
HAL Id: hal-01351480
https://hal.science/hal-01351480

Submitted on 21 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Choosing a twice more accurate dot product
implementation

Stef Graillat, Philippe Langlois, Nicolas Louvet

To cite this version:
Stef Graillat, Philippe Langlois, Nicolas Louvet. Choosing a twice more accurate dot product imple-
mentation. ICNAAM: International Conference of Numerical Analysis and Applied Mathematics, Sep
2006, Hersonnisos, Crete, Greece. pp.498-499. �hal-01351480�

https://hal.science/hal-01351480
https://hal.archives-ouvertes.fr

Choosing a Twice More Accurate
Dot Product Implementation

Stef Graillat, Philippe Langlois and Nicolas Louvet
Laboratoire LP2A, Université de Perpignan Via Domitia,
52, avenue Paul Alduy, F-66860 Perpignan Cedex, France

{graillat, langlois, nicolas.louvet}@univ-perp.fr

Abstract

The fused multiply and add (FMA) operation computes a floating point multiplication followed
by an addition or a subtraction as a single floating point operation. Intel IA-64, IBM RS/6000 and
PowerPC architectures implement this FMA operation. The aim of this talk is to study how the FMA

improves the computation of dot product with classical and compensated algorithms. The latters
double the accuracy of the former at the same working precision. Six algorithms are considered. We
present associated theoretical error bounds. Numerical experiments illustrate the actual efficiency
in terms of accuracy and running time. We show that the FMA does not improve in a significant way
the accuracy of the result whereas it increases significantly the actual speed of the algorithms.

The fused multiply and add (FMA) operation computes a floating point multiplication followed by an
addition or a subtraction as a single floating point operation. This means that only one final rounding
(to the working precision) error is generated by a FMA whereas two occur in the classical implementation
of x× y + z. Intel IA-64, IBM RS/6000 and PowerPC architectures implement this FMA operation. On
the Itanium processor, the FMA operation enables a multiplication and an addition to be performed in
the same number of cycles than one multiplication or one addition [4].

The FMA operation seems to be advantageous for both speed and accuracy. Indeed, it approximately
halves the number of rounding errors in many numerical algorithms. This is the case for example within
the computation of a dot product of two n-vectors where just n rounding errors occur instead of 2n− 1
without FMA.

Moreover, it is well known that FMA yields an efficient computation of the rounding error generated
by a floating point product. Such rounding error computation at the current working precision is a
key task when implementing multi-precision libraries as double-double or quad-double ones [1] or even
when designing compensated algorithms. Compensated algorithms implement inner computation of the
rounding errors generated by the original algorithms and so provide more accurate results; [6, 5] are
examples of compensated summation and dot product. The latter reference recently proved that these
compensated implementations double the accuracy of the classical algorithm still running in the current
working precision.

Here we study how the FMA can improve the computation of dot products in terms of accuracy and
running time.

First, we consider the classical dot product computed at the working precision with or without FMA.
We report the theoretical error analysis (worst case bounds) and some experimental results to show that
the use of FMA only slightly improve the accuracy of the computed dot product, even if the number of
rounding errors is halved.

Nevertheless, the accuracy provided by the classical dot product may not be sufficient when applied to
ill conditioned dot products. Such cases appear for instance when computing residuals for ill conditioned
linear systems. So we also consider accurate dot products whose computed result is as accurate as if
computed in twice the working precision. Here we consider the classical dot product performed with
double-double computation as it can be found in the XBLAS library [3] and the compensated dot product
from [5] where the FMA is used to compute the rounding error generated by each product. We also present
a new compensated dot product using a recent algorithm by Boldo and Muller [2] that computes the
exact result of a FMA operation as the unevaluated sum of three floating point values. We present
theoretical error bounds to prove that all these algorithms provide results as accurate as if computed in
twice the working precision. Then we compare these implementations in terms of practical computing
time to identify the best choice to double the computing precision. Our experimental results show that

1

the compensated algorithms run both considerably faster than the one with double-double computation.
Moreover, the most efficient approach to benefit from the availability of a FMA seems to be to compensate
the rounding error generated by each (classical) product without using the FMA operation in the inner
loop of the dot product.

Algorithm Brief description
Dot Dot product without FMA
DotFMA Dot product with FMA
Dot2FMA Compensated dot product with FMA
DotThreeFMA Compensated DotFMA with FMA
DotXBLASFMA XBLAS dot product with FMA

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Classical dot product with FMA (n=100, 720 samples)

eps

1/2 γn cond
DotFMA

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35

re
la

tiv
e

fo
rw

ar
d

er
ro

r

condition number

Classical dot product without FMA (n=100, 720 samples)

eps

1/2 γn cond
Dot

Figure 1: Classical dot product with and without FMA: the FMA does not improve the actual accuracy.

n DotFMA Dot2FMA DotThreeFMA DotXBLASFMA
Theoretical 1 10 19 22
Measured 50 1.0 1.4 2.3 8.24

100 1.0 1.29 2.37 8.98
1000 1.0 1.24 2.63 10.46
10000 1.0 1.25 2.63 10.5
100000 1.0 1.07 1.76 6.27

Table 1: Measured computing times (Itanium 2, 1600 MHz, Intel C++ Compiler v9.0). Using the FMA
to compensate the multiplication rounding error (Dot2FMA) is the best choice to double the accuracy.

References

[1] David H. Bailey. A Fortran-90 double-double library. Available at URL = http://www.nersc.gov/
~dhb/mpdist/mpdist.html, 2001.

[2] Sylvie Boldo and Jean-Michel Muller. Some functions computable with a fused mac. In IEEE, editor,
IEEE Symposium on Computer Arithmetic ARITH’17, Cape Cod, Massachusetts, USA, June 2005.

[3] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy Iskandar, William
Kahan, Suh Y. Kang, Anil Kapur, Michael C. Martin, Brandon J. Thompson, Teresa Tung, and
Daniel J. Yoo. Design, implementation and testing of extended and mixed precision BLAS. ACM
Trans. Math. Softw., 28(2):152–205, 2002.

[4] Peter Markstein. IA-64 and elementary functions. Speed and precision. Hewlett-Packard Profession-
nal Books. Prentice-Hall PTR, 2000.

[5] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product. SIAM J.
Sci. Comput., 26(6):1955–1988, 2005.

[6] Michèle Pichat. Correction d’une somme en arithmétique à virgule flottante. Numer. Math., 19:400–
406, 1972.

2

