1,3n+2 = 0, t3n+2,3n+3 = 0.

Finally, vehicle capacity is c = 2. The problem consists in determining whether a solution
exists such that the total delivery time does not exceed

f∗ =

n∑
i=1

(3C3i + 7xi + bi) + C3n+1 + C3n+2 + C3n+3 −Q/2. (5)

For shortness, we call feasible a schedule satisfying (5). The proof has the following scheme.

1. We first establish via Lemma 2.2 that if a feasible schedule exists, then there is one having
a certain structure, called triple-oriented,

2. We analyze some properties of this structure,

3. We show that a triple-oriented schedule of value f∗ exists if and only if MEOP is a yes-
instance.

Lemma 2.2 If a feasible schedule exists, then there exists one satisfying the following property:
for all i = 1, . . . , n, jobs J3i and J3i+1 are NOT in the same batch.

Proof. Suppose that a feasible schedule exists in which, for a certain i (1 ≤ i ≤ n), jobs J3i and
J3i+1 are in the same batch. Since c = 2, the batch contains no other job. As a consequence,
after delivering J3i+1, the vehicle must go back to M in order to load the next jobs and start
a new trip. If we denote by τ the start time of the round trip of jobs J3i and J3i+1, job J3i is
delivered at time D3i = τ + tM,3i and job J3i+1 is delivered at time D3i+1 = τ + tM,3i + t3i,3i+1.
Therefore we have D3i = τ + xi and D3i+1 = τ + xi + (xi + xi+1). The vehicle is back at M
at time τ + 2xi + 2xi+1. Now, if we replace this batch with two batches of one job each, the
delivery times of both jobs as well as the time at which the vehicle is back at M are unchanged.
Therefore, there is an equivalent solution where J3i and J3i+1 are not in the same batch. �

We call triple-oriented a schedule satisfying Lemma 2.2. The reason of this name is that
the schedule is decomposed according to triples. More precisely, since c = 2, for each triple
Ti+1 = (J3i+1, J3i+2, J3i+3), i = 0, . . . , n − 1, A consequence of Lemma 2.2 is that there are
exactly two batches, and only two possibilities, namely:

• either the first batch is {J3i+1, J3i+2} and the second is {J3i+3},
• or the first batch is {J3i+1} and the second is {J3i+2, J3i+3}.
We call these two possibilities option A and option B respectively (see Fig. 1). Namely, let

us view option B as the Base option, and A as a variant to it.
Round trip length. Letting MA

i and MB
i denote the round trip length of the jobs of Ti in

the two cases. One has:

MA
i = 4xi + ai (6)

MB
i = 4xi + bi (7)

Since ai > bi, option A implies a longer round trip length than the Base option. The difference
between the two (i.e., the additional time with option A with respect to B) is precisely ai − bi.

Lemma 2.3 In any triple-oriented schedule, the vehicle is never idle, except possibly before
loading J3n+1.

Proof. Let consider the first triple T1. The vehicle starts at time 0 (to deliver batch {J1} or
{J1, J2}), and is back at time 4x1 +b1 or at time 4x1 +a1. The completion time of T2 is precisely

equal to C6 =
∑6
j=1 pj = 1 + 1 + 4x1 + b1 − 2 = 4x1 + b1. Therefore, as a1 > b1, the vehicle

can immediately start the delivery of the jobs of T2 as soon as it is back to the depot. For the
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3(i-1)+1 3(i-1)+2 3(i-1)+3

bi

3(i-1)+1 3(i-1)+2 3(i-1)+3

ai

3i+1 3i+2 3i+3

3i+1 3i+2 3i+3

option A

option B

ai − bi

Figure 1: Round trips with options A and B.

same reasons, the delivery of the jobs of Ti cannot be smaller than, the duration of the jobs of
Ti+1, and the vehicle will be able to start immediately the delivery of the jobs of Ti+1. This
reasoning does not hold for the last triple Tn+1 because the duration of J3n+1 is different. �

In view of Lemma 2.3, one can compute the total delivery time in the Base scenario, i.e.,
when option B is always chosen. From (7), one has that the vehicle delivering the last 2 jobs
of Ti always returns to M exactly at time C3i (see Fig.2). Therefore, the last time the vehicle
arrives at M (before delivering the jobs of Tn+1) is C3n + 4xn + bn. Because of the definition
of p3n+1, and because J3n+1 starts at time C3n, we have C3n + 4xn + bn = C3n+1 − Q/2. In
this case, the vehicle will stay idle from C3n+1 −Q/2 to C3n+1, when job J3n+1 can be finally
loaded and delivered at time C3n+1. The 3 jobs of Tn+1 have zero travel times and the last 2
jobs have also zero durations, so all jobs of Tn+1 can be delivered at C3n+1 = C3n+2 = C3n+3.
Finally, recalling that C1 = C2 = C3 = 0, the first job of each triple Ti, for i ≥ 1, is delivered at
C3i + xi, the second job is delivered at C3i + 3xi and the last job at time C3i + 3xi + bi + xi,
as illustrate in Fig.(2). Hence, we have:

fBASE =

n∑
i=1

(3C3i + 7xi + bi) + C3n+1 + C3n+2 + C3n+3 (8)

...

3(i-1)+1 3(i-1)+2 3(i-1)+3
bi

3i+1 3i+2 3i+3

xi xi xi xi

Ti+1Ti

Figure 2: The base schedule (i.e., B is always chosen).

Contribution to total delivery time. Before computing the contribution of a certain triple to
the total delivery time, let us consider schedules in which the delivery of the the last three jobs
J3n+1, J3n+2 and J3n+3 start exactly at their release time, i.e., at time C3n+1 = C3n+2 = C3n+3

(options A and B are equivalent). Let us call regular a schedule in which such a condition holds.
Expression (8) refers to the scenario in which for all triples, the option B is chosen. We

want now to compute the objective function of an arbitrary solution. Let us first consider the
contribution of triple Ti to the objective function in the Base schedule, i.e., assuming that the
delivery of Ti started at time C3i, and let us denote this contribution as TDTAi and TDTBi
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depending of the selected option for Ti.. One has:

TDTAi = (C3i + xi) + (C3i + xi + ai) + (C3i + 3xi + ai) = 3C3i + 5xi + 2ai

TDTBi = (C3i + xi) + (C3i + 3xi) + (C3i + 3xi + bi) = 3C3i + 7xi + bi

Note that

TDTBi − TDTAi = 2xi + bi − 2ai (9)

= (3ai − 2bi + 3(n− i)(ai − bi)) + bi − 2ai

= ai − bi + 3(n− i)(ai − bi)

which is positive, remembering that ai > bi. This means that choosing option A over B
brings a benefit in terms of total delivery time. However, such favorable situation for option A
is mitigated by the fact that, with option A, one has a longer round trip time than with option
B, by the amount (ai− bi) (Fig.3). In a regular schedule, such increased round trip time will be
”paid” by all subsequent jobs, except the last jobs J3n+1, J3n+2 and J3n+3. Hence, in a regular
schedule the total effect (in favor of option B) on the subsequent jobs of choosing option A for
Ti is given by

3(n− i)(ai − bi) (10)

In conclusion, the net benefit of choosing option A over B for Ti in terms of objective
function value is obtained subtracting (10) from (9), and in view of the definition of xi (4), one
has therefore that

NetBenefiti = (2xi + bi − 2ai)− 3(n− i)(ai − bi)
= ai − bi (11)

...

ai − bi

3(i-1)+1 3(i-1)+2 3(i-1)+3
ai

xi xi xi xi

Ti+1Ti
3i+1 3i+2 3i+3

Figure 3: Ti is the first triple choosing option A.

In conclusion, it turns out that, when A is chosen over the Base option, one has a larger
round trip time, by (ai − bi), but also a smaller contribution to total delivery time (also by the
amount (ai − bi))(see Fig. 4). So, given any regular triple-oriented schedule in which the last
three jobs depart at their completion time, let TA be the set of triples for which the option A is
chosen. Then, from the above considerations, the value f of the objective function is given by

f = fBASE −
∑
i∈TA

(ai − bi) (12)

On the other hand, the time at which the vehicle returns to M before loading the last three
jobs (J3n+1, J3n+2 and J3n+3) is given by

C3n + 4xn + bn +
∑
i∈TA

(ai − bi) (13)

Now, in a regular schedule the delivery of job J3n+1 (and also J3n+2 and J3n+3) starts at
time C3n+1 = C3n + 4xn + bn +Q/2. Hence, from (13), in a regular schedule, it must hold:∑

i∈TA

(ai − bi) ≤ Q/2
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.... ....Ti+1

3(i-1)+1 3(i-1)+2 3i

bi

.... ....Ti+1

∑i
j=1 aj − bj

3(i-1)+1 3(i-1)+2 3i

ai

T2

1 2 3

a1

T2

1 2 3

b1

3n+1, 3n+2, 3n+3

3(n-1)+1 3(n-1)+2 3n

an

Q/2

3n+1, 3n+2, 3n+3

3(n-1)+1 3(n-1)+2 3n

bn

Q/2

a1 − b1

Figure 4: Round trips with option A only and option B only

On the other hand, comparing (5), (8) it turns out that

f∗ = fBASE −Q/2

and hence, from (12), a regular schedule is feasible precisely if a subset TA of indices exists
such that

∑
i∈TA

(ai − bi) = Q/2, i.e., if and only if a feasible partition exists in the instance
of EOP. To conclude the proof, it is left to show that f∗ can be attained only by a regular
schedule. In fact, if a schedule is not regular, the departure time of the last batch is delayed by
the amount (

∑
i∈TA

(ai− bi)−Q/2) with respect to C3n+1. As a consequence, the expression of
f in (12) must be modified to take account of such delay of the last three jobs, i.e. it comes

f = fBASE −
∑
i∈TA

(ai− bi) + 3(
∑
i∈TA

(ai− bi)−Q/2) = fBASE + 2
∑
i∈TA

(ai− bi)− 3Q/2 (14)

Since, in a nonregular schedule,∑
i∈TA

(ai − bi) > Q/2,

from (14) one has

f = fBASE + 2
∑
i∈TA

(ai − bi)− 3Q/2 > fBASE +Q− 3Q/2 = fBASE −Q/2

and hence it cannot be feasible. �

2.3 Pseudopolynomial time algorithm for P1(
∑

j fj(Dj))

Theorem 2.1 implies that no optimal polynomial time algorithm can be found for P1(
∑n
j=1Dj),

and hence for more general objective functions, unless P=NP. In what follows, we show that
P1(

∑
j fj(Dj)) can be solved in pseudopolynomial time, hence settling the complexity status

of P1.
We denote by {i, j} the batch consisting of jobs Ji, . . . , Jj . As usual, Cj is the completion

time of job Jj (known because σ is known), and hence the release time for delivery. We denote
by M(i, j) the duration of the round trip of batch {i, j}, and, if the batch starts at time t, we
call K(i, j, t) its contribution to the objective function. Also, we assume that at the beginning,
the vehicle is at the manufacturing location.

We denote by F (i, j, t) the value of the optimal solution of the problem restricted to the
first j jobs, in which the first job of the last batch is Ji, and such that the delivery of the batch
starts at time t. Then, F (i, j, t) can be computed by means of a simple recursive formula. In
the optimal solution of the subproblem, if the second last batch is {p, i− 1}, and if it starts at
time s, then we have:

F (i, j, t) = F (p, i− 1, s) +K(i, j, t)
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Note that, if the vehicle starts at time s, it must be back before or at time t, i.e., the following
constraint must hold:

Ci−1 ≤ s ≤ t−M(p, i− 1)

In conclusion, the problem is solved by means of:

F (i, j, t) = min
max(i−c,1)≤p≤i−1

Ci−1≤s≤t−M(p,i−1)

{F (p, i− 1, s)}+K(i, j, t) (15)

Let T be an upper bound on the latest possible departure time for the last batch. As long as
the triangle inequality holds, this is given, for instance, by:

T = max

(
max

1≤i≤n−1
{Ci + 2

n−1∑
h=i

thM}, Cn

)

The optimal solution is given by:

z∗ = min
n−c+1≤i≤n,Cn≤t≤T

(
F (i, n, t)

)
A few boundary conditions must be imposed:

F (i, j, t) = +∞ for all j < i (16)

F (1, j, t) = K(1, j, t) for all j, t (17)

Condition (16) is obvious. Condition (17) allows to initialize the algorithm.
Let us turn to complexity. First, consider the computation of values M(i, j) and K(i, j, t).

Both can be simply computed adding the contribution of the next job in the batch either to
the round trip time (for M(i, j)) or to the objective function (for K(i, j, t)). More precisely, the
delivery time dh of job Jh with respect to the departure time of the batch is simply given by:

dh =

{
dh−1 + th−1,h, if i < h ≤ j
tM,h, if h = i (in this case the vehicle starts from the manufacturer location)

Hence, M(i, j) is simply given by dj + tj,M . Note that M(i, j+ 1) = M(i, j)− tj,M + tj,j+1 +
tj+1,M . This means that all M(i, j) can be computed in O(nc) assuming j ≤ i+c−1. Similarly,
if batch {i, j} starts indeed at time t, the contribution of job Jh to the objective function is
given by:

fh(t+ dh),∀i ≤ h ≤ j

K(i, j, t) is given by
∑j
h=i fh(t+dh). Again, assuming that fj(·) can be computed in constant

time, note that dj+1 = dj + tj,j+1 and K(i, j + 1, t) = K(i, j, t) + fj+1(dj+1). So, all values
K(i, j, t) can be computed in O(ncT ).

Once all values M(i, j) and K(i, j, t) are known, one can compute formula (15) for all feasible
triples (i, j, t). Each such computation requires comparing nT values. Finally, O(cT ) values are
compared to find the optimal solution. Since the feasible triples are O(ncT ), the computation
of all values F (i, j, t) clearly dominates the other phases, and the following result is proved.

Theorem 2.4 Problem P1(
∑
j fj(Dj)) can be solved in O(nc2T 2).

3 More NP-hardness results

In this section we address the special case in which the number of locations is limited for the
problem P1(

∑
j Dj), this problem is denoted by P3(

∑
j Dj). We denote by lj the location of

job j and consider that we have K successive locations, i.e., two successive jobs j and j + 1 are
whether in the same location then lj+1 = lj or in the successive locations then lj+1 = lj+1 (figure
5). Note that this problem is NP-hard and is equivalent to P1(

∑
j Dj) if the number of locations
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K = n. In Sect. 3.1 we completely characterize the complexity of P3(
∑
j Dj), showing that

when the objective function is the total delivery time minimisation with the number of locations
lower than n, the problem remains NP-hard. For this purpose, we use a similar reasoning to
that employed to characterize the complexity of P1(

∑
j Dj). Then we focus in Sect. 3.2 on the

case where delivery preemption is allowed, and we establish the NP-hardness of this case.

3.1 Problem P3(
∑

j Dj) with limited number of locations

1 n1 n1 + 1 n2 nnK−1 + 1
-� -� -�location 1 location 2 location K

............

Figure 5: Special case with K locations

Theorem 3.1 Problem P3(
∑
j Dj) is NP-hard.

Proof. Given an instance of MEOP, we build an instance of P3 as follows. There are 3(n+ 1)l
jobs, 3(n + 1) locations, l jobs for each location and the vehicle capacity is c = 2l. We denote
by Jk the sequence of jobs (Jk1 , J

k
2 , . . . , J

k
l ) corresponding to location k (k = 1, . . . , 3(n + 1)).

The job Jkj is at a position l(k − 1) + j in the schedule.
Since the reasoning is similar to that employed to prove the complexity of P1(

∑
j Dj), we

do not recall the global structure of the proof but we rather detail how the reduction used is
extended to the limited number of location case.

The processing times of the jobs are defined as follows:

p1
j = 0, p2

j = 0, p3
j = 0, ∀j = 1, . . . , l

p3i+1
1 = 1, p3i+1

j = 0, ∀i = 1, ..., n− 1,∀j = 2, ..., l

p3i+2
1 = 1, p3i+2

j = 0, ∀i = 1, ..., n− 1,∀j = 2, ..., l

p3i+3
1 = 4xi + bi − 2, p3i+3

j = 0, ∀i = 1, ..., n− 1,∀j = 2, ..., l

p3n+1
1 = 4xn + bn +Q/2, p3n+1

j = 0, ∀j = 2, . . . , l

p3n+2
j = p3n+3

j = 0, ∀j = 1, . . . , l

where the xi are defined by:

xi =
(
(ai − bi)/l − bi + 2ai + 3(n− i)(ai − bi)

)
/2, ∀i = 1, . . . , n (18)

and xn+1 = 0.

Notice that
∑l
j=1(p3i+1

j + p3i+2
j + p3i+3

j ) = 4xi + bi, ∀i = 1, . . . , n− 1.
The travel times are those used in Sect. 2.2, but now the triple Ti+1, i = 0, . . . , n, corresponds

to the set of sequences of l jobs (J3i+1, J3i+2, J3i+3).
Finally, the problem consists in determining whether a solution exists, such that the total

delivery time does not exceed

f∗ = l

n∑
i=1

(3C3li + 7xi + bi) +

3l∑
j=1

C3n+j −Q/2. (19)

For shortness, we call ”feasible” a schedule satisfying (19).

Lemma 3.2 If a feasible schedule exists, then it satisfies the following property: for any k,
k = 1, . . . , 3(n+ 1), all the jobs Jkj with j = 1, . . . , l are in the same batch.

10



Proof. Suppose that a feasible schedule exists. We denote by k the first location where there
exists jobs Jki and Jki+1 (i < l) which are not delivered in the same batch. All jobs of the triple
Tdk/3e – which contains the l jobs of Jk – have been completed when the vehicle starts to deliver

the first i jobs of Jk. We distinguish two cases. First, suppose that the capacity of the vehicle
allows to take Jki+1. If we denote by τ the delivery time of Jki , job Jki+1 cannot be delivered
before time τ + 2xdk/3e. The total delivery time cannot decrease if Jki+1 is delivered in the same

batch as Jki at time τ , therefore Jki+1 is assigned to the same batch and the schedule remains
feasible. Second, suppose that the capacity of the vehicle does not allow to take Jki+1. This case
is not possible because before location k, the vehicle only delivered multiples of l jobs (either l
or 2l jobs). So either the vehicle cannot take any job of Jk, or it can take all the jobs of Jk.
By applying this reasoning each time there exists a split of jobs that have to be delivered to the
same location, we finally obtain a feasible schedule satisfying the lemma. �

In view of Lemma 3.2, we can consider the set of jobs Jk, k = 1, . . . , 3(n+ 1), as a single job
and the rest of the proof is similar to that given for problem P1. �

3.2 Problem P4(
∑

Dj) with delivery preemption

In this section, we consider a case where preemption is allowed during the delivery: one can
deliver a part of a job, come back to the depot, and take the reminder part of the job for
another delivery. We remark that in this case, this problem is equivalent to the NP-hard
problem P1(

∑
Dj).

Remark 3.3 The problem P4(
∑
Dj) with delivery preemption is NP-hard.

Proof. Consider that the preemption is allowed on the instance used to prove the complexity
of P1(

∑
Dj). One can see that each time the vehicle returns to the depot, the number of jobs

already completed and ready for delivery is higher than the capacity c. Therefore, delivering
a job in two successive trips has no interest and always increases the value of the objective
function. �

The result can be extended to the case where the number of sites is fixed to K < n.

4 Polynomial cases

In this section, we investigate two particular cases. First, the case where travel times are
constant between successive locations. Then, we consider the case where the number of locations
is bounded (problem NP-hard, see Section 3.1) and fixed. For both cases, we propose dynamic
programming algorithms.

4.1 A particular case: constant travel times

In this section we address the special case in which all travel times are identical. More precisely,
we will deal with the following problems:

• problem P5(
∑
j Dj), which consists of problem P1(

∑
j Dj) with constant travel times,

• problem P6(
∑
j Dj), which consists of problem P2(

∑
j Dj) with constant travel times.

For both problems we propose polynomial time algorithms.

4.1.1 Problem P1(
∑

j Dj) with constant travel times

In the following, we investigate the problem of minimizing a general sum-type objective function
when the sequence is fixed for both production and delivery and when travel times are constant.
We start by analyzing some properties of the optimal solution.

Clearly, every time the vehicle is back at the depot, it can restart immediately with a new
batch consisting of jobs already completed, or it can wait for the completion of some jobs to be
delivered (see Fig. 6).
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Figure 6: Start of a new tour

Following Li et al.(2005), we call NSS (Non Stop Shipment) a sequence of consecutive round
trips during which the vehicle is never waiting at the depot (see Fig. 7), followed by a waiting
time. We denote by NSS[i, ni, j] a NSS starting at time Ci, i.e. Ji is the last job of the first
round trip of the NSS containing ni jobs and ending before Cj (when another NSS will start).

Ji

Ci

- -....

Jj ...

-....

...

....

-� F (i, ni, j)

- --

Di

.... - ....
D`+1

-�

batch of Ji

-�
batch of Jj

-� NSS(i, ni, j)

J`

D`

ni jobs

...

Figure 7: Illustration of a NSS

Suppose that a vehicle starts a round trip at a certain time τ . Let J be the set of jobs
completed before τ (or at time τ) and not delivered. The round trip starting at time τ is called
maximal if either (i) the batch contains c jobs of J , or (ii) it contains all the jobs of J . The
following proposition gives a key feature of the optimal solutions.

Proposition 4.1 There exists an optimal solution in which all round trips are maximal.

Proof. Let us denote by Rq the round trip starting at τ . Let Ji, . . . , Jj be the jobs completed
at or before τ and not yet delivered. The round trip Rq is maximal if it contains min{c, j−i+1}
jobs. Suppose that Rq is not maximal, i.e. |Rq| = k − i + 1 < min{c, j − i + 1}, i.e., the last
job in Rq is job Jk, k ≤ j − 1 (see Fig. 8(a)). This means that job Jk+1 is delivered in the
next batch Rq+1. One can move job Jk+1 from Rq+1 to Rq because Rq is not maximal. As a
consequence, the delivery time of job Jk+1 decreases by t, without changing the delivery times
of all the subsequent jobs (see Fig. 8(b)). Hence, the new solution is better than the previous
one. Suppose that Rq is maximal, then we are done. One can repeat the whole process for
k + 2, . . . ,min{c, j − i+ 1}, and the proposition follows.

From this, we can see that a solution of the problem is composed by successive NSS.
However, a round trip may have to wait for some additional jobs, before starting its route.
Let consider the following example.

Example: Let consider an instance with n = 4 jobs, processing times equal to p =
(1, 1, 10, 6), a travel time equal to 5 and a capacity of 2. The solution without waiting times
where the vehicle starts after job J1 has a total delivery time of 79, the solution without waiting
times where the vehicle starts after job J2 has a total delivery time of 73. The optimal solution
consists in waiting for the completion of J4 and in delivering {J1, J2} in the same batch and
{J3, J4} in the same batch too.

From the previous properties, one can propose a polynomial time algorithm to build the
different NSS.
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Figure 8: Maximal round trips

We denote by F (i, ni, j) the contribution to the objective function of the jobs Ji+1, . . . , J`
(j − c ≤ ` < j) delivered as follows: an NSS denoted NSS[i, ni, j] starts exactly at time Ci,
delivers the ni jobs of the batch of Ji in the first trip, then the jobs Ji+1 to J` in consecutive
maximal round trips, where J` is the last job that can be delivered, so that the vehicle is back at
the depot before or at Cj . Notice that once Ji, ni and Jj are known, J` is unique and we denote
by νi,ni,j the number of undelivered jobs from J`+1 to Jj , i.e. νi,ni,j = j−`. At time Cj , another
NSS starts in which the first round trip delivers the undelivered jobs J`+1 to Jj (see Fig. 7).
We denote by Bi,j the number of round trips of NSS[i, ni, j]. The number of jobs delivered by
the round trip number k (1 ≤ k ≤ Bi,j) is denoted by n′k (we have n′1 = ni). The starting time
of the delivery of the first round trip of NSS[i, ni, j] is equal to Ci. It delivers the jobs in a
single tour and Ji is delivered last. The starting time of the delivery of the second round trip of
NSS[i, ni, j] is equal to Ci + t(ni + 1), of the third round trip is equal to Ci + t(ni + 1 +n′2 + 1),

the starting time of the round trip number k is equal to Ci + t
∑k−1
k′=1(n′k′ + 1).

Then, we have:

F (i, ni, j) =

Bi,j∑
k=2

n′k∑
r=1

(
Ci + t

k−1∑
k′=1

(n′k′ + 1) + rt

)

=

Bi,j∑
k=2

(
n′k
(
Ci + t

k−1∑
k′=1

(n′k′ + 1)
)

+ t
n′k(n′k + 1)

2

)
(20)

When ni, the number of jobs in the first round trip starting at Ci is known, and according to
proposition 4.1, we can construct in polynomial time NSS[i, ni, j] for any j > i, and it follows
that F (i, ni, j) can be calculated in polynomial time.

We define F (0, n0, j) (∀j, 1 ≤ j ≤ c) as the contribution to the objective function of the
first n0 jobs J1, . . . , Jj such that these jobs are delivered in the same first round trip, starting
at time Cj . We have:

F (0, n0, j) =

j∑
l=1

(Cj + lt), ∀j, 1 ≤ j ≤ c, n0 = j

=∞, otherwise

Two particular cases are identified, where an NSS cannot exist between two jobs Ji and Jj :

1. Ci+t(ni+1) > Cj : in this case, the round trip delivering job Ji finishes after the completion
time of Cj and thus NSS[i, ni, j] cannot exist.

2. νi,ni,j > c: job Jj cannot be delivered in the first tour of the next NSS starting at time
Cj .
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In both cases, we set:

F (i, ni, j) = +∞ (21)

We define now f(j, nj) the minimum total cost of the jobs {J1, ..., Jj} where the batch
delivering Jj contains nj jobs and starts at time Cj .

We have:

f(j, nj) = min
0≤i<j

1≤ni≤c
νi,ni,j

=nj

{
f(i, ni) + F (i, ni, j) +

nj∑
r=1

(Cj + rt)
}

(22)

with

f(0, nj) = 0, if nj = 0

=∞, otherwise

Because in the optimal solution, the last round trip does not necessarily start at time Cn,
we introduce a dummy job Jn+1 at the last position with Cn+1 = Cn + 2tn and tMn+1 = t.
Clearly, this implies that there exists an optimal solution in which the last round trip delivers
only this dummy job at time Dn+1 = Cn+1 + t.

Finally, the optimal solution is equal to

z∗ = f(n+ 1, 1)−Dn+1 (23)

This dynamic programming algorithm can be implemented in O(c2n2).

Theorem 4.2 If the travel times are constant, then the problem P5(
∑
j Dj) is solved to opti-

mality with dynamic programming algorithm in polynomial time O(c2n2).

4.1.2 Problem P6(
∑

j Dj) with constant travel times

In this section, we consider the case where the sequence of jobs is not fixed and travel times are
constant.

Proposition 4.3 There exists an optimal schedule in which the jobs are ordered according to
the Shortest Processing Time (SPT) rule.

Proof. Suppose first that the jobs are numbered according to the SPT rule. It means that
σSPT = {J1, J2, . . . , Jn}. Suppose that the SPT sequence is not optimal, then there exists in
the optimal solution σ∗ two jobs Ji and Jj with Ji before Jj and i > j. We show by using a
pairwise interchange reasoning that by maintaining the same round trips, i.e. the same number
of jobs and the same starting time of the round trips, σSPT is such that

∑
DSPT
j ≤

∑
D∗j and

thus is optimal.
Suppose that Ji and Jj are in the same round trip. The swap of these two jobs, leading to

σ′ does not change the sum of the delivery dates, and thus
∑
D′j =

∑
D∗j . Suppose that these

jobs are not in the same round trip. It means that the round trip of Ji terminates with Ji and
the round trip of Jj starts with Jj . After the swap of these jobs, the departure times of these
two round trips are still feasible, and thus the quality of the solution is unchanged. But putting
Jj before Ji may allow to deliver Jj earlier, and then to reduce the total delivery time. We
deduce that σSPT is optimal. �
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4.1.3 Problem P7 with processing times equal to zero

We consider in this section the case where the processing times of jobs are equal to zero: pj = 0,
∀j, 1 ≤ j ≤ n. The vehicle has a capacity equal to c and travel times are arbitrary (satisfying
the triangular inequality).

One can see that if the vehicle capacity is equal to n, in the optimal solution all the jobs
are delivered in a single tour. This solution is called ”ideal” and denoted by σid and the total
delivery time is equal to

∑
Did
j . Clearly, σid is not feasible when c < n. From the ideal solution

σid, a feasible and optimal solution can be obtained in polynomial time.
We define a graph G = (V,A) with n + 1 vertices in V (0 ≤ j ≤ n) where vertex 0 is a

dummy job denoted by M (manufacturer site) and vertex j, 1 ≤ j ≤ n corresponds to Jj .
There is an edge in A between i and j if i + 1 ≤ j ≤ i + c, corresponding to a round trip with
jobs {Ji+1, ..., Jj} (see Fig. 9). This round trip generates an additional cost to

∑
Did
j equal to

tj,M + tM,j+1 − tj,j+1 for each job scheduled after Jj , i.e. (n− j) times. The cost of edge (i, j)
is equal to ci,j = (tj,M + tM,j+1 − tj,j+1)(n− j). Notice that this cost does not depend on Ji.

M

1

y

i

j

w

w

i+ 1
j

/

=

�
j + 1
I

}
n

:

y
tj,j+1

tj,M
tM,j+1

M

1

Figure 9: Construction of a feasible and optimal solution from σid

We define now f(j) the value of the smallest possible degradation until Jj of the “ideal”
solution which makes the restricted problem to the j first jobs feasible and optimal. Because
there is no edge between (i, j) with j > i + c, f(j) is equal to the potential of j in a shortest
path in G from 0 to j. Then, we have:

f(j) = min
i+1≤j≤i+c

{f(i) + ci,j} (24)

with f(0) = 0. The optimal value of the shortest path is given by f(n).
Finally, the optimal solution z∗ is equal to:

z∗ =

n∑
j=1

Did
j + f(n) (25)

This dynamic programming algorithm can be implemented in O(cn). The above reasoning
immediately yields the following theorem.

Theorem 4.4 If the processing times are equal to zero, then the problem P7(
∑
j Dj) is solved

to optimality by a dynamic programming algorithm in O(cn) time.

5 Conclusion

In this paper, we focus on the coordination of a single machine production scheduling problem
and a single vehicle delivery problem. The jobs are processed on a single machine and delivered
in batches to customers by a single vehicle with limited capacity. The production sequence is
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given, and is supposed to be the same as the delivery sequence. The problem is to form batches
of jobs and the objective is to minimize the sum of the delivery times. We prove that the
problem is NP-hard and propose a pseudopolynomial time dynamic programming algorithm.
Some particular cases of the problem are proved to be NP-hard (The limited number of sites
and preemptive delivery cases) and polynomial time algorithms are proposed for some more
restricted problems.

In the future, we propose to investigate the general case where the sequence is not fixed and
has to be determined. We will propose exact algorithms as well as heuristic approaches.
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