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Abstract. In this paper we introduce a general line search scheme which easily allows us to define and analyze
known and new semismooth algorithms for the solution of nonlinear complementarity problems. We enucleate
the basic assumptions that a search direction to be used in the general scheme has to enjoy in order to guarantee
global convergence, local superlinear/quadratic convergence or finite convergence. We examine in detail several
different semismooth algorithms and compare their theoretical features and their practical behavior on a set of
large-scale problems.
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1. Introduction

The main aim of this paper is twofold: On the one hand, we present a general scheme which
allows us to easily analyze and compare, in a unified framework, the characteristics of
several semismooth algorithms for the solution of the nonlinear complementarity problem

x ≥ 0, F(x) ≥ 0, xT F(x) = 0, (NCP(F))

where F : IRn → IRn is a continuously differentiable function and all inequalities are taken
componentwise. On the other hand, we give a numerical comparison of several realizations
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of our general framework.Although someof these realizations are known from the literature,
some others lead to new algorithms. Interestingly, it turns out that these new semismooth
algorithms have stronger theoretical properties than the known ones and that their numerical
behaviour is at least comparable.
The nonlinear complementarity problem has important applications in operations re-

search, economic equilibrium models and in the engineering sciences, see, e.g., [12, 18].
For this reason, there is a growing interest in finding efficient and robust algorithms for solv-
ing NCP(F). This reflects in an increasing number of proposals of solution schemes for
NCP(F) in recent years. In these recent developments an important role has been played by
the semismooth methods, i.e., by those methods that attempt to solve the complementarity
problem by first reformulating it as a semismooth system of equations and then by applying
a generalized Newton method to solve this system.We refer the reader to Subsection 2.1 for
a short overview on semismooth Newtonmethods and to Subsection 2.3 for the presentation
of some basic properties of two different reformulations which will be considered in this
paper.
The first semismooth methods were based on the Fischer function [13]:

ϕF (a, b) :=
√

a2 + b2 − a − b.

The function ϕF has the property that

ϕF (a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (1)

so that the NCP(F) can be reformulated as a system of nonsmooth equations

�F (x) = 0,

where �F : IRn → IRn is defined by

�F (x) :=

⎛
⎜⎜⎝

ϕF (x1, F1(x))

...

ϕF (xn, Fn(x))

⎞
⎟⎟⎠.

The Fischer function, or some suitable modifications of it [2, 22, 23, 25, 36], has maintained
a central role in the development of semismooth methods up to now; in fact it appears to
possess many favourable properties both from the theoretical and numerical point of view.
In this paper we introduce a line search scheme based on the semismooth Newtonmethod

and on the Fischer function. This scheme encompasses several known methods and easily
allows the development of new, interesting ones. More precisely, our general algorithmic
scheme is a simple but useful generalization of the algorithms considered, e.g., in [6, 10, 11].
It allows the use of a variety of different search directions; then it monitors convergence of
the iterates by using the merit function

�F (x) := 1
2
�F (x)T �F (x), (2)
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i.e., the naturalmerit function of the operator�F .We shall consider in detail several different
specializations of the general scheme and compare the resulting algorithms both from the
theoretical and numerical point of view.
Another motivation for this work comes from the following observation: Almost all

existing semismooth methods reformulate the complementarity problem as a system of
equations

�(x) = 0

in order to obtain a locally fast convergent algorithm, and then use the corresponding merit
function

�(x) := 1
2
�(x)T �(x)

in order to globalize this method. This is a very natural approach which, usually, leads to
very good algorithms. However, and this will also be discussed in more detail in Sections 2
and 3, sometimes one reformulation of the complementarity problem gives rise to a nicer
merit function (e.g., weaker conditions for a stationary point to be a global minimum),
whereas another reformulation gives the better search direction and therefore, in particular,
the better local algorithm (e.g., finite termination or quadratic convergence under weaker
assumptions). So it seems interesting to combine “the best” merit function with several
schemes to compute a search direction. In fact, the probably most interesting algorithms
among those studied in this paper are based on this combination idea.
The organization of the paper is as follows: In Section 2, we restate some known prop-

erties of nonsmooth Newton methods, prove some preliminary results on certain regularity
concepts and apply these results to two specific reformulations of the complementarity
problem NCP(F). Our general algorithmic scheme is presented in Section 3. There, based
on fairly general assumptions on the search directions computed within the algorithmic
scheme, we also prove global and local convergence results. In Section 4, we consider six
different realizations of our class of algorithms. We show that these realizations satisfy,
under suitable conditions, all or most of the assumptions required for the search directions
in the previous section. In Section 5, we then present a summary of our extensive numerical
testing when using four of the six realizations of our general scheme. We conclude this
paper with some final remarks in Section 6.
Somewords about our notation:We say that F : IRn → IRm is aC1-function if F is contin-

uously differentiable, and an LC1-function if F is differentiable with a locally Lipschitzian
Jacobian. The Jacobian of a C1-function F : IRn → IRm at a point x ∈ IRn is denoted by
F ′(x). If M ∈ IRn×n is any given matrix with elements mi j and J, K ⊆ {1, . . . , n} are two
nonempty subsets, we write MJK for the submatrix consisting of the elements mi j with
i ∈ J and j ∈ K . A similar notation will be used for subvectors.

2. Preliminaries

In this section we collect some material that will be used subsequently. In particular, in
Subsection 2.1 we recall some known schemes for the solution of systems of semismooth
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equations along with their main convergence properties; these schemes will constitute the
core step in the algorithms considered in this paper. In Subsection 2.2, in order to be able
to better appreciate the theoretical differences between the algorithms we shall study, we
elucidate the relations between b-regularity and R-regularity, the two assumptions most
commonly used in analyzing convergence rates of algorithms for NCP(F). In particular,
we point out the rather unexpected fact that, for P0-problems, R-regularity and b-regularity
coincide. Finally, in Subsection 2.3 we apply these regularity concepts to prove nonsingu-
larity results for two specific reformulations of the complementarity problem.

2.1. Local algorithms for semismooth systems

Let G : IRn → IRn be a locally Lipschitzian function. Then, by Rademacher’s theorem, G
is almost everywhere differentiable. If we denote by DG the set of points x ∈ IRn at which
G is differentiable, we can define the B-subdifferential of G at x as

∂BG(x) :=
{

H ∈ IRn×n | H = lim
xk∈DG ,xk→x

G ′(xk)

}
,

see [33]. It is easy to see that this set is nonempty and compact. The convex hull of this set,

∂G(x) := conv∂BG(x),

is the generalized Jacobian of G at x , see [4]. G is said to be semismooth at x [28, 33, 34]
if it is directionally differentiable at x and

Hd − G ′(x; d) = o(‖d‖)

for any d → 0 and any H ∈ ∂G(x + d), where G ′(x; d) denotes the directional derivative
of G at x in the direction d. Analogously, G is called strongly semismooth at x if

Hd − G ′(x; d) = O(‖d‖2)

for any d → 0 and any H ∈ ∂G(x + d).We call G (strongly) semismooth if it is (strongly)
semismooth at any point x ∈ IRn .
If G is a C1-function, then G is semismooth and

∂BG(x) = ∂G(x) = {G ′(x)}

for every x ∈ IRn; moreover, if G is an LC1-function, then G is strongly semismooth. This
motivates the following generalization of the classical Newton method for the solution of
the semismooth system of equations

G(x) = 0. (3)
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Generalized Newton Method

0. Choose x0 ∈ IRn and set k := 0.
1. Select an element Hk ∈ ∂BG(xk). Compute a solution dk ∈ IRn of the generalized

Newton equation

Hkd = −G(xk). (4)

2. Let xk+1 = xk + dk, k = k + 1 and go to Step 1.

Note that we do not incorporate any termination criterion in this and in the other algorithms
presented in this section, since, in order to simplify the statement of their convergence
properties, we always assume that they generate an infinite sequence of points.
We call a solution x∗ ∈ IRn of (3) BD-regular if all elements H ∈ ∂BG(x∗) are nonsin-

gular, see [33]. Now we can restate from [33] the following local convergence result for the
above algorithm.

Theorem 2.1. Assume that G : IRn → IRn is semismooth (strongly semismooth) and x∗ ∈
IRn is a BD-regular solution of (3). Then, for any x0 ∈ IRn sufficiently close to x∗, the
above algorithm is well-defined and generates a sequence {xk} which converges to x∗

Q-superlinearly (Q-quadratically).

It is possible to consider variants of the Generalized Newton Method that are more suited
to large-scale problems. The most obvious variant is an inexact version in which the Eq. (4)
is only solved inexactly.

Generalized Inexact Newton Method

0. Choose x0 ∈ IRn and set k := 0.
1. Select an element Hk ∈ ∂BG(xk). Compute a solution dk ∈ IRn of the equation

Hkd = −G(xk) + rk (5)

for a suitable vector rk ∈ IRn .
2. Let xk+1 = xk + dk, k = k + 1 and go to Step 1.

The vector rk in (5) is called the residual and measures the inaccuracy with which the
Newton Eq. (4) is solved. Note that usually, in actual computations, the vector rk is not
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fixed beforehands. Instead, an iterative method is used to solve the linear system (4), and
this method is stopped when the norm of the residual rk is smaller than a prefixed accuracy.
The following result can be established, see [9, 27].

Theorem 2.2. Let G be semismooth and let x∗ be a BD-regular solution of the system
G(x) = 0. Suppose that {xk} is a sequence generated by the Generalized Inexact Newton
Method. Then the following statements hold:
(a) There are numbers η̄ > 0 and ε > 0 such that, if ‖x0 − x∗‖ ≤ ε and ‖rk‖ ≤ η̄‖G(xk)‖

for all k, the sequence {xk} is well-defined and converges Q-linearly to the solution x∗.
(b) If the sequence {xk} converges to the solution x∗, then the rate of convergence is Q-

superlinear if and only if ‖rk‖ = o(‖G(xk)‖).
(c) If the sequence {xk} converges to the solution x∗ and if G is strongly semismooth, then

the rate of convergence is Q-quadratic if and only if ‖rk‖ = O(‖G(xk)‖2).

Paralleling well-known results in the smooth case, we can also consider a Levenberg-
Marquardt type version of the Generalized Newton Method.

Generalized Inexact Levenberg-Marquardt Method

0. Choose x0 ∈ IRn and set k := 0.
1. Select an element Hk ∈ ∂BG(xk) and a nonnegativeσk . Compute a solution dk ∈ IRn

of the equation
(
H T

k Hk + σk I
)
d = −H T

k G(xk) + rk (6)

for a suitable vector rk ∈ IRn .
2. Let xk+1 = xk + dk, k = k + 1 and go to Step 1.

The vector rk is, again, the residual. The local properties of the Generalized Inexact
Levenberg-Marquardt Method are also very similar to its smooth counterpart, and have
been established in [10].

Theorem 2.3. Let G : IRn → IRn be semismooth and let x∗ ∈ IRn be a BD-regular solu-
tion of G(x) = 0. Suppose that {xk} is a sequence generated by the Generalized Inexact
Levenberg-Marquardt Method. Then the following statements hold:
(a) There exist constants ε > 0, η̄ > 0 and σ̄ > 0 such that, if ‖x0 − x∗‖ ≤ ε, ‖rk‖ ≤

η̄‖H T
k G(xk)‖ and σk ≤ σ̄ for all k, then the sequence {xk} converges Q-linearly to x∗.

(b) If, in addition, ‖rk‖ = o(‖H T
k G(xk)‖) and σk → 0, then {xk} → x∗ Q-superlinearly.

(c) If, in addition, G is strongly semismooth, and if ‖rk‖ = O(‖H T
k G(xk)‖2) and σk =

O(‖H T
k G(xk)‖), then {xk} → x∗ Q-quadratically.
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2.2. On b- and R-regularity

Given a solution x∗ ∈ IRn of NCP(F), let us introduce the three index sets

α := {i ∈ I | x∗
i > 0 = Fi (x∗)},

β := {i ∈ I | x∗
i = 0 = Fi (x∗)},

γ := {i ∈ I | x∗
i = 0 < Fi (x∗)}.

The following two regularity concepts play an important role in the (theoretical and numer-
ical) analysis of complementarity problems.

Definition 2.1. A solution x∗ ∈ IRn of NCP(F) is called

(a) b-regular if the principal submatrices F ′(x∗)α∪δ,α∪δ are nonsingular for all subsets δ

such that ∅ ⊆ δ ⊆ β;
(b) R-regular if the submatrix F ′(x∗)αα is nonsingular and the Schur-complement of this

matrix in(
F ′(x∗)αα F ′(x∗)αβ

F ′(x∗)βα F ′(x∗)ββ

)

is a P-matrix.

We recall that the above mentioned Schur-complement is defined by

F ′(x∗)ββ − F ′(x∗)βα F ′(x∗)−1αα F ′(x∗)αβ ∈ IR|β|×|β|. (7)

Obviously, there is no difference between b- and R-regularity at a nondegenerate solution
of NCP(F). In general, however, it is known that b-regularity is a weaker assumption than
R-regularity, see also Example 2.1 at the end of the next subsection. Here, we want to give a
complete relationship betweenb- and R-regularity. To this end,wefirst prove a simple result.

Lemma 2.4. Let M ∈ IRn×n and σ ⊆ {1, . . . , n} be such that the submatrix Mσσ is non-
singular. Then the principal submatrices of the Schur-complement M/Mσσ are given by
Mσ∪ν,σ∪ν/Mσσ , where ν is any subset such that ∅ ⊆ ν ⊆ σ̄ and σ̄ := {1, . . . , n}\σ denotes
the complementary subset of σ.

Proof: For any subset ν such that ∅ ⊆ ν ⊆ σ̄ , we obtain[
M

Mσσ

]
νν

= [
Mσ̄ σ̄ − Mσ̄ σ M−1

σσ Mσ σ̄

]
νν

= Mσ̄∩ν,σ̄∩ν − Mσ̄∩ν,σ M−1
σσ Mσ,σ̄∩ν

= Mνν − Mνσ M−1
σσ Mσν

= Mσ∪ν,σ∪ν

Mσσ

,
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where the first and last equality follow directly from the definition of the Schur-complement
and the third equation is a consequence of the fact that σ̄ ∩ ν = ν. �

We are now in the position to prove the main result of this subsection.

Theorem 2.5. Let x∗ ∈ IRn be a solution of NCP(F). Then the following statements are
equivalent:
(a) x∗ is an R-regular solution of NCP(F).
(b) x∗ is a b-regular solution of NCP(F) and the Schur-complement (7) is a P-matrix.
(c) x∗ is a b-regular solution of NCP(F) and the Schur-complement (7) is a P0-matrix.

Proof: For simplicity, let us write M := F ′(x∗).

(1) First assume that x∗ is an R-regular solution. Then the Schur-complement (7) is a
P-matrix by definition. The fact that Mα∪δ,α∪δ is nonsingular for all δ with ∅ ⊆ δ ⊆ β

follows from the assumed R-regularity and [31, Lemma 1].
(2) Obviously, part (b) implies part (c) since any P-matrix is a P0-matrix.
(3) Now assume that x∗ is a b-regular solution of NCP(F) and that the Schur-complement

S := Mα∪β,α∪β/Mαα is a P0-matrix. We have to show that this Schur-complement is
actually a P-matrix, i.e., that det(Sδδ) > 0 for all subsets ∅ ⊆ δ ⊆ β. Since, by the
assumed P0-property, we already know that det(Sδδ) ≥ 0, it suffices to show that
det(Sδδ) �= 0 for all ∅ ⊆ δ ⊆ β. In view of Lemma 2.4, we have

Sδδ = Mα∪δ,α∪δ

Mαα

for any ∅ ⊆ δ ⊆ β.

Hence, from a well-known result on the determinant of a Schur-complement (see, e.g.,
[5, Proposition 2.3.5]), we get

det(Sδδ) = det
(

Mα∪δ,α∪δ

Mαα

)
= det(Mα∪δ,α∪δ)

det(Mαα)
�= 0,

where the last part follows from the fact that Mα∪δ,α∪δ is nonsingular for any ∅ ⊆ δ ⊆ β

by the assumed b-regularity of the solution x∗. Hence x∗ is an R-regular solution of
NCP(F). �

The above result immediately implies the following corollary.

Corollary 2.6. Let x∗ ∈ IRn be a solution of NCP(F) such that the Jacobian F ′(x∗) is a
P0-matrix. Then x∗ is an R-regular solution if and only if it is a b-regular solution.

Proof: The statement follows directly from Theorem 2.5 and the fact that the Schur-
complement of a nonsingular submatrix of a P0-matrix is again a P0-matrix, see [3,
Lemma 2.3]. �
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If F : IRn → IRn is a P0-function, then all Jacobian matrices are P0-matrices by [29,
Theorem 5.8]. Hence there is no difference between R- and b-regular solutions for P0-
function complementarity problems. In particular, there is no difference between these two
regularity concepts for monotone problems.
We finally note that the above results can also be obtained from more general ones about

coherent orientation of the normal map [35].

2.3. The operators �F and �P

In this section we recall some basic (semi)smoothness properties of two operators which
are often used in order to reformulate the nonlinear complementarity problem as a non-
smooth system of equations, namely the Minimum and the Fischer operator. The Fischer
operator has already been defined in the introduction. The Minimum operator is similarly
defined by

�P(x) :=

⎛
⎜⎜⎝
min{x1, F1(x)}

...

min{xn, Fn(x)}

⎞
⎟⎟⎠;

here we use the subscript “P” for the Minimum operator in order to stress the importance
of Pang’s [30, 31] seminal work in this area.
We believe that �F (x) = 0 and �P(x) = 0 are the most used reformulations of the com-

plementarity problem as system of equations, and we shall use them extensively in this
paper. In view of the results of the previous sections we are obviously interested in the
semismoothness properties of these reformulations. The first result that can easily be estab-
lished is that, if F is (strongly) semismooth, then also�F and�P are strongly semismooth,
see [14, 20] for details. In particular, we have the following

Proposition 2.7.
(a) If F is a C1-function, then �F and �P are semismooth.
(b) If F is an LC1-function, then �F and �P are strongly semismooth.

Another point which deserves attention is the structure of the B-subdifferentials of �F and
�P and the conditions which guarantee BD-regularity at a solution. The following result
was shown in [11].

Proposition 2.8. Suppose that F is a C1-function and x∗ is an R-regular solution of
NCP(F). Then x∗ is a BD-regular solution of the system �F (x) = 0.

A crucial property in the design of globally convergent algorithms, that has been exten-
sively exploited in recent years, is that the corresponding merit function �F (see (2)) is
continuously differentiable [11, 16, 19].
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Proposition 2.9. Suppose that F is a C1-function. Then the merit function �F is con-
tinuously differentiable with gradient ∇�F (x) = H T �F (x) for an arbitrary matrix H ∈
∂�F (x).

In [6] it has been shown how to calculate elements in the B-subdifferential of �F , and this,
in view of Proposition 2.9, also allows to easily evaluate the gradient of �F .
We now consider analogous issues for �P . To this end let x∗ be a solution of NCP(F)

and let H ∈ ∂B�P(x∗) be arbitrarily chosen. Let Hi. denote the i th row of this matrix.
Furthermore, let α, β and γ denote the index sets defined in the previous subsection. From
the very definition of the operator �P and the B-subdifferential ∂B�P(x∗), we have the
following:

(a) If i ∈ α, then Hi. = ∇Fi (x∗)T .
(b) If i ∈ γ , then Hi. = eT

i .

(c) If i ∈ β, then Hi. = ∇Fi (x∗)T or Hi. = eT
i .

Hence there is an index set δ such that ∅ ⊆ δ ⊆ β and

H =
(

F ′(x∗)α∪δ,α∪δ F ′(x∗)α∪δ,γ∪δ̄

0γ∪δ̄,α∪δ Iγ∪δ̄,γ∪δ̄

)
, (8)

where δ̄ := β\δ denotes the complementary subset of δ in β. By using this expression of
∂B�P(x∗) and the very definition of b-regularity, it is then immediate to prove the following
proposition.

Proposition 2.10. Suppose that F is a C1-function and x∗ is a b-regular solution of
NCP(F). Then x∗ is a BD-regular solution of the system �P(x) = 0.

It is interesting to note that�P is BD-regular at a solution of the complementarity problem
under an assumption which is weaker than that needed to establish an analogous result for
�F (even is we saw in the previous section that these two assumptions coincide in the case
of P0-functions). One may wonder whether this gap is only due to a lack in the analysis of
the properties of �F ; the following example shows that the gap is actually intrinsic.

Example 2.1. Let n = 2 and F : IR2 → IR2 be defined by

F(x) :=
(−x1 + x2

−x2

)
.

Then it is easy to see that the complementarity problem NCP(F) has the unique solution
x∗ := (0, 0) which is b-regular (since F ′(x∗) is a nondegenerate matrix) but not R-regular.
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Now consider the sequence {xk} defined by

xk :=
(
1
k
,
2
k

)T

.

Then xk → x∗ and �F is continuously differentiable at all xk with Jacobian

�′
F (xk) =

(0 1√
2

− 1
0

√
2

)

for all k. Obviously, the sequence {�′
F (xk)} converges to the singular matrix

(0 1√
2

− 1
0

√
2

)
∈ ∂B�F (x∗),

i.e., x∗ is not a BD-regular solution of the system �F (x) = 0.

On the other hand it is very important to note that, contrary to�F , the natural merit function
associated to the operator�P is not differentiable everywhere in general, making the design
of globally convergent algorithms based on �P fairly cumbersome.

3. Algorithm and convergence

In this section we propose a general algorithmic scheme which is similar to the algorithms
considered, e.g., in [6, 19]. The only difference is that, instead of using a specific direc-
tion, we use a generic direction on which we impose certain assumptions. In the next
section, we shall illustrate how directions satisfying these assumptions can be calculated.
This allows us to analyze in a unified way different algorithms, corresponding to different
directions.
In the sequel, in order to prove global convergence, we shall always assume that the search

direction used in the algorithmic scheme satisfies Assumption 1 below. Assumptions 2sup,
2quad and 2fin will be invoked only to establish convergence rates.

Assumption 1

(a) dk = 0 ⇒ ∇�F (xk) = 0.
(b) If xk → x∗ and dk → 0, then ∇�F (x∗) = 0.
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Assumption 2sup

Let x∗ be a solution of NCP(F) and assume that {xk} is a sequence converging to x∗.
Then

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0.

Assumption 2quad

Let x∗ be a solution of NCP(F) and assume that {xk} is a sequence converging to x∗.
Then

lim sup
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖2 < +∞.

Assumption 2fin

Let x∗ be a solution of NCP(F). There exists a neighborhood � of x∗ such that, if xk

belongs to �, then

x∗ = xk + dk .

Note that in our three different Assumptions 2, no connection is assumed between the way
the sequences {xk} and {dk} are generated. The threeAssumptions 2sup, 2quad and 2fin say that
the direction has to be locally superlinearly convergent, locally quadratically convergent or
has a finite termination property, respectively.
In what follows, a general scheme of an algorithm for the solution of the complementarity

problem using the merit function �F is given.
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General Line Search Algorithm

0. Choose x0 ∈ IRn , ρ > 0, s > 1, β ∈ (0, 1/2), σ ∈ (0, 1). Set k := 0.
1. If xk satisfies a suitable termination criterion: STOP.
2. Calculate a direction dk satisfying Assumption 1 and set pk = dk .
3. If

�F (xk + pk) ≤ σ�F (xk), (9)

set xk+1 := xk + pk , set k := k + 1 and go to Step 1.
4. If pk does not satisfy the following test

∇�F (xk)T pk ≤ −ρ‖pk‖s, (10)

set pk = −∇�F (xk). Find the smallest i k ∈ {0, 1, 2, . . .} such that

�F
(
xk + 2−i k

pk) ≤ �F (xk) + β2−i k ∇�F (xk)Tpk, (11)

set xk+1 := xk + 2−i kpk , set k := k + 1 and go to Step 1.

The algorithm itself, and the corresponding convergence analysis, are heavily based on the
continuous differentiability of �F described in Section 2.3.
In the sequel, in order to facilitate the statement of the convergence properties of the

algorithm, we shall always assume that the termination criterion at Step 1 is never satisfied,
so that an infinite sequence of points is generated

Theorem 3.1. If Assumption 1 holds, then every limit point of a sequence {xk} generated
by the General Line Search Algorithm is a stationary point of �F .

Proof: The proof is by contradiction. Suppose, renumbering if necessary, that {xk} → x∗

and that ∇�F (x∗) �= 0; then we can assume without loss of generality that the test (9) is
never passed and that

0 < δ ≤ ‖pk‖ ≤ D (12)

for suitable constants 0 < δ ≤ D. In fact, if the test (9) is satisfied infinitely many times,
this would imply, recalling that at each step �F (xk+1) ≤ �F (xk), that {�F (xk)} → 0, so
that x∗ is a global minimum point of �F and hence ∇�F (x∗) = 0. On the other hand if,
for some subsequence K , {‖pk‖}K → 0, we have that ∇�F (x∗) = 0 by Assumption 1(b),
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while {‖pk‖} cannot be unbounded because, taking into account that ∇�F (xk) is bounded
and s > 1, this would contradict (10).
Then, since at each iteration (11) holds and �F is bounded from below, we have that

{�F (xk+1) − �F (xk)} → 0 which implies, by the linesearch test,

{
2−i k ∇�F (xk)T dk} → 0. (13)

We want to show that 2−i k is bounded away from 0. Suppose the contrary. Then, subse-
quencing if necessary, we have that {2−i k } → 0 so that at each iteration the stepsize is
reduced at least once and (11) gives

�F
(
xk + 2−(i k−1) pk) − �F (xk)

2−(i k−1) > β∇�F (xk)T pk . (14)

By (12) we can assume, subsequencing if necessary, that {pk} → p∗ �= 0, so that, passing
to the limit in (14), we get

∇�F (x∗)Tp∗ ≥ β∇�F (x∗)Tp∗

and therefore

∇�F (x∗)T p∗ ≥ 0 (15)

sinceβ ∈ (0, 1). On the other hand, we also have, by (10), that∇�F (x∗)T p∗ ≤ −ρ‖p∗‖s <

0, which contradicts (15); hence 2−i k is bounded away from 0. But then (13) and (10) imply
that {pk} → 0 so that ∇�F (x∗) = 0 by Assumption 1(b). �

Assumptions under which a stationary point of the function �F is a solution of the com-
plementarity problem are given in [6] to which we refer the interested reader. Here we
only note that if F is a P0-function then every stationary point of �F is a solution of the
complementarity problem. This condition is probably the weakest known condition guar-
anteeing the correspondence between stationary points of a merit function and solutions of
the complementarity problem, and is one of the main motivations for using �F instead of
other merit functions in our General Line Search Algorithm.
In the sequel we examine the convergence rate of the algorithm.

Theorem 3.2. Suppose that x∗ is a b-regular solution of NCP(F), that {xk} converges to
x∗ and that Assumption 2sup is satisfied in x∗. Then, eventually pk = dk, xk+1 = xk + dk

and {xk} converges Q-superlinearly to x∗.

The proof uses the following two lemmas. The first one was shown in [11] under a slightly
stronger assumption. However, it is easy to see that the proof goes through with the weaker
assumption stated here. The second lemma readily follows from [37, Lemma 3.1].
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Lemma 3.3. Let G : IRn → IRn be semismooth and x∗ ∈ IRn be a BD-regular solution of
the system G(x) = 0. Suppose that there are two sequences {xk} and {dk} such that

xk → x∗ and lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖ = 0.

Then

lim
k→∞

‖G(xk + dk)‖
‖G(xk)‖ = 0.

Lemma 3.3. There exist constants c1 > 0 and c2 > 0 such that

c1�P(x) ≤ �F (x) ≤ c2�P(x)

holds for all x ∈ IRn, where �P(x) := 1
2‖�P(x)‖2 denotes the merit function belonging to

the Minimum operator �P .

Proof of Theorem 3.2: By Lemmas 3.3, 3.4, Proposition 2.10 and Assumption 2sup, the
b-regularity condition implies that eventually the test (9) is satisfied. So the assertion follows
by the instructions of the General Line Search Algorithm and Assumption 2sup. �

The following two results can be easily proved along the same lines used for the proof of
Theorem 3.2.

Theorem 3.5. Suppose that x∗ is a b-regular solution of NCP(F), that {xk} converges to
x∗ and that Assumption 2quad is satisfied in x∗. Then, eventually pk = dk, xk+1 = xk + dk

and {xk} converges Q-quadratically to x∗.

Theorem 3.6. Suppose that x∗ is a b-regular solution of NCP(F), that {xk} converges
to x∗ and that Assumption 2fin is satisfied in x∗. Then there exists an index k0 such that
xk0 = x∗.

4. Search directions

By the results of the previous section we see that we can define algorithms which enjoy
favourable properties if we are able to define search directions which satisfy Assumptions
1 and 2sup (or 2quad or 2fin). Obviously, from a theoretical point of view, we wish these
assumptions to hold under conditions on the complementarity problem which are as weak
as possible. In this section we consider several possible directions dk and compare their
theoretical properties. A numerical comparison is the subject of Section 5.
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4.1. The Fischer-Qi direction

The first direction we consider is basically the semismooth Newton direction for the system
�F (x) = 0.

dk =
{
solution of Hkd = −�F (xk),with Hk ∈ ∂B�F (xk), if system solvable

(16)−∇�F (xk) otherwise.

Theorem 4.1.
(a) The direction defined by (16) satisfies Assumption 1.
(b) If x∗ is an R-regular solution of NCP(F), then Assumption 2sup holds. Furthermore, if

F is an LC1-function, then also Assumption 2quad holds.

Proof:

(a) The proof of this point is obvious if dk = −∇�F (xk). So consider the case in which dk

is the solution of Hkd = −�F (xk). If xk → x∗ (in particular, if xk = x∗ for every k)
and if dk → 0, we have, taking into account the boundedness of the B-subdifferential
on bounded sets, that �F (x∗) = 0. But then x∗ is a global minimum of �F so that
∇�F (x∗) = 0.

(b) If x∗ is an R-regular solution of NCP(F) then, by Proposition 2.8, x∗ is a BD-regular
solution of the system �F (x) = 0, which is semismooth by Proposition 2.7(a). Hence
Assumption 2sup holds because of Theorem 2.1. If, in addition, F is an LC1-function,
then �F is strongly semismooth by Proposition 2.7(b), and, once again, the assertion
follows from Theorem 2.1. �

4.2. The inexact Fischer-Qi direction

This is nothing else but the previous direction in which, however, the linear system is solved
inexactly.

dk =
{
solution of Hkd = −�F (xk) + rk,with Hk ∈ ∂B�F (xk), if system solvable
−∇�F (xk) otherwise.

(17)

Theorem 4.2. Assume that the sequence of residuals {rk} satisfies ‖rk‖ ≤ ηk‖�F (xk)‖,
where {ηk} is a sequence of numbers such that, for every k, 0 ≤ ηk ≤ η̄ < 1. Then:
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(a) The direction defined by (17) satisfies Assumption 1.
(b) If x∗ is an R-regular solution of NCP(F) and ‖rk‖ = o(‖�F (xk)‖), then Assump-

tion 2sup holds. Furthermore, if F is an LC1-function and ‖rk‖ = O(‖�F (xk)‖2),
then also Assumption 2quad holds.

Proof:

(a) The proof of this point is obvious if dk = −∇�F (xk). So consider the case in which
dk is the solution of Hkd = −�F (xk) + rk for a suitable residual vector rk ∈ IRn . If
xk → x∗ (in particular, if xk = x∗ for every k), we have, renumbering if necessary and
taking into account the boundedness of the sequence {rk}, that rk → r∗ for some vector
r∗ ∈ IRn . Hence, if dk → 0, we also have, taking into account the boundedness of the B-
subdifferential onbounded sets, that�F (x∗) = r∗. In viewof our assumptions, however,
we have ‖r∗‖ ≤ η̄‖�F (x∗)‖. Since η̄ < 1, this is only possible if �F (x∗) = r∗ = 0.
In turn, this implies that x∗ is a global minimum of �F so that ∇�F (x∗) = 0.

(b) If x∗ is an R-regular solution of NCP(F) then, by Proposition 2.8, x∗ is a BD-regular
solution of the system �F (x) = 0, which is semismooth by Proposition 2.7(a). Hence
Assumption 2sup holds because of Theorem 2.2(a) and (b). If, in addition, F is an
LC1-function, then�F is strongly semismooth by Proposition 2.7(b), and the assertion
follows from Theorem 2.2(c). �

4.3. The inexact LM Fischer-Qi direction

The direction considered in this subsection is an inexact perturbed Levenberg-Marquardt
version of direction (16). It was already considered in [10] and is defined as follows:

(
H T

k Hk + σk I
)
d = −H T

k �F (xk) + rk, (18)

where σk is a nonnegative number and rk is the residual, which measures the inaccuracy
with which the system is solved. Recall that (Hk)

T �F (xk) = ∇�F (xk) and note that the
linear system (18) always admits an exact (and hence inexact) solution since, for σk > 0,
the matrix on the left-hand side is positive definite, whereas for σk = 0 we try to solve the
normal equations of the system Hkd = −�F (xk).

Theorem 4.3. Assume that the sequence of residuals {rk} satisfies ‖rk‖ ≤ ηk‖∇�F (xk)‖,
where {ηk} is a sequence of numbers such that, for every k, 0 ≤ ηk ≤ η̄ < 1. Assume also
that the sequence {σk} is bounded from above. Then:
(a) The direction defined by (17) satisfies Assumption 1.
(b) If x∗ is an R-regular solution of NCP(F), ‖rk‖ = o(‖∇�F (xk)‖) and {σk} → 0, then

Assumption 2sup holds. Furthermore, if F is an LC1-function, ‖rk‖ = O(‖∇�F (xk)‖2)
and σk = O(‖∇�F (xk)‖), then also Assumption 2quad holds.

17



Proof:

(a) If xk → x∗ (in particular, if xk = x∗ for every k), we have, renumbering if necessary
and taking into account the boundedness of the sequence {rk}, that rk → r∗ for some
vector r∗ ∈ IRn . Hence, if dk → 0, we also have, using the boundedness of the B-
subdifferential on bounded sets and the assumed boundedness of the sequence {σk}, that
∇�F (x∗) = r∗. But, since ‖r∗‖ ≤ η̄‖∇�F (x∗)‖with η̄ < 1 in view of our assumptions,
this is only possible if ∇�F (x∗) = r∗ = 0.

(b) If x∗ is an R-regular solution of NCP(F), then, by Proposition 2.8, x∗ is a BD-regular
solution of the system �F (x) = 0, which is semismooth by Proposition 2.7(a). Hence
Assumption 2sup holds because of Theorem 2.3(a) and (b). If, in addition, F is an
LC1-function, then�F is strongly semismooth by Proposition 2.7(b), and the assertion
follows from Theorem 2.3(c). �

4.4. The Pang-Qi direction

This search direction is basically the semismooth Newton direction for the system�P(x) =
0.

dk =
{
solution of Hkd = −�P(xk),with Hk ∈ ∂B�P(xk), if system solvable
−∇�F (xk) otherwise.

(19)

Theorem 4.4.
(a) The direction defined by (19) satisfies Assumption 1.
(b) If x∗ is a b-regular solution of NCP(F), then Assumption 2sup holds. Furthermore, if

F is an LC1-function, then also Assumption 2quad holds.
(c) If F is affine and x∗ is a b-regular solution, then Assumption 2fin holds.

Proof:

(a) The proof of this point is obvious if dk = − ∇�F (xk). So consider the case in which
dk is the solution of Hkd = −�P(xk). If xk → x∗ (in particular, if xk = x∗ for every k)
and if dk → 0, we have, taking into account the boundedness of the B-subdifferential
on bounded sets, that �P(x∗) = 0. But then x∗ is a solution of NCP(F) so that
∇�F (x∗) = 0.

(b) If x∗ is a b-regular solution of NCP(F) then, by Proposition 2.10, x∗ is a BD-regular
solution of the system �P(x) = 0, which is semismooth by Proposition 2.7(a). Hence
Assumption 2sup holds because of Theorem 2.1(a) and (b). If, in addition, F is an
LC1-function, then�P is strongly semismooth by Proposition 2.7(b), and the assertion
follows from Theorem 2.1(c).

18



(c) This follows immediately from [15, Theorem 4], Proposition 2.10 and the upper semi-
continuity of the B-subdifferential. �

Point (c) in the theorem above also appears to be strongly related to the finite termination
result in [11].
From a computational point of view, it may be interesting to observe that the system

Hkd = −�P(xk), used in (19), is very structured, and this can be exploited numerically. In
fact, defining the index sets

α := α(xk) := {
i | xk

i > Fi (xk)
}
,

β := β(xk) := {
i | xk

i = Fi (xk)
}
,

γ := γ (xk) := {
i | xk

i < Fi (xk)
}

and recalling the definition of �P , we see, similarly to (8), that we can write the system
Hkd = −�P(xk) as(

F ′(xk)α∪δ,α∪δ F ′(xk)α∪δ,γ∪δ̄

0γ∪δ̄,α∪δ Iγ∪δ̄,γ∪δ̄

) (
dα∪δ

dγ∪δ̄

)
= −

(
Fα∪δ(xk)

xk
γ∪δ̄

)
(20)

for some index set δ with ∅ ⊆ δ ⊆ β and δ̄ := β\δ. This readily gives dγ∪δ̄ = −xk
γ∪δ̄

. It is
then obvious that it is not very sensible to apply a linear solver to the whole linear system
in order to get a solution of (20). Is is more convenient to set dk

γ∪δ̄
= −xk

γ∪δ̄
, substitute this

value in the first set of equations in (20) and solve the resulting reduced linear system, which
reads

F ′
α∪δ,α∪δ(x

k)dα∪δ = −Fα∪δ(xk) + F ′(xk)α∪δ,γ∪δ̄xk
γ∪δ̄

. (21)

4.5. The inexact Pang-Qi direction

This is nothing else but the previous direction in which, however, the linear system is solved
approximately.

dk =
{
solution of Hkd = −�P(xk) + rk, with Hk ∈ ∂B�P(xk), if system solvable
−∇�F (xk) otherwise.

(22)

The proof of the following theorem, which we omit, can be carried out exactly along the
same lines used in Theorem 4.3, using Proposition 2.10 instead of Proposition 2.8.

Theorem 4.5. Assume that the sequence of residuals {rk} satisfies ‖rk‖ ≤ ηk‖�P(xk)‖,
where {ηk} is a sequence of numbers such that, for every k, 0 ≤ ηk ≤ η̄ < 1. Then:
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(a) The direction defined by (17) satisfies Assumption 1.
(b) If x∗ is a b-regular solution of NCP(F) and ‖rk‖ = o(‖�P(xk)‖), then Assumption 2sup

holds. Furthermore, if F is an LC1-function and ‖rk‖ = O(‖�P(xk)‖2), then also
Assumption 2quad holds.

Obviously, also in this case, similarly to what has been seen in the previous section, it is
possible to approximately solve just the reduced system (21).

4.6. The inexact LM Pang-Qi direction

The direction considered in this subsection is an inexact perturbed Levenberg-Marquardt
version of direction (19).

(
H T

k Hk + σk I
)
d = −H T

k �P(xk) + rk, (23)

where Hk ∈ ∂B�P(xk), σk is a nonnegative number and rk is the residual which measures
the inaccuracy with which the system is solved.

Theorem4.6. Assume that the sequence of residuals {rk} satisfies‖rk‖ ≤ ηk‖H T
k �P(xk)‖,

where {ηk} is a sequence of numbers such that, for every k, 0 ≤ ηk ≤ η̄ < 1, and assume
that the sequence {σk} is bounded from above. Assume also that for every k the matrix
F ′

α∪δ,α∪δ(xk) is nonsingular (where α and δ denote the index sets used in Subsection 4.4).
Then:
(a) The direction defined by (17) satisfies Assumption 1.
(b) If x∗ is a b-regular solution of NCP(F), ‖rk‖ = o(‖H T

k �P(xk)‖) and {σk} → 0, then
Assumption2sup holds. Furthermore, if F is an LC1-function,‖rk‖ = O(‖H T

k �P(xk)‖2)
and σk = O(‖H T

k �P(xk)}), then also Assumption 2quad holds.

Proof:

(a) If xk → x∗ (in particular, if xk = x∗ for every k), we have, renumbering if neces-
sary and taking into account the boundedness of the sequence {rk}, that rk → r∗

for some vector r∗ ∈ IRn . Hence, if dk → 0, we also have, using the boundedness
of the B-subdifferential on bounded sets, the boundedness of the sequence {σk} and
the fact that the B-subdifferential is a closed mapping, that H T

∗ �P(x∗) = r∗ for
some matrix H∗ ∈ ∂B�P(x∗). In view of our assumptions, however, we also have
‖r∗‖ ≤ η̄‖H T

∗ �P(x∗)‖ with η̄ < 1. But this is only possible if H T
∗ �P(x∗) = r∗ = 0.

In turn, recalling (20) and the nonsingularity assumption, this implies �P(x∗) = 0.
Hence x∗ is a solution of NCP(F). This implies ∇�F (x∗) = 0.

(b) If x∗ is a b-regular solution of NCP(F) then, by Proposition 2.10, x∗ is a BD-regular
solution of the system �P(x) = 0, which is semismooth by Proposition 2.7(a). Hence
Assumption 2sup holds because of Theorem 2.3(a) and (b). If, in addition, F is an

20



LC1-function, then�P is strongly semismooth by Proposition 2.7(b), and the assertion
follows from Theorem 2.3(c). �

Also in this case, as seen in the previous two cases, things can be arranged so that only a
reduced system has to be solved approximately at each iteration. Note also that, in order
to satisfy Assumption 1, we had to impose a nonsingularity assumption in Theorem 4.6.
This assumption, which is satisfied in a sufficiently small neighbourhood of a b-regular
solution of NCP(F), was not necessary for any of the other search directions discussed in
this section.

4.7. Comparison of the theoretical characteristics of the directions

From a theoretical point of view, the Pang-Qi directions (exact, inexact and Levenberg-
Marquardt) need weaker assumptions than the corresponding Fischer-Qi directions in order
to satisfy Assumption 2sup or Assumption 2quad, namely b-regularity instead of R-regularity.
However it should also be added that, as shown in Section 2.3, these two conditions are
equivalent for the class of P0-functions. Another advantage of the Pang-Qi directions is
that they only need the (possibly inexact) solution of a linear system of a dimension that,
asymptotically, is equal to the number of positive variables at the solution. This contrasts
favourably with the Fischer-Qi directions that always need the solution of an n-dimensional
square system. Finally, it should also be noted that there is only one direction for which
Assumption 2fin (i.e., finite termination for linear complementarity problems) can be proved:
the exact Pang-Qi direction.
The Fischer-Qi directions seem to have only one, but important, advantage over the

corresponding Pang-Qi directions: We saw that, in the General Line Search Algorithm, we
first try to use a Newton-like direction, but, if neither (9) nor (10) are satisfied, we employ
−∇�F (xk) as search direction. Obviously, it does not appear to be very desirable to have
to resort to the gradient often. From this point of view we may note that it is easy to see that
the Fischer-Qi directions are always directions of descent for the merit function �F , see,
e.g., [6, 11], while we cannot expect a similar property to hold for the Pang-Qi directions
since these directions are calculated on the basis of a reformulation of the complementarity
problem based on �P and not on �F . Thus, a priori, we should expect that, if we use
a Pang-Qi direction in the General Line Search Algorithm, the Newton direction will be
discarded more often than when we use a Fischer-Qi direction.
We conclude this section by noting that some of the algorithms obtained by using some of

the directions introduced in this section in the General Line Search Algorithm have already
been presented in the literature. In particular, if we use the exact Fischer-Qi direction we
have the algorithm considered in [6], whereas if we use the inexact LM Fischer-Qi direction
we obtain the algorithm considered in [10].

5. Numerical results

5.1. Description of the test problems and implementation details

We tested our algorithm on test problems generated by using a technique first suggested
in [17] and subsequently used, e.g., in [10]. Let g(x) = 0 be a (large-scale) differentiable
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system of nonlinear equations and let x∗ ∈ IRn be defined by x∗ = (1, 0, 1, 0, . . .)T . For all
i = 1, . . . , n set

Fi (x) =
{

gi (x) − gi (x∗) if i odd or i > r,
gi (x) − gi (x∗) + 1 otherwise,

where r ≥ 0 is a given integer. Then x∗ is a solution of the nonlinear complementarity
problem NCP(F) (but not necessarily its unique solution). Note that, if r is smaller than
n − 1, the problem is degenerate at x∗. As done in [17], we used the collection of 17
large-scale problems from Lukšan [24] and the starting points indicated there. However, we
did not consider problems 3 and 6, since these were never solved by any of the algorithms
considered; actually we are not aware of any algorithm capable of solving these problems
(see also [17]).
We considered problems with dimensions n = 100, n = 1000 and n = 10000. For each

dimension we considered two cases: r = n/2 and r = n. The former case corresponds to a
degenerate problem with n/4 degenerate components, while the latter case corresponds to
a nondegenerate problem. Finally, besides the starting points x0 suggested in [24], we also
considered, for each problem, an additional starting point defined by

x̃0i =
{
10x0i if x0i �= 0,
10 otherwise.

Therefore each algorithmwas tested on 90 different problems and on each of these problems
two different starting points were used so that we have 180 runs for each algorithm.
In the previous section, we introduced 6 directions which, coupled with the General

Line Search Algorithm, give 6 different algorithms. However, in this section we only report
the results for four directions: the exact Fischer-Qi (EXFQ) direction, the exact Pang-
Qi (EXPQ) direction, the Levenberg-Marquardt inexact Fischer-Qi (LMFQ) direction and
the Levenberg-Marquardt inexact Pang-Qi (LMPQ) direction. We do not report results
on the inexact Fischer-Qi and inexact Pang-Qi directions. In fact, in order to implement
the corresponding algorithms we need an iterative solver for unsymmetric linear systems.
Although many of them are available, our experiments seem to indicate that these solvers
(at least if they are not combined with a sophisticated preconditioner) are not very reliable in
practice (at least on our problems) leading either to extremely long running times or to failure
due to the incapability of finding a sufficiently good search direction. We were genuinely
surprised by these results.We think that the problem is that these solvers are usually thought
for and tested on linear systems arising from the discretization of PDE problems, and they
are not very reliable when used on other problems. For the other 4 methods, instead, we had
no difficulty in selecting an appropriate solver. In particular, we used HARWELL routine
MA50 to calculate the EXFQ and EXPQ directions and the conjugate gradient method to
calculate the LMFQ and LMPQ directions.
The conjugate gradient algorithm was stopped when the norm of the residual is smaller

than (0.1/(k + 1))‖∇�F (xk)‖ in the case of the LMFQ algorithm and when the residual is
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smaller than
0.1

k + 1
(
Hk

α∪δ,α∪δ

)T (
Fα∪δ(xk) − F ′(xk)α∪δ,γ∪δ̄xk

γ∪δ̄

)
in the case of the LMPQ algorithm. We also set a limit of 200 iterations to the conjugate
gradient phase. Finally we turn to the choice of σk . We first note that the classical sophisti-
cated choices indicated, e.g., in [7], are not suitable for large-scale problems. We therefore
used a very simple, and yet seemingly effective strategy, already employed in [10]. If in
the previous iteration the quotient ‖∇�F (xk−1)‖/‖dk−1‖ is greater than 250 and the norm
of the natural residual ‖min{xk, F(xk)}‖ is greater than k(0.1

√
n) then we set σk = 1,

otherwise we set σk = 0. The first test is a rough indicator that “something is going wrong”
while the second test makes the possibility of the perturbation (i.e., σk > 0) more and more
unlikely the more the process progresses, so that the final fast convergence rate is preserved.
We coded the algorithm in Fortran 77 and run it on an IBM RISC 6000/375 machine in

double precision arithmetic.
The main stopping criterion is ‖min{xk, F(xk)}‖ ≤ 10−5√n or ‖∇�F (xk)‖ ≤ 10−5√n,

but we also stopped the algorithm after 100 iterations if the former stopping criterion was
not met. We used a single set of parameters for all the runs of the problems, more precisely
we set: ρ = 10−8, s = 2.1, β = 10−4 and σ = 0.9.
Finally, we also considered the option of initiating the computation by performing at most

10 iterations of a projected gradientmethod tominimize�F over the nonnegative orthant [1].
The rationale behind this option is to try to move in a more “promising” zone by performing
a few steps of a robust and not expensive method. Similar ideas were successfully used, for
example, in [8], where, however, the situation is slightly more complicated since the merit
function is not differentiable. It should be remarked that in this gradient phase, we introduce
the constraints x ≥ 0. This seems reasonable, since, on the one hand, we know that the
solution of the problem is in the nonnegative orthant and, on the other hand, the projected
gradient method can effectively handle the bound constraints. Since it is known that the
projected gradient method usually behaves well in the first iterations and then becomes
slow, we impose a limit of ten iterations to this phase. However, we stopped earlier if one
of the following criteria is satisfied:

– (�F (xk−1) − �F (xk))/�F (xk) ≤ 0.05;
– the zero variables are the same in xk−1 and xk and (�F (xk−1)−�F (xk))/�F (xk) ≤ 0.1;
– �F (xk) ≤ 10−5√n.

5.2. Analysis of the results

Our first aim is to determine whether the initial steps of projected gradient are beneficial.
In figure 1 we report the number of failures of each algorithm without using the projected
gradient phase (basic procedure) andwith theprojectedgradient phase (modifiedprocedure).
It is apparent that the projected gradient phase greatly enhances the robustness of all the
algorithms. The overall failures pass from 140 to 72, with a reduction of 50%. We also see
that the algorithms which seem to benefit more by the gradient steps are the exact ones. This
probably indicates that a pure Newton direction is less robust than a mixture of Newton
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Figure 1. Failures.

and gradient directions. In fact, the Levenberg-Marquardt directions may be seen as a way
of combining the Newton and gradient direction. Nevertheless, even this seems to be not
enough and a few initial gradient steps improve the performance also of the Levenberg-
Marquardt algorithms. It may also be noted that if the gradient projection strategy is used,
there seems to be no significant difference in the robustness of the four algorithms, thus
suggesting that the gradient projection phase is actually effective in moving the starting
point in a good region, from which all the four directions considered behave well.
In figure 2 we report more in detail the number of failures for each algorithm and for each

set of test problems. Some observations can be made. The degeneracy of the solution, that

Figure 2. Failures in detail.
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corresponds to the nonsmoothness of �F and �P at the solution, seems to have no impact
on the robustness of the algorithms. Furthermore, as could easily be expected, the faraway
starting points are consistently more difficult than the original ones.What is more surprising
is the relatively high number of failures for the exact algorithms (without projected gradient
phase), even for the standard starting points. Again, this seems to suggest that the pure
Newton directions are not very robust, and that taking into account the gradient direction,
as is done by the Levenberg-Marquardt methods, increases the stability of the algorithms.
We think that the previous results clearly show that the gradient phase is overall very

useful in increasing the robustness of all algorithms considered, even if it appears to bemore
useful in the case of the exact algorithms. The next step is then to determine how costly the
projected gradient phase is and which algorithm is more efficient from the computational
point of view. In order to compare the various algorithms in a homogeneous way, we
only considered the subset of test problems for which all algorithms (i.e., the four basic
algorithms and the ones including the gradient phase) did not fail and converged to the same
solution. This results in a total of 55 test problems: 22 for n = 100, 16 for n = 1000 and 17
for n = 10000.
In figures 3–5 we report the cumulative times needed by the algorithms to solve the

problems of dimension n = 100, n = 1000 and n = 10000, respectively. We reported the
times according to the dimensions because the times needed to solve problems, let us say,
of dimension 100 are not comparable to those needed to solve those of dimension 10000.
Let us first compare the version using exact linear solvers (EXPQ and EXFQ). We see
that the modified procedure, i.e., the one using the preliminary steps of projected gradient,

Figure 3. Times in 10−2× seconds, n = 100.
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Figure 4. Times in 10−2× seconds, n = 1000.

Figure 5. Times in 10−2× seconds, n = 10000.
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never requires more time than the basic procedure. This fact, along with the improvement
in the number of failures, seems to indicate that the projected gradient phase is certainly
very beneficial on these two algorithms. Another observation is that the algorithms using
the Pang-Qi direction are consistently faster than their counterparts using the Fischer-Qi
direction. This behavior is due to the fact that to calculate the Pang-Qi direction it is sufficient
to solve a linear system of reduced dimension, as already observed in Section 4.4.
If we pass to examine the inexact Levenberg-Marquardt algorithms (LMPQ and LMFQ),

we see that some differences are present. In particular, the time needed by the modified
versions can be substantially higher than the one needed by the corresponding basic algo-
rithm. In particular, this is apparent in the case n = 1000 for both algorithms and in the case
n = 10000 for the LMPQone. A closer look at the runs showed that this anomalous behavior
is almost completely due to the behavior on three instances of problem 15. When solving
these test problems, the projected gradient phase passes an initial point to the Newton phase
that gives rise to a Levenberg-Marquardt system which is extremely difficult to solve by the
conjugate gradient method. The increase of times reported in figures 4 and 5 is therefore
almost entirely due to the very high number of conjugate gradient inner iterations needed
to approximately solve the first systems of the Newton phase when solving these instances
of problem 15.
In figure 6 and in figure 7 we therefore report the same data of figures 4 and 5 without

considering, however, the three instances of problem 15. If we now look at the figures 3,
6 and 7, we see that, similarly to what observed for the EXPQ and EXFQ algorithms, the
LMPQ algorithms are faster than the LMFQ ones. If we compare the basic and the modified

Figure 6. Times in 10−2× seconds, n = 1000, without Problems 15.
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Figure 7. Times in 10−2× seconds, n = 10000, without Problems 15.

inexact Levenberg-Marquardt versions, we see that the modified versions usually need
roughly the same time as the basic versions (except that for the LMFQ when n = 10000).
This is remarkably different from what we observed for the exact algorithms, where a
substantial decrease of the time takes place.
To understand better this behavior, we report in figure 8 the number of iterations of the

various algorithms. Note that the number of iterations of the projected gradient is, obviously,
the same for every algorithm, and that the effect of the gradient phase is to reduce the number
of subsequent Newton-type iterations (compare the black columns with the dark grey ones).
The percentual decrease in the number of Newton iterations, when passing from the basic
procedure to the modified one, is roughly similar for all the algorithms. It is then natural that
theweight of the gradient phasewill be higher for the Levenberg-Marquardt algorithms than
for the exact ones since, at least on the problems considered here, the work needed to solve
exactly one linear system is higher than the cost to approximately solve the same system by
the conjugate gradient method (recall that one system is solved, possibly approximately, at
each iteration).
With regard to figure 8, it is also interesting to note that the number of Newton iterations

for the four algorithms (both in the basic or in the modified procedure) is very similar for
all the algorithms. Thus we may conclude that the more marked differences in the times
reported in the previous tables are mainly due to the different cost of the search direction
computations and, possibly, to the number of function evaluations. In fact we recall that
the number of Jacobian evaluations is equal to the number of total iterations, and therefore
roughly the same for all algorithms.
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Figure 8. Number of iterations.

In figure 9 we therefore report the number of function evaluations. There are two inter-
esting facts to be observed. First the high number of function evaluations needed by the
projected gradient phase. In general the projected gradient method is considered to be a
cheap method, however, this is true only if the cost of function evaluations is “low”. In
our case low should be read as (much) cheaper than the cost of (approximately) solving
a linear system. In our test problem set the function evaluations are actually very cheap;
however, should the algorithms be applied to problems with very high function evaluation
costs, the times of the modified procedures could become much higher than the cost of the
basic procedure, contrary to what is reported in figures 3–7.
A second point to be remarked is that, both in the case of the basic and of the modified

versions, the number of function evaluations needed in the Newton phase is sensibly lower
for the algorithms based on the Fischer-Qi directions. This corresponds to the fact that
much less backtrackings occur when using a Fischer-Qi direction than when using a Pang-
Qi direction. This confirms the observationmade in Section 4.7 that the Fischer-Qi direction
is much more directly related to the merit function �F while the Pang-Qi directions do not
even need to be descent directions for �F .
Again, since in our test set the cost of function evaluations is low, this behavior does not

affect much the times reported in figures 3–7. However, we should expect that the EXFQ
and LMFQ methods become more and more competitive as they are applied to problems
with higher and higher function evaluation costs.
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Figure 9. Number of function evaluations.

5.3. Summary of the results

The previous observations can be summarized as follows. The projected gradient phase
certainly enhances the robustness of all the four algorithms. The additional cost of this phase
is low on the test problems considered here, but could become high for those problems with
a high function evaluation cost. If the projected gradient phase is used, the reliability of the
four algorithms is similar, and they roughly need the same number of iterations. If, however,
we consider the times needed by the various algorithms, the behavior may differ widely.
If the cost of the function evaluations is low, the Pang-Qi algorithms are probably more
convenient; however, if we want to solve problems with functions extremely expensive to
evaluate, the Fischer-Qi algorithms can be more attractive.
Another aspect that should be kept in mind is the difficulty in solving the linear systems.

All the problems we considered gave rise to sparse, “easy” systems; and this is typical of
many applications. If the linear systems are “difficult” and not huge, the exact versions
could be preferable; on the other hand, if extremely large instances have to be solved, the
inexact algorithms are probably the only available options.

6. Final remarks

We have presented and studied a general line search scheme which allows us to ana-
lyze in a unified framework several semismooth algorithms for the solution of nonlinear
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complementarity problems. Several search directions have been studied in detail, both from
a theoretical and a numerical point of view. However, we remark that it is easily possible
to define and analyze in a similar way other algorithms. Below, we hint at some of these
further possibilities.
We first recall that a mapping ϕ : IR2 → IR is called an NCP-function if

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0,

cf. (1). If ϕ is any NCP-function, then NCP(F) is equivalent to

�(x) = 0,

where � : IRn → IRn is defined by

�(x) :=

⎛
⎜⎜⎝

ϕ(x1, F1(x))

...

ϕ(xn, Fn(x))

⎞
⎟⎟⎠.

Obviously, the Fischer function ϕF and theMinimum function ϕP are NCP-functions. Other
examples include, e.g.,

ϕKK(a, b) :=
√

(a − b)2 + λab − a − b, λ ∈ (0, 4) fixed

(see Kanzow and Kleinmichel [22]), and

ϕCCK(a, b) := λϕF (a, b) − (1− λ)a+b+, λ ∈ (0, 1) fixed

(see Chen, Chen and Kanzow [2]), where a+ := max{0, a} and, similarly, b+ := max{0, b}.
We denote the corresponding operators by �KK and �CCK, respectively. Many other NCP-
functions can be contructed, see Mangasarian [26] as well as Sun and Qi [36].
The function ϕKK is interesting because for λ = 2 it reduces to the Fischer function, and

in the limiting case λ = 0 it becomes a multiple of the Minimum function. On the other
hand, very strong theoretical and numerical results have been reported for ϕCCK in [2].
Now, similar to the (exact, inexact and LM inexact) Fischer-Qi directions, we can define

(exact, inexact and LM inexact) search directions based on�KK and�CCK. Since it is known
[22, 2] that�KK and�CCK are (strongly) semismooth if F is a C1-function (LC1-function)
and that an R-regular solution of NCP(F) is a BD-regular solution for the nonlinear systems
of equations �KK(x) = 0 and �CCK(x) = 0, it is not difficult to see that Theorems 4.1, 4.2
and 4.3 also hold for the corresponding search directions based on �KK and �CCK.
To conclude,we alsomention that the results of this paper can be generalized to variational

inequalities with box constraints. In fact, the method introduced very recently in [21] can
be viewed as an extension of one of the methods discussed in this paper.
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