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JOINT ANALYSIS OF MULTIPLE DATASETS
BY CROSS-CUMULANT TENSOR (BLOCK) DIAGONALIZATION'

Dana Lahat and Christian Jutten

GIPSA-Lab, UMR CNRS 5216, Grenoble Campus, BP46, 38402 Saint-Martin-d’Heres, France

ABSTRACT

In this paper, we propose approximate diagonalization of a cross-
cumulant tensor as a means to achieve independent component anal-
ysis (ICA) in several linked datasets. This approach generalizes ex-
isting cumulant-based independent vector analysis (IVA). It leads
to uniqueness, identifiability and resilience to noise that exceed
those in the literature, in certain scenarios. The proposed method
can achieve blind identification of underdetermined mixtures when
single-dataset cumulant-based methods that use the same order of
statistics fall short. In addition, it is possible to analyse more than
two datasets in a single tensor factorization. The proposed approach
readily extends to independent subspace analysis (ISA), by tensor
block-diagonalization. The proposed approach can be used as-is or
as an ingredient in various data fusion frameworks, using coupled
decompositions. The core idea can be used to generalize existing
ICA methods from one dataset to an ensemble.

Index Terms— Independent vector analysis; tensor diagonal-
ization; blind source separation; coupled decompositions; data fu-
sion

1. INTRODUCTION

In this paper, we propose a cumulant-based approach for the joint
analysis of an ensemble of datasets that admit the independent vec-
tor analysis (IVA) [1] model. IVA is a framework that addresses an
ensemble of independent component analysis (ICA) [2] problems by
exploiting not only the statistical independence within each dataset
but also dependence among latent sources in different datasets.
IVA is further explained in Section 2. An advantage of IVA over
analysing each dataset individually is that it aligns the estimated
sources in all datasets with the same (arbitrary) permutation, thus
obviating the need to resolve the individual arbitrary permutation
in each mixture separately. In addition, IVA can generally separate
mixtures of Gaussian real stationary sources with spectra identical
up to a scaling factor, a problem that does not have a unique solu-
tion when each mixture is treated individually. In this paper, we add
to the list of useful properties of IVA (i) better resilience to certain
types of noise, and (ii) enhanced uniqueness and identifiability in the
presence of underdetermined mixtures, for non-Gaussian data.
Most IVA-type methods use cross-correlations, i.e., second-
order cross-cumulants, e.g., [3-6], or a multivariate contrast with
a nonlinear function, e.g., [1,7]. The idea to explicitly use cross-
cumulants of higher-order statistics (HOS) for IVA first appeared
in [8,9]. Their idea is to jointly diagonalize slices of cross-cumulant
tensors, where each cross-cumulant involves a pair of datasets. In
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order to jointly process several sets of (cross) cumulants, the factor-
izations are coupled in a specific way that was termed generalized
joint diagonalization (GJD). IVA via GJD can be applied to second-
order statistics (SOS) and up. When fourth-order statistics are used,
GIJD can be regarded as a multiset counterpart of joint approximate
diagonalisation of eigen-matrices (JADE) [10]. The GJD analyti-
cal framework in [9] is prewhitening-based and not designed to deal
with underdetermined scenarios. When introducing GJD, Li et al. [9]
mention that in principle, one may use cross-cumulants taken from
more than two datasets. However, they proceed only with pairs of
cross-cumulants, explaining that groups of more than two contribute
less to the separation than slices involving variables from only two
datasets, due to noise and finite sample size. In this paper, we ex-
plain, in Section 2, how cross-cumulants that involve K > 2 differ-
ent datasets can achieve enhanced resilience to noise. We show how
methods based on cross-cumulants enjoy uniqueness and identifia-
bility that exceed those of single-dataset cumulant-based methods
that use the same order of statistics. Finally, our approach allows
to analyse more than two datasets in a single tensor factorization, as
opposed to GID. For SOS, i.e., K = 2, GJD coincides with our
approach. For K > 3, our approach is, naturally, not suitable for
Gaussian data.

In the following, we denote scalars, vectors, matrices and
higher-order arrays (tensors) by a, a, A and \A, respectively. The
nth column and (m, n)th entry of A are denoted by a, and am n,
respectively. (-) T and || - || denote transpose and the Frobenius norm,
respectively. The mode-n product X ,, between C € RT1 X *IN and
A e R In yieldsan Iy X -+ X Tno1 X Jp X Tng1--- X Iy
array whose entries are given by [C Xn Aliy . in 1 .jn ini1rin =
fole Cityeryin,ooyin @jn,in 111, Definition 4]. The outer product of
N non-zero vectors a, € R ! isarank-11; x---x Iy tensor C =
ajo---oay whose entries are given by ¢;;,....iy = @1,i; * - AN,iy-

2. MODEL AND PROBLEM FORMULATION
Consider K datasets, each admitting an ICA model,
xF@y =AM @) 0™ () 1<t<T, 1<k<K ()

where A} ¢ K1 *R, xF(t) e K™x1 ang stl(t) e KRx!
represent a mixing matrix, observations and latent sources, respec-
tively, whose elements are real or complex, K € {C,R}. The ele-
ments of sl (t) are sampled from random vectors that follow the
IVA model. IVA is a generalization of ICA to multiple datasets

in which the K elements of random vector s, = [s\, ... si"I]T,
r =1,..., R, are statistically dependent whereas the pairs (s,,s,)

are statistically independent for any r # r’. The noise random pro-

[k] e .
cesses n*l € K" *! are mutually statistically independent for any

k # k', as well as statistically independent of all sources.
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Fig. 1: Diagonalization of a third-order cross-cumulant tensor. In
this example, K = 3 and R = 4.

Given a set of observations X = {x*(t)} 5 'T_ | the goal of
IVA is to separate the sources and/or identify the mixtures by exploit-
ing not only the statistical independence within each set of measure-
ments but also the dependence among sets of measurements. When-
ever A* is full column rank, the corresponding samples s* () may
be estimated by multiplying x[¥l (t) with a left inverse of an estimate
of Al Otherwise, the samples cannot be estimated without resort-
ing to additional assumptions (e.g., [12, Chapter 9.2.1]). The latter
often occurs when 7% < R, i.e., underdetermined. In this case, one
has to suffice with “blind identification”, i.e., estimating only Al
In this paper, we propose to achieve these inferences by factorizing
a cross-cumulant tensor, as we now explain.

For K > 2, the Kth-order M x ... x I ¢ross-cumulant of
X is given by

ck = Cum(x[l]7 e ,X[K])

=CE xi A sy AP x o x e A )

(holds for K = 1 if the noise has zero mean) where the K'th-order
R X --- x R cross-cumulant C5 = cum(s!!l, ... s/®) is diag-
onal. A key assumption is that the main-diagonal elements do not
vanish. The right-hand side (RHS) of (2) is due to the linearity prop-
erty of cumulants (e.g., [13, Chapter 2]). The noise term vanishes
from the cross-cumulants, even for K = 2, due to its statistical in-
dependence properties. We conclude that approximating a sample
cross-cumulant of X with the model in (2) yields estimates of all
factors A = {AM}E | with the added benefit of (asymptotically)
getting rid of the noise at no additional computational cost. Figure 1
illustrates this idea.

2.1. Implications

Equation (2) can be rewritten as

R
ck = Z cﬁiagl] o a[f] 0---0 aLK] 3)

r=1
where cfr denotes the K'th-order cumulant of SLI], e SLK], cﬁi =
cum(s[rl], A s[TK]). Equation (3) rewrites CX as a sum of R rank-

1 terms, where the rth summand represents the contribution of the
rth source in all K datasets. For the smallest R for which (3) holds
exactly, this factorization amounts to canonical polyadic decompo-
sition (CPD) [14, 15]/parallel factor analysis (PARAFAC) [16]. This
fact has the following implications.

Uniqueness: CPD is generically unique under mild conditions
(e.g., [17,18]). Hence, the proposed approach is naturally suitable
for underdetermined ICA. Furthermore, the ensemble may admit
a unique decomposition even if some of the underdetermined ICA
are not identifiable individually with the same order of statistics.
We point out that the cumulant-based GJD framework has a simi-
lar uniqueness property. The idea that coupled decompositions can
provide uniqueness of the ensemble even when each dataset is not
individually unique has already been proved in certain types of cou-
pled tensor decompositions [19] and SOS-based IVA [20]. Hence,
the proposed approach is another demonstration of the enhanced
uniqueness capacities of coupled decompositions.

Computation: Basically, we may optimize (2) and (3) with
any general-purpose algorithm that approximates a Kth-order ten-
sor with a sum of R rank-1 terms. A similar observation has previ-
ously been made with respect to (w.r.t.) underdetermined ICA [12,
Chapter 9.4.3]. For a discussion of various aspects of CPD opti-
mization for source separation, see, e.g., [12, Chapter 9.4.3] and ref-
erences therein. Dedicated tensor diagonalization algorithms such
as [21-23] may also be used, whenever the data admits their model
assumptions. Constraints such as orthogonality may be imposed as
well, e.g., [24]. Since (2) amounts to a Tucker [25] format with a
diagonal core, then, in principle, one may use any general-purpose
Tucker decomposition algorithm for the optimization. However,
uniqueness issues inherent to Tucker-type decompositions may re-
sult in difficulty attributing factors to specific sources and hence,
weaker interpretability.

2.2. Generalization to Multidimensional Components

Until now, we discussed only ICA and rank-1 components. How-
ever, all previous results are readily generalizable to rank-L " >1
(this variant of IVA is sometimes termed joint independent sub-
space analysis (JISA) [26,27]) by replacing the diagonal structure
of the tensor with block-diagonal. For example, in the third-order
case in Figure 1, the rth block on the diagonal now stands for an
L[Tl] X L[TZ] X L[TS] cube instead of a 1 x 1 x 1 scalar. The correspond-
ing factorization is “decomposition in rank-(LLl], L?], e, LLK])
terms” [28]. Apart from the block term decomposition (BTD) al-
gorithms in, e.g., [29,30], it has been proposed to use tensor diago-
nalization to uncover the underlying block structure [22,23].

A concluding remark is in order. Whereas ICA has numerous
cumulant-based methods, with independent subspace analysis (ISA)
the situation is quite different. The first cumulant-based approach to
ISA is [31], which proposes to “partially diagonalize” a fourth-order
cumulant tensor. A subspace variant of JADE is proposed in [32].
Tichavsky et al. [22] mention that tensor block-diagonalization can
be applied to cumulant-based ISA; however, they do not develop
further this idea.

3. NUMERICAL VALIDATION

In this section, we illustrate by numerical examples the capability of
the proposed approach to separate sources and identify mixtures in
well-posed and underdetermined scenarios.

3.1. Figure of Merit

Whenever A*] has full column rank, we are interested in the quality
of separation of x!*/(t) = 3% | xF! (t) into R unique rank-1 ele-

ments x.! (t) = alfl glH (t). The latter are obtained from the obser-



vations using x"’ (t) = plHx¥ (t), where the rank-1 ™) x 1% ma-
trices P! are oblique projections onto span(a[rk]) orthogonally to

all span(a[f] ), 7" # r, and can be computed directly from AR [33],

Similarly, %0’ ) = PlFIxl* (), via A", for their estimated coun-
terparts. We choose to quantify the quality of separation using the
normalized empirical mean square error (MSE)

T T

(K] -

MSE, = >[40 - <012/ Y Ik ol @
t=1 t=1

The use of scale-invariant projections obviates the need to normalize
the source samples in order to find an optimal match with the original
samples, in the performance analysis stage. Another motivation is
that scale-invariant projections are the natural way to deal with terms
of rank larger than one [33], see Section 2.2; scale-dependent objects
require normalization, which is not well-defined.

In the underdetermined case, when the sources cannot be sepa-
rated, we quantify the quality of blind identification, i.e., estimation
of each factor A*], using the relative error, defined as

|A™ — A

(k]
RelErr'™ = AT )

In order to correct the arbitrary permutation and scaling within each
estimate A*!, we use Tensorlab [30]’s function cpderr.

3.2. Experimental Setup

We compare our approach with two cumulant-based algorithms,
JADE [10] and GJD [9], both are prewhitening-based. We test our
proposed cross-cumulant diagonalization approach in two scenarios.
In the first, the factors are unconstrained. In the second, full col-
umn rank factors are constrained to be orthogonal (there is no added
value in orthogonality in underdetermined mixtures [34]). Both sce-
narios were implemented using CPD-based algorithms, which were
applied to the same whitened samples as the other algorithms. This
experimental setup allows us to compare the prewhitening-based al-
gorithms, as well as obtain some further insights about the potential
of the CPD for this task.

In order to compute the normalized empirical MSE (4) we first
have to align the estimated components w.r.t. their true values. As
explained in Section 1, for GJD and our proposed approach, only the
arbitrary permutation of the R rank-1 elements needs to be found.
For JADE, however, we must find this permutation individually for
each dataset. A wrong permutation results in significantly higher
MSE. In the following examples, since only K = 4 datasets are
involved, we detect this permutation by simple enumeration on all 4
or 4! combinations and picking up the best.

Since JADE uses fourth-order cumulants, our experimental
setup involves K = 4 datasets. Each dataset consists of R = 3
sources and 7 = 2 - 10° sampling points. The entries of Al¥l
are drawn independently from the standard normal distribution. We
generate non-Gaussian samples that follow the IVA model by defin-
ing, for each 7, two unit-variance independent symmetric Gaussian
mixture (GM) processes with peaks centred at 4/+/17, and then

(k]

combining them using ;' ~ UJ0,1], which is drawn indepen-

dently at each sample: st} = ag; . + (1 — al”)gs.,., where
91,7, 92, ~ GM. The resulting overall random process is nor-
malized to unit variance. In the following numerical experiments,
A are drawn once and kept fixed throughout M C' = 200 Monte

Carlo (MC) trials, in which source samples are drawn anew. We

‘<>CPD Ort‘h
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Fig. 2: Normalized MSE in ICA of K = 4 datasets using fourth-
order statistics. In each dataset, A*l € R®*® and R = 3 sources.
Error bars denote empirical standard deviation. The MSE of compo-
nent x*! is given at component index [r+ (k—1)R].
do not apply additive noise, so estimation error is only due to fi-
nite sample size. For JADE and GJD, we use online-available code’
with options “N2” and “whole” for GID. For CPD, we use a Ten-
sorlab [30] implementation with To1Fun= 1072, Tolx= 10712,
The unconstrained CPD is optimized using cpd_nls, where, for
each MC trial, we take the best out of 25 random initializations.
CPD with orthogonal factors is optimized using sdf_minf via
struct_orth, where the factors are initialized with random val-
ues (only once per trial).

1st experiment: Source separation in invertible mixtures. In
a first step, we validate proper functionality of our proposed ap-
proach in a basic setup of invertible A* € RF*® Vk. Figure 2
depicts the normalized empirical MSE in the estimation of each com-
ponent. For each pair (k, ), we removed trials for which at least one
type of algorithm did not achieve separation®. In this experiment,
two trials, which corresponds to component #7 in Figure 2, were
removed due to large error in unconstrained CPD.

2nd experiment: blind identification. In a second step, we
present the capability of the proposed method to achieve blind
identification of underdetermined mixtures. Consider the case of
AM ¢ R¥S k= 1,2,3. By straightforward counting of de-
grees of freedom, one can verify that ICA with R = 3 sources and
I¥ = 2 detectors is generally not unique and not identifiable if one
exploits only statistics up to order four and all data is in the real
domain (e.g., [35,36]). With our approach, however, this is possi-
ble. We guarantee the uniqueness of the CPD of our fourth-order
cross-cumulant tensor by setting A ¢ R3%3 [18]. Hence, this ex-
periment consists of three underdetermined ICA that cannot be iden-
tified by any fourth-order method and one ICA that can be solved by
ordinary JADE®. The GID algorithm [9] is not suitable for datasets
with underdetermined mixtures and is thus excluded from this exper-
iment. JADE can be applied only to the fourth dataset. The relative
error (5) for all K = 4 factors using CPD is depicted in Figure 3.
The normalized empirical MSE in the estimation of all rank-1 com-
ponents in the 4th dataset using JADE and CPD is given in Figure 4.

Thttp://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR..m,
http://mlsp.umbc.edu/codes/jbss_cum4.m

2With certain draws of A [¥] , both orthogonal and unconstrained CPD did
often not converge to a desired solution, regardless of initialization. This
matter deserves to be further looked into. For the examples in this paper,
only data with no estimation issues were selected.

3In fact, stronger uniqueness is generally possible. For example, there
are enough degrees of freedom already at two underdetermined mixtures and
fourth-order statistics. In addition, a mixing matrix that can be estimated
individually may be regarded as a known factor in the ensemble.
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Fig. 4: Normalized MSE in ICA of K = 4 datasets, each with
R = 3 sources. AF=1231 ¢ R2x3 AM ¢ R3%3 Here, we
depict the MSE only for k = 4.

3.3. Discussion of Numerical Results

The small values of MSE and relative error in Figures 2, 3 and 4
imply successful separation and blind identification. JADE is the al-
gorithm that makes an overall most efficient use of the fourth-order
statistics within each dataset and indeed, it achieves the best MSE.
The fact that GJD performs worse than JADE deserves to be further
looked into. We point out that [8, 9] did not compare with JADE.
Orthogonally-constrained CPD consistently performs better than the
unconstrained CPD, and pretty close to GJD. Given that CPD uses
less statistical information than GJD, this is an encouraging indica-
tion to the usefulness of the proposed approach. The rather poor
performance of unconstrained CPD cannot be explained just by the
difference between non-orthogonal vs. prewhitening-based methods.
In fact, when testing unconstrained CPD on non-prewhitened sam-
ples, its performance was even worse. A possible explanation may
be the larger number of variables to estimate in unconstrained fac-
tors, compared with fewer ones when orthogonality is imposed. In
addition, the cost function of CPD is different than directly mini-
mizing off-diagonal values, a matter than may be more significant in
large sample perturbation. Other algorithms (Section 2.1) may per-
form better. Therefore, although unconstrained CPD achieves the
smallest residual error in estimating the original cumulant tensor, it
may not be the best candidate for our approach compared with other
tensor diagonalization methods. This matter deserves to be further
looked into. The fact that orthogonality constraints are void in the

underdetermined scenario explains why the relative error is similar
for both types of CPD in the first three factors in Figure 3. The
performance of the proposed approach may be enhanced by cou-
pling with SOS [10, Sec. 4.2] or with other (cross-) cumulants that
carry complementary information. It is interesting to observe where
the trade-off between different types of combinations of statistics is,
both in terms of error and in computational cost.

The overall conclusion from these experiments is that our
paradigm is correct, and that our cross-cumulant tensor diagonal-
ization approach indeed successfully exploits statistical links among
datasets to achieve blind identification of underdetermined mixtures
even in “adverse” scenarios, when the order of statistics is limited
and individual ICA is impossible. However, for more conclusive
statements about the usefulness of our proposed approach w.r.t. state
of the art, these preliminary numerical results serve only as a proof
of concept, and require further theoretical and experimental support.

4. CONCLUSION

In this paper, we have shown that factorizing a cross-cumulant ten-
sor of several datasets can achieve simultaneous ICA of all in-
volved mixtures, if certain conditions hold. We explained how
cumulant-based IVA may achieve uniqueness of the ensemble that
exceeds that of individual underlying datasets, extending previous
results on SOS-IVA. We have shown analytically that using cross-
cumulants provides, asymptotically, resilience to dataset-specific
noise. The proposed approach relies directly on the strong unique-
ness of CPD/BTD. Even stronger uniqueness, identifiability and in-
terpretability may be achieved by coupling several arrays, adding
types of diversity (e.g., nonstationarity), various assumptions and
constraints within and among datasets. The proposed approach mo-
tivates multiset variants of tensor-based ICA methods such as JADE,
its higher-order generalizations [37, 38], or methods based on the
characteristic function [39] to use this cross-cumulant concept to
achieve stronger uniqueness.
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