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RAYLEIGH-SCHRÖDINGER SERIES AND BIRKHOFF DECOMPOSITION

JEAN-CHRISTOPHE NOVELLI, THIERRY PAUL, DAVID SAUZIN, AND JEAN-YVES THIBON

Abstract. We derive new expressions for the Rayleigh-Schrödinger series describing the per-

turbation of eigenvalues of quantum Hamiltonians. The method, somehow close to the so-called

dimensional renormalization in quantum field theory, involves the Birkhoff decomposition of some

Laurent series built up out of explicit fully non-resonant terms present in the usual expression

of the Rayleigh-Schrödinger series. More generally we prove that such a decomposition provides

solutions of a universal “mould equation” introduced in [P16], which solves general normal form

problems in Lie algebras.

1. Introduction

Rayleigh-Schrödinger expansion is a powerful tool in quantum mechanics, chemistry and more

generally applied sciences. It consists in expanding the spectrum of an operator (finite or infinite

dimensional) which is a perturbation of a bare one, around the unperturbed spectrum. Besides,

let us mention that perturbation theory has been a clue in the discovery of quantum dynamics

by Heisenberg in 1925 [B25, H25].

Let us consider a self-adjoint operator H0 on a Hilbert space H whose spectrum tE0pnq, n P

J Ď Nu is supposed (for the moment) to be discrete and non-degenerate, and a perturbation V

of H0, namely a self-adjoint bounded operator of “‘small size”. It is well-known that one can

unitarily conjugate H :“ H0 ` V , formally at any order in the size of V , to an operator of the

form H0 `N where N is diagonal on the eigenbasis of H0. More precisely

DC, unitary, such that C´1pH0 ` V qC „ H0 `N, rH0, N s “ 0, (1.1)

the equivalence „ meaning (in the good cases) that ‖CpH0 ` V qC´1 ´ pH0 ` Nq‖ “ Op‖V ‖8q,

for some convenient norm ‖¨‖.

An elegant way of building this pair pN,Cq consists in using the so-called Lie algorithm, see,e.g.

[D91]: let us look at C of the form C “ ei
W

h̄ , W being self-adjoint (which ensure automatically

that U is unitary). Expanding W “ W1 `W2 ` . . . , N “ N1 ` N2 ` . . . in “powers of V ”, we
1
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get, since e´iW
h̄ Hei

W

h̄ “ H `
8
ř

k“1

1

k!
p´i
h̄

qkrW, rW, . . . Hs . . . s, that

´
i

h̄
rW1,H0s “ DiagpV q ´ V

´
i

h̄
rW2,H0s “ DiagpV2q ´ V2, V2 “ ´

i

h̄
rW1, V s ´

1

2h̄2
rW1,W1,H0ss

´
i

h̄
rW3,H0s “ DiagpV3q ´ V3, V3 “ ´ ´

i

h̄
rW2, V s ´

1

2h̄2
rW1,W1, V ss ´

1

2h̄2
rW1, rW2,H0ss

´
1

2h̄2
rW2, rW1,H0ss `

i

6h̄3
rW1, rW1, rW1,H0sss

¨ (1.2)

´
i

h̄
rWk,H0s “ DiagpVkq ´ Vk

where DiagpV q is the diagonal part of V on the eigenbasis of H0 and the Vks are computed

recursively. Since the kernel of the derivation W ÞÑ ´ i
h̄

rW,H0s is precisely the set of diagonal

operators (H0 has simple spectrum), one can solve the preceding hierarchy of equations by

`

en,Wkem
˘

“
ih̄

E0pnq ´ E0pmq

`

en,´Vkem
˘

, n ‰ m

`

en, Nken
˘

“
`

en, Vken
˘

(here we have denoted by en the eigenvector of H0 of eigenvalue E0pnq), the diagonal part of Wk

remaining undetermined by the equation.

Using the Dirac notation xn |V |my :“
`

en, V em
˘

, |nyxm|ψ “ pem, ψqen, and the hierarchy, we

easily arrive to

xn |Nk|ny “
ÿ

n1,n2,...,nk´1

cn1,...,nk´1,nxn |V |n1yxn1 |V |n2y . . . xnk´1 |V |ny (1.3)

where the coefficients cn1,...,nk´1,n have to be determined recursively.

This is the standard way the Rayleigh-Schrödinger series is usually expressed: the correction

to the eigenvalue E0pnq is given at order k by the r.h.s. of (1.3), that is the diagonal matrix

elements of the (diagonal) normal form Nk.

Looking at the hierarchy (1.2) one realises that only commutators should be involved in (1.3)

for k ě 2. One way of achieving this has been developed recently by two of us in [P16]: let

N ¨̈“
 

1

ih̄
pE0pℓq ´ E0pkqq | k, ℓ P N

(

, (1.4)

and define, for λ P N ,

Vλ “
ÿ

pk,ℓq such that

E0pℓq´E0pkq
ih̄

“λ

xk |V | ℓy|ℓyxk|. (1.5)
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so that
1

ih̄
rH0, Vλs “ λVλ and V “

ÿ

λPN

Vλ. (1.6)

We will suppose that V is finite-band, that is to say that the sum in (1.6) is finite.

Proposition 1.1 ([P16]). For any k ě 1, there exist coefficients Rλ1,...,λk such that

Nk “
ÿ

λ1,...,λkPN

1

k
Rλ1,...,λk 1

ih̄
rVλ1

, 1

ih̄
rVλ2

, . . . 1

ih̄
rVλk´1

, Vλk
s . . . s. (1.7)

The coefficients Rλ1,...,λk are computable recursively together with the coefficients Sλ1,...,λk appear-

ing in a similar expansion for the operator of conjugation by C (see (2.2) with Ψp¨q “ C´1 ¨ C).

The family of pairs pRλ1,...,λk , Sλ1,...,λkq satisfies a universal “mould equation” (independent of V

and depending on H0 only through N ) studied in [P16] and recalled in the next section. Using

(1.5) and introducing decomposition of the identity on the unperturbed eigenbasis in (1.7), one

certainly recover (1.3), but probably with a big combinatorial complexity in the expressions as

k Ñ 8. Note that the decomposition (1.7) is NOT unique, though Nk is.

One of the main goal of this note is to introduce a new (to our knowledge) way of computing

the coefficients Rλ1,...,λk . It consist in applying a method actually very similar to the so-called

dimensional regularisation in quantum field theory (but much simpler): we will add a dependence

in an undetermined parameter ε. This will lead us to an explicit expression for the solution of

the modified “mould equation” coefficients as Laurent series in ε. The correct expression for

Rλ1,...,λk will then be obtained by taking the residue of the polar part of the so-called Birkhoff

decomposition of these Laurent series.

More precisely:

(1) letK` :“ Crrεss and letK :“ Cppεqq the field of the fractions ofK`, so thatK “ K`‘K´

with K´ “ ε´1
Crrε´1ss.

(2) let N be the set of words on the alphabet N (ordered sequences of elements of N ). We

will consider the set of functions from N to K, that is KN “ tf, λ ÞÑ fλu. We denote by

rpλq the length of the word λ “ λ1λ2 . . . λrpλq.

(3) for λ “ λ1 . . . λl, λ
1 “ λ1

1
. . . λ1

m we define λλ1 “ λ1 . . . λlλ
1
1
. . . λ1

m and on KN we define

the product

pf ˆ gqλ :“
ÿ

ab“λ

fagb P K.

Let T : N Ñ K, λ ÞÑ T λpεq be given by

T λpεq :“
1

pλ1 ` εqpλ1 ` λ2 ` 2εq . . . pλ1 ` ¨ ¨ ¨ ` λrpλq ` rpλqεq
,
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considered of course as a formal Laurent series in ε. Note that T λpεq always exists as Laurent

series in ε, even when λ1 ` ¨ ¨ ¨ ` λrpλq “ 0.

The “Birkhoff decomposition” (proven in the next section) states the following result.

Proposition 1.2 (Theorem B below). Let J P KN be defined by JI “ 1K , J
λ “ 0 otherwise.

There exist a unique pair U`, U´ P KN such that UI
´ “ UI

` “ 1K , U´ P J`K`K
N

´ , U` P K
N

`

and

U´ ˆ T “ U`.

The proof will be given in the next Section (in a more general setting), together with recurrence

relations in order to compute U´ and U`.

Since U´ P J ` K
N

´ , one can evaluate εU
λ
´pεq at ε “ 8 for each word λ ‰ I. We are now in

position of stating one of the main result of this article.

Theorem A. For any k ě 1,

Nk “
ÿ

λ1,...,λkPN

Nλ1,...,λk 1

ih̄
rVλ1

, 1

ih̄
rVλ2

, . . . 1

ih̄
rVλk´1

, Vλk
s . . . s,

for

Nλ1,...,λk “ ´Residue of Uλ1,...,λk

´ “ ´rεUλ1,...,λk

´ pεqsε“8.

We will prove much more in the following sections. In particular we will show that conjugation

by C as in (1.1) has an expansion:

C´1HC „ H `
8
ÿ

k“1

ÿ

λ1,...,λkPN

Gλ1,...,λk 1

ih̄
rVλ1

, 1

ih̄
rVλ2

, . . . 1

ih̄
rVλk

,Hs . . . s

where Gλ “ U
λ
`pεq|ε“0, and we will also remove the simplicity condition on the spectrum of H0.

F. Menous considers in [M09] the Birkhoff decomposition of moulds in order to solve normal-

ization problems necessitating (possibly) logarithmically ramified conjugating maps. Let us note

that the problems studied in [M09], and the methods used to solve them, concern local dynamics

(vector fields) in a situation where there is no need of normal form (absence of resonances): the

vector field is normalized to its “linear (unperturbed) part”. For these reasons, the results and

methods of [M09] cannot apply to our situation.

This paper is organized as follows. In Section 2 we briefly recall elements of mould theory

and the mould equation implying (1.1), prove the underlying Birkhoff decomposition and prove

the main result of this article, Theorem C. In Section 3 we prove the general “quantum” result

implying Theorem A. In Section 4 we present different situations where Theorem C applies,

including perturbations of Hamiltonian vector fields in classical dynamics.
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2. Mould theory and Birkhoff decomposition

In full generality, we are interested in the following situation: given X0, B P L, where L is a

Lie algebra over a field k of characteristic zero, we look for a Lie algebra automorphism Ψ which

maps X0 ` B to an element of L which commutes with X0. We call such a Ψ a “normalizing

automorphism” and X0 `B satisfying

ΨpX0 `Bq :“ X0 `N, rX0, N s “ 0, (2.1)

is then called a “normal form” of X0 `B. Our key assumption will be that B can be decomposed

into a sum B “
ř

nPN

Bn of eigenvectors of the inner derivation adX0
: Y ÞÑ rX0, Y s, namely

rX0, Bns “ ϕpnqBn for some function ϕ : N Ñ k.

It was proven in [P16] that such a pair pΨ, Nq exists when L is a complete filtered algebra1 and

that pΨ, Nq can be expressed by mould expansions, that is

$

’

&

’

%

N “
ř

rě1

ř

n1,n2,...,nrPN

1

r
Rn1...nrrBn1

, r. . . rBnr´1
, Brs . . .ss

Ψp¨q “
ř

rě1

ř

n1,n2,...,nrPN
Sn1...nrrBn1

, r. . . rBnr
, ¨s . . .ss

(2.2)

where the functions n1 . . . nr ÞÑ Rn1...nr , Sn1...nr are moulds satisfying the mould equation (2.3)

below.

Note that normal forms in completed graded Lie algebras have been studied in [M13] with a

more Hopf-algebraic point of view and without involving moulds theory.

2.1. Moulds. Mould calculus has been introduced and developed by Jean Écalle ([E81], [E93])

in the 80-90’s in order to give powerful tools for handling problems in local dynamics, typically

the normalization of vector fields or diffeomorphisms at a fixed point.

Let N be a non empty set and k a ring. We will denote by N the set of words on the

alphabet N , rpnq the length of n P N , and define the set of moulds which take values in k as kN :

a mould is a map M : N Ñ k, n ÞÑ Mn.

1that is a Lie algebra
`

L, r. , .s
˘

together with a sequence of subspaces

L “ Lě0 Ą Lě1 Ą Lě2 Ą . . . with rLěm,Lěns Ă Lěm`n for all m,n P N

(exhaustive decreasing filtration compatible with the Lie bracket) such that
Ş

Lěm “ t0u (the filtration is separated)

and L is a complete metric space for the distance dpX,Y q ¨̈“ 2´ ordpY ´Xq, where we denote by ord : L Ñ N Y t8u

the order function associated with the filtration (function characterized by ordpXq ě m ô X P Lěm).
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Mould multiplication is induced by word concatenation2,

pM ˆNqn :“
ÿ

n“a b

MaN b with ab :“ a1 . . . arpaqb1 . . . brpbq.

Écalle’s definitions of symmetrality is fundamental. It is based on word shuffling. Roughly

speaking, the shuffling of two words a and b is the set of all words obtained by interdigitating the

letters of a and b while preserving their internal order in a or b; the number of different ways a

word n can be obtained out of a and b is called shuffling coefficient, denoted by sh
`

a, b
n

˘

: let Sr

be the symmetric group of degree r, then (see [P16], Section 2.2 for precisions):

sh
`

a, b
n

˘

“ cardt τ P Sr | nτp1q . . . nτprpnqq “ ab, τp1q ă ¨ ¨ ¨ ă τprpaqq, τprpaq`1q ă ¨ ¨ ¨ ă τprpnqqu.

AmouldM is “symmetral” ifMI “ 1 and
ř

nPN
sh
`

a, b
n

˘

Mn “ MaM b for any nonempty words a, b.

In other words, a symmetral mould is a character of a shuffle algebra.

It is explained in [P16] that, in the case of complete filtered Lie algebras over a field k of

characteristic 0, the equation (2.1) is solved by the ansatz (2.2) if the two moulds R and S are

solution of the mould equation:
$

’

’

&

’

’

%

∇ϕS “ S ˆ Ik ´R ˆ S

∇ϕR “ 0

S symmetral

(2.3)

where Ik is the mould defined by I
n
k

“ δrpnq,11k and ∇ϕM
n “ pϕpn1q ` ¨ ¨ ¨ ` ϕpnrpnqqM

n.

By a slight abuse of notation we define ϕpnq “ ϕpn1q ` ¨ ¨ ¨ ` ϕpnrpnqq.

2.2. Birkhoff decomposition.

Note that, in the case where
“

ϕpnq “ 0 ô n “ I
‰

(non resonant case) the unique solution of

(2.3) is R “ 0 and Sn1...nr “ 1

ϕpn1qϕpn1n2q...ϕpn1...nrq (the symmetrality requirement is easy to check

in that case), this last expression being possibly ill-defined in the general resonant case. We will

therefore extend the field k to the field of formal Laurent series with coefficients in k. This will

allow us to change the derivation ∇ϕ into a non resonant one. The new mould equation (2.3)

associated to this new derivation will be therefore easily solvable by an expression similar to the

2Let us notice that k
N can also be seen as a completed filtered Lie algebra with the bracketing rM,Ns “

M ˆ N ´ N ˆ M and the order function ord: k
N Ñ N Y t8u which is defined by

ordpM‚q ě m ô Mn “ 0 whenever rpnq ă m.
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one just mentioned. The original situation will be recovered by taking some king of residues of

the Birkhoff decomposition of this explicit solution.

More precisely, let K` :“ krrεss and K “ kppεqq the field of fractions of K`, so that K “

K` ‘ K´ with K´ “ ε´1krε´1s. Note that k Ă K by identifying elements of k with constant

formal series, so kN Ă KN .

Let Φ :“ ϕ` ε1k : N Ñ K, so that

∇ΦM
npεq “ pϕpnq ` rpnqεqMnpεq “ ΦpnqMnpεq P K,

with the same abuse of notation for Φpnq as we did before for ϕpnq.

Since rpnq ě 1 for n ‰ I, rpnqε ‰ 0 in K and so is ϕpnq ` rpnqε, even if ϕpnq “ 0. Therefore

the mould equation (2.3) associated to pΦ,Kq (in place of pϕ,kq) reduces to R “ 0 and

∇ΦT “ T ˆ IK (2.4)

and the (symmetral) solution is easily shown to be given explicitly by

T n1...nrpεq “
1

pϕpn1q ` εqpϕpn1n2q ` 2εq . . . pϕpn1 . . . nrq ` rpnqεq
. (2.5)

Of course T n1...nrpεq, considered as a function, is singular at ε “ 0 when some words n1 . . . nl, l ď r,

are resonant. The next result will give a precise product structure to T viewed as a mould.

Theorem B (Birkhoff decomposition of T ). Let J P KN be defined by JI “ 1K, J
λ “ 0 otherwise.

There exist a unique pair U`, U´ P KN such that UI
´ “ UI

` “ 1K, U´ P J ` K
N

´ , U` P K
N

`

and

U´ ˆ T “ U`.

Before to prove Theorem B, let us remark that, if we define Sn “ U
n
`pεq|ε“0 (by this we mean

that Sn is the constant term of the formal series U
n
`pεq), and R “ Sˆ Ik ˆS´1 ´∇ϕSˆS´1 P kN

we have tautologically that

∇ϕS “ S ˆ Ik ´R ˆ S

that is, pS,Rq solves (2.3) at the condition that S is symmetral and R is resonant.

Proof.

‚ Uniqueness

Let us take two decompositions pU´, U`q and pŨ´, Ũ`q. We have U´1
´ ˆ U` “ Ũ´

´1

ˆ Ũ` so

that J ` K
N

´ Q Ũ´ ˆ U´1
´ “ Ũ` ˆ U´1

` P K
N

` . Therefore U´ ˆ U´1
´ “ Ũ` ˆ U´1

` “ 1K since

K´ X K` “ t0u.

‚ Existence
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Let π˘ be the projectors K Ñ K˘. Since U
I
´ pεq “ UI

` pεq “ 1K, the formulae
#

U´ “ 1K ´ π´pU´ ˆ pT ´ 1Kqq

U` “ 1K ` π`pU´ ˆ pT ´ 1Kqq

determine the values of U
n
´pεq and U

n
`pεq by induction on the length of n. Moreover U` ´ U´ “

U´ ˆ pT ´ 1Kq, i.e. U` “ U´ ˆ T . �

2.3. Main result.

Theorem C. Let T the mould of KN defined by (2.5) and pU´, U`q its Birkhoff decomposition

as stated in Theorem B. Define the moulds S,R of kN by

Sn “ constant term of U
n
`pεq, Rn “ ´rpnqpresidue of U

n
´pεqq.

Then pS,Rq solves (2.3), and therefore pΨ, Nq, defined by (2.2), solves (2.1).

By constant term and residue of a Laurent series
ř

nPZ

cnε
n we mean respectively the coefficient

c0 and c´1.

Proof.

Lemma 2.1. Let S be as in Theorem C and R1 “ Sˆ Ik ˆS´1 ´∇ϕSˆS´1 P kN Ă KN . Then

(i) ∇ΦU´ “ ´R1 ˆ U´

(ii) ∇ΦU` “ U` ˆ IK ´R1 ˆ U`

(iii) R1n “ ´pε∇1k
U

n
´pεqq|ε“8

where ∇1k
Mnpεq “ rpnqMnpεq.

Note that, by (iii), we have that ∇ϕS “ S ˆ Ik ´ R ˆ S. Therefore it is enough in order to

prove the Theorem to prove that S is symmetral and R resonant.

‚ U´ and U` are symmetral.

The symmetrality of U´ and U` is derived easily3 from the one of T (T is symmetral since it is

the unique solution of an equation of type (2.3)) by using the machinery of dimoulds introduced

in [S09] and applied to our purpose in [P16].

A dimould is any map M : N ˆ N Ñ K, pa, bq ÞÑ Ma,b. Multiplication of dimoulds follows

multiplication of moulds:

pM ˆNqa,b ¨̈“
ÿ

pa,bq“pa1,b1qpa2,b2q

M pa1,b1qN pa2,b2q,

where the concatenation in N ˆ N is defined by pa1, b1qpa2, b2q “ pa1 a2, b1 b2q.

3It is immediate from the Birkhoff decomposition theorem, [C00], as stated for example in [Mn]. It is well known

that expressions like T pǫq define characters of shuffle algebras, so that their Birkhoff factors are both characters.
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Decomposable dimoulds are dimoulds of the form P “ MbN, where it is meant thatM and N

are (ordinary) moulds and P a,b “ MaN b. Using the shuffling coefficients defined earlier, we intro-

duce the map ∆ : KN Ñ KNˆN , defined by p∆Mqa,b ¨̈“
ř

nPN
sh
`

a, b
n

˘

Mn for any pa, bq P N ˆ N ,

which happens to be a morphism of associative algebras. With the help of ∆, symmetrality reads

now (see [S09, P16]):

M is symmetral if and only if MI “ 1 and ∆pMq “ M bM . (2.6)

Let us define A :“ ∆U´ and B :“ ∆U`. Since U` “ U´ ˆ T , A and B solve the equation

B “ Aˆ ∆T, A P J ` K
NˆN

´ and B P K
NˆN

` . p‹q

It is immediate to see that the equation p‹q has a unique (pair of dimoulds) solution, by the same

argument as in the proof of the uniqueness part of Theorem B. Moreover the symmetrality of T

implies that ∆T “ T bT , and one checks easily that this implies that pU´ bU´, U` bU`q solves

p‹q too. Therefore ∆U´ “ U´ b U´ and ∆U` “ U` b U`, and U´, U` are symmetral by (2.6).

‚ R is resonant.

We will show by induction on the length of n that
“

ϕpnq ‰ 0 ñ Rn “ U
n
´pεq “ 0

‰

. By definition

I is a resonant word, nothing to prove. By (i) we have, since UI
´ “ 1K and, by (iii), RI “ 0,

that

´pϕpnq ` εrpnqqU
n
´pεq “ Rn `

ÿ

ab“n
a‰I‰b

RaU
b
´pεq (2.7)

Since 0 ‰ ϕpnq “ ϕpaq ` ϕpbq, one of them must be different from 0. Therefore the induction

hypothesis implies that RaU
b
´pεq “ 0 when ab “ n, a ‰ I ‰ b, so the sum in (2.7) vanishes.

Moreover, since ϕpnq ‰ 0, ϕpnq ` εrpnq is invertible in K`. So K´ Q ´U
n
´pεq “ Rn

ϕpnq`εrpnq P K`

and therefore Rn “ U
n
´pεq “ 0. Theorem C is proven. �

Proof of Lemma 2.1. Since U´ ˆ T “ U`, ∇ΦT “ T ˆ IK and ∇Φ is a derivation, we get that

∇ΦU` “ U´ ˆ T ˆ IK ` ∇ΦU´ ˆ T “ U` ˆ IK ´ R ˆ U`

with R “ ´∇ΦU´ ˆ U´1
´ . So

U` ˆ IK ˆ U´1
` ´ ∇ΦU` ˆ U´1

` “ R P K
N

` (2.8)

since K
N

` is invariant by ∇Φ and, on the other side,

∇ϕU´ ˆ U´1
´ ` ε∇1U´ ˆ U´1

´ “ ´R “ P ` εQ, P,Q P K
N

´ . (2.9)
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Since K` X K´ “ t0u, we get, by (2.8 - 2.9),

R “ ´pε∇1U´ ˆ U´1
´ q|ε“8 “ ´pε∇1U´q|ε“8

since U´1
´ P 1K ` K

N

´ so that U´1
´ |ε“8 “ 1k.

Returning to (2.8), we have that R “ U` ˆIK ˆU´1
` ´∇ΦU` ˆU´1

` is constant in ε and therefore

R “ pU` ˆ IK ˆ U´1
` ´ ∇ΦU` ˆ U´1

` q|ε“0 “ S ˆ Ik ˆ S´1 ´ ∇ϕS ˆ S´1 “ R1.

The three assertions piq ´ piiiq are proven. �

3. Proof of Theorem A and more

Given an operator H0 on a separable Hilbert space H which is diagonal in an orthonormal basis

e “ pekqkPJĎN with eigenvalues E0pkq, one considers in [P16] the algebra LR ¨̈“ LR
e rrµss where

LR
e consists of all symmetric operators whose domain is the dense subspace SpanCpeq and which

preserve SpanCpeq. This is a complete filtered Lie algebra over R, filtered by order in µ.

To decompose an arbitrary perturbation as a sum of eigenvectors of adH0
:“ 1

ih̄
rH0, ¨s, we notice

that, for B P LR with matrix
`

βk,ℓpµq
˘

k,ℓPJ
on the basis e (with βk,ℓpµq P Crrµss), we can write

B “
ř

pk,ℓqPJˆJ

βk,ℓpµq| eℓy xek |, The sum might be infinite, but it is well-defined because the action

of B in SpanCpeq is finitary. For the sake of simplicity, we suppose that B is finite-band, which

means that there exists D P N such that βk,ℓ “ 0 when |k ´ ℓ| ą D.

By 1

ih̄

“

H0, | eℓy xek |
‰

“ E0pℓq´E0pkq
ih̄

| eℓy xek |, we immediately get that B “
ř

λPN

Bλ with

N ¨̈“
 

1

ih̄
pE0pℓq ´ E0pkqq | pk, ℓq P J ˆ J

(

and Bλ ¨̈“
ÿ

pk,ℓq such that

E0pℓq´E0pkq
ih̄

“λ

βk,ℓpµq| eℓy xek |. (3.1)

Then applying Theorem A and formulae (1.9) and (1.10) in [P16] to our main result Theorem C,

with ϕ equal to the identity in (2.3), we get the following one, more general than Theorem A,.

Theorem D. Let

Sλ “ constant term of U
λ
`pεq, Nλ “ ´residue of U

λ
´pεq

where pU´, U`q is the Birkhoff decomposition of the mould

T λpεq “
1

pλ1 ` εqpλ1 ` λ2 ` 2εq . . . pλ1 ` ¨ ¨ ¨ ` λrpλq ` rpλqεqq
.
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Then the formulae

N “
ÿ

λPN

Nλ 1

ih̄
rBλ1

, 1

ih̄
rBλ2

, . . . 1

ih̄
rBλrpλq´1

, Bλrpλq
s . . . s

Ψp¨q “
ÿ

λPN

Sλ 1

ih̄
rBλ1

, 1

ih̄
rBλ2

, . . . 1

ih̄
rBλrpλq

, ¨s . . . s

define respectively an element of LR and a unitary conjugation satisfying

ΨpH0 `Bq “ H0 `N and rH0, N s “ 0.

Taking now V in Section 1 as µB P LRrrµss and using the Addendum of Theorem A in [P16],

we get Theorem A of the present paper by identifying the homogeneous terms in µ and in V .

4. Extensions

One considers in [P16] four more examples of complete filtered algebras corresponding to four

dynamical situation: Poincaré-Dulac normal forms, Birkhoff normal forms, multiphase averaging

and the semicalssical approximation of the situation of the present article. In all these examples,

as in Section 3, the results are derived exclusively out of the mould equation of the form (2.3).

Therefore statements similar to theorem D can be established.

More quantitative results are proven in [P16] in the situation of an equation of the form (2.1)

stated on Banach scales of Lie algebras: precise estimates (in convenient norms) are given when

mould expansion are truncated. They also rely exclusively on mould equations and so can be

rephrased using Birkhoff decompositions.

Precise formulations for all these cases are left to the interested reader.
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