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INTRODUCTION

This document is a technical attachment to [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] for explicit proofs of the propositions (Sec. I), and the detailed computation of the system dynamics (Sec. II). Furthermore, here we also provide extensive simulation results for [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] in Section III. Aerial manipulators are an example of aerial vehicles physically interacting with the external environment. For the reader interested in this rapidly expanding and broad topic we also suggest the reading of [START_REF] Yüksel | A nonlinear force observer for quadrotors and application to physical interactive tasks[END_REF], where a force nonlinear observer for aerial vehicles is proposed, of [START_REF]Reshaping the physical properties of a quadrotor through IDA-PBC and its application to aerial physical interaction[END_REF], where an IDA-PBC controller is used for modulating the physical interaction of aerial robots, of [START_REF] Rajappa | Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers[END_REF], [START_REF] Ryll | Modeling and control of FAST-Hex: a fully-actuated by synchronized-tilting hexarotor[END_REF] where fully actuated platforms for full wrench exertion are presented, of [START_REF] Mohammadi | Cooperative aerial tele-manipulation with haptic feedback[END_REF]- [START_REF] Gioioso | A forcebased bilateral teleoperation framework for aerial robots in contact with the environment[END_REF] where the capabilities of exerting forces with a tool are studied, and of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF], [START_REF] Yüksel | Aerial robots with rigid/elasticjoint arms: Single-joint controllability study and preliminary experiments[END_REF], [START_REF] Yüksel | Design, identification and experimental testing of a light-weight flexiblejoint arm for aerial physical interaction[END_REF] where aerial manipulators with elastic-joint arms are modeled and their controllability properties discovered. Another example of physical interaction are tethered aerial vehicles, the interested reader is referred to [START_REF] Tognon | Nonlinear observer-based tracking control of link stress and elevation for a tethered aerial robot using inertial-only measurements[END_REF], [START_REF]Dynamics, control, and estimation for aerial robots tethered by cables or bars[END_REF], where flatness, controllability and observability is studied, to [START_REF] Tognon | Observer-based control of position and tension for an aerial robot tethered to a moving platform[END_REF] where the case of a moving base is thoroughly analyzed, to [START_REF] Tognon | Control of motion and internal stresses for a chain of two underactuated aerial robots[END_REF], [START_REF]Nonlinear observer for the control of bi-tethered multi aerial robots[END_REF] where the case of multiple tethered vehicles is investigated, and to [START_REF] Tognon | Takeoff and landing on slopes via inclined hovering with a tethered aerial robot[END_REF] where a passive tether is used for robust landing on sloped surfaces.

I. PROOFS OF THE PROPOSITIONS

Recall the proposition in Case R (Sec. III) of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]:

Proposition 1. y = [p T 0 q T r ] T ∈ R (n+2
) is a flat output of the system described in [START_REF] Gioioso | The Flying Hand: a formation of uavs for cooperative aerial tele-manipulation[END_REF] of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]. It is necessary that y is 4 times differentiable. Equivalently, the total relative degree is r = 4n + 8.

A. Proof of Proposition 1

Consider the CoM position of the overall system

p c = 1 m s m 0 p 0 + m ∑ j=1 n j ∑ i=1 (m i j p i j + m m i j p m i j ) . (1) 
Hence, the implicit dependency of p c can be given as p c = p c (p 0 , q r ) = p c (y). Notice that

m s pc = -sin(θ 0 ) -cos(θ 0 ) u t + 0 m s g . (2) 
We then define the vector w = w(y, ẏ, ÿ) = pc -[0 g] T = [w x w z ] T ∈ R 2 , which is a function of flat outputs. It is clear that w = -u t m s [sin(θ 0 ) cos(θ 0 )] T . Therefore θ 0 = atan2(-w x , -w z ) and u t = m s ||w||. Furthermore, differentiating θ 0 (w x , w z ) we obtain θ0 (w x , w z , ẇx , ẇz ) and θ0 (w x , w z , ẇx , ẇz , ẅx , ẅz ), which are all functions of the derivatives of p c from the second up to the fourth order. Now considering the rotational dynamics of the last link of each manipulator, we can retrieve the n µ -th motor torque as

τ n µ = m T 0n µ (θ 0n µ ) p0 + n µ -1 ∑ l=1 m ln µ (θ 0l µ , θ 0n µ ) θ0l µ + + J n µ θ0n µ + c r n µ (q r µ , qr µ ) + g r n µ (θ 0n µ ), (3) 
where c r n µ and g r n µ are the n µ -th elements of vectors c r and g r , which are corresponding to the Coriolis and gravitational forces acting on the center of the n-th link of the µ-th manipulator, respectively (See Sec. II-C for the details). Hence, τ n µ can be represented solely as a function of the flat outputs y and of its time derivatives ẏ, ÿ.

Starting from the last joint, we can recursively compute all the joint torques of the µ-th arm as functions of the flat outputs up to their final derivative. This means we can write the control torque of the ν-th joint of the µ-th manipulator in form of τ ν µ = τ ν µ (y, ẏ, ÿ), and

ν µ = {1, 2, • • • , n µ }, using τ ν µ = τ ν µ +1 + m T 0ν µ (θ 0ν µ ) p0 + c r ν µ (q r µ , qr µ ) + J ν µ θ0ν µ + + g r ν µ (θ 0ν µ ) + n µ ∑ l=1,l =ν µ m lν µ (θ 0l µ , θ 0ν µ ) θ0l µ , ( 4 
)
where it is clear that for ν µ = n µ , τ ν µ +1 = 0, because the (n µ + 1)-th motor does not exist. In this way, one can compute all the input torques of all the manipulators, until the very first ones, as functions of sole flat outputs and their finite numbers of derivatives. Hence, τ 1 µ will also be the sole function of the flat outputs as well. Then we can utilize τ 1 µ in the third equation of the system dynamics to compute u r :

u r = J 0 θ0 + m ∑ j=1 τ 1 j -d G x u t . (5) 
Notice that θ 0 and u t have been computed above as functions of the flat output and a finite number of its derivatives only. Hence this holds for u r too. Since θ0 is a function of .... y , then so is u r , implying the relative degree of the system is four times the dimension of y, i.e. r = 4(2 + n) = 8 + 4n (see also Sec. V of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]). This concludes the the proof.

B. Proof of Proposition 2

Recall the proposition in Case E (Sec. IV) of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]:

Proposition 2. y = [p T 0 q T r r ] T ∈ R (n+2
) is a flat output of the system described in (12) of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF].

The proof is analogous to that of Proposition 1. Knowing the fact that the CoM position of the overall system, given in [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] and its dynamics as in (2) are sole functions of the flat outputs and derivatives, we can write again θ 0 = atan2(-w z , -w x ) and u t = m s ||w||. Furthermore, differentiating θ 0 (w x , w z ) we obtain θ0 (w x , w z , ẇx , ẇz ) and θ0 (w x , w z , ẇx , ẇz , ẅx , ẅz ), which are all functions of the derivatives of p c from the second up to the fourth order.

Assume that all elastic joints are linear. Consider the µ-th manipulator, and let's focus on the torque input of its last joint, i.e., τ n µ . If this last joint is rigid, then its expression is identical to (3), while θ m 0n µ is clearly undefined. If instead this last, i.e., n µ -th joint is elastic, then we first need to compute θ m 0n µ . This can be written from its link-side dynamics as

θ m 0n µ = θ 0n µ + 1 k e n µ m T 0n µ (θ 0n µ ) p0 +g r n µ +c r n µ (q r µ , qr µ )+ + n µ -1 ∑ l=1 m ln µ (θ 0l µ , θ 0n µ ) θ0l µ + (J n µ -J m n µ ) θ0n µ . ( 6 
)
Notice the similarity between this and (3). Hence, θ m 0n µ is represented as a function of flat outputs and derivatives. Then, τ n µ is available from the last equation of the system dynamics of the µ-th manipulator:

τ n µ = J n µ θm 0n µ + k e n µ θ m 0n µ -k e n µ θ 0n µ , (7) 
where θ m 0n µ and its derivatives are available from [START_REF] Mohammadi | Cooperative aerial tele-manipulation with haptic feedback[END_REF]. Hence, we see that τ n µ can always be represented as a function of flat outputs and derivatives, together with θ 0n µ even when the n µ -th joint (last joint of the µ-th manipulator) is elastic. Now, let's focus on the generic link ν µ < n µ . We can proceed recursively from top to bottom, assuming we have already computed τ ν µ +1 . If the ν µ -th link is rigid, then its expression is identical to (4) and θ m 0ν µ is not defined. If it is elastic, we first need to compute θ m 0ν µ . This can be done with:

θ m 0ν µ = θ 0ν µ + 1 k e ν µ τ ν µ +1 + m T 0ν µ (θ 0ν µ ) p0 + + n µ ∑ l=1,l =ν µ m lν µ (θ 0l µ , θ 0ν µ ) θ0l µ + + (J ν µ -J m ν µ ) θ0ν µ + g r ν µ (θ 0ν µ ) + c r ν µ ( qr µ , q r µ ) . (8) 
Again, notice the similarity with (4). We observe that (8) can also be employed for ν µ = n µ , simply setting the non-existing τ n µ +1 equal to zero. Then, τ ν µ can be easily computed from

τ ν µ = J ν µ θm 0ν µ + k e ν µ θ m 0ν µ -k e ν µ θ 0ν µ , (9) 
which can be directly employed also for ν µ = n µ . Until this point, we showed that all control torques of the µ-th robotic arm, regardless of their connection type (rigid or elastic), can be represented as sole functions of flat outputs and their derivatives. This means that the equations above are valid for the each robotic arm. Now, finally from the third equation of the system dynamics we retrieve

u r = J 0 θ0 + m ∑ j=1 τ 1 j -d G x u t , (10) 
in which τ 1 µ is utilized from either (4) or ( 9), depending on the type of the actuation. Moreover θ0 and u t are available from previous computations. Hence, PVTOL torque is also represented using only the flat outputs. This concludes the sketch of the proof.

Remark 1. Notice the different relative degree of the dependencies of τ ν µ given in (9) on the flat outputs for different values of ν µ . Assume for instance that both the (n µ -1)-th and the n µ -th link are elastic. Then from bottom to top,

• First: from (7), we see that τ n µ is a function of θm 0n µ ; while θ m 0n µ is a function of p0 and qr µ , making τ n µ itself a function of .... p 0 and ....

q r µ . • Second: from (7), τ n µ -1 is a function of θm 0(n µ -1) . But in (8), from recursion, θ m 0(n µ -1) is a function of τ n µ , making θm 0(n µ -1)
, and thus τ n µ -1 , a function of τn µ . Knowing from the fist step above τ n µ is a function of .... p 0 and .... q r µ , we find τ n µ -1 as a function of p

0 and q (6) r µ , which are the sixth time derivatives. In general, for a fully elastic manipulator, an increase of two relative degrees per link is to be expected.

Remark 2. We notice that the orientation of the PVTOL, i.e., θ 0 , is not part of the flat outputs, conceivably due to the under-actuation of the flying robot. This motivated us to use the absolute representation of the manipulator joint angles, which makes the control torques appear recursively in the manipulator dynamics. Notice from the remark above that while this is not a problem for Case R, for Case E this increases the relative degrees.

Hence it is worth noting that using a fully actuated aerial robot might be beneficial if manipulators with compliant actuators are to be used for specific tasks, e.g., safe physical interaction. This does not apply of course if the robotic arm is rigidly actuated. Further study on this remark is in the scope of our future studies.

From Remark 1, it is possible to compute the relative degree of the overall system. Recalling that k µ is the number of elastic joints in link µ, and defining kµ = max(1, k µ ), then

r = 4 + 4 max µ kµ + m ∑ µ=1 (2 + 2 kµ )n µ (11) 
where it can be seen a quadratic dependence on the number of elastic joints. The term max Then (11) becomes r = 4 + 4 + 4n = 8 + 4n, which is a perfect match to Sec. I-A.

Example 2. PAM with m number of manipulator arms, each having some rigid actuators and each having only one compliant actuator. This means that k µ = 1. Then kµ = 1, and it means r = 4 + 4 + 4n = 8 + 4n. This means that if each manipulator has only one elastic joint, then the total relative degree is the same with the case if all joints were rigid (this result is in line with that of [START_REF] Yüksel | Aerial robots with rigid/elasticjoint arms: Single-joint controllability study and preliminary experiments[END_REF]).

Example 3. PAM with 2 number of manipulator arms with mixed rigid-/elastic-joints. Let's say for the first arm it is n 1 = 5, k 1 = 4 and for the second one it is n 2 = 7, k 2 = 3. This is a highly complicated PAM, with two arms in total 12 actuators and links, and 7 compliant joints. Then we see that max 

II. COMPUTATION OF THE SYSTEM DYNAMICS

A. Time-Varying Coordinates of the system components

Let us start with the positions and the orientations of the elements of the robotic system, which consist of a PVTOL equipped with m fully actuated manipulators; the µ-th manipulator has n µ DoFs. Then the absolute orientation of the ν µ -th joint will be θ 0ν µ = θ 0 + ∑ ν µ i=1 θ i µ . For example, the absolute orientation of the second link of the third manipulator will be θ 02 3 = θ 0 + θ 1 3 + θ 2 3 . Moreover, the rotation matrix corresponding to θ 0ν µ will be R(θ

0ν µ ) = R 0 (θ 0 ) ∏ ν µ i=1 R i (θ i µ ), where for θ * ∈ R it is R * = cos θ * sin θ * -sin θ * cos θ * ∈ SO(2).
Then we can write the following distance vectors

p G = p 0 + R 0 d G p n µ = p 0 + R 01 µ d1 µ + • • • + R 0(n µ -1) d(n µ -1) + R 0n µ d n µ = p 0 + n µ -1 ∑ i=1 R 0i µ di µ :=0, i f n µ =1 +R 0n µ d n µ p e µ = p 0 + n µ ∑ i=1 R 0i µ di µ ,
where di = d i + di , i = {1, 2, ..., n µ }, and for the motors,

p m n µ = p 0 + R 01 µ d1 µ + R 02 µ d2 µ + • • • + R 0(n µ -1) d(n µ -1) = p 0 + n µ -1 ∑ i=1 R 0i µ di µ :=0, i f n µ =1
.

Notice that this is due to the Assumption A.3 of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]. The following gives the linear velocities for the ν µ -the link and motor, and the end-effector

ṗν µ = ṗ0 + ν µ -1 ∑ i=1 R0i µ di µ θ0i µ :=0, i f ν µ =1 + R0ν µ d ν µ θ0ν µ ṗm ν µ = ṗ0 + ν µ -1 ∑ i=1 R0i µ di µ θ0i µ :=0, i f ν µ =1 ṗe µ = ṗ0 + n µ ∑ i=1 R0i µ di µ θ0i µ ,
where from the definition

ν µ = {1, 2, • • • , i, • • • , n µ }, and R * = ∂ R * ∂ θ * .

B. Energies and the Inertia Matrix

Now we can write the energy of the system. We start by considering rigid manipulators. The kinetic energy is

K = 1 2 m 0 ṗT 0 ṗ0 + 1 2 J 0 θ 2 0 PVTOL base + K m manipulators , (12) 
where

K m = m ∑ j=1 1 2 n j ∑ i=1 m i j ṗT i j ṗi j +m m i j ṗT m i j ṗm i j +(J i j +J m i j ) θ 2 0i j .
The potential energy is

V = -gm 0 p 0 .e 2 -g m ∑ j=1 n j ∑ i=1 m i j p i j + m m i j p m i j .e 2 , ( 13 
)
where e 2 = [0 1] T . Let us now write the well known Lagrange equation

d dt ∂ L ∂ q - ∂ L ∂ q = f = Gu, (14) 
where L = K -V , can be computed using above. It is clear that using K = 1 2 qT M(q) q we can find the inertia matrix as

M = M p * M pr M r = M T ∈ R (3+n)×(3+n) , (15) 
where

M p =   m s * * 0 m s * 0 0 J 0   = M T p ∈ R 3×3
is the pvtol-side inertia matrix; the sum m s of all masses is given by

m s = m 0 + m ∑ j=1 n j ∑ i=1 m i j + m m i j .
The arm-side inertia matrix is

M r =      M r 1 * • • • * 0 M r 2 • • • * . . . . . . . . . . . . 0 0 • • • M r m      = M T r ∈ R n×n ,
where for the µ-th manipulator it is

M r µ =      J 1 µ * • • • * m 12 µ (θ 01 µ , θ 02 µ ) J 2 µ • • • * . . . . . . . . . * m 1n µ (θ 01 µ , θ 0n µ ) m 2n µ (θ 02 µ , θ 0n µ ) • • • J n µ      = M T r µ ∈ R n µ ×n µ .
For the ν-th joint of the µ-th manipulator it is

J ν µ = J ν µ + J m ν µ + m ν µ α α α T ν µ α α α ν µ + n µ ∑ i=ν µ +1 (m i + m m i ) ᾱ α α T ν µ ᾱ α α ν µ :=0, if ν=n µ , ν µ = {1, ..., n µ } ,
and for the coupling between the ν-th and ξ -th joints of the µ-th manipulator it is

m νξ µ (θ 0ν µ , θ 0ξ µ ) = m ξ µ ᾱ α α T ν µ α α α ξ µ + n µ ∑ i=ξ µ +1 (m i + m m i ) ᾱ α α T ν µ ᾱ α α ξ µ :=0, i f ξ µ =n µ , ν µ = {1, ..., n µ -1}, ξ µ = {1, ..., n µ }, ν µ < ξ µ α α α ν µ (θ 0ν µ ) = R(θ 0ν µ )d ν µ ᾱ α α ν µ (θ 0ν µ ) = R(θ 0ν µ ) dν µ .
Notice that J ν µ is state independent. The coupling term between the PVTOL and the arm side inertia is given with the following,

M pr = M T pr 1 M T pr 2 • • • M T pr m T ∈ R n×3 ,
where for the µ-th manipulator it is

M pr µ =         m T 01 µ (θ 01 µ ) 0 m T 02 µ (θ 02 µ ) 0 m T 03 µ (θ 03 µ ) 0 . . . . . . m T 0n µ (θ 0n µ ) 0         ∈ R n µ ×3 .
For the ν-th joint of the µ-th manipulator:

m 0ν µ (θ 0ν µ ) = m ν µ α α α ν µ + n µ ∑ i=ν µ +1 (m i + m m i ) ᾱ α α ν µ :=0, i f ν µ =n µ ∈ R 2×1 .
This completes the computation of the generalized inertia matrix.

C. Gravitational and Coriolis/Centrifugal Forces

Since L = K -V , we can write

d dt ∂ L ∂ q - ∂ L ∂ q = M q+ Ṁ q - ∂ L ∂ q c+g = M q+ Ṁ q - ∂ K ∂ q c + ∂V ∂ q g = f.
Hence from the fact that g = ∂V ∂ q and using ( 13) we can find the gravitational forces as presented in [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF].

The Coriolis/centrifugal forces are shown above as

c = Ṁ q - ∂ K ∂ q . ( 16 
)
For the first term of the right side of the equality, we have the following

Ṁ = Ṁp * Ṁpr Ṁr = ṀT ∈ R (3+n)×(3+n) , Ṁpr =      Ṁpr 1 Ṁpr 2 . . . Ṁpr m      ∈ R n×3 ,
where

Ṁp = 0 3 , Ṁpr µ =        ṁ01 µ (θ 01 µ ) T 0 ṁ02 µ (θ 02 µ ) T 0 ṁ03 µ (θ 03 µ ) T 0 . . . . . . ṁ0n µ (θ 0n µ ) T 0        ∈ R n µ ×3 , and 
Ṁr =      Ṁr 1 * • • • * 0 Ṁr 2 • • • * . . . . . . . . . . . . 0 0 • • • Ṁr m      = ṀT r ∈ R n×n ,
where

Ṁr µ =      0 * • • • * ṁ12 µ (θ 01 µ , θ 02 µ ) 0 • • • * . . . . . . . . . * ṁ1n µ (θ 01 µ , θ 0n µ ) ṁ2n µ (θ 02 µ , θ 0n µ ) • • • 0      = ṀT r µ ∈ R n µ ×n µ . ( 17 
)
For the second term of the equality in ( 16), we put the kinetic energy in the following form

K = 1 2 qT M q = K 0 + K 1 + K 2 , ( 18 
)
where

K 0 = 1 2 m s ṗT 0 ṗ0 + 1 2 J 0 θ 2 0 + m ∑ j=1 1 2 n j ∑ i=1 J i j θ 2 0i j K 1 = m ∑ j=1 ṗT 0 n j ∑ i=1 m 0i j θ0i j K 2 = m ∑ j=1 n j -1 ∑ l=1 n j ∑ i=l+1 m li j θ0l j θ0i j . (19) 
Now remember that

∂ K ∂ q = ∂ K 0 ∂ q + ∂ K 1 ∂ q + ∂ K 2 ∂ q . It is clear that ∂ K 0 ∂ q = 0 (n+3)×1
. Moreover notice the following equality

∂ K 1 ∂ q =                    0 0 0 ṗT 0 ṁ01 1 . . . ṗT 0 ṁ0n 1 . . . . . . ṗT 0 ṁ01 m . . . ṗT 0 ṁ0n m                    = Ṁp Ṁpr qp . ( 20 
)
Recalling that

Ṁ q = Ṁp Ṁpr qp + ṀT pr Ṁr qr , (21) 
we have

c = Ṁ q - ∂ K ∂ q = ṀT pr Ṁr qr - ∂ K 2 ∂ q =   ∑ m j=1 ∑ n j i=1 m0i j θ 2 0i j 0 c r (q r , qr )   ∈ R (3+n)×1 , ( 22 
)
where m0i j = ∂ m 0i j ∂ θ 0i j ∈ R 2×1 ; noticing that ∂ R * ∂ θ * = -R * : m0ν µ (θ 0ν µ ) = m ν µ α α α ν µ + n µ ∑ i=ν µ +1 (m i + m m i ) ᾱ α α ν µ :=0, i f ν µ =n µ ∈ R 2×1 , ν µ = {1, ..., n µ } α α α ν µ (θ 0ν µ ) = -R(θ 0ν µ )d ν µ ᾱ α α ν µ (θ 0ν µ ) = -R(θ 0ν µ ) dν µ ,
and c r (q r , qr ) ∈ R n is the arm side Coriolis forces in the form of

c r (q r , qr ) = [c T r 1 (q r 1 qr 1 ) • • • , c T r m (q r m qr m )] T ∈ R n .
Now, from (19) we can write K 2 = ∑ m j=1 K 2 j and for the µ-th manipulator it is 2 µ = 1 2 qT r µ B r µ qr µ , where

B r µ = M r µ -diag{J 1 µ , J 2 µ , • • • , J n µ } =      0 * • • • * m 12 µ (θ 01 µ , θ 02 µ ) 0 • • • * . . . . . . . . . * m 1n µ (θ 01 µ , θ 0n µ ) m 2n µ (θ 02 µ , θ 0n µ ) • • • 0      = B T r µ ∈ R n µ ×n µ .
Then we can write for the µ-th component of c r

c r µ (q r µ , qr µ ) = Ṁr µ qr µ - ∂ K 2 µ ∂ q r µ = Ṁr µ qr µ - 1 2 ∂ qT r µ B r µ qr µ ∂ q r µ , (23) 
where Ṁr µ is available from (17). Then we computed the followings

Ṁr µ qr µ =         0 + ∑ n µ i=2 ṁ1i µ θ0i µ ṁ12 µ θ01 µ + ∑ n µ i=3 ṁ2i µ θ0i µ ṁ13 µ θ01 µ + ṁ23 µ θ02 µ + ∑ n µ i=4 ṁ3i µ θ0i µ . . . ∑ n µ -1 i=1 ṁin µ θ0i µ + 0         , (24) 
and

∂ K 2 µ ∂ q r µ =          0 + ∑ n µ i=2 1 m1i µ θ0i µ θ01 µ 2 m12 µ θ01 µ + ∑ n µ i=3 2 m2i µ θ0i µ θ02 µ 3 m13 µ θ01 µ + 3 m23 µ θ02 µ + ∑ n µ i=4 3 m3i µ θ0i µ θ03 µ . . . ∑ n µ -1 i=1 n µ min µ θ0i µ θ0n µ + 0          , (25) 
where k mkl = ∂ m kl (θ 0k ,θ 0l ) ∂ θ 0k (note that here k = ν µ and l = ξ µ ), and 24) and ( 25) in ( 23), one can write the ν-th element of

k mkl (θ 0k , θ 0l ) = m l ᾱ α α T k α α α l + n ∑ i=l+1 (m i + m m i ) ᾱ α α T k ᾱ α α l :=0, i f l=n if k < l k mkl (θ 0k , θ 0l ) = m k ᾱ α α T l α α α k + n ∑ i=k+1 (m i + m m i ) ᾱ α α T l ᾱ α α k :=0, i f k=n if k > l α α α k (θ 0k ) = R(θ 0k )d k α α α k (θ 0k ) = -R(θ 0k )d k ᾱ α α k (θ 0k ) = R(θ 0k ) dk ᾱ α α k (θ 0k ) = -R(θ 0k ) dk , ( 26 
) with R * = ∂ R * ∂ θ * and we have used ∂ R * ∂ θ * = -R * . Now utiliz- ing (
c r µ as c r ν µ = ν µ -1 ∑ i=1 ṁiν µ -ν µ miν µ θ0ν µ θ0i + + n ∑ i=ν µ +1 ṁν µ i -ν µ mν µ i θ0ν µ θ0i , which is equivalent to c r ν µ = ∑ i=1...n ν , i =ν µ ṁiν µ -ν µ miν µ θ0ν µ θ0i = ∑ i=1...n µ , i =ν µ i miν µ θ 2 0i . (27) 
This actually means that due to the A.2 of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] there are no Coriolis forces appearing from the motion of one arm to another. Moreover, since we choose the absolute orientations as the generalized coordinates, c r ν µ contains only the centrifugal terms.

D. Control Input Matrix

In the paper, [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF], we have presented the generalized bodyfixed forces f = Gu, which appear in Equation ( 14) of this technical report. The corresponding control input matrix is

G = G p 0 2×n G d G r ∈ R (n+3)×(n+2) , G p = -sin(θ 0 ) 0 -cos(θ 0 ) 0 G d = d G x 1 0 n×1 0 n×1 ∈ R (n+1)×2 , G r = G rp G rr ∈ R (n+1)×n ,
where

G rp = -1 0 1×(n 1 -1) • • • -1 0 1×(n m -1) ∈ R 1×n , G rr =    G rr 1 • • • * . . . . . . . . . 0 • • • G rr m    ∈ R n×n , G rr µ =        1 -1 0 • • • 0 0 0 1 -1 • • • 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 • • • 1 -1 0 0 0 • • • 0 1        ∈ R n µ ×n µ .

E. Clarifying Examples for Case E:

For the Case E of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] we have defined and used sets for generating the system dynamics, based on the one we did for Case R. There, we have defined the matrices S N µ ∈ R n µ ×n µ and S K µ ∈ R k µ ×n µ . Let us fix the idea by giving the following examples:

Example 4. Say that N µ = {1, 2, 3, 4} and K µ = {2, 4}. Define a vector, say will select the 2-nd and 4-th components of the vector v µ , using vµ = S

v µ = [v 1 µ v 2 µ v 3 µ v 4 µ ] T ⊂ N µ . Then the matrix S N µ =     0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1     = S T N µ ∈
N µ v = [0 v 2 µ 0 v 4 µ ] T ⊂ N µ .
Example 5. Similar to the same example as above, let's say N µ = {1, 2, 3, 4} and K µ = {2, 4}. Define a vector, say

v µ = [v 1 µ v 2 µ v 3 µ v 4 µ ] T ⊂ N µ . Then the matrix S K µ = 0 1 0 0 0 0 0 1 ∈ R k µ ×n µ
can be used to select 2-nd and 4-th elements of v µ and put them in order, using vµ

= S K µ v µ = [v 2 µ v 4 µ ] T ⊂ K µ .
Example 6. Say, N µ = {1, 2, 3, 4, 5, 6, 7} and K µ = {1, 5, 7}.

It means that the µ-th manipulator has 7 DoF and three of the motors are connected to their links via some elastic elements, which are the first, fifth and the seventh ones. Then we say {κ µ = 3} = 7, is the third elastically connected motor, which corresponds to the seventh joint/motor of the µ-th robotic arm. So, we can say e.g. its absolute motor orientation is θ m 0{κ µ =3} = θ m 07 µ .

III. DETAILS OF THE SIMULATIONS

The system parameters and the deviations used in the simulations are given in Table I. Moreover, additional simulation results are given in in Fig 1, which is also provided in the video attachment of [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]. There, a grasping task is chosen for the robot. This is divided in 5 phases: i) PVTOL+2 arm robot follows a desired trajectory on the plane ii) The arm configuration is changed iii) Another trajectory is followed with the latest arm configuration iv) The two arms grasp two individual point mass objects, with no information on their mass for the controller side (each are 0.25kg), v) The robot flies away with the unknown object. In this simulation, 2% of parametric uncertainty for mass, inertia and distance parameters is used, while no noise is added to the measurements. A more composite simulation result with parametric uncertainty, noise and the quantizations in the measurements can be found in [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]. 

End-Effector Positions

x e 1 -z e 1 x e 2 -z e 2

x, [m] We also give here the magnified version of the individual plots, at the time of grasping. Finally, the last plot shows the control inputs of the system, where thrust input is given on the top, separately.

µ

  kµ returns the value kµ for the manipulator arm with the highest number of elastic joint. For a better understanding, let us give the following examples: Example 1. Protocentric Aerial Manipulator (PAM) with m number of manipulator arms, each having only rigid actuators. Notice that this actually corresponds to Case R. Since there are no compliant actuators, k = k µ = max µ kµ = 0, and so kµ = 1.

µ kµ = 4 .

 4 Hence the total relative degree of the system is r = 4 + 4 * 4 + (2 + 2 * 4) * 5 + (2 + 2 * 3) * 7 = 126.

Fig. 1 :

 1 Fig.1: Simulation results of grasping two individual objects using PVTOL+2 manipulator arms. Notice that each plot (except the third one of the first row) is divided into five different parts. Each part belongs to a different task, as also shown in the video attachment of[START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF]. The first plot on the first row depicts the PVTOL CoM position and orientation, where the desired trajectories are shown with dashed (starred) curves. The second figure on the first row shows the two end-effector positions of the robot while it is performing the whole task. Notice that the effect of the unknown grasped masses on the end-effector positions is negligible. The third figure is showing the robot configurations at different time instants, where the black circle stands for the PVTOL CoM, the blue circles are the motor/joint positions of the arms, and the triangles are for the end-effectors of the arms, given with different colors. In the second row, the first two plots are showing the absolute link orientations of different robotic arms, where the desired trajectories are given with dashed (starred) curves. We also give here the magnified version of the individual plots, at the time of grasping. Finally, the last plot shows the control inputs of the system, where thrust input is given on the top, separately.

  R n µ ×n µ

	Parameters	Notation	Value	Unit
	PVTOL mass	m 0	1	kg
	PVTOL inertia	J 0	0.015	kg m 2
	dis. vec. betw. P C 0 & P G partial distance of one link	d G d ν µ	[0 0.1] T [0 0.1] T	m m
	partial distance of one link	dν µ	[0 0.1] T	m
	mass of one link	m ν µ	0.2	kg
	inertia of one link	J ν µ	0.0007	kg m 2
	mass of one motor inertia of one motor	m m ν µ J m ν µ	0.05 0.0003	kg kg m 2
	parametric deviations	δ	2	%
	3-sigma Gauss. noise in pos.	3σ p	0.001	m
	3-sigma Gauss. noise in vel.	3σ v	0.005	m/s
	3-sigma Gauss. noise in θ 0 .	3σ 0	0.01	rad
	3-sigma Gauss. noise in θ0 .	3σ d0	0.1	rad/s
	3-sigma Gauss. noise in q r .	3σ r	0.001	rad
	3-sigma Gauss. noise in qr .	3σ dr	0.005	rad/s
	Sampling of lin. pos. and vel.	-	100	Hz
	Sampling of angle and ang. vel.	-	500	Hz

TABLE I :

 I Summary of the parameters used in the simulations. The parameters employed by the controller are all subject to a random parametric deviation within ±2%.

This work has been partially funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 644271 AEROARMS