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Online recoverable robustness based on groups of permutable jobs

for integrated production scheduling and delivery routing

Azeddine Cheref ∗ Christian Artigues † Jean-Charles Billaut ‡

August 3, 2016

Abstract: It is well known that the magnitude and the impact on schedule quality of uncer-
tainty in problem data both increase when the integration of scheduling decisions takes place. This
paper aims at comparing the standard robust optimization and the recoverable robust optimization
frameworks to tackle scenario-based uncertainty in integrated production and distribution schedul-
ing. While the standard robust optimization aims at providing an integrated baseline schedule that
optimizes a performance criterion for the worst scenario, the recoverable robustness framework
adds a repairing/recovering component, which is able to react to the realized scenario by modifying
in a limited way the issued baseline schedule. Hence, the recoverable robustness framework has
two merits: it is more realistic, as such repairing elements are often present in practice, and it is
able in theory to reach better worst-case performances on the scenario set. However, the question
remains whether under limited CPU time, recoverable robustness algorithms are able to actually
reach better performance than robust algorithms for reasonable problem instance size. This paper
proposes new MILP models and heuristics for a recoverable robust optimization framework based
on the concept of groups of permutable jobs and carries out such a comparison on a one-machine
production facility coupled with a single vehicle distribution system. For this problem, the experi-
mental results exhibit conditions under which a recoverable robust approach is likely to yield better
results than the standard robust approach.

Keywords: Integrated production and distribution scheduling, Recoverable robustness, Groups
of permutable jobs

1 Introduction

In a supply chain, two essential elements are the production and the distribution. These two prob-
lems used to be solved separately, but it it well known that considering them jointly may lead to
a global optimization of the supply chain performances. In the literature, more and more research
deal with integrated approaches, involving production and distribution decisions, at strategic, tac-
tical and operational levels. The relation between production and distribution may involve an
intermediate storage area and, in this case, inventory levels are considered as part of the produc-
tion and distribution problems. In the more general terms and depending on the decision level, the
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production problem is a planning problem and/or a scheduling problem, where a manufacturer has
to decide in which location the orders will be processed, at which time period and in which quantity.
Then, the delivery problem is an assignment and/or a routing problem, where the manufacturer
has to decide how many vehicles will be used at each location, how orders are grouped into delivery
batches and when they will be delivered. We refer to [Chen, 2004, Chen, 2010a, Wang et al., 2014]
for a global overview of integrated production and distribution problems.

In this paper, we incorporate the delivery plan of a vehicle into a single machine scheduling
problem, representing a single manufacturing facility. We consider the simplified case where there
is only one vehicle available to serve the customers, with infinite capacity. However, we assume
that the data are known with uncertainty. The objective is to find a schedule and a delivery plan so
that a robustness criterion is minimized, under a scenario-based uncertainty modeling. In contrast
with standard robust optimization approaches for scheduling [Kouvelis and Yu, 1997], we do not
propose a single complete solution to the problem that has to be feasible w.r.t. all scenarios and
minimizes a worst-case criterion over the scenarios. Instead, we adopt the recoverable robustness
framework that considers first-stage decisions and second-stage recovery options, as in stochastic
programming except that no probabilities are attached to scenarios and that the possibilities for
recovery are limited by a predefined set of recovery algorithms [Liebchen et al., 2009]. Following
this scheme, we propose for the first-stage a set of solutions by using the concept of groups of
permutable jobs presented in [Billaut and Roubellat, 1996, Artigues et al., 2005]. During second
stage, a recovery algorithm uses the information from the revealed scenario to compute a complete
schedule from the set of solutions issued from the first-stage. However, we consider that the scenario
is unrevealed progressively during schedule execution, so the recovery algorithm has to be both
greedy and online, exploiting only known information about the jobs available to be scheduled or
to be delivered at decision time. This appear to be a practical characteristic of many applications
both on production scheduling (where for example the exact release date of a job is known only
when the job arrives) and on vehicle routing (where the traveling time from a location to another
is only accurate in a short term basis due to traffic fluctuation). We will refer to this framework as
online recoverable robustness.

Despite its practical appeal, the online recoverable robustness framework raises two major issues,
one linked to modeling difficulties and another one linked to tractability in solution methods.
For the first issue, a basic question is to know whether is it possible model a non trivial online
recoverable robust integrated scheduling and vehicle routing problem such as the one considered
in this paper in a standard optimization paradigm such as the mixed-integer linear programming
framework. In this paper, we answer positively to this question by providing new MILP models
that extends the one proposed in [Kouvelis and Yu, 1997] for the standard robust one machine
scheduling problem. The second issue is to design, under limited CPU time, recoverable robustness
methods that are able to actually reach better performance than standard robust methods for
reasonable problem instance size. In this work, a comparison of a robust heuristic approach with
an online recoverable robust heuristic is carried out on a one-machine production facility coupled
with a single vehicle distribution system. The experimental results allow to determine conditions
under which the proposed recoverable robust approach is likely to yield better results than the
standard robust approach.

The paper is organized as follows. Section 2 presents a literature review on integrated produc-
tion scheduling and vehicle routing problems on the one hand and robust scheduling and vehicle
routing on the other hand. In Section 3, we give a formal description of the problem, introducing
the proposed online recoverable robustness scheme. In Section 4, we provide a (single stage) robust
mixed-integer linear programming formulation of the problem. Section 5 presents a two-stage ro-
bust mixed-integer linear programming formulation, instantiating the concept of online recoverable
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robustness and making use of the group-of-permutable-jobs structure. As both the single-stage and
two-stage robust MILP quickly become intractable as instance size grows, we present in Section 6
a heuristic based on tabu search to build a robust solution on realistic instances. In Section 7, we
provide computational experiments to validate our proposal. Concluding remarks and directions
for further research are pointed out in Section 8.

2 Related work

To our knowledge, no approach for integrated production scheduling and vehicle routing under
uncertainty can be found in the literature. Hence we divide this state-of-the-art section into de-
terministic integrated production and distribution scheduling (Sect. 2.1), robust scheduling (Sect.
2.2) and robust vehicle routing (Sect. 2.3).

2.1 Deterministic integrated production and distribution scheduling

Few papers deal with an integrated model of production and distribution at an operational level,
i.e. with vehicle routing as a part of the decision. In [Chang and Lee, 2004], the authors consider
a single machine or a two-parallel machines environment, a single vehicle and one or two customer
areas. Each job has a size and the capacity of the vehicle is limited. The authors give NP-hardness
proofs and algorithms with worst-case analysis. The same problem is considered by [He et al., 2006]
and [Zhong et al., 2007], in which some improvement are given. In [Lu et al., 2008], the authors
consider a single machine problem with release dates and a single vehicle to deliver the products to
one customer area. The vehicle has a bounded capacity and the objective is to minimize the maxi-
mum delivery time of the jobs. The authors prove the NP-hardness of the problem and propose an
algorithm with worst-case analysis. They consider also the case when preemption is allowed and
propose a polynomial time algorithm for this problem. In [Condotta et al., 2013], the authors treat
a similar problem where due dates for delivery are integrated. Multiple vehicles are available for the
delivery and the objective is to minimize the maximum lateness. The authors propose a mixed linear
program, lower bounds and a tabu search algorithm for solving the problem. In order to minimize
the maximum delivery time of the jobs, [Dong et al., 2013] consider the two-machines open shop
problem and a single vehicle with bounded capacity to deliver the products to one customer area.
The authors consider the special case when the vehicle can take only one job and a general capacity
case. The authors propose a polynomial time algorithm with a worst case ratio for the problem. In
[Li et al., 2005a], the authors consider a single machine and single vehicle problem. The vehicle has
a bounded or unbounded capacity and the objective is to minimize the sum of delivery completion
times. The authors prove the NP-hardness of the problem. They propose an efficient dynamic
programming algorithm for the single-customer case and, for the general case, they propose a poly-
nomial time dynamic programming algorithm when the number of customers is fixed. A similar
problem is considered in [Levin and Penn, 2008], with an arbitrary number of customers and an
uncapacitated delivery vehicle. The objective function is to minimize the total latency. The authors
propose a ∼=16.3-approximation algorithm. In [Li and Ou, 2005b], the authors consider a factory
(single machine) and a warehouse with two different locations. The raw materials (jobs) are located
at the warehouse before processing, have to be delivered to the factory for their processing and then
delivered back to the warehouse when completed (there is no vehicle routing problem). Only one
vehicle is available with a limited capacity (in terms of number of jobs) for transporting unprocessed
jobs, and another, also of limited capacity, for transporting processed jobs. The authors prove the
NP-completeness of the problem and propose a polynomial time dynamic programming algorithm
when the sequence of processing jobs is fixed. A heuristic algorithm with performance guarantee is
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proposed for the general case. This model is extended in [Wang and Cheng, 2009] by considering
one warehouse for material supply and another warehouse for finished products. There are two
vehicles, one for the travels between the first warehouse and the factory and one for the travels
between the factory and the second warehouse. The authors derive some optimal properties, study
some polynomially solvable cases and propose heuristic algorithms with performance guarantee for
the general case and some particular cases. In [Li and Vairaktarakis, 2007], the authors consider a
machine processing environment called “bundling operations”, where each job is composed by two
tasks that are processed on dedicated machines. A job is ready when both tasks are completed
and can then be delivered to the customer location. There is an unlimited number of vehicles with
limited capacity. The objective is to schedule the jobs and to define the routes of the vehicles
in order to minimize a delivery cost plus a weighted sum of the delivery completion times. The
authors propose polynomial-time heuristic algorithms and dynamic programming-based approxi-
mation schemes. In [Scholz-Reiter et al., 2010], the authors consider a global supply chain context,
and focus on the interface between manufacturing and logistic systems along the supply chain. Or-
ders are produced in an hybrid flowshop (flowshop with assignment problem) and then assigned to
tours. The objective function is a cost function, composed by a production cost, a storage cost (for
intermediate and finished products), a tardiness cost, the cost of conducting a tour and the cost of
a tour. The authors propose a mathematical programming formulation, tested on a small instance.
In [Chen, 2010b], the author considers a problem with a single machine and multiple vehicles. To
each job is associated with a processing time and a volume. All the jobs have to be delivered at
only one customer location. Vehicles have different limited capacities and different routing times.
The objective is to minimize the makespan. The author proves NP-completeness and propose a
MILP formulation. For the problem with a single machine, an on-line version is considered by
[Ng and Lu, 2011], in which the processing time of each job becomes known at its arrival time.
The authors consider the case where preemption is allowed and algorithms with worst case analysis
are proposed for both of them. In [Wang and Liu, 2013], the authors consider a problem with a
single machine and a single vehicle with limited capacity. The customers are located at the nodes of
a star-shaped network (disjoint branches with a common endpoint corresponding to the production
center). Each job has a physical space and the vehicle capacity is bounded. The objective is to find
a processing sequence and a delivery rule in order to minimize the makespan (maximum delivery
completion time). The problem is NP-hard and the authors propose approximation algorithms in
the identical-job-size case and in the general case. In [Ullrich, 2013], the author considers a par-
allel machine scheduling environment with machine ready times. The jobs have to be assigned to
certain tours while the routes and the schedule of the tours have to be decided, so that the total
tardiness is minimized. A fleet of several vehicles is available and a ready time is associated with
each vehicle. Jobs have a size and the vehicles capacity is limited. The author proposes MILP for-
mulations for the scheduling problem and the routing problem and for the integrated problem. Two
decomposition heuristics and a genetic algorithm are proposed and compared on specific benchmark
instances. Many work on integration of production and distribution scheduling concern perishable
products. [Armstrong et al., 2008] consider a zero-inventory production and distribution problem
with a single transporter and a fixed sequence of customers. They propose a branch-and-bound
procedure for the problem. [Geismar et al., 2008] develop lower bounds and heuristics for an in-
tegrated production and transportation scheduling problem with capacity constraints and also no
inventory, which means that a completed production job must be transported immediately to the
customer. In [Gao et al., 2015], the authors propose a heuristic for the problem of minimizing the
makespan on a single machine scheduling problem with a unique capacitated vehicle and a no wait
constraint. In [Lee at al., 2014], the authors consider the problem of nuclear medicine production
and delivery. Each job has to be assigned to a production machine and has to be delivered in a
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given time window. Several vehicles with different capacities are available. The objective is to
minimize a cost function composed of a production cost, a fixed cost for the use of a vehicle and a
travel cost. The authors propose an MILP formulation and a large neighborhood search heuristic,
tested on benchmark instances issued from the VRP literature. [Viergutz and Knust, 2014] pointed
out and corrected an error in the branch-and-bound method of [Armstrong et al., 2008]. They also
extend the models to variable production and delivery sequences and propose several heuristics.

2.2 Robust scheduling

“Uncertainty affects a wide range of decisions managers, engineers, and other decision makers have
to make” [Kouvelis and Yu, 1997]. This is specially true for production managers, where data such
as processing times or release dates are generally not known with an absolute certitude, and for
delivery problems, where transportation durations are time dependent and subject to fluctuations
due to traffic. In this context, it is generally important to find a solution to the problem which
is not only a good solution, but also a solution that keeps a good performance in presence of
uncertainties. This is the field of robust approaches. There are several ways to understand and to
structure uncertainty and several ways to define a robust approach [Billaut et al., 2008]. The aim
of such an approach is to produce a solution that will have a “reasonable objective value” under
any input data scenario [Kouvelis and Yu, 1997].

Robustness considerations in scheduling are frequently treated in the literature and it is not pos-
sible to make here an exhaustive review of the state-of-the-art. We voluntarily restrain our work to
robust scheduling approaches where no probability distribution is available for the uncertain data.
Instead there is a set of possible scenarios for the input data. Under this framework, based on uncer-
tainty scenarios, the concept of robust scheduling appeared in [Daniels and Kouvelis, 1995] (in 1992
for a working paper version). The authors consider a single machine environment, and processing
time uncertainty is represented by interval data, which yields an infinite number of scenarios. The
authors consider the total flow time as the deterministic objective function and the robustness is
based on absolute or relative deviations from an optimal performance. Since this seminal paper,
a lot of papers have addressed uncertainty in scheduling. Two survey papers deal with the gen-
eration of proactive (robust) schedules for the resource constrained project scheduling problem:
[Herroelen and Leus, 2004, Herroelen and Leus, 2005]. Aytug et al. [Aytug et al., 2005] review the
literature on production scheduling in the presence of unexpected events/unforeseen disruptions
and propose a taxonomy for uncertainty in production manufacturing. Another recent survey on
general approaches for scheduling under uncertainty can be found in [Verderame et al., 2010].

In this paper we integrate three families of approaches for scheduling under uncertainty. The
first family is based on implicit consideration of uncertainty via the concept of computing a
set of solutions rather than a single solution for a scheduling problem in which data is subject
to unmodeled disruptions. In production scheduling, a family of methods described notably in
[Billaut and Roubellat, 1996, Artigues et al., 2005] aimed at computing on each machine a sequence
of groups of permutable jobs such that any permutation of the job inside each group yields a fea-
sible job sequence with a guaranteed value on the objective function as soon as the job durations
do not exceed a predefined upper bound. In other words, a sequence of groups of permutable jobs
is a structured partial solution such that each complete solution issued from it has a guaranteed
performance. The drawback of these approaches is that there is no indication on how to select the
job order inside each group in response to a particular disruption. However, in [Wu et al., 1999],
the author have shown through simulation of various processing time disturbances that comput-
ing a static way such a solution structure1 and then allowing the remaining decisions to be taken

1They called this structure an “ordered sequence of subsets”, which is equivalent to the “sequence of groups of
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dynamically via dispatching rules yields superior results.
The second family of approaches is based on robust discrete optimization for scheduling as stated

in [Kouvelis and Yu, 1997]. In this framework (see also several other surveys or seminal works on
robust discrete optimization [Bertsimas and Sim, 2003, Bertsimas and Sim, 2003, Aissi et al. 2009,
Gabrel et al. 2014]), a complete sequence of jobs on each machine is the output of the robust
scheduling method. The uncertainty is represented by a continuous or discrete set of scenarios,
each scenario corresponding to a deterministic value of the problem parameters. On a particular
scenario, the performance of the sequence is generally measured by computing the earliest start
schedule compatible with the prescribed sequence and the realized scenario. Hence, at least for a
finite scenario set, the worst case performance of a sequence on the scenario set can be computed
a priori. Note that most robust scheduling problems (aiming at finding the optimal sequence,
having the best worst-case performance) are NP-hard even for single-machine scheduling problems
[Aloulou and Della Croce, 2008].

The third family of approaches is based on recoverable robustness. This framework, defined in
[Liebchen et al., 2009], aims at reducing the conservativeness of robust optimization as described
in [Bertsimas and Sim, 2003]). Recoverable robustness considers two sets of decision variables and
consists in providing an assignment for the first-stage decision variables and a family of recovery
algorithms such that, for each scenario, there exists one recovery algorithm in the family that
computes feasible assignments for the second-stage decision variables. Thanks to this algorithm,
the baseline solution adapts to the realized scenario. Note that we can consider that the classical
robust scheduling framework (second family of approaches) falls into this scheme, with a simplified
recovery algorithm. Indeed, its outcome is made of both the prescribed sequence (which can be
defined as an assignment of first-stage decision variables) and the earliest scheduling algorithm
(which can be defined as the prescribed algorithm for assigning the start times considered as
second-stage decision variables). Recently, recoverable robustness has been successfully applied to
scheduling problems [Caprara et al., 2014].

2.3 Robust vehicle routing

Robustness considerations in vehicle routing have been addressed since 1990s. Bertsimas and
Simchi-Levi in [Bertsimas and Simchi-Levi, 1996] present a survey on papers dealing with uncer-
tainty issues in vehicle routing. Most of the problems consider that the demand is stochastic
(demands arrive randomly, demands have a random size, etc.), and the authors propose robust
algorithms, i.e. algorithms “independent of the specific environment and the variability of the
data”. The same year, in [Gendreau et al., 1996], the authors propose a summary of the literature
on stochastic vehicle routing problems. In their survey, stochastic demands, stochastic travel times
and stochastic customers are considered. Besides this literature on vehicle routing based on stochas-
tic programming approaches, robust optimization methods have been more recently addressed. A
nice state-of-the-art review and a robust optimization approach can be found in [Agra et al., 2013]
for the vehicle routing problem with time windows. In this paper, the authors consider an uncer-
tainty polytope for the travel times. Along with standard robust optimization, they also consider
the adjustable robustness framework [Ben-Tal et al., 2004], which is close to the recoverable robust-
ness framework, except that the second-stage variables can be adjusted without any algorithmic
restriction to the realized scenario. Notably, they allow arrival times to be adjustable to the realized
scenario. Other authors considered robust optimization for the capacitated vehicle routing with
uncertain demand [Gounaris et al., 2013].

permutable jobs” structure defined in [Billaut and Roubellat, 1996]
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3 Problem description and online recoverable robustness

Following the classical three-field notation of scheduling problems [Graham et al., 1979], Z-L. Chen
introduces in [Chen, 2010a] a five-field notation α|β|π|δ|γ for the problems where scheduling and
routing are integrated at an operational level. In this notation, α, β and γ correspond to the machine
configuration, scheduling constraints and objective function respectively, similarly to the notation
of scheduling problems. Fields π and δ specify the characteristics of the delivery process and the
number of customers, respectively. In the following, we focus on a single machine environment
(α = 1), with routing as a delivery problem (i.e. solving a vehicle routing problem is part of
the decision), we have a single vehicle with unbounded capacity and n customers to deliver (π =
{routing, V (1,∞)}, δ = n).

We consider a set J = {J1, ..., Jn} of n jobs to schedule on a single machine representing a
manufacturing facility (plant). We denote by pj the processing time of Jj , rj the release date
of Jj that corresponds to the earliest possible start time of production and dj the delivery due
date of Jj , i.e. the date at which Jj is supposed to be delivered to the customer. It is assumed
that the storage capacity of jobs after production is not limited. However, we also consider that
the jobs have strict due dates, which is equivalent to say that the maximum lateness is bounded.
Each job Jj is associated with a customer location j, and 0 denotes the location of the plant.
t0,j denotes the travel time between the plant and the customer location j and ti,j is the travel
time between customer locations i and j (∀i, j, 1 ≤ i, j,≤ n). Decision variable Cj denotes the
production completion time of Jj at the plant (∀j, 1 ≤ j ≤ n). Decision variable Dj denotes the
delivery completion time of Jj , i.e. the date of delivery at the customer location (∀j, 1 ≤ j ≤ n).
Remember that jobs are delivered by a single vehicle that may return to the plant several times (as
in the multi-trip traveling salesman problem) with unlimited capacity (capacity K = n). Without
uncertainty considerations, the problem can be denoted by 1|rj |routing, V (1,∞)|n|γ where γ is the
objective function. In the following, we have γ ∈ {Dmax, Lmax} with Dmax the maximum delivery
completion time, defined by Dmax = max1≤j≤nDj and Lmax the maximum delivery lateness, defined
by Lmax = max1≤j≤n(Dj − dj). The problem is to find a production sequence of jobs (equivalently,
to determine jobs production completion times), a batching of jobs and a route for each batch, so
that the objective function is minimized. A batch can only start when all the jobs of the batch are
completed.

We assume in addition that uncertainty affects the input data and that our objective is to find
a robust solution. To represent uncertainty, we use a scenario based approach similar to the one
introduced in [Kouvelis and Yu, 1997]. The data associated to the jobs and to the transportation
times between sites vary according to predefined scenarios. We denote by S the set of possible
scenarios over the planning horizon. Now, we say that to each job Jj is associated a release date
rsj , a processing time psj and a due date of delivery dsj for each scenario s ∈ S. The matrix of
travel times T s = (tsi,j)0≤i≤n,0≤j≤n gives the transportation time from any site i to any site j under
scenario s ∈ S.

We denote by Csj the production completion time of job Jj under scenario s and by Ds
j its

delivery completion time under scenario s. The maximum lateness of Jj under scenario s is denoted
by Lsj = Ds

j − dsj . Under uncertainty, the following objective functions are defined:

the delivery makespan Dmax = maxs∈S(max1≤j≤nD
s
j ),

the maximum lateness Lmax = maxs∈S(max1≤j≤n L
s
j).

We now formally define the concept of online recoverable robustness. Let us consider the
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standard robust optimization problem that we can denote as

min
x∈∪s∈SXs

max
s∈S

f(x, s)

where S is the set of scenarios, Xs is the set of solutions feasible for scenario s and f(x, s) is some
performance indicator of solution x ∈ Xs under scenario s ∈ S. This definition implies that x has to
be feasible for any scenario, inducing a high degree of conservativeness [Bertsimas and Sim, 2003].
The concept of recoverable robustness [Liebchen et al., 2009] is often considered in the literature
as a two-stage extension to the robust optimization problem, in which the (first-stage) solution x
can be modified in a limited way in the second-stage to fit with the realized scenario to obtain
solution y = A(x, s) where A(x, s) is the application-dependent recovery algorithm of solution x
under scenario s. Hence the recoverable robust optimization problem becomes:

min
x∈X

max
s∈S

f (A(x, s), s)

where X is the scenario-independent set of first-stage solutions, which is a more realistic definition
in practical applications. Note that x does not necessarily assign all the decision variables of the
problem. As in stochastic programming x can be only the subset of first-stage decision variables,
while algorithms A(x, s) returns a complete solution, giving values to both first-stage and second
stage decision variables.

Instantiating this concept to our integrated scheduling and vehicle routing problem, we denote
by π a complete or partial sequence of the jobs on the machines, B a batching (i.e. a partition of the
jobs) and Σ = {σ(B), B ∈ B} the set of complete or partial routing σ(B), i.e. the complete or partial
job delivery sequence inside each batch B ∈ B). Let Cs (Ds) denote the vector of second-stage job
completion times (delivery times, respectively). We assume that given a first stage solution x =
(π,B, σ) the recovery algorithm A(x, s) output a feasible solution y = A(x, s) = (Cs, Ds). Function
f(y, s) is either Dmax or Lmax as defined above. However, as both the scheduling and routing
problems are time-constrained problems, we assume that algorithm A(x, s) must be an online
algorithm, i.e. called during schedule execution. At a given decision time t the algorithm must take
quickly a basic decision (i.e. what is the next job to be scheduled at time t or what is the next job
to be delivered at time t) with the only knowledge on the scenario that has been revealed up to time
t (i.e. what are the jobs available for scheduling at time t and what are the estimated travel times
at time t). Sections 4 and 5 presents two different definitions of the first-stage decision variables
x = (π,B, σ), the first one, inspired by [Kouvelis and Yu, 1997], defining complete sequences of
jobs both in production and delivery and the second one defining partial sequences based on the
concept of groups of permutable jobs [Billaut and Roubellat, 1996, Artigues et al., 2005] under the
recoverable robustness framework. Associated with these two different first-stage decisions, two
different online scheduling algorithms are defined to output the two-stage decision variables y =
(Cs, Ds).

In Sections 4 and 5, we extend the robust scheduling mixed-integer linear programming models
proposed by [Kouvelis and Yu, 1997] to the fixed-sequence robust scheduling problem and to the
online recoverable robust scheduling problem, respectively. Section 6 considers a particular case of
the second model to devise a tabu search heuristic able to deal with large-size instances.

4 The fixed sequence robust model

This Section presents mixed integer linear programs (MILPs) for the robust integrated scheduling
and vehicle routing problem using the concept proposed by [Kouvelis and Yu, 1997]. At first stage
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a complete production sequence π, a set of batch B and, for each batch B ∈ B, a complete routing
σ(B) are computed. The online recovery algorithm A(x, s) aims at strictly following the prescribed
sequences and routings, assigning the production and delivery completion times as early as possible
according to the prescribed sequence on the realized scenario. In section 4.1, we first consider the
particular case in which the delivery part of the problem is ignored. Three MILPs are proposed to
model the optimal assignment of the first-stage variables and second-stage variables according to
the on-line algorithm. In Section 4.2, a MILP is proposed for the integrated scheduling and vehicle
routing problem. In both cases, an illustrative example is given.

4.1 MILP for the fixed sequence robust scheduling problem

In this section, we consider the scheduling problem with release dates and maximum lateness
minimization under several scenarios based on fixed sequences and earliest start online recovery
algorithm. Note that the problem is NP-hard with only one scenario. The objective is thus to
find a single machine sequence π that is the best possible for all scenarios, given that the online
algorithm will adjust at the earliest the completion times Csi to the realized scenario. The following
model (SM) is based on the one proposed by [Kouvelis and Yu, 1997] for the 1||

∑
Cj problem. We

define positional variables xj,k equal to 1 if job Jj is in position k in sequence π and 0 otherwise.

(SM)

minLmax

s. t.

n∑
j=1

xj,k = 1, ∀k ∈ {1, ..., n} (1)

n∑
k=1

xj,k = 1, ∀j ∈ {1, ..., n} (2)

Lmax ≥
n∑
j=1

rsjxj,k +

k′∑
q=k

n∑
j=1

psjxj,q −
n∑
j=1

dsjxj,k′ , ∀k, k′ ∈ {1, ..., n}, k ≥ k′,∀s ∈ S (3)

xj,k ∈ {0, 1}, ∀j, k ∈ {1, ..., n} (4)

Lmax ≥ 0, (5)

Constraints (1) and (2) guarantee the feasibility of the sequence, assigning exactly one job at
each position. Constraints (3) express the fact that the worst-case maximum lateness (Lmax) has
to be larger than the maximum lateness under scenario s, given by the right hand side. Indeed∑n

j=1 r
s
jxj,k gives the release date of the job in position k under scenario s, and

∑k′

q=k

∑n
j=1 p

s
jxj,q is

equal to the total duration of the jobs between positions k and k′ under scenario s, while
∑n

j=1 d
s
jxj,k′

gives the due date of the job at position k′ in scenario s. These constraints are based on the fact
that, according to the earliest time online recovery algorithm, there exists a block of activities
starting by a job scheduled at its release date, followed by jobs scheduled without idle times and
ending by the job that fixes the Lmax. Hence the explicit usage of the second-stage completion time
variables is not even necessary. This model contains n2 binary variables, 1 continuous variable and
O(n2|S|) constraints.

Example

Let us consider an instance with n = 5 jobs and the following data.
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s = 1 J1 J2 J3 J4 J5
r1j 0 7 3 4 3

p1j 3 4 1 2 4

d1j 3 14 4 6 10

s = 2 J1 J2 J3 J4 J5
r2j 3 3 0 1 7

p2j 2 5 1 3 3

d2j 6 11 2 5 14

The optimal robust sequence for this example is (J3, J1, J4, J5, J2) with a maximum lateness
Lmax = 5. Fig. 1 provides the second-stage completion time variables and maximum lateness of
this fixed sequence for each scenario.

-

0 2 4 6 8 10 12 14 16 18 20

J1 J2J3 J4 J5

Scenario s = 2

Lmax = max{5− 6, 16− 11, 1− 2, 8− 5, 11− 14} = 5

-

0 2 4 6 8 10 12 14 16 18 20

J1 J2J3 J4 J5

Lmax = max{7− 3, 17− 14, 4− 4, 9− 6, 13− 10} = 4

Scenario s = 1

Figure 1: Sequence (J3, J1, J4, J5, J2) under the two possible scenarios

4.2 MILP for the fixed sequence robust integrated scheduling and vehicle rout-
ing problem

In this section, we a present a new MILP model in which the robust scheduling and the vehicle
routing problems are integrated. For these models, the scheduling part is based on the previous
model. Here the first stage variables are the complete production sequence π, the batching B and
the routings σ(B) for each batch B ∈ B.

For the following model, the binary variables associated to the vehicle routing part of the
problem are the following. Let Br denote the rth batch. r varies from 1 to n and some batches
can be empty. A binary first-stage variable zi,j,r is equal to 1 if tour σ(Br) visits the site of job i
and then the site of job j consecutively, and 0 otherwise, while another binary first-stage variable
yj,r is equal to 1 if tour σ(Br) visits site j (in other words if j belongs to batch Br). We denote by
Ds
j,r ≥ 0 the second-stage delivery completion time of job Jj (Ds

0,r is the start time of tour σ(Br))
if it is in tour σ(Br), for scenario s. The dummy site (n + 1) is introduced as a finishing site of a
tour (Ds

n+1,r is the finishing time of tour σ(Br) in scenario s).
The model called SRM comes from model SM but introduces the second stage completion times

of the kth job in scenaro s (C̃sk) with constraints (6) that is still based on the concept of blocks,
and uses constraints (7)-(13) to set the worst-case Lmax relatively to the worst case delivery times.
Note that variable C̃sk is necessary to serve as an earliest start time in scenario s of any tour that
delivers the site of a job scheduled at position k.
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(SRM)

minLmax

s. t.
n∑
j=1

rsjxj,k +
k′∑
q=k

n∑
j=1

psjxj,q ≤ C̃sk′ , ∀k, k′ ∈ {1, ..., n}, k ≥ k′,∀s ∈ S (6)

n∑
j=0,j 6=i

zi,j,r = yi,r, ∀i ∈ {0, ..., n}, ∀r ∈ {1, ..., n} (7)

n∑
i=0,i 6=j

zi,j,r = yj,r, ∀j ∈ {0, ..., n}, ∀r ∈ {1, ..., n} (8)

n∑
r=1

yj,r = 1, ∀j ∈ {1, ..., n} (9)

Ds
0,r ≥ Ds

n+1,r−1, ∀r ∈ {2, ..., n},∀s ∈ S (10)

Ds
j,r ≥ Ds

i,r + tsi,j −M(1− zi,j,r), ∀i ∈ {0, ..., n},∀j, r ∈ {1, ..., n}, i 6= j,∀s ∈ S (11)

Ds
0,r ≥ C̃sk −M(2− xj,k − yj,r), ∀j, k, r ∈ {1, ..., n},∀s ∈ S (12)

Lmax ≥ Ds
j,r − dsj , ∀j, r ∈ {1, ..., n},∀s ∈ S (13)

zi,j,r ∈ {0, 1} ∀i, j ∈ {0, ..., n}, i 6= j,∀r ∈ {1, ..., n} (14)

yi,r ∈ {0, 1} ∀i, j ∈ {0, ..., n},∀r ∈ {1, ..., n} (15)

Ds
i,r ≥ 0 ∀i, j ∈ {0, ..., n}, i 6= j,∀r ∈ {1, ..., n} (16)

Csk ≥ 0 ∀k ∈ {1, ..., n}, ∀s ∈ S (17)

and Constraints (1), (2), (4), (5)

Constraints (7) and (8) indicate that if a site i belongs to a tour σ(Br), then there exists a unique
ingoing arc and a unique outgoing arc selected for i in tour σ(Br). Constraints (9) ensure that a
site j can belong only to one tour. Constraints (10)-(13) are the scenario-dependent constraints.
Constraints (10) ensure that the tour σ(Br) starts after the end of previous tour σ(Br−1) in scenario
s. Constraints (11) sets for each scenario s the delivery completion time of job Jj as the completion
time of the delivery of a job Ji plus the traveling time from site i to site j, provided that arc
(i, j) has been selected in a tour σ(Br). These constraints also automatically eliminate subtours.
Constraints (12) ensure that tour σ(Br) starts after the execution of all the jobs which are delivered
by σ(Br). Constraints (13) gives the expression of the maximum lateness for each scenario s. This
model contains O(n3) binary variables, O(n2|S|) continuous variables and O(n3|S|) constraints.

Example

For this example, we change the delivery due dates dj and data routing are added to the previous
example. Release dates and processing times are similar to those of the previous example.

s = 1 J1 J2 J3 J4 J5
r1j 0 7 3 4 3

p1j 3 4 1 2 4

d1j 11 18 9 10 17

s = 2 J1 J2 J3 J4 J5
r2j 3 3 0 1 7

p2j 2 5 1 3 3

d2j 9 17 10 11 18

The transportation time matrices (t1i,j) and (t2i,j) are the following:
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(t1i,j) =



0 2 4 3 2 2
2 0 3 2 1 3
3 3 0 3 2 2
3 2 3 0 1 3
2 1 2 1 0 2
2 3 2 3 2 0

 (t2i,j) =



0 3 2 2 2 3
3 0 4 1 2 3
2 4 0 4 3 2
2 1 4 0 2 4
2 2 3 2 0 4
3 3 2 4 4 0


Let us consider the schedule (J3, J4, J1, J5, J2) for the production phase and then two batches

composed by jobs B1 = {J1, J3, J4} and B2 = {J2, J5} with routings (J4 → J3 → J1) and (J5 → J2),
respectively. The production and transportation phases are illustrated in Fig. 2 for each scenario.
In the figure, the scheduling part is displayed with a standard Gantt chart while the routing part
is symbolized via arrows whose length gives the transportation time. Visited sites are displayed in
parenthesis, where (j) denotes the site of job Jj for j > 1 and (0) denotes the depot. The start
time of each batch is marked with a double bar (||). While the visit of each site is marked with a
simple bar (|). In scenario 1, site J3 is delivered at time 12 while the deadline of J3 for scenario
1 is d13 = 9. In scenario 2, site J2 is delivered at time 20 and d22 = 20. For both scenario we have
Lmax = 3.

-
(4)
-

(0)

B1

(1)
- -

(0)(3) (2)

B2- -
(5)

-
(0)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Lmax = 3

-

Scenario s = 2

J1 J2J3 J4 J5

0 2 4 6 8 10 12 14 16 18 20 22 24 26

-
(3) (2)

B2

(4)
-

(0)

B1

(1)
- -

(0)(0)
- -
(5)

-
(0)

Lmax = 3

J1 J2J3 J4 J5

Scenario s = 1

-

Figure 2: Robust solution for two scenarios

5 The online recoverable robust model

In this section we present a more flexible online recoverable robustness model for the integrated
scheduling and vehicle routing problem. We now suppose that the first-stage solution x = (π,B,Σ)
is made of a set of batches B that partitions the jobs (just as in the previous model) but the
production and routing sequences π and σ(B) for each batch B ∈ B are now partial sequences.
Furthermore, we consider only partial sequences that can be expressed as a sequence of groups of
permutable jobs. Hence a partial sequence involving a set E of jobs is of the form g1, g2, . . . , gq
where ∪qh=1gh = E and ∩qh=1gh = ∅ and represent the precedence relation Ji ≺ Jj , ∀i ∈ gx, ∀j ∈ gy,
∀x < y. Consequently π is a sequence of groups of permutable jobs on J , while σ(B) is a sequence
of groups of permutable jobs on B for each batch B ∈ B. Hence the relative ordering of the jobs
inside each group is left undetermined during the first-stage. It follows that the recovery algorithm
A(x, s) has to determine the total order besides assigning the completion and delivery times. We
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will specify A(x, s) and provide an online recovery robust MILP for scheduling in Section 5.1. We
will extend the approach to the integrated scheduling and routing problem in Section 5.2.

5.1 MILP for the online recoverable robust scheduling problem

In this subsection, we only consider production scheduling without delivery routing. Delivery
routing will be considered in the next subsection. As already mentioned, we assume that the
recovery algorithm is a greedy online algorithm. When a job Jj completes at a given time t, the
online recovery algorithm A(x, s) has only the knowledge on the operations available at time t
for scenario s (i.e. such that rsi ≤ t) and no other information. If there are operations available
in the group of Jj , the algorithm selects one of them. Otherwise, the A(x, s) scans the available
operations of the next group. To summarize, A(x, s) follows the sequence of groups and schedule
the jobs inside a group following the earliest release date (ERD) rule according to the realized
scenario.

To simulate this rule in a MILP formulation, let us introduce the list of predecessors and
successors of each job for each scenario according to the ERD rule. We denote by Succsj and by
Precsj the list of successors and of predecessors of Jj under scenario s according to tule ERD,
defined as follows.

Precsj = {Ji ∈ J /(rsi < rsj ) or (rsi = rsj and i < j)}

Succsj = {Ji ∈ J /(rsi > rsj ) or (rsi = rsj and i > j)}

These lists are used to ensure that the ERD rule is respected in each group for each scenario.
To model the group sequence, we also define variables χj,k equal to 1 if job Jj is in group GJk ,
and 0 otherwise, 1 ≤ j ≤ n, 1 ≤ k ≤ n. Note that the number of groups cannot exceed n (There
cannot be more than one group per job). The online recoverable robust MILP for the one machine
scheduling problem (OSM) can now be proposed.

(OSM) min Lmax (18)

s. t.

n∑
k=1

χj,k = 1, ∀j ∈ {1, ..., n} (19)

rsi + psi +
∑

l∈(Succsi∩Precsj)

pslχl,k + psj

−M(2− χi,k − χj,k) ≤ Csj , ∀i, j, k ∈ {1, ..., n}, j ∈ Succsi , ∀s ∈ S (20)

rsi + psi +
∑

l∈Succsi

pslχl,k +

k′−1∑
q=k+1

n∑
l=1

pslχl,q

+
∑

l∈Precsj

pslχl,k′ + psj −M(2−χi,k −χj,k′) ≤ Csj , ∀i, j, k, k′ ∈ {1, ..., n}, k′ > k, ∀s ∈ S (21)

Lmax ≥ Csj − dsj , ∀j ∈ {1..n}, ∀s ∈ S (22)

Constraints (19) assign each job to exactly one group. Constraints (20) and (21) are used to
compute the minimum value of the job completion time under each scenario as set by the online
algorithm. For a given sequence, at the earliest, the completion time of a job Jj is equal to the
release date of some job Ji plus the duration of the jobs that are between Ji and Jj in the sequence,
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these two jobs included. Constraints (20) considers the case were Ji and Jj are in the same group.
In this case

∑
l∈(Succsi∩Precsj)

pslχl,k is the total duration of the jobs that are scheduled between Ji

and Jj under scenario s according to the ERD rule. Constraints (21) considers the case where Ji and

Jj are in different groups. The expression
∑

l∈Succsi
pslχl,k +

∑k′−1
q=k+1

∑n
l=1 p

s
lχl,q +

∑
l∈Precsj

pslχl,k′

is the total duration of the jobs between jobs Ji and Jj . Constraints (22) bound the worst-case
Lmax. This model contains n2 binary variables, n|S| continuous variables and O(n4|S|) constraints.

Example

We consider the same example as in Section 4.1. An optimal solution for this example gives two
groups {J1, J3, J4} and {J2, J5} with a maximum lateness Lmax = 0 instead of Lmax = 5 in the
version without groups. Fig. 3 illustrates the solution for each scenario (in each group the jobs are
presented in ERD order).

0 2 4 6 8 10 12 14 16 18 20
-J3

Scenario s = 2

J4 J1 J2 J5

0 2 4 6 8 10 12 14
-

Scenario s = 1

J1 J3 J4 J5 J2

16 18 20

GJ1 GJ2

GJ1 GJ2

Figure 3: Groups GJ1 = {J1, J3, J4} and GJ2 = {J2, J5} under the two possible scenarios

5.2 MILP for the online recoverable robust scheduling and vehicle routing prob-
lems

In the first-stage solution x = (π,B,Σ) of the integrated robust scheduling and vehicle routing
problem, π is a sequence of groups of permutable delivery jobs while σ(B) for each batch B ∈ B
is a sequence of groups of permutable delivery jobs. The online recovery algorithm A(x, s) as the
same behavior on production partial sequence π as in the previous section. For the delivery part,
A(x, s) follows the order of the groups and when a delivery is completed inside a group it scans
the remaining deliveries and select the nearest one according to the traveling time matrix of the
realized scenario, as this travel time is assumed to be known with a sufficient precision at time of
departure. This amounts to perform the routing inside a group according to the nearest neighbor
rule. The following model is called OSRM and is based on model OSM for the scheduling part.
The binary variables associated to the vehicle routing part of the problem are the following:

λsj,k is equal to 1 if the site Jj is in position k (i.e. the job Jj is the kth job delivered) for scenario

s, and 0 otherwise. δk,r is equal to 1 if the tour r (i.e. the rth tour) visits the site in position k, and
0 otherwise, γk,h is equal to 1 if the site in position k is in the group of permutable deliveries GDh ,
and a binary variable θh,r equal to 1 if the group GDh is in the route r. For a scenario s, continuous
variables Ds

j and αsr represent respectively the arrival date to the site Jj and the departure date of
the tour r.

According to these decision variables, we detail model ORSM below.
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Objective (18) and constraints (19) - (21) are taken from OSM. As already mentioned, Con-
straints (19) - (21) set the production job completion times w.r.t. the production group orderings
and the ERD rule inside each production group. The constraints related to the routing part are as
follows. Constraints (23) and (24) bound from below the departure dates of the tours. Constraints
(23) state that a tour r cannot start in scenario s before the completion of all the jobs which are
to be delivered by r.

αsr ≥ Csj +M(2− δkr − λsjk), ∀j, r, k ∈ {1, ..., n},∀s ∈ S (23)

Constraints (24) prevent, for a given scenario s, tour r to start before the end of previous tour r−1,
which is equal to the delivery date of the last visited site Jj plus the return time to the depot.

αsr ≥ Ds
j + tsj0 +M(2− δk,r−1 − λsjk), ∀j, k ∈ {1, ..., n},∀r ∈ {2, ..., n},∀s ∈ S (24)

Constraints (25) to (31) below set the delivery dates of the jobs based on the computed batches,
delivery group ordering inside each batch via the decision variables and on the nearest neighbor
rule to schedule deliveries inside each groups. Constraints (25) prevent a job Ji at the position
k + 1 in scenario s to be delivered before the delivery of the job Jj at the position k in scenario s.

Ds
j ≥ Ds

i + tsij +M(2− λsi,k − λsj,k+1), ∀i, j ∈ {1, ..., n}, j 6= i,∀k ∈ {1, ..., n− 1},∀s ∈ S (25)

Constraints (26) prevent in turn to deliver a job Jj at position k for scenario s before the departure
time of the tour r that delivers it.

Ds
j ≥ αsr + ωs0j −M(2− δkr − λsj,k), ∀j, r, k ∈ {1, ..., n},∀s ∈ S (26)

Constraints (27) ensure that the nearest neighbor rule is respected into each group, for each scenario.
This is achieved by enforcing that the job Jj delivered at position k in scenario s in a group h is
the nearest in this scenario from the previous job Ji (delivered at position k− 1 in the same group
h for the same scenario s) among all jobs Jl delivered in group h.

Ds
j ≤ Ds

i + tsil +M(6− γk−1,h − λsi,k−1 − γk′,h − λsl,k′ − γk,h − λsj,k),
∀i, j, l, h ∈ {1, ..., n}, j 6= i, l 6= i,∀k ∈ {2, ..., n},∀k′ ∈ {k, ..., n},∀s ∈ S (27)

Constraints (28) considers a job Jj at position k in scenario s which is the first delivered job of
its group h for tour r. Then, if there is a preceding delivery group h − 1 for the same tour r, Jj
must be the nearest among all other delivery jobs Jl in group h in scenario s from the last job Ji
of group h− 1.

Ds
j ≤ Ds

i + tsil +M(8− γk−1,h−1 − λsi,k−1 − γk′,h − λsl,k′ − γk,h − λsj,k − θh−1,r − θh,r),
∀i, j, l, r ∈ {1, ..., n}, j 6= i, l 6= i,∀h, k ∈ {2, ..., n},∀k′ ∈ {k, ..., n}, ∀s ∈ S (28)

(29)

Constraints (30) considers again a job Jj at position k in scenario s which is the first delivered
job of its group h for tour r, but in the case that group h is the first delivery group of tour r. In
that case, if there exists a preceding tour r − 1, which is assessed by the fact that some job Ji is
delivered at position k − 1, then job Ji must be the nearest from the depot.

Ds
j ≤ αsr + ts0l +M(8− γk−1,h−1 − λsi,k−1 − γk′,h − λsl,k′ − γk,h − λsj,k − θh−1,r−1 − θh,r),

∀i, j, l ∈ {1, ..., n}, j 6= i, l 6= i,∀r, h, k ∈ {2, ..., n},∀k′ ∈ {k, ..., n},∀s ∈ S (30)

15



Constraints (31) considers the last case for a job Jj at position k in scenario s which is the first
delivered job of its group h for tour r. In the case that group h is the first delivery group of tour r
but when there is no preceding tour, which is assesed by the fact that job Jj is delivered at position
1, then job Jj must also be the nearest from the depot among all other delivery jobs l of its group.

Ds
j ≤ αs1 + ts0l +M(4− γ1,1 − λsj,1 − γk,1 − λsl,k) ∀j, l, k ∈ {1, ..., n},∀s ∈ S (31)

Since the variables γk,h depend to the positions of the jobs, Constraints (32) ensure that a group
contains the same jobs at each scenario.

γk,h ≥ 1−M(3− λs′j,k − λs
′′
j,k′ − γk′,h), ∀j, h, k, k′ ∈ {1, ..., n}, k 6= k′,∀s′, s′′ ∈ S, s′′ > s′ (32)

Constraints (33)-(41) ensure the feasibility of the tours. For a scenario s, each site is assigned to
exactly one position (33) and each position to one site (34). A site is assigned to exactly one tour
(35) and one group (36), and a group can belong to only one tour (37). Constraints (38) serve to
have consecutive tours, stating that if a job is delivered at position k by a tour r, the job delivered
at position k+1 must be either in tour r or r+1. Constraints (38) serve to have consecutive delivery
groups using the same principle. Constraints (40) ensure consistency between position assignment
to groups and tours, stating that if a group h is assigned to a tour r and if group h contains a job
delivered at position k, then tour r must also deliver the job at position k. Constraints (41) assign
the job at the first position to the first group and to the first tour, and assign the first group to the
first tour. Last, Constraints (42) bound Lmax.

∑n

j=1
λsj,k = 1, ∀k ∈ {1, ..., n},∀s ∈ S (33)∑n

k=1
λsj,k = 1,∀j ∈ {1, ..., n},∀s ∈ S (34)∑n

h=1
γk,h = 1,∀k ∈ {1, ..., n} (35)∑n

r=1
δk,r = 1,∀k ∈ {1, ..., n} (36)∑n

r=1
θh,r = 1,∀h ∈ {1, ..., n} (37)

δkr + δk+1,r′ ≤ 1,∀k ∈ {1, ..., n− 1},∀r, r′ ∈ {1, ..., n}, r′ 6= r, r′ 6= r + 1 (38)

γkh + γk+1,h′ ≤ 1, ∀k ∈ {1, ..., n− 1},∀h, h′ ∈ {1, ..., n}, h′ 6= h, h′ 6= h+ 1 (39)

δkr ≥ γkh + θhr, ∀k ∈ {1, ..., n− 1},∀h, h′ ∈ {1, ..., n}, h′ 6= h, h′ 6= h+ 1 (40)

δ11 = 1, γ11 = 1, θ11 = 1, (41)

Lmax ≥ Ds
j − dsj , ∀j ∈ {1, ..., n},∀s ∈ S (42)

This model contains O(n2|S|) binary variables, n|S| continuous variables and O(n7|S|) constraints.

Example

We consider here the same example as in Section 4.2 . We define the sequence of groups of
permutable jobs GJ1 = {J1, J3, J4} and GJ2 = {J2, J5}. For the transportation phase, one batch
contains jobs {J1, J3, J4} and the other batch contains the jobs {J2, J5}. In the first batch, there
are two groups of permutable deliveries GD1 = {J3} and GD2 = {J1, J4} and in the second batch
there is only one group GD3 = {J2, J5}. Delivery phases are illustrated in Fig. 4 for each scenario
and the global solutions that include the production and delivery phases are illustrated in Fig. 5
for each scenario. For this example, the maximum lateness over all scenarios is Lmax = 0.
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Figure 4: Delivery group sequence {J3}, {J1, J4} and {J2, J5} yielding different routes on two
possible scenarios
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Figure 5: Production and transportation phases under the two possible scenarios
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6 Fixed sequence robust and online recoverable robust tabu search

Although we were able to propose MILPs for both the standard robust and the online recovery
robust integrated scheduling and routing problems, they can only be used to solve very small
problem instances. To overcome this difficulty, we propose in this section two tabu search methods.
The first one is called TSR (Tabu search for robust Scheduling & Routing) and solves the fixed
sequence robust problem while the second one, called TOSR (Tabu search for Online recoverable
robust Scheduling & Routing), deals with the online recovery robust problem. To make a fair
comparison of the two robust solution paradigms, the two proposed algorithms are based on the
same principles and can be presented jointly.

For TSR, a solution is a production job sequence on the machine, a sequence of delivery batches
and, for each batch a delivery sequence (a routing). A solution is evaluated by computing for
each scenario, the earliest start time of each production and delivery jobs following the prescribed
production and delivery sequences, yielding a maximum delivery lateness over all scenarios.

For TOSR, a solution is a sequence of groups of permutable production jobs, a sequence of
delivery batches and, for each batch a sequence of groups of permutable deliveries. However, to
simplify the method, we restrict the solution space to the case where there is exactly one group
of deliveries per batch, which means that no routing decisions have to be made in advance apart
from batching. A solution is evaluated by computing for each scenario an earliest start time for
each production job (following the prescribed production group sequence and the earliest release
date first rule for scheduling the jobs inside each production group) as well as an earliest delivery
time for each delivery job (following the nearest neighbor rule on the realized scenario for delivering
the jobs inside each delivery group/batch). The maximum lateness over all scenarios can also be
computed from these earliest start times.

In both cases, a quite standard version of the the Tabu Search algorithm has been implemented
[Glover, 1990]. This metaheuristic starts from an initial complete solution and then searches the
most appropriate solution among neighbors. A solution can be chosen if it is not tabu (i.e. not in
the tabu list) or if it satisfies an aspiration criterion. The chosen neighbor becomes tabu and the
search process is then repeated using this chosen neighbor as a new basic solution.

We propose a decomposition of the neighborhood search into two neighborhoods for TOSR and
three neighborhoods for TSR that we search sequentially.

The two algorithms differ in the scheduling sub-problem where the neighbors are different as
TOSR includes group-based neighborhoods and in the routing part where there is no decision to
take in TOSR as the scenario-aware greedy nearest neighbor heuristic is used, while TSR ultimately
optimizes the routes via the scenario-unaware 2-opt heuristic. We selected this policy (i.e. having
an optimization process for the routing in TSR and not in TOSR) to have a fair comparison
between the two approaches that have different strengths and weaknesses. On the one hand, the
standard robust approach has the advantage of optimizing the routing part, while the recovery
robust approach can not optimize any routing decision apart from the batching decision as only
one group is allowed inside each batch. On the other hand the recovery robust approach has the
possibility to adapt to the realized scenario inside each production group and each batch with
the above-described online heuristics while the standard robust approach can only use worst-case
evaluations. In the following sub-sections we details some key elements of both algorithms.

TOSR and TSR are sketched in Algorithms 6 and 6, respectively. Algorithm TSR uses the
concept of reference scenario, which is one of the scenarios as explained later in Section 7.1. The
following sections present different key components of the methods.
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Algorithm 1 Tabu search algorithm (Online recoverable robust version - TOSR)

COMPUTE INITIAL SOLUTION

• Generate a feasible solution (sequence of groups of permutable jobs and batching) using a
greedy algorithm (details in Section 6.1.2).

WHILE THE GLOBAL STOP CONDITION IS NOT SATISFIED DO

• Production sequencing neighborhood

– For a fixed batching and starting with the current production group sequence, search
for the best non-tabu production group sequence move (details in Section 6.1.4).

– Store the newly selected solution in the scheduling tabu list.

• Batching neighborhood

– For a fixed production group sequence and starting with the current batching, search
the best batching move to get the best non-tabu neighbor solution (details in Section
6.1.4).

– Store the newly selected solution in the batching tabu list.

Algorithm 2 Tabu search algorithm (Robust version - TSR)

COMPUTE INITIAL SOLUTION

• Generate a feasible solution (sequence of production jobs, batching, routing) using a greedy
algorithm (details in Section 6.1.1).

WHILE THE GLOBAL STOP CONDITION IS NOT SATISFIED DO

• Production sequencing neighborhood

– For a fixed batching and starting with the current production sequence, search the best
production sequencing move to get the best non-tabu neighbor solution (routing inside
each batch is computed with the NN heuristic on the reference scenario, details in Section
6.1.4).

– Store the newly selected solution in the scheduling tabu list.

• Batching neighborhood

– For a fixed production sequence and starting with the current batching, search the best
batching move to get the best non-tabu neighbor solution (routing inside each batch is
computed with the NN heuristic on the reference scenario, details in Section 6.1.4).

– Store the newly selected solution in the batching tabu list.

• Routing sub-neighborhood

– For a fixed production sequencing and batching and starting with the current routing,
search the best permutation inside each route using the 2-opt heuristic (descent method
only, details in Section 6.1.4).
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6.1 Initial solutions

To initialize the methods, two constructive approaches are used. We first present the constructive
approach for initializing the TSR algorithm called GSR (Greedy, Scheduling, Routing) then a second
approach adapted to the TOSR algorithm called GOSR (Greedy, Online, Scheduling, Routing) is
presented.

6.1.1 GSR: initial solution for TSR

In order to build an initial solution for the TSR algorithm, we first find a sequence of the jobs on
the machine for the scheduling part. Then, from this sequence, we build batches. First, we sort
the jobs according to their average due dates over the scenarios (Earliest Due Date rule -EDD) and
from this sequence, batches are built by inserting the job in the current batch or by creating a new
batch for this job. More precisely, Algorithm GSR is as follows:

step 1: Sort the jobs according to their average due dates over the scenarios.

step 2: There are two options for each job, the best option being selected at each iteration:

– Insert the job in the current batch.

– Create a new batch and insert the job.

6.1.2 GOSR: Initial solution for TOSR

A second constructive approach called GOSR is used to obtain an initial solution for TOSR. This
time, we build simultaneously the groups for the scheduling part and the batches for the routing
part. First we sort the jobs according to EDD and, from this sequence, production groups and
batches are built at the same time by inserting the job in the current group or by by creating a
new group for this job. The same procedure is done for batching: the job is inserted in the current
batch or in a new batch. Finally, for each job, we keep the best solution found and we proceed to
the next job. Heuristic GOSR is as follows:

step 1: Sort the jobs according to their average due dates over the scenarios.

step 2: There are four options for each job, the best option being selected at each iteration:

– Insert the job in the current production group; insert the job in the current routing
group/batch.

– Insert the job in the current production group; create a new routing group/batch with
the job.

– Create a new production group with the job; insert the job in the current routing
group/batch.

– Create a new production group and a new current routing group/batch with the job.

6.1.3 Encoding

Encoding a solution for TOSR: In the TOSR algorithm, the problem of routing the jobs of a
batch is systematically solved by the nearest neighbor algorithm (NN) on the realized scenario. In
fact, since we enforce in addition that there is only one group of permutable delivery for each batch,
it suffices to have the scheduling part and the composition of the batches to encode a solution. A
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solution of the problem S is consequently encoded directly by a vector of size 2n. The first part of
size n contains the scheduling part, whereas the second part of size n contains the batching part.
Let v denote the used vector for encoding a solution of the TOSR method. For the first part, we
consider that vj for 1 ≤ j ≤ n is the index of the production group to which job Jj is assigned,
where the groups are sequenced in the order of their numbering. In the second part of the vector,
we find the assignment to delivery groups/batches, where vj , for n+ 1 ≤ j ≤ 2n, is the index of the
delivery group/batch to which job Jj−n is assigned. The delivery groups/batches are sequenced in
the order of their numbering.

The example in Fig. 6 shows a solution encoding corresponding to production groups GJ1 =
{J1, J3, J4} and GJ2 = {J2, J5} and delivery batches/groups GD1 = {J3, J4}, GD2 = {J1, J5},
GD3 = {J3}.

Encoding a solution for TSR: the encoding for TSR is more subtile as for the first two
neighborhoods, the routing is generated with NN on the reference scenario from a fixed production
sequence and batching and, consequently, does not require an encoding. For the third neighborhood
the routing requires an encoding for the 2-opt neighborhood. Hence for the first two neighborhoods,
the solution is encoded with a vector v′ of size 2n where the first part of v′ corresponds to the posi-
tion of the production jobs in the sequence where ( v′i is the position of job Ji in the schedule) and
the second part represents the batching, as in the TOSR algorithm. For the third neighborhood,
the vector has a third part of size n representing the routing, where v′[2n + k] corresponds the
the job delivered at position k in the concatenation of all batch routings. The encoding of the
solution displayed on top of Figure 6 in TSR would be vector (3, 5, 1, 2, 4|2, 3, 1, 1, 2) for the first
two neighborhood, with the adjunction of vector (3, 4, 5, 1, 2) to represent the routing in the third
neighborhood.

-J1J3 J4

-
(3)
-tour1-

(4)

J2J5

-
(1)

tour2-
(5)

-
(2)

tour3- -

1 2 1 1 2 2 3 1 1 2Encoding

Figure 6: A solution for a scenario and an encoding for the production group sequence/batching

6.1.4 Neighborhood definition

We present in this section the neighborhoods used in each algorithm. The production scheduling
neighborhoods are first presented for TOSR and TSR. Then, we present the batching neighbor-
hood, which is the same for both algorithms (although evaluations of a neighbor differ, as already
mentioned). Finally we present the 2-opt neighborhood used only in the TSR algorithm. We use a
perimeter δ as a limit for the search area from a solution. For each neighborhood, the best non-tabu
move is retained over all possible changes.
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Production group sequence neighborhood for TOSR:. We denote by |G| the number of
groups. The following four neighborhoods are considered:

- Groups exchange: this neighborhood performs the exchange of two values in the first part of
the encoding, i.e., the swap of the assignment of two production jobs, taking perimeter δ into
consideration. Let vi denote the group of job Ji while vj is the group of job Jj . The exchange
is possible if and only if vi 6= vj and vi − δ|G| ≤ vj ≤ vi + δ|G|.

- Insertion of a job in a different group: this neighborhood allows a job Ji of group vi to be
inserted in an existing group vk if vi − δ|G| ≤ vk ≤ vi + δ|G|.

- Group split: this neighborhood allows one group to be split into two groups, which postpone
the subsequent groups. Since the sequence inside the groups depends on the realized scenario,
the number of possible cases to split a group is exponential. Therefore, we order the jobs of
a group according to the average due dates of the jobs over the scenarios, which reduces the
number of cases to the size of the group.

- Group fusion: this neighborhood performs the merging of two consecutive groups into one,
which advances the second group.

Production job sequence neighborhood for TSR: Two types of neighborhoods are used:

- Position sequence exchange: this neighborhood performs the exchange of two values v′i and
v′j in the first part of the encoding. The perimeter δ is taken into consideration in the sense
that we enforce that |v′i − v′j | ≤ δn.

- Insertion at a different position in the sequence: this neighborhood performs the exchange of
the position v′i of the job Ji by inserting the job Ji at a position v′k, where, |v′i − v′k| ≤ δn.
This yields that jobs at positions v′i+1, .., v

′
k are advanced in the sequence if v′i > v′k or that

jobs at positions v′k, .., v
′
i−1 are postponed if v′i < v′k.

Delivery batching neighborhood for TSR and Delivery grouping/batching neighbor-
hood for TOSR The neighborhood generation is then the same for determining the delivery
batches in TSR and the delivery groups/batches in TOSR. In fact, we have for a delivery batch
(TSR) and for a delivery group/batch (TOSR) the same modifications as for a production group
for TOSR. This yields four types of neighborhoods that can be derived from the TOSR production
group sequence neighborhoods: batches exchange; insertion of a job in a different batch, batch split
and batch fusion).

Routing neighborhoods for TSR This neighborhood is the standard 2-opt operator that swaps
two jobs at different positions in the third part of the encoding, i.e. for each position j, k with
1 ≤ j < k ≤ n, the exchange of jobs v′[2n+ j] and v′[2n+ k] is evaluated.

6.1.5 Tabu list

To discourage the tabu algorithm to select the solutions that have been visited recently, the tabu
list contains solutions that cannot be selected. These solutions are called Tabu. In our case, since
the scheduling part and the batching part are treated separately, we opted for two tabu lists with
a fixed size equal to the number of jobs. The first list contains the part of the vector corresponding
to scheduling while the second list contains the part corresponding to the batches. We have no
tabu list for the routing part in TSR as the 2-opt algorithm is applied as a descent method.
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6.1.6 Aspiration criterion

A solution is considered tabu if either the scheduling part or the routing part is tabu. For this
reason, a solution is selected if it is better than the best solution ever found, even if it is tabu as in
standard tabu search.

6.1.7 Global stopping condition

The general algorithm stops when a global time limit is reached. However, for the scheduling sub-
problem and the batching sub-problem, there is no specific time limit but the algorithm stops after
a fixed number of iterations without improvment.

7 Experimentations

7.1 Data generation

To validate our models, we have generated a random data set as follows. We call scenario s = 1
the “reference scenario” and we first generate instance (r1j , p

1
j , d

1
j ). For this, we first generate the

p1j for all the jobs in the interval [1, 50] and we denote by P =
∑n

j=1 p
1
j . The release dates r1j are

generated in the interval [0, γP ] where γ is a given parameter. Due dates d1j are generated in the

interval [α− β
2P, α+ β

2P ], where α and β are given parameters. For the generation of the distance
matrix between sites, we generate randomly the coordinates (X1

j , Y
1
j ) of each site j in the interval

[0, 50] and the distance between two sites is the classical euclidian distance.

t1i,j = t1j,i =
√

(Xi −Xj)2 + (Yi − Yj)2

For modeling the uncertainty on the data, each scenario s (s ≥ 2) is generated as follows:

• rsj is generated in [(1− ωr)r1j , (1 + ωrr1j )] with a given coefficient ωr

• psj is generated in [(1− ωp)p1j , (1 + ωpp1j )] with a given coefficient ωp

• dsj is generated in [(1− ωd)d1j , (1 + ωdd1j )] with a given coefficient ωd

• Xs
j is generated in [(1− ωX)X1

j , (1 + ωXX1
j )] with a given coefficient ωX

• Y s
j is generated in [(1− ωY )Y 1

j , (1 + ωY Y 1
j )] with a given coefficient ωY

The changes of the coordinates of the sites can be explained, if we consider that a site is a city
and the change of position corresponds to different possible locations in the same city but it can
also be seen as a simple way to vary the traveling time between two sites. For practical reasons,
all the values of the coefficients ω are identical.

7.2 Computational results

In this section, we evaluate our tabu search algorithms on the instances presented above. The
number of jobs varies from 10 to 100, the parameters α, β and γ are fixed to to 1. There are
different classes of problems depending on the number of jobs n and the coefficient of variation ω
between the scenarios. An instance is then represented by a tuple (n, ω), and, for each n and ω,
10 instances are generated with a number of scenarios S ′ = 50. The practical limitations of the
proposed MILP formulations has led us to omit the presentation of the results. However, for the
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solved instances with a number of jobs n = 10, the obtained results are equal to that obtained by
the tabu search heuristic for both cases (TSR and TOSR). Note that, the fact that in the TOSR
algorithm it is assumed that there are exactly one group of permutable delivery in each batch led
us to adapt our formulation for the comparison.

The comparison takes place in two phases. In a “training” phase, we define a subset of scenarios
(the training set) S ⊂ S ′ . We compare on S the GSR and TSR algorithms for the fixed sequence
robust approach with the GOSR and TOSR algorithms for the online robust approach. In a second
phase, we keep the best production job sequence, batching and routing found by GSR and TSR on
set S, and the best production group sequence and batching found by GOSR and TOSR on the
same set. Then, we evaluate and compare the performance of these solutions on the scenario set
S ′ . This allows to evaluate these solutions on a scenario that was not anticipated and hence to
provide additional informal information on the robustness of the methods.

The instances are solved on a 2.4 GHz Intel i3 computer with 3 GB of RAM.

7.2.1 Comparisons on the training scenario set S

In this section, the tabu search algorithms TSR and TOSR as well as the greedy algorithms GSR and
GOSR presented above are tested on instances having a number of jobs from 10 to 100, a deviation
ω ∈ {20, 40, 60} and a number of scenarios |S| ∈ {2, 5, 10}. The size of the tabu lists is equal to the
number of jobs n and the perimeter δ is set to 0.4. For each (n,S, ω), the algorithms are tested for
the ten instances and the results displayed in Table 1 give the average worst-case maximum lateness
on the ten instances. The presented results are divided into three blocks. The first block provides
the results of the fixed sequence robust approaches (GSR and TSR). The second one concerns
the online recoverable robust approaches (GOST and TOSR) and the last one compares the fixed
sequence and the online recoverable robust approaches. Let z(A) denote the objective function value
(i.e. the maximum lateness over scenario set S) returned by algorithm A ∈ {TSR, TOSR, GSR,
GOSR} on a particular instance. Columns ttb give the average CPU time needed. ∆ is the average
gap between the initial solution found the the greedy approach and the tabu search solution and it
is equal to (z(GSR)− z(TSR))/z(GSR) in the first block and (z(GOSR)− z(TOSR))/z(GOSR)
for the second. In the last block, ∆1 = (z(GSR)− z(GOSR))/z(GSR) is the average gap between
the initial solutions found by GSR and GOSR and ∆2 = (z(TSR) − z(TOSR))/z(TSR) is the
average gap between the solutions found by TSR and TOSR.

First, Column ∆1 reveals that the greedy online recoverable robust algorithm GOSR is far
more better than the greedy fixed sequence robust algorithm GSR. This could be expected as the
optimization level is very low in GSR whereas GOSR can react to the realized scenario thanks to
the group structure. Second, the first and the second block show that for both approaches the tabu
search algorithm improves significantly the performances of the greedy algorithms. Interestingly,
TSR and TOSR have comparable CPU times on comparable instances, which means that consid-
ering an additional decision level for grouping does not yield a computational overhead. Finally,
column ∆2 shows that in most cases the online recoverable robust approach improves upon the
robust approach. However, this is not always the case and it can be seen that the improvement
increases with the number of jobs and the deviation parameter, which indicates the uncertainty
level.

7.2.2 Assessing the robustness of the obtained job/group sequences and batching on
scenario S ′

In this part, we fix, for each instance, the best production job sequence, batching and routing found
by GSR and TSR (denoted xGSR and xTSR), and the best production group sequence and batching
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TSR TOSR TSR Vs TOSR
n S ω ttb(s) ∆(%) ttb(s) ∆(%) ∆1(%) ∆2(%)
10 2 20 0.01 50.42 0.08 23.02 38.31 5.58

40 0.01 50.09 3.67 23.01 36.08 1.95
60 0.01 51.39 0.20 26.98 28.75 -4.32

5 20 7.79 50.27 0.18 22.78 35.77 1.30
40 0.29 41.71 10.36 18.65 29.67 0.54
60 0.05 33.46 0.13 17.32 27.46 10.24

10 20 0.04 48.41 3.02 17.74 38.26 2.40
40 0.08 41.12 0.64 16.31 31.19 -0.24
60 0.21 37.97 8.47 13.74 26.85 -0.83

20 2 20 2.70 70.48 17.76 32.90 56.38 2.44
40 16.07 61.49 8.74 27.47 47.68 1.32
60 19.33 61.67 6.30 22.15 51.43 3.78

5 20 3.68 65.69 2.01 28.20 54.60 3.92
40 9.52 56.03 10.87 21.66 47.08 4.72
60 10.45 56.69 9.51 17.87 47.79 2.00

10 20 28.82 62.76 14.32 30.32 48.98 4.88
40 30.38 53.34 16.68 20.46 45.03 5.62
60 23.60 50.09 5.55 14.81 44.12 5.01

30 2 20 17.36 68.89 9.96 27.44 55.82 0.88
40 30.93 64.96 11.63 22.54 55.30 4.50
60 12.51 67.87 6.78 26.11 57.20 1.44

5 20 25.88 66.36 27.59 28.28 54.56 3.59
40 22.26 58.97 7.51 16.81 52.19 4.22
60 42.83 59.24 24.24 22.11 49.20 3.43

10 20 15.28 63.25 22.79 23.42 54.50 5.01
40 25.35 56.45 16.90 16.47 48.80 2.49
60 21.26 54.39 15.54 20.25 45.54 5.46

50 2 20 24.47 71.33 2.49 21.29 64.22 2.31
40 25.45 67.42 5.26 21.25 59.17 3.10
60 14.56 65.27 10.02 18.55 59.16 4.59

5 20 30.13 68.33 16.19 24.15 59.45 4.27
40 24.16 61.62 27.54 19.81 54.49 5.26
60 32.86 56.53 31.75 16.09 51.00 5.95

10 20 50.60 65.60 32.79 21.16 59.24 6.76
40 58.49 59.56 56.41 21.99 49.48 3.19
60 47.13 54.79 55.31 18.01 48.37 6.44

100 2 20 52.73 70.49 21.22 21.14 62.70 1.30
40 59.31 64.46 25.72 14.83 60.54 5.41
60 56.97 62.26 9.65 8.61 61.09 4.90

5 20 109.51 65.84 64.50 15.02 61.21 4.39
40 110.73 60.82 66.68 20.45 52.08 3.13
60 113.04 54.41 64.40 13.80 49.11 3.77

10 20 119.02 58.36 116.47 16.91 58.37 16.15
40 120.63 55.47 117.90 16.01 51.64 9.28
60 122.56 44.55 127.80 13.58 47.90 17.82

Table 1: Comparisons of GSR, GOSR, TSR and TOSR methods for |S| ∈ {2, 5, 10}
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found by GOSR and TOSR (denoted xGOSR and xTOSR), found during the optimization on the
training set. We evaluate their performance by computing the worst case maximum lateness on the
extended scenario set S ′.

The results presented in Table 2 are also divided into three blocks. The first block concerns
the results of the fixed sequence robust solutions (xGSR and xTSR), the second concerns the online
recoverable robust solutions (xGOSR and xTOSR) and the last one is also meant to compare the two
approaches.

Let z(x) = maxs∈S′{Lmax(x, s)} for x ∈ {xGSR, xGOSR} the maximum lateness of the fixed
sequence robust solutions on scenario set S ′ and let zA(x) = maxs∈S′{Lmax(A(x, s), s)} the maxi-
mum lateness of the online recoverable sequence robust solutions on the same scenario set, where
A(x, s) is the online algorithm used on the realized scenario (i.e. ERD for the production part
and NN for the routing part). Columns ∆

′
give the average gap between the initial solution and

the tabu search solution, which is equal to (z(xGSR) − z(xTSR))/z(xGSR) in the first block and
(zA(xGOSR)− zA(xTOSR))/zA(xGOSR) in the second.

However considering each scenario in S ′ as a possible outcome outside the training set S,
the maximum performance on this set of each method separately has a limited interest and we
would rather like to know how each solution issued from a different method behaves on the same
unexpected scenario. Columns ∆̄′ give the following average comparisons where

∆̄′ = averages∈S′
Lmax(xGSR, s)− Lmax(xTSR, s)

Lmax(xGSR, s)

for the fixed sequence robust approach and

∆̄′ = averages∈S′
Lmax(A(xGOSR, s), s)− Lmax(A(xTOSR, s), s)

Lmax(A(xGOSR, s), s)

for the online recoverable robust approach. The comparison between the two robust approaches is
given in the third block where the first two columns ∆

′(1) and ¯∆′(1) concern the initials solutions
and ∆

′(2) and ¯∆′(2) concern the tabu search solutions. ∆
′(1) and ¯∆′(1) give the gap between the

initials solutions when a solution is the worst case in S ′, and the average gap relative to each
scenario, respectively. ∆

′(2) and ¯∆′(2) indicate the same information for the tabu search solutions.

∆
′(1) = z(xGSR)−zA(xGOSR)

z(xGSR)

¯∆′(1) = averages∈S′
Lmax(xGSR,s)−Lmax(A(xGOSR,s),s)

Lmax(xGSR,s)

∆
′(2) = z(xTSR)−z(xTOSR)

z(xTSR)

¯∆′(2) = averages∈S′
Lmax(xTSR,s)−Lmax(A(xTOSR,s),s)

Lmax(xTSR,s)

Looking first at columns ∆
′(1) and ∆

′(1) , it appears that the solutions issued from the online
recoverable robust approaches (either greedy or tabu) are far more robust than the solutions issued
from their standardly robust counterparts, both in the worst case and average setting. Again the
ability of the group structure to react to realized scenarios in a controlled way, even with a simple
online algorithm, is demonstrated. Looking now at columns TSR and TOSR, if the improvement
brought by TSR over GSR is again assessed, the average comparison shows that TOSR may provide
solutions that perform worse than those of GOSR in average on scenario S ′.

26



TSR TOSR

n S ω ∆
′

(%) ∆̄′(%) ∆
′

(%) ∆̄′(%) ∆
′(1) (%) ¯∆′(1)(%) ∆

′(2) (%) ¯∆′(2)(%)
10 2 20 53.99 36.37 37.42 15.56 50.03 34.69 35.88 12.89

40 49.35 26.34 40.53 8.30 55.33 28.24 42.86 10.49
60 47.78 10.73 30.93 -14.09 55.62 27.11 40.89 8.47

5 20 55.98 40.31 36.21 15.40 51.43 34.96 34.08 8.25
40 47.46 25.38 36.45 5.89 53.29 30.89 46.62 13.23
60 39.25 15.26 30.33 -3.77 57.44 29.74 48.83 14.70

10 20 56.12 42.73 32.25 14.31 52.75 38.37 33.48 9.17
40 47.07 26.70 39.62 7.31 55.84 31.12 42.55 12.37
60 49.28 19.73 31.81 1.98 54.60 25.72 39.89 9.30

20 2 20 67.61 52.20 44.61 11.73 67.49 54.92 45.08 18.23
40 58.68 34.08 32.44 -7.66 65.05 44.36 38.60 9.29
60 56.85 19.26 26.49 -15.45 62.94 41.24 43.17 16.03

5 20 68.71 57.24 44.09 14.99 69.62 55.96 40.04 12.70
40 58.26 39.59 34.45 2.95 65.65 46.85 39.01 14.98
60 56.95 28.89 30.77 -5.46 65.22 43.61 48.35 17.14

10 20 67.40 56.96 49.67 22.72 65.79 51.67 40.52 15.22
40 59.96 42.66 35.04 7.53 66.14 46.46 37.81 13.55
60 57.03 32.52 30.87 -2.82 62.97 42.93 42.73 13.47

30 2 20 66.30 50.19 33.11 7.12 66.32 55.24 40.95 17.78
40 58.51 30.80 24.84 -7.24 67.15 48.65 42.33 20.37
60 60.52 22.25 30.36 -8.97 64.62 43.61 46.64 19.86

5 20 65.05 53.31 37.01 13.06 68.00 57.21 42.80 19.35
40 56.70 37.07 27.30 -4.03 69.09 51.82 48.82 21.10
60 58.24 31.79 27.42 -6.89 65.59 46.74 41.99 17.25

10 20 64.18 54.10 38.08 14.82 69.08 57.60 44.02 20.33
40 63.57 45.65 23.76 0.78 68.53 51.69 36.88 12.01
60 59.58 40.37 33.58 0.84 64.36 45.96 37.97 11.74

50 2 20 64.40 49.50 25.11 4.77 71.88 59.75 43.24 23.48
40 58.81 31.21 23.70 -2.59 66.27 50.80 48.29 27.06
60 60.60 22.45 20.20 -6.07 64.60 46.10 49.41 25.98

5 20 67.36 56.95 33.67 10.06 69.23 59.45 36.70 16.21
40 58.30 41.19 27.58 1.14 66.47 53.02 45.87 21.72
60 54.23 31.08 22.62 -4.53 61.08 46.84 39.43 19.08

10 20 67.76 57.26 30.26 12.48 71.84 60.63 37.61 19.14
40 62.54 47.83 32.06 8.17 65.45 52.15 37.96 16.15
60 60.94 41.35 29.50 3.70 63.69 48.43 39.29 15.37

100 2 20 64.35 49.01 22.47 5.25 69.63 60.24 42.98 26.06
40 59.71 30.93 20.29 1.74 64.07 50.36 46.21 28.27
60 55.11 15.57 10.77 -1.99 61.98 42.67 46.88 29.74

5 20 64.12 53.99 17.42 -1.81 70.40 61.88 33.71 15.39
40 58.39 40.51 21.64 -4.07 63.62 52.98 35.73 17.55
60 52.19 28.37 16.35 -6.00 61.15 47.53 41.00 21.53

10 20 58.99 51.58 20.92 3.64 69.68 61.48 37.94 23.04
40 55.29 43.53 20.31 2.26 64.74 53.56 38.69 19.43
60 44.24 30.29 16.22 -1.64 59.96 49.21 42.44 25.33

Table 2: Assessing the robustness of the GSR, GOST, TSR and TOSR solutions on scenario set S ′
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To exhibit a possible explanation of this behavior, Table 3 gives an aggregation of the results
presented in Table 2. These results are divided into two blocks in which all algorithms are compared
relatively to TOSR. More precisely, ¯∆′′(1) and ¯∆′′(4) compare GSR and TOSR by computing for
each instance, the gap

averages∈S′
Lmax(xGSR, s)− Lmax(A(xTOSR, s), s)

Lmax(A(xTOSR, s), s)

¯∆′′(2) and ¯∆′′(5) compare GOSR and TOSR by computing for each instance, the gap

averages∈S′
Lmax(A(xGOSR, s), s)− Lmax(A(xTOSR, s), s)

Lmax(A(xTOSR, s), s)

and ¯∆′′(3) and ¯∆′′(6) compare TSR and TOSR by computing for each instance, the gap

averages∈S′
Lmax(xTSR, s)− Lmax(A(xTOSR, s), s)

Lmax(A(xTOSR, s), s)

The first block (columns ¯∆′′(1), ¯∆′′(2) and ¯∆′′(3)) present the above-defined gaps averaged over all
ω values (i.e. independently of the uncertainty level), while the second block (columns ¯∆′′(4), ¯∆′′(5)

and ¯∆′′(6)) give the gaps averaged over over all |S| values (i.e. independently of the training set
size level).

n S ¯∆′′(1)(%) ¯∆′′(2)(%) ¯∆′′(3)(%) ω ¯∆′′(4)(%) ¯∆′′(5)(%) ¯∆′′(6)(%)
10 2 63.90 10.13 16.43 20 95.77 21.89 14.34
20 106.61 3.42 23.40 193.07 27.76 25.68
30 110.08 2.82 29.07 179.02 18.63 28.28
50 120.51 1.11 38.31 187.30 13.24 28.61
100 120.05 2.74 42.43 172.49 3.75 30.63
10 5 69.23 11.37 18.33 40 68.10 12.83 20.05
20 128.59 10.81 22.72 98.96 5.25 18.32
30 129.54 5.52 28.77 110.32 0.06 26.66
50 133.52 5.82 26.72 123.56 5.35 31.45
100 120.44 -2.36 24.93 115.30 1.35 31.23
10 10 72.94 12.95 16.35 60 42.20 -0.27 16.72
20 129.86 15.52 20.50 73.04 -3.27 22.62
30 136.92 9.61 20.90 87.21 -0.74 23.79
50 149.37 11.65 23.63 92.53 -0.01 28.59
100 132.97 2.67 32.42 85.68 -2.05 37.92

Table 3: Aggregated comparisons of the solutions on scenario set S ′

Figures 7 and 8 synthesize table 3, where color blue represents the columns ¯∆′′(1) and ¯∆′′(4),
color red represents the columns ¯∆′′(2) and ¯∆′′(5), and color green represents the columns ¯∆′′(3) and

¯∆′′(6). From top to bottom in Figure 7 we have the results when s = 2, s = 5 and s = 10. In the
same way, in Figure 8, we have the results when ω = 20%, ω = 40% and ω = 60%.

Table 3 and Figures 7, 8 show first that the greedy fixed sequence robust approach GSR is always
outperformed by the other methods. Also the improvement brought by the online robust recoverable
tabu search TOSR on the standard fixed sequence tabu search TSR is stable independently of ω
and |S|. However the improvement brought by TOSR on the greedy recoverable robust approach
is stable with the number of training scenarios but it decreases with the number of jobs and with
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Figure 7: Comparison for different |S|
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Figure 8: Comparison for different Ω

the uncertainty level ω. GOSR is even slightly better than TOSR for 100 jobs and |S| = 5 as well
as for ω = 60. One explanation would be that when the uncertainty level is too high, the effort for
optimizing the production group sequence becomes useless.
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8 Conclusion and future research directions

In this paper we investigated a novel use of the concept of groups of permutable jobs, introduced in
[Billaut and Roubellat, 1996], for an online recoverable robustness approach in an integrated pro-
duction scheduling and delivery routing problem when uncertainty is modeled via discrete scenarios.
The main novelty of the method is that it builds sequences of groups of production and delivery
jobs that are fixed for all scenarios, while the job sequence inside each production or delivery group
is constructed by an online greedy algorithm that uses in real time the available information on the
realized scenario. With the aim to compare the standard robust scheduling approach with the new
approach, we have proposed mixed integer linear programming formulations, greedy algorithms and
tabu search methods for both approaches. On randomly generated instances of reasonable size, we
compared the robustness of the heuristic approaches on a small size training scenario set and we
compared the robustness of the solutions issued from the training phase on an extended scenario
set. In both cases, the computational experiments show that for comparable CPU times the online
recoverable robust approaches outperform the standard robust approaches. However, there seems
to to be no more interest in optimizing the group sequences when the uncertainty level becomes
too high.
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R. K. Ahuja, R. H. Möhring and C. D. Zaroliagis (editors), Robust and Online Large-
Scale Optimization, Models and Techniques for Transportation, Lecture Notes in Computer
Science, Volume 5868, Springer Berlin Heidelberg

[Lu et al., 2008] L. Lu, J. Yuan and L. Zhang (2008). Single machine scheduling with release dates
and job delivery to minimize the makespan, Theoretical Computer Science, 393, pp. 102–
108.

[Ng and Lu, 2011] C. T. Ng and L. Lu (2011). On-line integrated production and outbound distri-
bution scheduling to minimize the maximum delivery completion time, Journal of Schedul-
ing, 15(3), pp. 391–398.

32



[Scholz-Reiter et al., 2010] B. Scholz-Reiter, E. M. Frazzon and T. Makuschewitz (2010). Inte-
grating manufacturing and logistic systems along global supply chains, CIRP Journal of
Manufacturing Science and Technology, 2, pp. 216–223.

[Ullrich, 2013] C. A. Ullrich (2013). Integrated machine scheduling and vehicle routing with time
windows, European Journal of Operational Research, 227, pp. 152–165.

[Verderame et al., 2010] P. M. Verderame, J. A. Elia, J. Li and C. A. Floudas (2010) Industrial &
Engineering Chemisty Research, 49(9), pp. 3993–4017.

[Viergutz and Knust, 2014] C. Viergutz and S. Knust (2014), Integrated production and distri-
bution scheduling with lifespan constraints. Annals of Operations Research, 213(1), pp.
293–318.

[Wang and Cheng, 2009] X. Wang and T.C.E. Cheng (2009). Production scheduling with supply
and delivery considerations to minimize the makespan, European Journal of Operational
Research, 194, pp. 743–752.

[Wang and Liu, 2013] L. Wang and Z. Liu (2013). Single machine scheduling with batch delivery to
multiple customers in a star-shaped network, Asia-Pacific Journal of Operational Research,
30 (1), art. no. 1250048.

[Wang et al., 2014] Wang, D. Y., Grunder, O., Moudni, A. E. Integrated scheduling of production
and distribution operations: a review. International Journal of Industrial and Systems
Engineering, 19(1), 94–122.

[Wu et al., 1999] S. D. Wu, E. S. Byeon and R. H. Storer (1999). A Graph-Theoretic Decompo-
sition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness. Operations
Research, 47(1), pp. 113–214.

[Zhong et al., 2007] W-Y. Zhong, G. Dosa and Z-Y. Tan (2007). On the machine scheduling prob-
lem with job delivery coordination, European Journal of Operational Research, 182, pp.
1057–1072.

33


