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We study the inverse problem of determining the magnetic field and the electric potential appearing in the magnetic Schrödinger equation, from the knowledge of a finite number of lateral observations of the solution. We prove a Lipschitz stability estimate for both coefficients simultaneasly by choosing the "initial" conditions suitably.

INTRODUCTION

1.1. Statement of the problem. In this paper, we study the following inverse problem: Given T ¡ 0 and a bounded domain Ω R n , n ¥ 1, with smooth boundary Γ, we want to determine simultaneously the divergence free magnetic potential of the form apx, tq : χptqapxq and the electric potential qpx, tq : βptqqpxq appearing in the following equation (1.1) 6 8 7 p¡if t H a ptq qpx, tqqupx, tq 0, in Q Ω ¢ p0, T q, upx, T 2 q u 0 pxq in Ω, upx, tq 0, on Σ Γ ¢ p0, T q where H a ptq : pi∇ χptqaq 2 denotes the time-dependent Hamiltonian, associated to the magnetic potential vector χptqapxq. Here a pa 1 , ..., a n q A : H 1 pΩq n ta L V pΩ, R n q, ∇ ¤ a 0u, and q L V pΩq are unknown real valued functions. Moreover, the functions β, χ C 3 p0, T ; Rq are assumed to be known functions satisfying (1.2) χp T 2 q βp T 2 q 0, χ I p T 2 q $ 0, β I p T 2 q $ 0.

We denote by Γ an open subset of Γ satisfying an appropriate geometrical condition we shall precise later.

The inverse problem we investigate in this paper, is to know whether the knowledge of a finite number of Neumann measurements f ν u |Γ ¢p0,Tq : p∇u ¤ νq |Γ ¢p0,Tq uniquely determines apxq and qpxq simultaneously. Here νpxq denotes the unit outward normal to Γ at x.

Bibliographical notes.

There is a wide mathematical literature dealing with uniqueness and stability in inverse coefficient problems related to partial differential equations. In recent years, significant progress have been made in the recovery of magnetic potentials in magnetic Schrödinger equations from the Dirichletto Neuman map. As it was noted in [START_REF] Eskin | Inverse problems for the Schödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohn effect[END_REF], the Dirichlet-to Neuman map is invariant under a gauge transfromation of the magnetic potential. Namely, given φ C 1 pΩq such that φ |Γ 0, we have Λ a ∇φ Λ a . So, due to this obstruction to uniqueness, the best one could recover from the Dirichlet-to-Neumann map is the magnetic field da, where da is the exterior derivative of a interpreted as the one form °n j1 a j dx j .

The inverse problem of determining the magnetic field da and the electric potential q from boundary observations was first considered by Sun [START_REF] Sun | An inverse boundary value problem for the Schrödinger operator with vector potentials[END_REF], in the case n ¥ 3. He showed that da and q can be uniquely determined when a W 2,V , q L V and da is small in the L V norm. In [START_REF] Nakamura | Global identifiability for an inverse problem[END_REF], a uniqueness result was proved for C V magnetic potentials. In [START_REF] Eskin | Inverse problems for the Schödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohn effect[END_REF], Eskin proved a uniqueness result for an inverse problem for the Schrödinger equation with electromagnetic potentials, modulo a gauge transform of the recovery of the potentials from the Dirichlet-to Neuman map. In a recent work, Bellassoued and Choulli [START_REF] Bellassoued | Stability estimate for an inverse problem for the magnetic Schödinger equation from the Dirichlet-to-Neumann map[END_REF] considered the problem of recovering the magnetic potential da from the Dirichlet-to-Neumann map associated to the Schrödinger equation and proved in dimension n ¥ 2 a stability estimate of Hölder type.

In the Riemannian case, Bellassoued [2] proved recently a Hölder-type stability estimate in the recovery of the magnetic field da and the electric potential q from the knowledge of the Dirichlet-to-Neumann map associated to the Schrödinger equation with zero initial data. In the absence of the magnetic potential a, the problem of recovering the electric potential q on a compact Riemannian manifold was solved by Bellassoued and Dos Santos Ferreira [START_REF] Bellassoued | Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map[END_REF].

The problem of determining the magnetic field by a local Dirichlet-to Neuman map was solved by Dos Santos Ferreira, Kenig, Sjöstrand and Uhlmann [START_REF] Santos Ferreira | Determining a magnetic Schrödinger operator from partial Cauchy data[END_REF]. In [START_REF] Tzou | Stability estimates for coefficients of magnetic Shrödinger equation from full and partial boundary measurements[END_REF], Tzou showed that the magnetic field depends stably on the Dirichlet-to Neuman map measured on any subboundary which is larger than half the boundary. In [START_REF] Joud | Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field from partial boundary meausurements[END_REF], Benjoud studied the inverse problem of recovering the magnetic field da and the electric potential q from the knowledge of the Dirichlet-to-Neumann map. Assuming that the potentials are known in a neighborhood of the boundary, she proved a stability estimate with respect to arbitrary partial boundary observations. The key ingredient in the proof of all the above mentioned papers, is the construction of geometric optics solutions.

To our knowledge, there is a few results on the recovery of coefficients appearing in a Schrödinger equation, from a finite number of boundary measurements. By a method based essentially on an appropriate Carleman estimate, Baudouin and Puel [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] showed that the electric potential in the Shrödinger equation can be stably recovered from a single boundary measurement. In [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF], Cristofol and Soccorsi proved a Lipschitz stability in recovering the magnetic field in the Schrödinger equation from a finite number of observations, measured on a subboundary for different choices of u 0 . In the present paper, we improve the two above mentionned results by showing that the electric potential and the magnetic field can be stably and simultaneously recovered from a finite number of boundary observations of the solution. We stress out that the simultaneous identification of the magnetic field and the electric potential in the Schrödinger equation cannot be directly obtained from the results of [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] and [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF], as the electric (resp. magnetic) potential is a two (resp. first) order perturbation of the laplacian. As a matter of fact, the method of derivation of the stability estimate given in Theorem 1.2 is different for the one of [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF][Theorem 1.1], as second order time-derivatives of the solution only are used.

1.3. Well posedness of the magnetic Schrödinger equation and main results. Before stating our main result, we need first to justify the existence of a unique solution of (1.1). To this end, we introduce the space

H 1 pΩq : H 1 0 pΩq equipped with the scalar product p¡∆ 1q 1{2 u, p¡∆ 1q 1{2 v ¡ L 2 pΩq , for any u, v H 1 pΩq,
and denote by H 2 : H 2 pΩq H 1 0 pΩq equipped with the scalar product p¡∆ 1qu, p¡∆ 1qv ¡ L 2 pΩq for any u, v H 2 pΩq.

Here and below ¤, ¤ ¡ L 2 pΩq denotes the usual scalar product in L 2 pΩq. Then, we have the following theorem:

Theorem 1.1. Let a A, q L V pΩ, Rq, χ C 3 p0, T ; Rq and β C 3 p0, T ; R). Then, for every u 0 satisfying ∆ k u 0 H 2 , k 0, 1, 2, and for any f W 2 p0, T ; H 2 pΩqq, there exists a unique solution u C 2 p0, T ; H 2 q C 3 p0, T ; H 0 q to the equation

(1.3) 4 p¡if t H a ptq βptqqpxqqupx, tq f, in Q Ω ¢ p0, T q, upx, T 2 q u 0 pxq in Ω.
Moreover, there exists a constant C ¡ 0 such that

(1.4) }f j t up., tq} H 1 pΩq ¤ C j ķ0 }∆ k u 0 } H 1 pΩq , j 0, 1, 2, t p0, T q.
Proof. Since H a ptq is a self adjoint operator in L 2 pΩq, associated with the sesquilinear form u Þ Ñ }pi∇ χptqaq} 2 L 2 pΩq n , u H 1 0 pΩq, then, it holds true (see. e. g. [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF]) that the domain of H a ptq is DpH a ptqq H 1 0 pΩq H 2 pΩq. Further, as q L V pΩq for all t p0, T q, we deduce from the Kato-Rellich Theorem that DpH a ptq βptqqq DpH a ptqq. In view of [START_REF] Liu | Global uniqueness in determining electric potentials for a system of strongly coupled Schrödinger equations with magnetic potential terms[END_REF][Section ], there exists a family of unitary operotors pUpt, sqq 0¤s,t¤T in H 0 satisfying the following statements:

(1) U ps, sq Id, the identity mapping in H 0 , (2) U pt, sq DpH a psq βpsqqq DpH a ptq βptqqq, t, s r0, T s.

(3) For all φ DpH a psq βpsqqq, the mapping t Þ Ñ U pt, sqx, is continuously differentiable in r0, T s and satisfies ¡if t U pt, sq φ pH a ptq βptqqpxqqU pt, sqφ 0, therefore, arguing as in [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF][Section 2], we check that up¤, tq U pt, T 2 qu 0 i

» t T 2 U pt, sqf psq ds, is solution to (1.
3) and satisfies the estimate 1.4. We complete the proof of this theorem..

In order to express the main result of this paper, let us introduce some notations. Let us denote by V, an arbitrary neighborhood of the boundary Γ. For M ¡ 0, and pa 0 , q 0 q A ¢L V pΩq, we define the admissible set of the unknown coefficients a and q:

S M pa 0 , q 0 q : tpa, qq A ¢ L V pΩq, such that a a 0 , and q q 0 in Vu.

Then, our main result can be stated as follows Theorem 1.2. Let M ¡ 0, let χ and β be as in Theorem 1.1 and satisfy 1.1. Let pa j , q j q, j 1, 2 be in S M pa 0 , q 0 q, where pa 0 , q 0 q are the same as above. Then, there exists n 1 initial conditions u 0,k , k 0, ..., n, such that we have

}a 1 ¡ a 2 } L 2 pΩq }q 1 ¡ q 2 } L 2 pΩq ¤ C ¡ n ķ0 }f ν f 2 t u 1,k ¡ f ν f 2 t u 2,k } 2 L 2 p0,T;L 2 pΓ qq © .
Here C ¡ 0 is a constant depending only on Ω, T, χ and β and u j,k , j 1, 2, is the solution of (1.1) where u 0,k is substituted for u 0 .

1.4. Comments.

Notice that as in [START_REF] Liu | Global uniqueness in determining electric potentials for a system of strongly coupled Schrödinger equations with magnetic potential terms[END_REF], we impose the initial condition up¤, T 2 q u 0 in (1.1) at t T 2 and not t 0. This allows us to "symmetrize" the solution u to (1.1) around t T 2 , and consequently to apply the Carleman estimate of Proposition 2.1 to u over p0, T q.

The assumption ∇ ¤ a 0 is purely technical and does not restrict the generality of Theorem 1.2. Indeed, it is well known that the magnetic potential is not meaningful in physics. The physical relevant quantity is the "two-form" da fa, which coïncides with the magnetic field curl a when n 3. Actually, given the "magnetic field" b, we can always choose a divergence free a such that we have b da. This amounts to substituting a ∇ψ for a, where ψ H 1 pΩq is solution to the system 4 ¡∆ψ ∇ ¤ a in Ω, ψ 0 in fΩ. As in [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF], we enforce homogeneous Dirichlet-boundary conditions to (1.1). These homogeneous Dirichlet conditions impose that q be known in the vicinity V of the boundary fΩ. Nevertheless, this condition can be removed upon selecting suitable non-homogeneous Dirichlet boundary conditions on fΩ as in [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF]. Similarly, we can remove the assumption that a be known on V by selecting the initial conditions u 0,k , for k 1, ..., n, as in [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF][Theorem 1.1]. Nevertheless, the set of initial conditions cannot be defined explicitly, so we rather stick with the formulation of Theorem1.2 given in this paper. Nevertheless, in order to avoid the inadequate expense of the site of this article, we shall not go further into details in this matter.

Evidently, it can be checked that if a 1 a 2 then, the electric potential can be Lipschitz stably retrieved from one boundary observation of the solution. This extends the result of Baudouin and Puel [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF], to the case of a magnetic Laplacian.

Similarly, if q 1 q 2 , we can determine the divergence free magnetic potential for n boundary observations of the solution, which generalises the result of [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF].

It is worth mentionning that the stability estimate of Theorem 1.2 determines n 1 unknown functions pa 1 , ..., a n q and q from the knowledge of n 1 boundary observations over the time-space p0, T q. We stress out that the condition 1.1 imposed on the functions χ and β are essential in order to solve the inverse problem under study in this work. Indeed they allow us to recover the information on a and q from the knowledge of the "initial" condition of the second order derivative of the linearized system associated with 1.1 (see the second line in 3.11).

1.5. Outline of the paper. The proof of Theorem 1.2 is based on the celebrated Bugkheim. Klibanov method [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF] which is by means of a Carleman estimate designed for Schrödinger equations. In Section 2, we state the global Carleman estimate we use in the derivation of the stability result. Section 3 contains the proof of Theorem 1.2.

GLOBAL CARLEMAN ESTIMATE

In this section, we recall the global Carleman inequality for vanishing solution on the boundary Σ, which can be found in [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF][Section3]( see also [START_REF] Cristofol | Stability estimate in an inverse problem for non autonomous magnetic Schrödinger equations[END_REF] ). This estimate is the main tool needed for the derivation of Theorem 1.2.

Given the Schrödinger operator (2.5)

L : if t ∆,
we define a function ψ C 4 pΩ, R q, satisfying the following conditions:

(i) |∇ψpxq| ¥ β ¡ 0, d x Ω.
(ii) ∇ψ ¤ ν 0 for all x ΓzΓ (iii) hΛ 1 ¡ 0, hε ¡ 0 such that for all ξ R n , and for all λ ¡ Λ 1 , we have λ|∇ψ ¤ ξ| 2 D 2 ψpξ, ξq ¥ ε|ξ| 2 , where D 2 ψ f 2 ψ fx i fx j ¨1¤i,j¤n and D 2 ψpξ, ξq denotes the C n -scalar product of D 2 r ψξ with ξ.

Notice that there are actual functions ψ verifying the above assumptions, such as x Þ Ñ |x ¡ x 0 | 2 , for an arbitrary x 0 R n zΩ and a subboundary Γ tx Γ, px ¡ x 0 q ¤ ν ¥ 0u. Furthermore, for λ ¡ 0 the following weight functions:

(2.6)

θpx, tq e λψpxq tpT ¡ tq , and ηpx, tq α ¡ e λψpxq tpT ¡ tq , where α ¡ }e λψ } L V pΩq . Finaly, we introduce the two operators P 1 and P 2 acting in C V 0 pQq I , as follows:

(2.7)

P 1 : if t ∆ s 2 |∇η| 2
, and P 2 : is f t η 2s∇η ¤ ∇ sp∆ηq, in such a way that P 1 P 2 e ¡sη Le sη . Then, we have the following result: Proposition 2.1. Assume that ψ and Γ satisfy the above conditions. Let η and θ be as in (2.6), and let P j , j 1, 2 be defined by (2.7). Then, there are two constants s 0 ¡ 0 and C ¡ 0, depending only on T , Ω and Γ , such that the estimate s}e ¡sη ∇u} 2

L 2 pQq s 3 }e ¡sη u} 2 L 2 pQq j 1,2 }P j e ¡sη u} 2 L 2 pQq ¤ C ¡ s}e ¡sη θ 1{2 pf ν ψq 1{2 f ν u} 2 L 2 pΣ q }e ¡sη Lu} 2 L 2 pQq © ,
holds for all s ¥ s 0 , and for any function u L 2 p0, T ; H 1 0 pΩqq such that Lu L 2 pQq and f ν u L 2 p0, T ; L 2 pΓ qq. Here Σ T stands for Γ ¢ p0, T q.

STABILITY ESTIMATE

In this section, we derive the stability estimate for a and q appearing in the magnetic Schrödinger equation (1.1) of Theorem 1.2. Here and henceforth the symbol " I " stands for the differentiation with respect to t. p¡if t H a j ptq βptqq j qu j 0, in Q, u j p¤, T 2 q u 0 pxq, in Ω,

u j 0, on Σ.
Then, u u 1 ¡ u 2 is a solution to the following boundary value problem (3.9)

6 8 7 p¡if t H a 1 βptqq 1 qu f, in Q, up¤, T 2 q 0 in Ω, u 0 on Σ,
where f χpa 1 ¡ a 2 q ¤ p¡2i∇ ¡ χpa 1 a 2 qqu 2 ¡ βpq 1 ¡ q 2 qu 2 . By differentiating (3.9), we get (3.10)

6 8 7 p¡if t H a 1 βptqq 1 qv g : f I ¡ H I a 1 u ¡ β I q 1 u, in Q, vp¤, T 2 q 0, in Ω, v 0, on Σ with v f t u. Thus, w f t v is a solution to (3.11) 6 8 7 p¡if t H a 1 ptq βptqq 1 qw h : f P ¡ 2pH I a 1 β I q 1 qv ¡ pH P a 1 β P q 1 qu, in Q, wp¤, T 2 q 2χ I p T 2 qpa 1 ¡ a 2 qpxq ¤ ∇u 0 ¡ iβ I p T 2 qpq 1 ¡ q 2 qpxqu 0 ,
in Ω, w 0, on Σ 3.2. Preliminary estimates. We start by stating a powerful tool introduced by A. L. Bughkeim and M. V. Klibanov in [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF].

Lemma 3.1. For d t1, ..., nu, let η be given by (2.7). Then, there exists a positive constant κ ¡ 0, depending only on T , such that we have

» T 0 » Ω e ¡2sηpx,tq § § § » t T 2 ppξ, xq dξ § § § 2 dx dt ¤ κ s }e ¡s{η p} L 2 pQq d , for every p L 2 pQ T q d .
We turn now to establishing the coming statement with the aid of Proposition 2.1 and the above lemma. Lemma 3.2. There exists s 1 ¡ 0 such that for any s ¥ s 1 , we have the following estimate

s 3 }e ¡sη w} 2 L 2 pQq }P 1 e ¡sη w} 2 L 2 pQq ¤ C ¡ }e ¡sη pa 1 ¡ a 2 q} 2 L 2 pQq n }e ¡sη pq 1 ¡ q 2 q} 2 L 2 pQq s }e ¡sη θ 1{2 pf ν ψq 1{2 f ν w} 2 L 2 pΣ q © ,
where C is a positive constant independent of s.

Proof. By applying Proposition 2.1 to the solution w, we find a constant C ¡ 0 such that s 3 }e ¡sη w} 2 L 2 pQq }P 1 e ¡sη w} 2

L 2 pQq s}e ¡sη ∇w} 2 L 2 pQq ¤ C ¡ }e ¡sη L w} 2 L 2 pQq s}e ¡sη θ 1{2 pf ν ψq 1{2 f ν w} 2 L 2 pΣ q © , s ¡ s 0 , (3.13) 
where Lwpx, tq p¡hpx, tq 2iχptqa 1 pxq ¤ ∇ χ 2 ptqa 2 1 pxq βptqq 1 pxqqwpx, tq. Here hpx, tq is given by the following identity hpx, tq ¡2pH I a 1

β I q 1 qv ¡ pH P a 1 ptq β P ptqq 1 qu f 1 pq 1 ¡ q 2 qpxq f 2 pa 1 ¡ a 2 qpxq, where f 1 px, tq β P u 2 2β I f t u 2 βf 2 t u 2 , and

f 2 px, tq χ P ¡ ¡ 2i∇ ¡ χpa 1 a 2 q ¡ 2χ I2 pa 1 a 2 q ¡ χχ P pa 1 a 2 © u 2 2χ I ¡ ¡ 2i∇ ¡ χpa 1 a 2 q ¡ 2χχ I pa 1 a 2 q © f t u 2 χ ¡ ¡ 2i∇ ¡ χpa 1 ¡ a 2 q © f 2 t u 2
In view of (1.4), we have f j C 0 pr0, T s; L V pΩqq for j 1, 2. Moreover, it is easy to see that H I a 1

β I q 1 and H P a 1 β P q 1 are bounded operators from L 2 p0, T ; H 1 pΩqq into L 2 pQq. Thus, there exists C ¡ 0, independent of s, such that we have

s 3 }e ¡sη w} 2 L 2 pQq }P 1 e ¡sη w} 2 L 2 pQq s}e ¡sη ∇w} 2 L 2 pQq ¤ C ¡ }e ¡sη pa 1 ¡ a 2 q} 2 L 2 pQq n }e ¡sη pq 1 ¡ q 2 q} 2 L 2 pQq s}e ¡sη θ 1{2 pf ν ψq 1{2 f ν w} 2 L 2 pΣ q ρu,v,w p}e ¡sη ρ} 2 L 2 pQ T q }e ¡sη ∇ρ} 2 L 2 pQq q © .
Therefore, since ∇ k up¤, tq

» t T 2 ∇ k vp¤, τ q dτ and ∇ k vp¤, tq » t T 2
∇ k wp¤, τ q dτ , for k 0, 1, we deduce from Lemma 3.1 that

s 3 }e ¡sη w} 2 L 2 pQq }P 1 e ¡sη w} 2 L 2 pQq s}e ¡sη ∇w} 2 L 2 pQq ¤ C ¡ }e ¡sη pa 1 ¡ a 2 q} 2 L 2 pQq n }e ¡sη pq 1 ¡ q 2 q} 2 L 2 pQq s}e ¡sη θ 1{2 pf ν ψq 1{2 f ν w} 2 L 2 pΣ q }e ¡sη w} 2 L 2 pQ T q }e ¡sη ∇w} L 2 pQq © ,
for any s ¥ s 0 . Thus, by taking s sufficiently large, we obtain

s 3 }e ¡sη w} 2 L 2 pQq }P 1 e ¡sη w} 2 L 2 pQq ¤ C ¡ }e ¡sη pa 1 ¡ a 2 q} 2 L 2 pQq }e ¡sη pq 1 ¡ q 2 q} 2 L 2 pQq s }e ¡sη θ 1{2 pf ν ψq 1{2 f ν w} 2 L 2 pΣ q © .
This completes the proof of the Lemma. 

¥ s 2 }φp¤, T 2 q} 2 L 2 pΩq 4χ I p T 2 q 2 }e ¡sηp¤, T 2 q pa 1 ¡ a 2 q ¤ ∇u 0 } 2 L 2 pΩq n β I p T 2 q 2 }e ¡sηp¤, T 2 q pq 1 ¡ q 2 qu 0 } 2 L 2 pΩq (3.16)
¤ Cs ¡3{2 ¡ }e ¡sη pa 1 ¡ a 2 q} 2 L 2 pQq n }e ¡sη pq 1 ¡ q 2 q} 2 L 2 pQq s }e ¡sη θ 1{2 pf ν ψq 1{2 f ν w} 2

L 2 pΣ q © ,
Let us now choose the initial conditions u 0 as follows. Pick ω Ω such that ω ΩzV. Then, we choose u 0 C 6 0 pΩq such that u 0 pxq 1 for any x ω. Taking into account that q 1 ¡ q 2 and a 1 ¡ a 2 vanish in V and that ηpx, T 2 q ¤ ηpx, tq for all x Ω, we deduce from (3.16) that (3.18)

C 1 }e ¡sηp¤, T 2 q pq 1 ¡q 2 q} 2 L 2 pΩq ¤ Cs ¡3{2 ¡ }e ¡sηp¤, T 2 q pa 1 ¡a 2 q} 2 L 2 pΩq n }e ¡sηp¤, T 2 q pq 1 ¡q 2 q} 2 L 2 pΩq s }f ν w} 2

L 2 pΣ q © .
Here we used the fact that θe ¡2sη and f ν ψ are bounded on Σ . Next, we select n initial conditions u 0,k C 6 0 pΩq, for k 1, ..., n, such that u 0,k x k on ω. Then, we infer from (3.16) in a similar way that (3.19)

C 2 }e ¡sηp¤, T 2 q pa 1 ¡a 2 q k } 2 L 2 pΩq ¤ Cs ¡3{2 ¡ }e ¡sηp¤, T 2 q pa 1 ¡a 2 q} 2 L 2 pΩq n }e ¡sηp¤, T 2 q pq 1 ¡q 2 q} 2 L 2 pΩq s }f ν w} 2

L 2 pΣ q © ,
where pa 1 ¡ a 2 q k denotes the k th component of a 1 ¡ a 2 . Summing up (3.18) with (3.19) for k 1, .., n, we get that C 1 }e ¡sηp¤, T 2 q pq 1 ¡ q 2 q} 2 L 2 pΩq C 2 n j1 }e ¡sηp¤, T 2 q pa 1 ¡ a 2 q j } 2 L 2 pΩq ¤ C pn 1q s ¡3{2 ¡ }e ¡sηp¤,0q pa 1 ¡ a 2 q} 2 L 2 pΩq n }e ¡sηp¤, T 2 q pq 1 ¡ q 2 q} 2 L 2 pΩq s }f ν w} 2 L 2 pΣ q © , s ¥ s 2 Thus, there exists s 3 ¡ 0 such that for s ¥ s 3 , we have }e ¡sηp¤, T 2 q pq 1 ¡ q 2 q} 2 L 2 pΩq }e ¡sηp¤, T 2 q pa 1 ¡ a 2 q} 2 L 2 pΩq n ¤ Cs ¡1{2 }f ν f 2 t pu 1 ¡ u 2 q} 2 L 2 pΣ q . Finally, from the inequality e ¡sηp¤, T 2 q ¥ e ¡4s α¡1 T 2 ¡ 0, we get the desired result.

3. 1 .

 1 Linearization. Let u j , for j 1, 2, be solutions to (

  3.3. Proof of Theorem1.2. Let us now complete the stability estimate. Putting φpx, tq e ¡sηpx,tq wpx, tq and using the fact that φpx, 0q 0, we get

	Therefore, we get from the Cauchy-Schwarz inequality that			
	}φp¤, T 2 q} 2 L 2 pΩq ¤ 2}P 1 φ} 2 L 2 pQq }φ} 2 L 2 pQq			
	(3.15)	¤ s ¡3{2 ¡	s 3 }e ¡sη w} 2 L 2 pQq }P 1 e ¡sη w} 2 L 2 pQq	©	, s ¡ 0.
	Then, by Lemma 3.2, we obtain for all s					
	}φp¤, T 2 q} 2 L 2 pΩq	0 » T 2	»	Ω	f t |φpx, tq| 2 dx dt 2	0 ¡ » T 2	»	Ω	© f t φpx, tqφpx, tq dx dt	.
	Hence, from the Green formula and (2.7) one can see that			
	}φp¤, T 2 q} 2 L 2 pΩq 2		¡ » T 2 0 ¡ » T 2	» »			
					0					

Ω pif t ∆ s 2 |∇ηpx, tq| 2 qφpx, tqφpx, tq dx dt © 2 Ω P 1 φpx, tqφpx, tq dx dt © .