
HAL Id: hal-01351336
https://hal.science/hal-01351336

Submitted on 12 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-objective branch and bound. Application to the
bi-objective spanning tree problem
Francis Sourd, Olivier Spanjaard, Patrice Perny

To cite this version:
Francis Sourd, Olivier Spanjaard, Patrice Perny. Multi-objective branch and bound. Application to
the bi-objective spanning tree problem. 7th International Conference in Multi-Objective Programming
and Goal Programming, Jun 2006, Tours, France. �hal-01351336�

https://hal.science/hal-01351336
https://hal.archives-ouvertes.fr

Multi-objective branch-and-bound.
Application to the bi-objective spanning tree problem.

Francis Sourd∗ Olivier Spanjaard∗ Patrice Perny∗

∗LIP6, University of Paris 6
8, rue du Capitaine Scott — F75015 Paris, France

FirstName.Name@lip6.fr

1 Introduction

Branch-and-bound methods (which belong to the class of implicit enumeration methods) have
proved to perform well on many combinatorial optimization problems, provided good bounding
functions are known. Quite surprisingly, as emphasized in [3], they have not been studied
widely in a multi-objective setting, i.e. when each solution x in the set S of feasible solutions
is evaluated by p objective functions f(x) = (f1(x), . . . , fp(x)) to minimize (without loss of
generality). Actually, the few existing papers on this topic concern mainly multi-objective
integer linear programming [1, 6, 8, 9].

In multi-objective branch-and-bound procedures, one has to find the Pareto front of S (in
fact one solution for each Pareto point in the objective space). Therefore, at each time of the
search, one keeps the set of best solutions found so far instead of a single incumbent. Futher-
more, unlike the single-objective case, there possibly exist several Pareto optimal solutions
(more precisely, Pareto optimal solutions with distinct images in the objective space) that can
be reached from a given node in the search tree. Hence, a natural extension of conventional
branch-and-bound procedures should associate each node with a set of lower bounds. However,
in previous works, the proposed branch-and-bound algorithms share the common property to
use the ideal of a sub-problem as a lower bound for that sub-problem. This feature impacts
badly on the efficiency of the approach since it often leads to loose bounds.

In the present work, we give a formal framework to design multiobjective branch-and-bound
procedures, and we provide a generalization of the lower bounding concept, able to more tightly
bound the Pareto front of a sub-problem. We tested our approach on the bi-objective spanning
tree problem. It significantly improves the existing results for the problem.

2 Multi-objective branch-and-bound

Let us first remark that single-objective branch-and-bound algorithms are notoriously more
efficient when a good solution is known even before starting the search. In the case of the

1

c2

c1

UB

Solutions in S(N)

UB≤

c1

h(c1, c2) = 0

Figure 1: Bounding phase

multi-objective branch-and-bound, having a good initial approximation of the Pareto front
seems to be even more important. Indeed, while the branching scheme of the single-objective
branch-and-bound method can usually be guided by a heuristic in order to quickly find a good
feasible solution, a similar heuristic used in the multi-objective context can lead to quickly
find some good solutions but is likely to have some difficulties to find some other Pareto
optimal points. In practice, it is worth considering any existing heuristic approach to compute
this approximate front (constructive methods, search for supported solutions, local search and
metaheuristics. . .) We will denote by UB the set of the non-dominated costs (f1(x), . . . , fp(x))
of the solutions found by the algorithm. UB is clearly initialized with the initial approximation
of the Pareto front.

The multi-objective branch-and-bound method is identical to the classical branch-and-
bound in the branching part but differs in the bounding part. Therefore the branching scheme
must be able to enumerate in a search tree all the feasible —possibly Pareto optimal— solutions
of S. When a new feasible solution x is found at some node, it is included to UB if it is not
dominated by any y ∈ UB and, conversely, all the solutions u ∈ UB such that f(x) ≤ u are
removed from UB. The pure enumerative approach clearly find all the Pareto front but would
be computationally impracticable to solve problems of moderate size.

The role of the bounding phase is to make the enumeration implicit, which means that,
at each node of the search, some computational effort is devoted to try to prove that all the
solutions enumerated in the sub-tree of the current node are unable to improve the current
UB. Figure 1 illustrates how the bounding procedure is generalized to the multi-objective
case. Let us denote by UB≤ the set of points in the objective space that are not dominated
by any current point of UB, that is UB≤ = {v ∈ Rp|∀u ∈ UB, u 6≤ v}. In the single-objective
case, UB≤ = (−∞,UB]. Let us also denote by S(N), the set of feasible solutions which are
enumerated in the subtree of the current node N .

The main point of the bounding procedure is that the current node N can be discarded if
we can find a separating hypersurface in the objective space between UB≤ and S(N), that is
a function h(c1, . . . , cp) such that h(f(x)) ≥ 0 for all x ∈ S(N) and h(v) < 0 for all v ∈ UB≤.
In the single-objective case, the separating function is simply h(c) = c−LB(N) where LB(N)
is the usual lower bound for f(S(N)). In the multi-objective case, a linear h function cannot
generally separate f(S(N)) from UB because UB is far from being convex. A general family

of good separating functions can be defined as

hΛ(c1, . . . , cp) = min
λ∈Λ
〈λ, c〉 − LBλ(N)

where the λ ∈ Λ are weight vectors of the form (λ1, . . . , λp) ≥ 0, 〈., .〉 denotes the scalar
product and LBλ(N) ∈ R is a lower bound for 〈λ, f〉(S(N)). Clearly, the larger Λ is, the
better the separating function becomes. However, it also becomes more complex and longer
to compute. In general, hΛ is convex and piecewise linear and its graph has at most |Λ| facets.

Conversely, an implementation of MOBB should also implement a computationally tractable
representation of UB≤, which may possibly be approximate. In practice, we can consider a
finite set N of vectors in Rp such that, for any v ∈ UB≤, we have v ≤ w for some w ∈ N . The
set N can be viewed as a generalization of the nadir point: indeed, if we want that |N | = 1,
then the best point we can choose is the nadir of UB. Once again, a large |N | will help in
having a better approximation of UB≤ but requires a greater computational effort.

Finally, a sufficient condition to discard the current node N is that, for all w ∈ N , we have
hΛ(w) < 0 if we want to enumerate all the optima in the solution space or hΛ(w) ≤ 0 if we want
the optima in the objective space. In the single objective case, we clearly have N = {UB},
which means that the node is discarded if UB ≤ LB(N), which is the well-known condition.

3 Bi-objective minimum spanning tree

While the single-objective minimum spanning tree problem is easily solved, the introduction
of multiple objectives significantly complicates the task. The bi-objective version can be
formulated as follows: Given a graph G = (V,E) with n = |V | nodes and m = |E| edges,
where each edge e is valued by a vector (we1, w

e
2), find the set of Pareto optimal spanning

trees of G. This problem has been introduced in [2], and proved NP-hard in [4, 5]. Several
approximation methods have been proposed [5, 13, 7]. To the best of our knowledge, only
two operational exact methods [10, 11] have been proposed until now, both based on a two-
phases (exact) procedure [12], first calculating the set of extreme Pareto optimal solutions
(i.e., vertices of the convex hull of all solutions in the objective space) and second the set of
non-extreme Pareto optimal solutions located in the triangles generated in the objective space
by two successive extreme solutions1. The methods mainly differ in the way they compute
Pareto-optimal solutions in the triangles: in [10] these solutions are computed by a branch-and-
bound discarding any node such that an ad-hoc bounding point (that seems to be dominated
by the ideal point of the corresponding sub-problem) falls outside the triangles; in [11] they are
computed by a sequence of applications of a k-best algorithm for the single-objective version
of the problem. Both methods have been implemented in [11] and the latter is shown to run
significantly faster.

In our approach, UB is also initialized by a two-phases (approximation) procedure, similar
to the one used in [5]: first, the extreme solutions are computed and second, local search
(starting with the extreme solution) is launched. The branching scheme is very simple: at
each node, an edge e of G is selected (according to a heuristic we do not detail here) and we

1Strictly speaking, a two-phases procedure is often described as the generation of supported Pareto optimal
solutions and then non-supported Pareto optimal solutions. For the sake of simplicity, we do not elaborate here.

create two subproblems. In the first one, the edge e must belong to the spanning tree while
in the second one, the edge is removed from G.

Let us now consider the bounding phase. The computation of hΛ(c1, c2) is greatly eased
by the fact that minimizing the weighted sum of the two objectives is a polynomial problem.
Therefore, by calculating all the extreme solutions of the sub-problem attached to the current
node, we have the best possible hΛ function. Furthermore, we have proved the following:

Lemma 1. Let us consider the m pairs (αi, βi) for 1 ≤ i ≤ m. Let S(λ) be the sequence of
the indices 1, . . . ,m lexicographically sorted according to the λαi + (1 − λ)βi, i values when λ
varies in [0, 1]. Then we have that {S(λ) | 0 ≤ λ ≤ 1} contains at most m(m − 1)/2 different
sequences.

As Kruskal’s algorithm —used to compute the extreme spanning trees— is based on the
order of the edges according to their weighted cost λwe1 + (1− λ)we2, a corollary is that there
are at most m(m − 1)/2 extreme spanning trees of distinct costs and therefore hΛ can be
computed in polynomial time. As a second consequence of this lemma, we have that all the
possible sequences can be efficiently stored in memory. The benefit of storing all the pre-sorted
sequences of edges is that for any λ ∈ [0, 1], S(λ) can be retrieved in O(log(m(m−1)/2)) that is
in O(log n) while computing it from scratch takes O(m log n) time. Moreover, the pre-sorting
can be done in only O(m3) time: in general the time spent in this phase is easily balanced by
the time spared during the search phase.

Computing N is easy when there are only two objectives. Indeed, let {(ui1, ui2) | 1 ≤ i ≤ k}
be the points of UB which are maintained in the lexicographical order. Then, we can define
N = {(ui+1

1 , ui2) | 1 ≤ i < k} in order to have a strict covering of UB≤, that is v ≤ w ∈ N
implies that v ∈ UB≤. When a point w ∈ N satisfies hΛ(w) > 0 then the node N is not
fathomed but, before branching, the algorithm checks whether a newly computed supported
point of f(S(N)) can be inserted into UB.

4 Experimental results

The branch-and-bound algorithm has been implement in C# and was run on a 1.6 GHz
personal computer. Table 1 shows computation times obtained on complete graphs with costs
randomly drawn in [0,100]. Instances with 150 nodes are easily solved, while the approach of
[11] can only solve problems with 25 nodes on the same class of instances.

n Solutions Nodes LS Sort Search Total

25 250 7729 0.13 0.03 0.26 0.47
50 639 38504 1.31 0.92 4.10 6.42
75 899 60101 4.39 6.63 15.02 26.32
100 1168 76147 11.15 28.35 39.63 79.65
125 1343 70189 20.61 81.48 66.38 169.46
150 1512 66052 35.71 169.31 169.31 401.71

Table 1: Mean CPU time of each phase of the algorithm.

References

[1] Bitran, G. and Rivera, J.M. (1982): ”A combined approach to solve binary multicriteria
problems”. In: Naval Research Logistics Quarterly. 29, 181–201.

[2] Corley, H.W. (1985): ”Efficient spanning trees”. In: Journal of optimization theory and
applications. 45 (3), 481–485.

[3] Ehrgott, M. and Gandibleux, X. (2000). ”A survey and annoted bibliography of multiob-
jective combinatorial optimization”. In: OR Spektrum. 22, 425–460.

[4] Emelichev, V.A. and Perepelitsa, V.A. (1988): ”Multiobjective problems on the spanning
trees of a graph”. In: Soviet Mathematics Doklady. 37 (1), 114–117.

[5] Hamacher, H.W. and Ruhe, G. (1994): ”On spanning tree problems with multiple objec-
tives”. In: Annals of Operations Research. 52, 209–230.

[6] Kiziltan, G. and Yucaoglu, E. (1983): ”An algorithm for multiobjective zero-one linear
programming”. In: Management Science. 29 (12), 1444–1453.

[7] Knowles, J.D. and Corne, D.W. (2001): ”A Comparison of Encodings and Algorithms
for Multiobjective Spanning Tree Problems”. In: Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, 544–551.

[8] Marcotte, O. and Soland, R.M. (1986): ”An interactive branch-and-bound algorithm for
multiple criteria optimization”. In: Management Science. 32 (1), 61–75.

[9] Mavrotas, G. and Diakoulaki, D. (1998): ”A branch and bound algorithm for mixed
zero-one multiple objective linear programming”. In: European Journal of Operational
Research. 107, 530–541.

[10] Ramos, R.M. and Alonso, S. and Sicilia, J. and Gonzales C. (1998): ”The problem of the
optimal biobjective spanning tree”. In: European Journal of Operational Research. 111,
617–628.

[11] Steiner, S. and Radzik, T. (2003): ”Solving the biobjective minimum spanning tree prob-
lem using a k-best algorithm”. Technical Report [TR-03-06]. Department of Computer
Science, King’s College London.

[12] Visée, M. and Teghem, J. and Pirlot, M. and Ulungu, E.L. (1998): ”Two-phases method
and branch and bound procedures to solve biobjective knapsack problem”. In: Journal of
Global Optimization. 12, 139–155.

[13] Zhou, G. and Gen, M. (1999): ”Genetic algorithm approach on multi-criteria minimum
spanning tree problem”. In: European Journal of Operational Research. 114, 141–152.

