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Let g be a univariate separable polynomial of degree n with coefficients in a computable field K and let (α1, . . . , αn) be an n-tuple of its roots in an algebraic closure K of K.

Obtaining an algebraic representation of the splitting field K(α1, . . . , αn) of g is a question of first importance in effective Galois theory. For instance, it allows to manipulate symbolically the roots of g. In this paper, we focus on the computation of the splitting field of g when its Galois group is a dihedral group. We provide an algorithm for this task which returns a triangular set encoding the relations ideal of g which has a degree 2n since the Galois group of g is dihedral. Our algorithm starts from a factorization of g in K[X]/ g and constructs the searched triangular set by performing n 2 computations of normal forms modulo an ideal of degree 2n.

INTRODUCTION

The computation of the splitting field of a polynomial plays an important role in Galois theory and more generally in algebra. It is the smallest field where all the roots of the polynomial lie. Computing a suitable representation of this field allows us to manipulate all the roots of the polynomial. Let g be a polynomial of degree n with coefficients in a computable field K and whose Galois group is dihedral, * which implies that it is irreducible and separable. We are interested here with the computation of the splitting field of g and the representation of the action of the Galois group over the roots of g. Our aim is to exploit the knowledge on the Galois group of g.

The splitting field of g can be represented as a simple extension of the base field but, since here we want to compute with all the roots of g it is better to considerate another representation. The natural representation for this task is the following quotient algebra K(α1, . . . , αn) K[x1, . . . , xn]/I where I is the kernel of the surjective morphism from K[x1, . . . , xn] to K(α1, . . . , αn) which maps xi to αi. The ideal I is called a relations ideal of g. Remark that I is zerodimensional and maximal. A Gröbner basis of I allows computations in this quotient algebra by means of linear algebra operations (see e.g. [START_REF] Cox | Ideals, varieties, and algorithms[END_REF][START_REF] Becker | Gröbner bases[END_REF]) and then to make symbolic operations with the roots of g.

When n = 5 and K = Q, Spearman and Williams give in [START_REF] Spearman | Dihedral quintic polynomials and a theorem of Galois[END_REF] a first solution to this problem: they provide closed formulae which express all the roots of g as rational functions of any two roots α1, α2. Thus, if we have a radical representation of α1 and α2, we have the ones for all the other roots. But, when n 6, the result of Spearman an Williams is not generalized. Moreover, the radical representation of the roots is not suitable for symbolic computation (see [START_REF] Lazard | Solving quintics by radicals[END_REF]Section 9]) when n 6. Thus, we focus on the computation of the representation of the splitting field of g with the above representation.

It is well known that the ideal I has a triangular reduced Gröbner basis for a lexicographical order (see e.g. [START_REF] Tchebotarev | Gründzüge des Galois'shen Theorie[END_REF][START_REF] Lazard | Solving zero-dimensional algebraic systems[END_REF][START_REF] Anai | Computation of the splitting fields and the Galois groups of polynomials[END_REF][START_REF] Valibouze | Étude des relations algébriques entre les racines d'un polynôme d'une variable[END_REF][START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF]). This Gröbner basis can be obtained from the polynomial g by computing successive factorizations in algebraic extensions of K (see e.g. [START_REF] Anai | Computation of the splitting fields and the Galois groups of polynomials[END_REF]). Another method for this task is based on computations and factorizations of resolvents (see e.g. [START_REF] Valibouze | Étude des relations algébriques entre les racines d'un polynôme d'une variable[END_REF][START_REF] Ducos | Construction de corps de décomposition grâce aux facteurs de résolvantes[END_REF]). When such a triangular basis is known, we can compute the symmetric representation of the action of the Galois of g over α1, . . . , αn (see [START_REF] Anai | Computation of the splitting fields and the Galois groups of polynomials[END_REF][START_REF] Abdeljaouad-Tej | Computation of the decomposition group of a triangular ideal[END_REF]). None of the aforementioned methods take advantage of the fact that the Galois group of the studied polynomial is dihedral.

In this paper, we focus on the computation of this triangular Gröbner basis. In our specific case, this triangular set {f1, f2, f3, . . . , fn} verifies a theorem of Galois which states that polynomials f3, . . . , fn are linear in their principal variable. Thus, as soon as we know an irreducible factor g2 of g over its stem field (an extension of K generated by one of its roots) we can take f1 = f and f2 = g2, then it rests to compute the polynomials f3, . . . , fn. If we know the action of the Galois group of g over approximations (complex or p-adic) of its roots we can compute these relations by interpolation (see [START_REF] Mckay | Finding relations among the roots of an irreducible polynomial[END_REF][START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF][START_REF] Renault | A modular algorithm for computing a relations ideal of a polynomial[END_REF]). Here, we do not assume the knowledge of the explicit action of the Galois over approximations (we only know the name of the group) so we cannot use these methods.

An other framework for the computation of such a basis is presented in [START_REF] Orange | Calcul efficace d'un corps de dcomposition[END_REF]: the main idea is to begin the process by a factorization of g over its stem field and to end the algorithm by computations using the algorithm GaloisIdeal (see [START_REF] Valibouze | Étude des relations algébriques entre les racines d'un polynôme d'une variable[END_REF]) with a tricky use of the galoisian informations obtained from the factorization in order to avoid some computations. This framework describes a method for the construction of a table-based algorithm for the computation of relations ideal of polynomial with a fixed degree.

The algorithm we provide here starts also from a factorization of g over its stem field but, it does not depend neither on the degree of g and nor on the field of its coefficients. We prove that the knowledge on the fact that the Galois group of g is dihedral allows to reduce the end of the process to computations of normal forms modulo an ideal of degree 2n obtained from the pre-process of factorization. We also prove that the number of normal forms computed by our algorithm is dominated by n 2 , and that they are computed modulo a zero-dimensional ideal of degree bounded by 2n.

In the particular case of degree n = 5, we prove that this basis can be given from the factorization of g over its stem field without any other computation of normal forms. This can be viewed as an improvement of the result of [START_REF] Spearman | Dihedral quintic polynomials and a theorem of Galois[END_REF].

The paper is organized as follows. In section 2, we present results about Galois ideals relating them to triangular sets. These results are used in Section 3 which is devoted to the proof of the principal results leading to the algorithm and its complexity study. Section 4 presents two examples of use of this algorithm.

Notations

In this paper, the following notations are used:

• K is a computable field and K is an algebraic closure of K.

• For i ∈ [[1, n]], the multivariate polynomials ring K[x1, . . . , xi] is denoted by K[X i ]. • For i ∈ [[2, n]], K[X i ] is equipped with the lexicograph- ical monomial order x1 < x2 < . . . < xi. For f ∈ K[X i ],
we denote by HM(f ) the greatest monomial of f .

• Given an ideal I of K[X n ], the set of zeroes of I in Kn is denoted by Z(I). For i ∈ [[1, n -1]], we denote by Z(I) i the projection of Z(I) on the first i coordinates.

• Given V a finite subset of Kn , the unique radical ideal of K[X n ] vanishing on V is denoted by I(V ).

• The natural actions of the symmetric group Sn over elements of Kn and K[x1, . . . , xn] are defined by

Sn × Kn -→ Kn (σ, α) -→ σ.α = (α σ(1) , . . . , α σ(n) ) Sn × K[X n ] -→ K[X n ] (σ, f ) -→ σ.f = f (x σ(1) , . . . , x σ(n) )
• Dn denotes the symmetric representation of the dihedral subgroup of degree n of Sn. In the case where n is odd, it is generated by the product of transpositions

τ = (2, 3) . . . (n -1, n)
and the cycle σ = (1, 2, 4 . . . , 2k, . . . , n -1, n, . . . , 2k -1, . . . , 5, 3).

When n is even,

τ = (2, 3) . . . (n -2, n -1) 
and σ = (1, 2, 4 . . . , 2k, . . . , n, n -1, . . . , 2k -1, . . . , 5, 3).

For example, when n = 5 (resp. n = 8) we have τ = (2, 3)(4, 5) (resp. τ = (2, 3)(4, 5)(6, 7)) and σ = (

GALOIS IDEALS

In this section, we recall the definition and give some results about Galois ideals (see [START_REF] Valibouze | Étude des relations algébriques entre les racines d'un polynôme d'une variable[END_REF][START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF]).

In the whole section, g is a separable polynomial of degree n with coefficients in K and α = {α1, . . . , αn} an n-tuple of its roots in K.

Definition 1. An ideal I of K[X n ] is a Galois α-ideal if there exists a subset L of the symmetric group Sn containing the identity such that:

I = I(L.α) .
More generally an ideal I of K[X n ] is said to be a Galois ideal if there exists a tuple β of roots of a separable polynomial of degree n such that I is a Galois β-ideal.

Example 2. The Galois ideal I({α}) is called a relations ideal and is denoted by I(α). Since K[X n ]/I(α) is isomorphic to the splitting field of g, I(α) is maximal [START_REF] Valibouze | Étude des relations algébriques entre les racines d'un polynôme d'une variable[END_REF][START_REF] Anai | Computation of the splitting fields and the Galois groups of polynomials[END_REF]. In fact, it is the unique maximal Galois α-ideal. More generally, all maximal ideals of K[X n ] which contain a Galois ideal are relations ideals (see [START_REF] Valibouze | Étude des relations algébriques entre les racines d'un polynôme d'une variable[END_REF]).

We have the following obvious characterization of a Galois α-ideal:

Lemma 2.1. [4] An ideal I of K[X n ] is a Galois α-ideal
if and only if I is radical and its associated algebraic variety Z(I) satisfies {α} ⊂ Z(I) ⊂ Sn.α .

The Galois group of g, for a fixed numbering of its roots, is now defined from a Galois ideal.

Proposition-Definition 3. [24, Définition 1.12] There exists a subgroup G of Sn such that the algebraic variety V = Z(I(α)) verifies V = G.α. A symmetric representation of the Galois group of g is such a maximal subgroup G (for the inclusion) of Sn. It is denoted by Gal K (α) in the sequel.

Remark 4. As soon as a Gröbner basis of I(α) and the generators of Gal K (α) are known, we can represent the action of the Galois group of g over a symbolic representation of its roots. In fact, the group Gal K (α) is the stabilizer of I(α) (see [START_REF] Abdeljaouad-Tej | Computation of the decomposition group of a triangular ideal[END_REF]), thus it represents the K-automorphisms of the algebra K[X n ]/I(α). Hence, the objects that we want to compute are exactly a Gröbner basis of I(α) and its stabiliser Gal K (α). Lemma 2.1 shows that any Galois α-ideal is included in I(α). More generally, we have the following result: Lemma 2.2. Let σ be a permutation of Gal Q (α). For any Galois α-ideal I, we have:

∀R ∈ I, I + σ.R ⊂ I(α) .
Proof. We have I ⊂ I(α), thus R ∈ I(α). Since σ.α ∈ Z(I(α)) (see Proposition-Definition 3), we have (σ.R)(α) = R(σ.α) = 0, which implies that σ.R ∈ I(α) since I(α) is radical.

When K is perfect, a Galois α-ideal I ⊂ K[X n ] for which there exists a subgroup G of Sn such that Z(I) = G.α is generated by a separable triangular set (see [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF]). Following the proof of [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF], we provide further a more general result. Definition 5. A subset T = {f1, . . . , fn} of K[X n ] is said to be triangular if there exist n positive integers k1, . . . , kn such that:

∀i ∈ [[1, n]], HM(fi) = xi k i . A triangular set T = {f1, . . . , fn} is said to be separable if for all i ∈ [[1, n]],
and for all β ∈ Z( T )i-1, fi(β, xi), seen as a univariate polynomial in xi, is separable. Remark 6. Note that in our definition, we only consider triangular sets whom initials are equal to 1, so that the ideal generated by the considered triangular set is the saturated ideal of the triangular set (see [START_REF] Ph | On the theories of triangular sets[END_REF]). In particular, from [START_REF] Ph | On the theories of triangular sets[END_REF], the saturated ideal of a separable triangular set is radical. In our case, this means that the ideals generated by the separable triangular sets we consider are radical.

We show now how to generalize the result of [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF] about triangular sets and Galois ideals. The first result we need is about equiprojectable varieties (see [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF][START_REF] Dahan | Lifting techniques for triangular decompositions[END_REF] for a definition).

Lemma 2.3. An algebraic variety V of ( Ksep ) n (where Ksep is the separable closure of K) is equiprojectable if and only if the ideal I(V ) can be represented by a separable triangular set.

Proof. A proof is given in [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF] for the case where K is perfect but this result does not depend on the perfectness of the base field as soon as we suppose the field K[V ] separable which is the case here (for example, see [START_REF] Dahan | Sharp estimates for triangular sets[END_REF] where this result is used).

From this lemma we obtain the following generalization of [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF].

Proposition 2.4. Let I ⊂ K[X n ] be a Galois ideal. If there exists a subgroup G of Sn and an element α of the algebraic variety V = Z(I) such that V = G.α then there exists a separable triangular set generating I.

Proof. Let G be a subgroup of Sn. An algebraic variety V ⊂ Kn such that V = G.α, where α is an n-tuple of roots of a separable degree n polynomial, is equiprojectable (see [START_REF] Ph | Using Galois ideals for computing relative resolvents[END_REF]). Moreover, since K(α) is separable so is K[V ] and the result follows from Lemma 2.3. Remark 7. A Galois ideal whose associated algebraic variety satisfies the conditions of Proposition 2.4 is said to be pure. There exist Galois ideals which are not pure and triangular thus Proposition 2.4 is not an equivalence. Moreover, there exist Galois ideals which are not triangular (see [START_REF] Renault | Calcul efficace de corps de décomposition[END_REF]).

Separable triangular sets have many other properties (see [START_REF] Ph | On the theories of triangular sets[END_REF]), we use the following one in the sequel. Lemma 2.5. Let T = {f1, . . . , fn} be a separable triangular set of K[X n ] and R be a polynomial of K[X n ] such that HM(R) = xj with j 2. Suppose that the ideal

T , R = K[X n ]) and f1, . . . , fj-1 is a maximal ideal of K[X j-1 ].
Then, the ideal T , R is generated by the triangular set T = {f1, . . . , fj-1, R, fj+1, . . . , fn} which is separable.

Proof. Denote by Tj-1 the set {f1, . . . , fj-1}. Since Tj-1 is maximal, the quotient ring A = K[X j ]/ Tj-1 is a field. This implies that A[xj] is a principal ideal domain. For p ∈ K[X j ], we denote by p its image in A[xj]. Let F be a representative of the gcd F of fj and R in A [xj]. Since F can be rewritten as an algebraic combination of R and fj and f1, . . . , fj-1, one has f1, . . . , fj-1, F ⊂ f1, . . . , fj-1, fj, R . Consider now an element p of f1, . . . , fj-1, fj, R and let p its image in A[xj]. Thus, p is a multiple of F which implies that p can be written as an algebraic combination of f1, . . . , fj-1, F . Thus, f1, . . . , fj-1, F = f1, . . . , fj-1, fj, R . This implies that f1, . . . , fj-1, F, . . . , fn = f1, . . . , fj-1, fj, R, . . . , fn . By assumption HM(R) = xj which implies that either F is the unit in A, or R = F . Since T , R = K[X n ], one has F = R.

It remains to prove that T = f1, . . . , fj-1, R, . . . , fn is separable. Note that by assumption, Tj-1 is separable. Since R is linear in xj, R is separable in A [xj]. Consider now for j + 1 i n, the image of fi in K[X i-1 ]/ f1, . . . , fj-1, R, . . . , fi-1 . Remark that if it is not separable, then T can not be separable since Z(T ) ⊂ Z(T ).

MAIN RESULTS

In this section, we fix g ∈ K[x] a polynomial of degree n 5 with Dn as a symmetric representation of its Galois group (thus this polynomial is irreducible and separable). Such a polynomial is said to be a dihedral polynomial of degree n. We present an algorithm for the computation of a relations ideal of g from its factorization over its stem field. Here we only know the name of the Galois group of g. We show how to fix the representation of this group by numbering the factors of g over its stem field (which is equivalent to fix the order of roots orbits of g). Then, from this particular representation of the Galois group we deduce a process in order to construct a triangular set of a relations ideal of g by group action (same sorts of group actions are used in [START_REF] Renault | A modular algorithm for computing a relations ideal of a polynomial[END_REF][START_REF] Orange | Calcul efficace d'un corps de dcomposition[END_REF] in order to avoid computations). Proposition 3.1. Let α1 be a root of g. The factorization of g over its stem field K(α1) is given by: (x -α1)g2(α1, x) . . . g n+1 2 (α1, x) n odd (x -α1)g2(α1, x) . . . g n 2 (α1, x)(x -b n 2 +1 (α1)) n even where gi(t, x) = x 2 + bi(t)x + ai(t) and ai, bi are univariate polynomials of degree at most n -1.

Proof. A symmetric representation of the Galois group of g over the field K(α1) is

StabD n ({1}) = {s ∈ Dn | s(1) = 1}.
This group is explicitly given by:

StabD n ({1}) =  (2, 3) . . . (n -1, n) n odd (2, 3) . . . (n -2, n -1) n even
The orbits of the action of StabD n ({1}) over {1, . . . , n} are:

{1}, {2, 3}, . . . , {n -1, n} n odd {1}, {2, 3}, . . . , {n -2, n -1}, {n} n even.
There is a one-to-one correspondence between the orbits of the canonical action of the Galois group of a polynomial over its roots and the set of roots of its irreducible factors, so the result follows.

Let gi be the factors of g over its stem field with a fixed numbering as in Proposition 3.1. We consider the ideal of K[X n ] generated by the following separable triangular set T1:

n odd: n even:

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : f 1 = g(x 1 ) f 2 = g 2 (x 1 , x 2 ) f 3 = x 3 + x 2 + b 2 . . . f 2i = g i+1 (x 1 , x 2i ) f 2i+1 = x 2i+1 + x 2i + b i+1 . . . f n-1 = g (n+1)/2 (x 1 , x n-1 ) fn = xn + x n-1 + b (n+1)/2 8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : f 1 = g(x 1 ) f 2 = g 2 (x 1 , x 2 ) f 3 = x 3 + x 2 + b 2 . . . f 2i = g i+1 (x 1 , x 2i ) f 2i+1 = x 2i+1 + x 2i + b i+1 . . . f n-2 = g n/2 (x 1 , x n-2 ) f n-1 = x n-1 + x n-2 + b n/2 fn = xn + b n/2+1
where the polynomials bi are univariate in x1.

Remark that the set T1 depends on the numbering of the factors of g in its stem field. Thus, there exist several different sets constructed as T1. Actually, if Ω denotes the set of permutations of Stab Sn ({1}) defined by

n odd : 2 3 4 5 . . . n -1 n . . . 2k1 2k1 + 1 2k2 2k2 + 1 . . . 2k (n+1)/2 2k (n+1)/2 + 1 n even : 2 3 4 5 . . . n -2 n -1 . . . 2k1 2k1 + 1 2k2 2k2 + 1 . . . 2k n/2 2k n/2 + 1 where ki ∈ [[1, n+1 2 
]], then the set S = {{ω.f : f ∈ T1} : ω ∈ Ω} represents all possible triangular sets with the same form as T1 and constructed with the factors gi (a permutation of Ω corresponds to a numbering of these factors). Proposition 3.2. There exists a triangular set T in S such that the ideal T is an α-Galois ideal where α is an n-tuple of the roots of g satisfying Gal K (α) = Dn.

Proof. Let α be an n-tuple of different roots of g verifying Gal K (α) = Dn. In the proof of Proposition 3.1, we have seen that for all integer i in [[1, n+1 2 ]], the set Ri = {α2i, α2i+1} corresponds to the roots of a quadratic factor of g in K(α1)[x]. If we number these factors so that

Roots(gi) = Ri for each i in [[1, n+1 2 
]], then we can construct a triangular set T contained in S so that α is a zero of I = T and Z(I) ⊂ Sn.α. As T is clearly triangular and separable (since T1 is) , we have the result by Lemma 2.1 and Remark 6.

In particular, we have the following result: Corollary 3.3. With the same notations as in Proposition 3.2, if the degree n of g is equal to 5, then all the ideals generated by the triangular sets of S are α-Galois ideals with Gal K (α) = D5.

Proof. When n = 5, by Proposition 3.1 we have two non linear factors, so two possible numberings and thus two triangular sets in S. Let T1 and T2 be the two possible ideals corresponding to these two possible numbering. By Proposition 3.2, at least one of these ideals is an α-Galois ideal with Gal K (α) = D5, let T1 be this ideal. We have

T2 = {ω.f | f ∈ T1}
where ω = (5, 3)(2, 4), thus T2 is an (ω -1 .α)-Galois ideal with

Gal K (ω -1 .α) = ω -1 . Gal K (α).ω .
Since ω -1 Gal K (α)ω = ω -1 D5ω = D5 we obtain the result.

Remark 8. Corollary 3.3 can be seen as a symbolic reformulation of the result of Spearman and Williams [START_REF] Spearman | Dihedral quintic polynomials and a theorem of Galois[END_REF].

If the ideal T of Proposition 3.2 is known, the following proposition shows how to construct a Gröbner basis of the relations ideal I(α) with Gal K (α) = Dn by only applying the action of a permutation on the variables of the polynomials of T . Actually, a triangular set of S which generates an α-Galois ideal with Gal K (α) = Dn fixes an order on the roots of g, thus we can apply a particular group action on this set. 

=  (1 2)(3 4) . . . (n -2 n -1) n odd (1 2)(3 4) . . . (n -1 n) n even
be a permutation of Sn. Then, the set T containing the 3 polynomials f1, f2, fn, all the fi with even integer 1 < i < n and µ.fi with odd integer 1 < i < n -1, is a Gröbner basis of the ideal I(α).

Proof. We can suppose w.l.o.g. that T = T1 (as we have seen above, it depends only on the numbering of the factors gi). Since for all odd integer k = 2i -

1 with i ∈ [[2, n-1 2 ]],
we have:

µ.f k = µ.(x k + x k-1 + bi+1(x1)) = x k+1 + x k-2 + bi+1(x2) ,
the set T is given by n odd : n even :

8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : f 1 f 2 f 3 x 4 + x 1 + b 2 (x 2 ) . . . x 2i + x 2i-3 + b i (x 2 ) f 2i+1 . . . x n-1 + x 1 + b (n+1)/2 (x 2 ) fn 8 > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > : f 1 f 2 f 3 x 4 + x 1 + b 2 (x 2 )
. . .

x 2i + x 2i-3 + b i (x 2 ) f 2i+1 . . . x n-2 + x 1 + b (n-2)/2 (x 2 ) f n-1 fn
By construction, the set T is triangular, so it is a Gröbner basis (see [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]) and we just have to prove that this set generates the relations α-ideal. For this, we first prove that the ideal generated by T is maximal and then that it is contained in I(α).

The permutation µ is in Dn, more precisely we have the (right) product µ = στ . Since K[X 2 ]/ f1, f2 is isomorphic to a field (since f1 = g and f2 corresponds to an irreducible factor of g over its stem field), all ideals of the form f1, f2, x3 + h3(x1, x2), . . . , xi + hi(x1, . . . , xi-1) is a maximal ideal of K[X i ]. Thus we can recursively use the lemma 2.5 in order to construct a new ideal which is generated by T :

I = T1 + µ.f3 + µ.f5 + . . . + µ.fm ,
where m is the greatest odd integer less than n -1. Then I is generated by the set T and is maximal. By lemma 2.2, we have I ⊂ I(α), hence I is the relations α-ideal. Now, if we want to apply Proposition 3.4 for the computation of a relations ideal of g, we need to know an effective method to choose a triangular set in S which verifies the hypothesis of this proposition. Proposition 3.5. Let T be a triangular set of S and T be the triangular set obtained by action of µ on T (as in Proposition 3.4). If we have the following inclusion T ⊂ T , then T is an α-Galois ideal with α an n-tuple of roots of g and verifying Gal K (α) = Dn Proof. Assume that T ⊂ T . As we have seen in the proof of Proposition 3.4, the ideal T is maximal, thus, if β denotes one of its zeros, it is a relations β-ideal. Because of the form of T , one can see that Gal K (β), which is a conjugate of Dn, contains these two permutations: Now, we give the algorithm which computes a triangular basis of a relations ideal of g from its factorization over its stem field K[x1]/ g . We recall that any quadratic factor g(t, x) of g is of the form g(t, x) = x 2 + b(t).x + a(t).

µ =  (1 2)(3 4) . . . (n -2 n -1) n odd (1 2)(3 4) . . . (n -1 n) n even τ =  ( 2 
We first give the scheme of the algorithm. By Corollary 3.3 we can split the process in two parts, the first one for degree 5 where no computations of normal forms is needed, the second for degree at least 6. In the second part, we successively number the factors of g in order to satisfy the condition of Proposition 3.5 and we apply, at the same time, the action of permutation µ to construct two linear relations. At the end of the process we obtain a triangular set of a relations ideal of g.

Algorithm: DihedralRelationsIdeal

Require: A dihedral polynomial g of degree n 5 and the set F of its irreducible quadratic factors over its stem field. Ensure: The set T = {f 1 , . . . , fn} is a triangular Gröbner basis of a relations ideal I(α) of g with Gal K (α) = Dn.

n := Degree(g); f 1 (x 1 ) := g(x 1 );

if n = 5 then Let f 2 (t, x) = x 2 +b(t).x+a(t) and f 3 (t, x) = x 2 +d(t).x+c(t) be the two elements of F ;

T := [f 1 (x 1 ), f 2 (x 1 , x 2 ), x 3 + x 2 + b(x 1 ), x 4 + x 1 + b(x 2 ), x 5 + x 4 + d(x 4 )]; return T ; end if Let f 2 (t, x) = x 2 + b(t).x + a(t) and f 3 (t, x) = x 2 + d(t).x + c(t) be two elements of F such that NormalForm(f 3 (x 1 , x 4 ), [f 1 (x 1 ), f 2 (x 1 , x 2 ), x 3 + x 2 + b(x 1 ), x 4 + x 1 + b(x 2 )]) = 0; F := F \ {f 2 , f 3 }; T := [f 1 (x 1 ), f 2 (x 1 , x 2 ), x 3 + x 2 + b(x 1 ), x 4 + x 1 + b(x 2 ), x 5 + x 4 + d(x 1 ), x 6 + x 3 + d(x 2 )]; if n = 6 then return T ; end if i := 3; while |F | > 1 do i := i + 1; Let f (t, x) := x 2 + b(t).x + a(t) be an element of F such that NormalForm(f (x 1 , x 2i ), T ) = 0; F := F \ {f }; T := Concat(T , [x 2i-1 +x 2i-2 +b(x 1 ), x 2i +x 2i-3 +b(x 2 )]); end while i := i + 1; f (t, x) := x 2 + b(t).x + a(t) be the last element of F ; T := Concat(T , [x 2i+1 + x 2i + b(x 1 )]); if n is even then c := the coefficient of x n-1 in g; T := Concat(T , [x 2i+2 + x 2i+1 + . . . + x 1 -c]); end if return T ;
Theorem 3.6. The algorithm DihedralRelationsIdeal terminates and computes a triangular basis of a relations ideal of g. Moreover, the number of normal forms performed during the computation is bounded by

Ψ(n) = 8 < : 0 n = 5 1 n = 6 1 2 (3m 2 -7m + 6) n 7
where n is the degree of the polynomial g and m := n-1 2 .

Proof. By Proposition 3.4 and Proposition 3.5, it is clear that this algorithm terminates and gives the good result. All the normal forms are performed when we have to find the good numbering of the fi, so degree 5 is not affected. Finding f2 and f3 requires at most m! (m-2)! = m 2 -m, so there is exactly one normal form to compute in the cases n = 6. All the other normal forms are performed during the while loop. Any such loop performs at most |F | -1 normal form. As |F | = m-2 before the while loop, the total number of normal forms computations is bounded by:

m-2 X k=2 k -1 = 1 2 (m -3)(m -2)
which gives the result.

Remark 10. Consider an irreducible separable polynomial g of degree n whose their irreducible factors over its stem field have the same degrees than the ones of a dihedral polynomial of the same degree. If the above algorithm, applied to the factors of g, terminates then, by Proposition 3.5, the Galois group of g is proved to be Dn and we compute at the same time a relations ideal of this polynomial. Using Theorem 3.6, one can stop the while loop if the number of computed normal forms is greater than the bound we provide.

EXAMPLES

In this section we give two examples of computations of relations ideals using the results of this paper.

Generic D5 relations ideal

This first example is devoted to the computation of a relations ideal of the D5 generic polynomial fD 5 of Brumer (see [START_REF] Jensen | Generic polynomials[END_REF]Theorem 2.3.5]). This polynomial has its coefficients in the function field Q(s, t). The polynomial fD 5 is given by:

x 5 + (t -3)x 4 + (s -t + 3)x 3 + (t 2 -t -2s -1)x 2 + sx + t . Using Trager's algorithm (see [START_REF] Trager | Algebraic factoring and rational functiun integration[END_REF]) we can compute the factorization of fD 5 over its stem field K[α1]. The two non linear factors computed with Magma ( [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) are given by: This ideal can be said generic because every irreducible polynomial f ∈ Q[x] with D5 as Galois group is Tchirnhaus equivalent to a specialization of fD 5 . So, the basis of a relations ideal I of f verifying D5.I = I, is Tchirnhaus equivalent to a specialisation of the basis of this generic ideal.

Proposition 3 . 4 .

 34 Consider a triangular set T = {f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)} of S such that T is an α-Galois ideal with Gal K (α) = Dn and µ

Remark 9 .

 9 The last relation of the set T can be replaced by the classical one xn + xn-1 + . . . + x1 + c where c is the coefficient of x n-1 in g.

  3)(4 5) . . . (n -1 n) n odd (2 3)(4 5) . . . (n -2 n -1) n even Thus Gal K (β) contains µτ = σ and Gal K (β) = Dn. Hence T is a β-Galois ideal with Gal K (β) = Dn.

  Corollary 3.3 gives without any other computation the triangular basis of a generic D5 relations ideal:

	x 2 +	1 t	(-α	4 1 + (-t + 2)α	3 1 + (-s -1)α	2 1 + (s -t 2 + 2t)α 1 -t)x
	-α 1 + 1			
	x 2 +	1 t	(α	4 1 + (t -2)α	3 1 + (s + 1)α	2 1 + (-s + t 2 -t)α 1 + t(t -2))x
	+	1 t	((t -1)α	4 1 + (t 2 -4t + 2)α	3 1 + (st -s -t 2 + 3t -1)α	2 1
	+(-2st + s + t 3 -2t 2 )α 1 ) + s -t + 1
	x 5 1 + (t -3)x 4 1 + (s -t + 3)x 3 1 + (-2s + t 2 -t -1)x 2 1 + sx 1 + t
	x 2 2 -	1 t	x 2 x 4 1 +	t + 2 t	x 2 x 3 1 +	-s -1 t	x 2 x 2 1 +	s -t 2 + 2t t	x 2 x 1
	-x 2 -x 1 + 1
	x 3 + x 2 -	1 t	x 4 1 +	-t + 2 t	x 3 1 +	-s -1 t	x 2 1 +	s -t 2 + 2t t	x 1 -1
	x 4 -	1 t	x 4 2 +	-t + 2 t	x 3 2 +	-s -1 t	x 2 2 +	s -t 2 + 2t t	x 2 + x 1 -1
	x 5 + x 4 +		1 t	x 4 1 +	t -2 t	x 3 1 +	s + 1 t	x 2 1 +	-s + t 2 -t t	x 1 + t -2

An example in degree 8

Let g = x 8 -3x 5 -x 4 + 3x 3 + 1 be a polynomial given by the Database for Number Fields of J. Klüners and G. Malle (see [START_REF] Klüners | A database for field extensions of the rationals[END_REF]) with rational coefficients and Galois group D8. The factorization of g over its stem field Q(α1) can be computed with Magma, GP/PARI (see [START_REF]version 2.2.5[END_REF]) or KANT/KASH (see [START_REF] Kant | [END_REF]). The three quadratic factors are:

Using Algorithm 

where b is the coefficient of x1 in the polynomial f2(x1, x2).

If we choose the first numbering we obtain the following relations ideal: x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x 1 -3

CONCLUSION

In this paper, we proposed a method for the computation of the relations ideal of a dihedral polynomial which permits us to avoid factorizations. We also did the complexity analysis of the underlying algorithm. we hope that a better study of the set S could improve this algorithm, this will be investigated in a future work.