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2016 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Daejeon, South Korea, October 2016

Burak Yüksel1, Gabriele Buondonno2 and Antonio Franchi3

INTRODUCTION

This document is a technical attachment to [1] for explicit
proofs of the propositions (Sec. I), and the detailed computa-
tion of the system dynamics (Sec. II). Furthermore, here we
also provide extensive simulation results for [1] in Section III.

Aerial manipulators are an example of aerial vehicles phys-
ically interacting with the external environment. For the reader
interested in this rapidly expanding and broad topic we also
suggest the reading of [2], where a force nonlinear observer
for aerial vehicles is proposed, of [3], where an IDA-PBC
controller is used for modulating the physical interaction of
aerial robots, of [4], [5] where fully actuated platforms for
full wrench exertion are presented, of [6]–[8] where the capa-
bilities of exerting forces with a tool are studied, and of [1],
[9], [10] where aerial manipulators with elastic-joint arms
are modeled and their controllability properties discovered.
Another example of physical interaction are tethered aerial
vehicles, the interested reader is referred to [11], [12], where
flatness, controllability and observability is studied, to [13]
where the case of a moving base is thoroughly analyzed,
to [14], [15] where the case of multiple tethered vehicles is
investigated, and to [16] where a passive tether is used for
robust landing on sloped surfaces.

I. PROOFS OF THE PROPOSITIONS

Recall the proposition in Case R (Sec. III) of [1]:

Proposition 1. y = [pT
0 qT

r ]
T ∈ R(n+2) is a flat output of the

system described in (7) of [1]. It is necessary that y is 4
times differentiable. Equivalently, the total relative degree is
r = 4n+8.
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A. Proof of Proposition 1

Consider the CoM position of the overall system

pc =
1

ms

(
m0p0 +

m

∑
j=1

( n j

∑
i=1

(mi j pi j +mmi j pmi j )
))

. (1)

Hence, the implicit dependency of pc can be given as pc =
pc(p0,qr) = pc(y). Notice that

msp̈c =

[
−sin(θ0)
−cos(θ0)

]
ut +

[
0

msg

]
. (2)

We then define the vector w = w(y, ẏ, ÿ) = p̈c − [0 g]T =
[wx wz]

T ∈R2, which is a function of flat outputs. It is clear that
w =− ut

ms
[sin(θ0) cos(θ0)]

T . Therefore θ0 = atan2(−wx,−wz)
and ut = ms||w||. Furthermore, differentiating θ0(wx,wz) we
obtain θ̇0(wx,wz, ẇx, ẇz) and θ̈0(wx,wz, ẇx, ẇz, ẅx, ẅz), which
are all functions of the derivatives of pc from the second up
to the fourth order.

Now considering the rotational dynamics of the last link of
each manipulator, we can retrieve the nµ -th motor torque as

τnµ = mT
0nµ (θ0nµ )p̈0 +

nµ−1

∑
l=1

mlnµ (θ0lµ ,θ0nµ )θ̈0lµ+

+Jnµ θ̈0nµ + crnµ (qrµ , q̇rµ )+grnµ (θ0nµ ), (3)

where crnµ and grnµ are the nµ -th elements of vectors cr and
gr, which are corresponding to the Coriolis and gravitational
forces acting on the center of the n-th link of the µ-th
manipulator, respectively (See Sec. II-C for the details). Hence,
τnµ can be represented solely as a function of the flat outputs
y and of its time derivatives ẏ, ÿ.

Starting from the last joint, we can recursively compute
all the joint torques of the µ-th arm as functions of the flat
outputs up to their final derivative. This means we can write
the control torque of the ν-th joint of the µ-th manipulator in
form of τνµ = τνµ (y, ẏ, ÿ), and νµ = {1,2, · · · ,nµ}, using

τνµ = τνµ+1 +mT
0νµ (θ0νµ )p̈0 + cr

νµ (qrµ , q̇rµ )+Jνµ θ̈0νµ+

+gr
νµ (θ0νµ )+

nµ

∑
l=1,l 6=νµ

mlνµ (θ0lµ ,θ0νµ )θ̈0lµ , (4)
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where it is clear that for νµ = nµ , τνµ+1 = 0, because the
(nµ +1)-th motor does not exist. In this way, one can compute
all the input torques of all the manipulators, until the very first
ones, as functions of sole flat outputs and their finite numbers
of derivatives. Hence, τ1µ will also be the sole function of
the flat outputs as well. Then we can utilize τ1µ in the third
equation of the system dynamics to compute ur:

ur = J0θ̈0 +
m

∑
j=1

τ1 j −dGx ut . (5)

Notice that θ0 and ut have been computed above as functions
of the flat output and a finite number of its derivatives only.
Hence this holds for ur too. Since θ̈0 is a function of

....y , then
so is ur, implying the relative degree of the system is four
times the dimension of y, i.e. r = 4(2+n) = 8+4n (see also
Sec. V of [1]). This concludes the the proof.

B. Proof of Proposition 2

Recall the proposition in Case E (Sec. IV) of [1]:

Proposition 2. y = [pT
0 qT

rr ]
T ∈ R(n+2) is a flat output of the

system described in (12) of [1].

The proof is analogous to that of Proposition 1. Knowing the
fact that the CoM position of the overall system, given in (1)
and its dynamics as in (2) are sole functions of the flat outputs
and derivatives, we can write again θ0 = atan2(−wz,−wx) and
ut =ms||w||. Furthermore, differentiating θ0(wx,wz) we obtain
θ̇0(wx,wz, ẇx, ẇz) and θ̈0(wx,wz, ẇx, ẇz, ẅx, ẅz), which are all
functions of the derivatives of pc from the second up to the
fourth order.

Assume that all elastic joints are linear. Consider the µ-th
manipulator, and let’s focus on the torque input of its last
joint, i.e., τnµ . If this last joint is rigid, then its expression is
identical to (3), while θm0nµ is clearly undefined. If instead this
last, i.e., nµ -th joint is elastic, then we first need to compute
θm0nµ . This can be written from its link-side dynamics as

θm0nµ = θ0nµ +
1

kenµ

(
mT

0nµ (θ0nµ )p̈0+grnµ +crnµ (qrµ , q̇rµ )+

+
nµ−1

∑
l=1

mlnµ (θ0lµ ,θ0nµ )θ̈0lµ +(Jnµ − Jmnµ )θ̈0nµ

)
. (6)

Notice the similarity between this and (3). Hence, θm0nµ is
represented as a function of flat outputs and derivatives. Then,
τnµ is available from the last equation of the system dynamics
of the µ-th manipulator:

τnµ = Jnµ θ̈m0nµ + kenµ θm0nµ − kenµ θ0nµ , (7)

where θm0nµ and its derivatives are available from (6). Hence,
we see that τnµ can always be represented as a function of
flat outputs and derivatives, together with θ0nµ even when the
nµ -th joint (last joint of the µ-th manipulator) is elastic.

Now, let’s focus on the generic link νµ < nµ . We can
proceed recursively from top to bottom, assuming we have
already computed τνµ+1. If the νµ -th link is rigid, then its
expression is identical to (4) and θm0νµ is not defined. If it

is elastic, we first need to compute θm0νµ . This can be done
with:

θm0νµ = θ0νµ +
1

ke
νµ

(
τνµ+1 +mT

0νµ (θ0νµ )p̈0+

+
nµ

∑
l=1,l 6=νµ

mlνµ (θ0lµ ,θ0νµ )θ̈0lµ +

+(Jνµ − Jm
νµ )θ̈0νµ +gr

νµ (θ0νµ )+ cr
νµ (q̇rµ ,qrµ )

)
. (8)

Again, notice the similarity with (4). We observe that (8) can
also be employed for νµ = nµ , simply setting the non-existing
τnµ+1 equal to zero. Then, τνµ can be easily computed from

τνµ = Jνµ θ̈m0νµ + ke
νµ θm0νµ − ke

νµ θ0νµ , (9)

which can be directly employed also for νµ = nµ .
Until this point, we showed that all control torques of the

µ-th robotic arm, regardless of their connection type (rigid or
elastic), can be represented as sole functions of flat outputs
and their derivatives. This means that the equations above are
valid for the each robotic arm. Now, finally from the third
equation of the system dynamics we retrieve

ur = J0θ̈0 +
m

∑
j=1

τ1 j −dGx ut , (10)

in which τ1µ is utilized from either (4) or (9), depending on
the type of the actuation. Moreover θ̈0 and ut are available
from previous computations. Hence, PVTOL torque is also
represented using only the flat outputs. This concludes the
sketch of the proof.

Remark 1. Notice the different relative degree of the depen-
dencies of τνµ given in (9) on the flat outputs for different
values of νµ . Assume for instance that both the (nµ − 1)-th
and the nµ -th link are elastic. Then from bottom to top,
• First: from (7), we see that τnµ is a function of θ̈m0nµ ;

while θm0nµ is a function of p̈0 and q̈rµ , making τnµ itself
a function of

....p 0 and
....q rµ .

• Second: from (7), τnµ−1 is a function of θ̈m0(nµ−1)
. But

in (8), from recursion, θm0(nµ−1)
is a function of τnµ ,

making θ̈m0(nµ−1)
, and thus τnµ−1, a function of τ̈nµ .

Knowing from the fist step above τnµ is a function of
....p 0 and

....q rµ , we find τnµ−1 as a function of p(6)
0 and

q(6)
rµ , which are the sixth time derivatives.

In general, for a fully elastic manipulator, an increase of two
relative degrees per link is to be expected.

Remark 2. We notice that the orientation of the PVTOL,
i.e., θ0, is not part of the flat outputs, conceivably due to
the under-actuation of the flying robot. This motivated us
to use the absolute representation of the manipulator joint
angles, which makes the control torques appear recursively
in the manipulator dynamics. Notice from the remark above
that while this is not a problem for Case R, for Case E this
increases the relative degrees.

Hence it is worth noting that using a fully actuated aerial
robot might be beneficial if manipulators with compliant
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actuators are to be used for specific tasks, e.g., safe physical
interaction. This does not apply of course if the robotic arm is
rigidly actuated. Further study on this remark is in the scope
of our future studies.

From Remark 1, it is possible to compute the relative degree
of the overall system. Recalling that kµ is the number of elastic
joints in link µ , and defining k̃µ = max(1,kµ), then

r = 4+4 max
µ

k̃µ +
m

∑
µ=1

(2+2k̃µ)nµ (11)

where it can be seen a quadratic dependence on the number
of elastic joints. The term max

µ
k̃µ returns the value k̃µ for the

manipulator arm with the highest number of elastic joint. For
a better understanding, let us give the following examples:

Example 1. Protocentric Aerial Manipulator (PAM) with m
number of manipulator arms, each having only rigid actuators.
Notice that this actually corresponds to Case R. Since there are
no compliant actuators, k = kµ = max

µ
k̃µ = 0, and so k̃µ = 1.

Then (11) becomes r = 4+4+4n = 8+4n, which is a perfect
match to Sec. I-A.

Example 2. PAM with m number of manipulator arms,
each having some rigid actuators and each having only one
compliant actuator. This means that kµ = 1. Then k̃µ = 1, and
it means r = 4 + 4 + 4n = 8 + 4n. This means that if each
manipulator has only one elastic joint, then the total relative
degree is the same with the case if all joints were rigid (this
result is in line with that of [9]).

Example 3. PAM with 2 number of manipulator arms with
mixed rigid-/elastic- joints. Let’s say for the first arm it is
n1 = 5,k1 = 4 and for the second one it is n2 = 7,k2 = 3.
This is a highly complicated PAM, with two arms in total 12
actuators and links, and 7 compliant joints. Then we see that
max

µ
k̃µ = 4. Hence the total relative degree of the system is

r = 4+4∗4+(2+2∗4)∗5+(2+2∗3)∗7 = 126.

II. COMPUTATION OF THE SYSTEM DYNAMICS

A. Time-Varying Coordinates of the system components

Let us start with the positions and the orientations of the
elements of the robotic system, which consist of a PVTOL
equipped with m fully actuated manipulators; the µ-th ma-
nipulator has nµ DoFs. Then the absolute orientation of the
νµ -th joint will be θ0νµ = θ0 + ∑

νµ

i=1 θiµ . For example, the
absolute orientation of the second link of the third manipulator
will be θ023 = θ0 + θ13 + θ23 . Moreover, the rotation matrix
corresponding to θ0νµ will be R(θ0νµ ) = R0(θ0)∏

νµ

i=1 Ri(θiµ ),
where for θ∗ ∈ R it is

R∗ =
(

cosθ∗ sinθ∗
−sinθ∗ cosθ∗

)
∈ SO(2).

Then we can write the following distance vectors

pG = p0 +R0dG

pnµ = p0 +R01µ d̄1µ + · · ·+R0(nµ−1)d̄(nµ−1)+R0nµ dnµ

= p0 +
nµ−1

∑
i=1

R0iµ d̄iµ︸ ︷︷ ︸
:=0, i f nµ=1

+R0nµ dnµ

peµ = p0 +
nµ

∑
i=1

R0iµ d̄iµ ,

where d̄i = di + d̃i, i = {1,2, ...,nµ}, and for the motors,

pmnµ = p0 +R01µ d̄1µ +R02µ d̄2µ + · · ·+R0(nµ−1)d̄(nµ−1)

= p0 +
nµ−1

∑
i=1

R0iµ d̄iµ︸ ︷︷ ︸
:=0, i f nµ=1

.

Notice that this is due to the Assumption A.3 of [1]. The
following gives the linear velocities for the νµ -the link and
motor, and the end-effector

ṗνµ = ṗ0 +
νµ−1

∑
i=1

R̄0iµ d̄iµ θ̇0iµ︸ ︷︷ ︸
:=0, i f νµ=1

+R̄0νµ dνµ θ̇0νµ

ṗm
νµ = ṗ0 +

νµ−1

∑
i=1

R̄0iµ d̄iµ θ̇0iµ︸ ︷︷ ︸
:=0, i f νµ=1

ṗeµ = ṗ0 +
nµ

∑
i=1

R̄0iµ d̄iµ θ̇0iµ ,

where from the definition νµ = {1,2, · · · , i, · · · ,nµ}, and
R̄∗ = ∂R∗

∂θ∗
.

B. Energies and the Inertia Matrix

Now we can write the energy of the system. We start by
considering rigid manipulators. The kinetic energy is

K =
1
2

m0ṗT
0 ṗ0 +

1
2

J0θ̇
2
0︸ ︷︷ ︸

PVTOL base

+ Km︸︷︷︸
manipulators

, (12)

where

Km =
m

∑
j=1

(
1
2

n j

∑
i=1

(
mi j ṗT

i j ṗi j +mmi j ṗ
T
mi j

ṗmi j +(Ji j +Jmi j )θ̇
2
0i j

))
.

The potential energy is

V =−gm0p0.e2−g
m

∑
j=1

(
n j

∑
i=1

[
mi j pi j +mmi j pmi j

])
.e2, (13)

where e2 = [0 1]T . Let us now write the well known Lagrange
equation

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= f = Gu, (14)
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where L = K−V , can be computed using above. It is clear
that using K = 1

2 q̇T M(q)q̇ we can find the inertia matrix as

M =

(
Mp ∗
Mpr Mr

)
= MT ∈ R(3+n)×(3+n), (15)

where

Mp =

ms ∗ ∗
0 ms ∗
0 0 J0

= MT
p ∈ R3×3

is the pvtol-side inertia matrix; the sum ms of all masses is
given by

ms = m0 +
m

∑
j=1

( n j

∑
i=1

mi j +mmi j

)
.

The arm-side inertia matrix is

Mr =


Mr1 ∗ · · · ∗

0 Mr2 · · · ∗
...

...
. . .

...
0 0 · · · Mrm

= MT
r ∈ Rn×n,

where for the µ-th manipulator it is

Mrµ =


J1µ ∗ · · · ∗

m12µ (θ01µ ,θ02µ ) J2µ · · · ∗
...

...
. . . ∗

m1nµ (θ01µ ,θ0nµ ) m2nµ (θ02µ ,θ0nµ ) · · · Jnµ


= MT

rµ ∈ Rnµ×nµ

.

For the ν-th joint of the µ-th manipulator it is

Jνµ = Jνµ + Jm
νµ +mνµ ααα

T
νµ ααανµ +

nµ

∑
i=νµ+1

(mi +mmi)ᾱαα
T
νµ ᾱαανµ︸ ︷︷ ︸

:=0, if ν=nµ

,

ν
µ = {1, ...,nµ}

,

and for the coupling between the ν-th and ξ -th joints of the
µ-th manipulator it is

mνξ µ (θ0νµ ,θ0ξ µ ) = mξ µ ᾱαα
T
νµ αααξ µ +

nµ

∑
i=ξ µ+1

(mi +mmi)ᾱαα
T
νµ ᾱααξ µ︸ ︷︷ ︸

:=0, i f ξ µ=nµ

,

ν
µ = {1, ...,nµ −1},

ξ
µ = {1, ...,nµ}, ν

µ < ξ
µ

ααανµ (θ0νµ ) = R̄(θ0νµ )dνµ

ᾱαανµ (θ0νµ ) = R̄(θ0νµ )d̄νµ .

Notice that Jνµ is state independent. The coupling term
between the PVTOL and the arm side inertia is given with
the following,

Mpr =
(

MT
pr1 MT

pr2 · · · MT
prm

)T
∈ Rn×3,

where for the µ-th manipulator it is

Mprµ =


mT

01µ (θ01µ ) 0
mT

02µ (θ02µ ) 0
mT

03µ (θ03µ ) 0
...

...
mT

0nµ (θ0nµ ) 0

 ∈ Rnµ×3.

For the ν-th joint of the µ-th manipulator:

m0νµ (θ0νµ ) = mνµ ααανµ +
nµ

∑
i=νµ+1

(mi +mmi)ᾱαανµ︸ ︷︷ ︸
:=0, i f νµ=nµ

∈ R2×1.

This completes the computation of the generalized inertia
matrix.

C. Gravitational and Coriolis/Centrifugal Forces

Since L = K−V , we can write

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
=Mq̈+Ṁq̇− ∂L

∂q︸ ︷︷ ︸
c+g

=Mq̈+Ṁq̇− ∂K
∂q︸ ︷︷ ︸

c

+
∂V
∂q︸︷︷︸

g

= f.

Hence from the fact that g = ∂V
∂q and using (13) we can find

the gravitational forces as presented in [1].
The Coriolis/centrifugal forces are shown above as

c = Ṁq̇− ∂K
∂q

. (16)

For the first term of the right side of the equality, we have the
following

Ṁ =

(
Ṁp ∗
Ṁpr Ṁr

)
= ṀT ∈ R(3+n)×(3+n),

Ṁpr =


Ṁpr1

Ṁpr2

...
Ṁprm

 ∈ Rn×3,

where

Ṁp = 03, Ṁprµ =


ṁ01µ (θ01µ )T 0
ṁ02µ (θ02µ )T 0
ṁ03µ (θ03µ )T 0

...
...

ṁ0nµ (θ0nµ )T 0

 ∈ Rnµ×3,

and

Ṁr =


Ṁr1 ∗ · · · ∗

0 Ṁr2 · · · ∗
...

...
. . .

...
0 0 · · · Ṁrm

= ṀT
r ∈ Rn×n,

where

Ṁrµ =


0 ∗ · · · ∗

ṁ12µ (θ01µ ,θ02µ ) 0 · · · ∗
...

...
. . . ∗

ṁ1nµ (θ01µ ,θ0nµ ) ṁ2nµ (θ02µ ,θ0nµ ) · · · 0


= ṀT

rµ ∈ Rnµ×nµ

.
(17)

For the second term of the equality in (16), we put the kinetic
energy in the following form

K =
1
2

q̇T Mq̇ = K0 +K1 +K2, (18)
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where

K0 =
1
2

msṗT
0 ṗ0 +

1
2

J0θ̇
2
0 +

m

∑
j=1

1
2

n j

∑
i=1

Ji j θ̇
2
0i j

K1 =
m

∑
j=1

ṗT
0

n j

∑
i=1

m0i j θ̇0i j

K2 =
m

∑
j=1

n j−1

∑
l=1

( n j

∑
i=l+1

mli j θ̇0l j θ̇0i j

)
.

(19)

Now remember that ∂K
∂q = ∂K0

∂q + ∂K1
∂q + ∂K2

∂q . It is clear that
∂K0
∂q = 0(n+3)×1. Moreover notice the following equality

∂K1

∂q
=



0
0
0

ṗT
0 ṁ011

...
ṗT

0 ṁ0n1

...
...

ṗT
0 ṁ01m

...
ṗT

0 ṁ0nm



=

(
Ṁp
Ṁpr

)
q̇p. (20)

Recalling that

Ṁq̇ =

(
Ṁp
Ṁpr

)
q̇p +

(
ṀT

pr
Ṁr

)
q̇r, (21)

we have

c = Ṁq̇− ∂K
∂q

=

(
ṀT

pr
Ṁr

)
q̇r−

∂K2

∂q
=

∑
m
j=1 ∑

n j

i=1 m̄0i j θ̇
2
0i j

0
cr(qr, q̇r)

 ∈ R(3+n)×1,

(22)

where m̄0i j =
∂m0i j
∂θ0i j

∈ R2×1; noticing that ∂ R̄∗
∂θ∗

=−R∗ :

m̄0νµ (θ0νµ ) = mνµ α̃αανµ +
nµ

∑
i=νµ+1

(mi +mmi)
¯̄ααανµ︸ ︷︷ ︸

:=0, i f νµ=nµ

∈ R2×1,

ν
µ = {1, ...,nµ}

α̃αανµ (θ0νµ ) =−R(θ0νµ )dνµ

¯̄ααανµ (θ0νµ ) =−R(θ0νµ )d̄νµ ,

and cr(qr, q̇r) ∈Rn is the arm side Coriolis forces in the form
of

cr(qr, q̇r) = [cT
r1(qr1 q̇r1) · · · ,cT

rm(qrm q̇rm)]T ∈ Rn.

Now, from (19) we can write K2 = ∑
m
j=1 K2 j and for the µ-th

manipulator it is K2µ = 1
2 q̇T

rµ Brµ q̇rµ , where

Brµ = Mrµ −diag{J1µ ,J2µ , · · · ,Jnµ}

=


0 ∗ · · · ∗

m12µ (θ01µ ,θ02µ ) 0 · · · ∗
...

...
. . . ∗

m1nµ (θ01µ ,θ0nµ ) m2nµ (θ02µ ,θ0nµ ) · · · 0


= BT

rµ ∈ Rnµ×nµ

.

Then we can write for the µ-th component of cr

crµ (qrµ , q̇rµ ) = Ṁrµ q̇rµ − ∂K2µ

∂qrµ

= Ṁrµ q̇rµ − 1
2

∂

(
q̇T

rµ Brµ q̇rµ

)
∂qrµ

,

(23)

where Ṁrµ is available from (17). Then we computed the
followings

Ṁrµ q̇rµ =


0+∑

nµ

i=2 ṁ1iµ θ̇0iµ

ṁ12µ θ̇01µ +∑
nµ

i=3 ṁ2iµ θ̇0iµ

ṁ13µ θ̇01µ + ṁ23µ θ̇02µ +∑
nµ

i=4 ṁ3iµ θ̇0iµ

...
∑

nµ−1
i=1 ṁinµ θ̇0iµ +0

 , (24)

and

∂K2µ

∂qrµ

=



0+∑
nµ

i=2
1m̄1iµ θ̇0iµ θ̇01µ(

2m̄12µ θ̇01µ +∑
nµ

i=3
2m̄2iµ θ̇0iµ

)
θ̇02µ(

3m̄13µ θ̇01µ + 3m̄23µ θ̇02µ +∑
nµ

i=4
3m̄3iµ θ̇0iµ

)
θ̇03µ

...
∑

nµ−1
i=1

nµ

m̄inµ θ̇0iµ θ̇0nµ +0


,

(25)
where km̄kl =

∂mkl(θ0k,θ0l)
∂θ0k

(note that here k = νµ and l = ξ µ ),
and

km̄kl(θ0k,θ0l) = ml ¯̄αααT
k ααα l +

n

∑
i=l+1

(mi +mmi)
¯̄αααT

k ᾱαα l︸ ︷︷ ︸
:=0, i f l=n

if k < l

km̄kl(θ0k,θ0l) = mkᾱαα
T
l α̃ααk +

n

∑
i=k+1

(mi +mmi)ᾱαα
T
l

¯̄αααk︸ ︷︷ ︸
:=0, i f k=n

if k > l

αααk(θ0k) = R̄(θ0k)dk

α̃ααk(θ0k) =−R(θ0k)dk

ᾱααk(θ0k) = R̄(θ0k)d̄k

¯̄αααk(θ0k) =−R(θ0k)d̄k,
(26)

with R̄∗ = ∂R∗
∂θ∗

and we have used ∂ R̄∗
∂θ∗

= −R∗. Now utiliz-
ing (24) and (25) in (23), one can write the ν-th element of
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crµ as

cr
νµ =

νµ−1

∑
i=1

(
ṁiνµ − νµ

m̄iνµ θ̇0νµ

)
θ̇0i+

+
n

∑
i=νµ+1

(
ṁνµ i− νµ

m̄νµ iθ̇0νµ

)
θ̇0i,

which is equivalent to

cr
νµ = ∑

i=1...nν , i 6=νµ

(
ṁiνµ − νµ

m̄iνµ θ̇0νµ

)
θ̇0i

= ∑
i=1...nµ , i 6=νµ

im̄iνµ θ̇
2
0i.

(27)

This actually means that due to the A.2 of [1] there are no
Coriolis forces appearing from the motion of one arm to an-
other. Moreover, since we choose the absolute orientations as
the generalized coordinates, cr

νµ contains only the centrifugal
terms.

D. Control Input Matrix

In the paper, [1], we have presented the generalized body-
fixed forces f = Gu, which appear in Equation (14) of this
technical report. The corresponding control input matrix is

G =

(
Gp 02×n
Gd Gr

)
∈ R(n+3)×(n+2),Gp =

(
−sin(θ0) 0
−cos(θ0) 0

)
Gd =

(
dGx 1
0n×1 0n×1

)
∈ R(n+1)×2,Gr =

(
Grp
Grr

)
∈ R(n+1)×n,

where

Grp =
[
−1 01×(n1−1) · · · −1 01×(nm−1)

]
∈ R1×n,

Grr =

Grr1 · · · ∗
...

. . .
...

0 · · · Grrm

 ∈ Rn×n,

Grrµ =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1
0 0 0 · · · 0 1

 ∈ Rnµ×nµ

.

E. Clarifying Examples for Case E:

For the Case E of [1] we have defined and used sets for
generating the system dynamics, based on the one we did for
Case R. There, we have defined the matrices SNµ ∈ Rnµ×nµ

and SKµ ∈Rkµ×nµ

. Let us fix the idea by giving the following
examples:

Example 4. Say that Nµ = {1,2,3,4} and Kµ = {2,4}. Define
a vector, say vµ = [v1µ v2µ v3µ v4µ ]T ⊂ Nµ . Then the matrix

SNµ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

= ST
Nµ ∈ Rnµ×nµ

Parameters Notation Value Unit
PVTOL mass m0 1 kg
PVTOL inertia J0 0.015 kgm2

dis. vec. betw. PC0 & PG dG [0 0.1]T m
partial distance of one link dνµ [0 0.1]T m
partial distance of one link d̃νµ [0 0.1]T m
mass of one link mνµ 0.2 kg
inertia of one link Jνµ 0.0007 kgm2

mass of one motor mm
νµ 0.05 kg

inertia of one motor Jm
νµ 0.0003 kgm2

parametric deviations δ 2 %
3-sigma Gauss. noise in pos. 3σp 0.001 m
3-sigma Gauss. noise in vel. 3σv 0.005 m/s
3-sigma Gauss. noise in θ0. 3σ0 0.01 rad
3-sigma Gauss. noise in θ̇0. 3σd0 0.1 rad/s
3-sigma Gauss. noise in qr . 3σr 0.001 rad
3-sigma Gauss. noise in q̇r . 3σdr 0.005 rad/s
Sampling of lin. pos. and vel. - 100 Hz
Sampling of angle and ang. vel. - 500 Hz

TABLE I: Summary of the parameters used in the simulations. The
parameters employed by the controller are all subject to a random
parametric deviation within ±2%.

will select the 2-nd and 4-th components of the vector vµ ,
using v̄µ = SNµ v = [0 v2µ 0 v4µ ]T ⊂ Nµ .

Example 5. Similar to the same example as above, let’s say
Nµ = {1,2,3,4} and Kµ = {2,4}. Define a vector, say vµ =
[v1µ v2µ v3µ v4µ ]T ⊂ Nµ . Then the matrix

SKµ =

(
0 1 0 0
0 0 0 1

)
∈ Rkµ×nµ

can be used to select 2-nd and 4-th elements of vµ and put
them in order, using v̄µ = SKµ vµ = [v2µ v4µ ]T ⊂ Kµ .

Example 6. Say, Nµ = {1,2,3,4,5,6,7} and Kµ = {1,5,7}.
It means that the µ-th manipulator has 7 DoF and three of the
motors are connected to their links via some elastic elements,
which are the first, fifth and the seventh ones. Then we say
{κµ = 3}= 7, is the third elastically connected motor, which
corresponds to the seventh joint/motor of the µ-th robotic
arm. So, we can say e.g. its absolute motor orientation is
θm0{κµ=3} = θm07µ .

III. DETAILS OF THE SIMULATIONS

The system parameters and the deviations used in the sim-
ulations are given in Table I. Moreover, additional simulation
results are given in in Fig 1, which is also provided in the
video attachment of [1]. There, a grasping task is chosen for
the robot. This is divided in 5 phases: i) PVTOL+2 arm
robot follows a desired trajectory on the plane ii) The arm
configuration is changed iii) Another trajectory is followed
with the latest arm configuration iv) The two arms grasp two
individual point mass objects, with no information on their
mass for the controller side (each are 0.25kg), v) The robot
flies away with the unknown object. In this simulation, 2% of
parametric uncertainty for mass, inertia and distance parame-
ters is used, while no noise is added to the measurements. A
more composite simulation result with parametric uncertainty,
noise and the quantizations in the measurements can be found
in [1].
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Fig. 1: Simulation results of grasping two individual objects using PVTOL+2 manipulator arms. Notice that each plot (except the third one
of the first row) is divided into five different parts. Each part belongs to a different task, as also shown in the video attachment of [1]. The
first plot on the first row depicts the PVTOL CoM position and orientation, where the desired trajectories are shown with dashed (starred)
curves. The second figure on the first row shows the two end-effector positions of the robot while it is performing the whole task. Notice that
the effect of the unknown grasped masses on the end-effector positions is negligible. The third figure is showing the robot configurations at
different time instants, where the black circle stands for the PVTOL CoM, the blue circles are the motor/joint positions of the arms, and the
triangles are for the end-effectors of the arms, given with different colors. In the second row, the first two plots are showing the absolute link
orientations of different robotic arms, where the desired trajectories are given with dashed (starred) curves. We also give here the magnified
version of the individual plots, at the time of grasping. Finally, the last plot shows the control inputs of the system, where thrust input is
given on the top, separately.
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