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Abstract: Gaussian process (GP) models have become a well-established framework for the
adaptive design of costly experiments, and notably of computer experiments. GP-based se-
quential designs have been found practically efficient for various objectives, such as global
optimization (estimating the global maximum or maximizer(s) of a function), reliability anal-
ysis (estimating a probability of failure) or the estimation of level sets and excursion sets.
In this paper, we deal with convergence properties of an important class of sequential design
approaches, known as stepwise uncertainty reduction (SUR) strategies. Our approach relies
on the key observation that the sequence of residual uncertainty measures, in SUR strategies,
is generally a supermartingale with respect to the filtration generated by the observations. We
study the existence of SUR strategies and establish generic convergence results for a broad
class thereof. We also introduce a special class of uncertainty measures defined in terms of
regular loss functions, which makes it easier to check that our convergence results apply in
particular cases. Applications of the latter include proofs of convergence for the two main SUR
strategies proposed by Bect, Ginsbourger, Li, Picheny and Vazquez (Stat. Comp., 2012). To
the best of our knowledge, these are the first convergence proofs for GP-based sequential
design algorithms dedicated to the estimation of excursions sets and their measure. Coming
to global optimization algorithms, we also show that the knowledge gradient strategy can
be cast in the SUR framework with an uncertainty functional stemming from a regular loss,
resulting in further convergence results. We finally establish a new proof of convergence for
the expected improvement algorithm, which is the first proof for this algorithm that applies
to any GP with continuous sample paths.

MSC 2010 subject classifications: Primary 60G15, 62L05; secondary 68T05.
Keywords and phrases: Sequential Design of Experiments, Active Learning, Stepwise Un-
certainty Reduction, Supermartingale, Uncertainty functional, Convergence.

1. Introduction

Sequential design of experiments is an important and lively research field at a crossroads between
applied probability, statistics and optimization, where the goal is to allocate experimental resources
step by step so as to reduce the uncertainty about some quantity, or function, of interest. While the
experimental design vocabulary traditionally refers to observations of natural phenomena presenting
aleatory uncertainties, the design of computer experiments—in which observations are replaced by
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numerical simulations—has become a field of research per se [29, 41, 42] where Gaussian process
models are massively used to define efficient sequential strategies in cases of costly evaluations. The
predominance of Gaussian processes in this field is probably due to their unique combination of
modeling flexibility and computational tractability, which makes it possible to work out sampling
criteria accounting for the potential effect of adding new experiments. Defining, calculating and
optimizing sampling criteria for various application goals have inspired a significant number of
research contributions in the last decades [see, e.g., 3, 9–11, 15, 17–19, 21, 22, 37–39, 44, 45, 53].
Yet, available convergence results for the associated design strategies are quite heterogeneous in
terms of their respective extent and underlying hypotheses [8, 23, 44, 46, 51]. Here we develop a
probabilistic approach to the analysis of a large class of strategies. This enables us to establish
generic convergence results whose broad applicability is subsequently illustrated on four popular
sequential design strategies. The crux is that each of these strategies turns out to involve some
uncertainty functional applied to a sequence of conditional probability distributions, and our main
results rely on an associated supermartingale property.

Among the sampling criteria considered in our examples, probably the most famous one is the
expected improvement (EI), that arose in sequential design for global optimization. Following the
foundations laid by Mockus et al. [33] and the considerable impact of the work of Jones et al. [27], EI
and other Bayesian optimization strategies have spread in a variety of application fields. They are
now commonly used in engineering design [16] and, in the field of machine learning, for automatic
configuration algorithms [see 45, and references therein]. Extensions to constrained, multi-objective
and/or robust optimization constitute an active field of research [see, e.g., 5, 14, 15, 22, 37, 55]. In
a different context, sequential design strategies based on Gaussian process models have been used
to estimate contour lines, probabilities of failures, profile optima and excursion sets of expensive to
evaluate simulators [see, notably, 3, 10, 21, 38, 39, 50, 54, 57].

The class of sequential design strategies that we consider here are built according to the stepwise
uncertainty reduction (SUR) paradigm [see 3, 9, 53, and references therein]. Our main focus is on
the convergence of these algorithms under the assumption that the function of interest is a sample
path of the Gaussian process prior that is used to construct the sequential design. Almost sure
consistency has been proven for the EI algorithm in [51], but only under the restrictive assumption
that the covariance function satisfies a certain condition—the “No Empty Ball” (NEB) property—
which excludes very regular Gaussian processes1. Moreover, to the authors’ knowledge no proof of
convergence has yet been established for algorithms dedicated to probability of excursion and/or
excursion set estimation (referred to as excursion case henceforth) such as those of Bect et al. [3].

The proof scheme developed here, that relies notably on a supermartingale property defined for
uncertainty functionals, allows us to address the excursion case and also to revisit the convergence
of the knowledge gradient algorithm [17–19], as well as that of the EI algorithm —that was recently
cast as a particular case of a SUR strategy; see [9]—without requiring the NEB assumption. Before
outlining the paper in more detail, let us briefly introduce its general setting and, in particular,
what we mean by SUR strategies. We will focus directly on the case of Gaussian processes for
clarity, but the SUR principle in itself is much more general, and can be used with other types of

1On a related note, Bull [8] proves an upper-bound for the convergence rate of the expected improvement algorithm
under the assumption that the covariance functon is Hölder, but his result only holds for functions that belong the
the reproducing kernel Hilbert space (RKHS) of the covariance—a condition that, under appropriate assumptions,
is almost surely not statisfied by sample paths of the Gaussian process according to Driscoll’s theorem [31]. Another
result in the same vein is provided by Yarotsky [56] for the squared exponential covariance in the univariate case,
assuming the objective function is analytic in a sufficiently large complex domain around its interval of definition.
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models [see, e.g., 11, 20, 32].

Let ξ be a real-valued Gaussian process defined on a measurable space X—typically, ξ will be
a continuous Gaussian process on a compact metric space, such as X = [0, 1]ℓ— and assume that
evaluations Zn = ξ(Xn)+ǫn are to be made, sequentially, in order to gather information about some
quantity of interest. We will assume the sequence of observation errors (ǫn)n∈N∗ to be independent
of the Gaussian process ξ, and composed of independent centred Gaussian variables. The definition
of a SUR strategy starts with the choice of a “measure of residual uncertainty” for the quantity of
interest after n evaluations, which is a functional

Hn = H
(
Pξ
n

)
(1.1)

of the conditional distribution Pξ
n of ξ given Fn, where Fn is the σ-algebra generated by X1, Z1,

. . . , Xn, Zn. For a given prior distribution Pξ
0, assume that the Hn’s are Fn-measurable random

variables. SUR sampling criteria are then defined as

Jn(x) = En,x (Hn+1) , (1.2)

where En,x denotes the conditional expectation with respect to Fn with Xn+1 = x (assuming
that Hn+1 is integrable, for any choice of x ∈ X). The value of the sampling criterion Jn(x) at
time n measures the expected residual uncertainty at time n+1 if the next evaluation is made at x.
Finally, a (non-randomized) sequential design is constructed by choosing at each step the point
that provides the smallest expected residual uncertainty—or, equivalently, the largest expected
uncertainty reduction—, that is,

Xn+1 ∈ argminx∈X Jn(x). (1.3)

Given a finite measure µ over X and an excursion threshold T ∈ R, a typical choice of mea-
sure of residual uncertainty in the excursion case [3] is the integrated indicator variance Hn =
H
(
Pξ
n

)
=
∫
X
pn (1− pn) dµ (also called integrated Bernoulli variance in what follows) where pn(u) =

Pn (ξ(u) ≥ T ) and Pn denotes the conditional probability with respect to Fn. Another related mea-
sure of uncertainty, for which a semi-analytical formula is provided in [10], is the variance of the
excursion volume, Hn = var(µ({u ∈ X : ξ(u) ≥ T })). In the optimization case on the other hand,
it turns out that the EI criterion is underlaid by the following measure of residual uncertainty
[see, e.g., 9, Section 3.3]: Hn = En (max ξ −Mn) where Mn = maxi≤n ξ(Xi) and En refers to the
conditional expectation with respect to Fn. A similar construct can be obtained for the knowledge
gradient, as developed later in the paper. It appears in all four cases that the associated measures of
residual uncertainty possess the aforementioned supermartingale property, allowing us to establish
in this paper convergence results for the associated strategies.

The paper is structured as follows. In Section 2 we present the class of GP models of interest
and the sequential design context. In particular, we review some fundamental results on links be-
tween GP models with continuous sample paths and Gaussian measures on the space of continuous
functions, and we address properties of conditioning and convergence of Gaussian measures that
are instrumental for proving the main results of the paper. In Section 3, we introduce uncertainty
functionals along with related concepts and results. Next, we define SUR and quasi-SUR strategies
and give sufficient conditions of existence depending on their underlying uncertainty functional.
At the heart of the section, we then establish general convergence results for such strategies. In
particular, special care is devoted to a class of uncertainty functionals that are defined in terms
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of the minimization of average loss functions. Ultimately, the convergence results are revisited in
the introduced framework of regular loss functions, leading to a simplified treatment for a number
of SUR strategies including three out of the four examples treated next. Section 4 details how the
previous results apply in the excursion (integrated Bernoulli variance and variance of excursion vol-
ume) and Bayesian optimization (knowledge gradient and EI) cases, establishing both convergence
to zero for the considered measure of residual uncertainty and convergence of the corresponding
estimator to the quantity of interest, in the almost sure and L1 sense.

2. Preliminaries: Gaussian process priors and sequential designs

2.1. Model

Let (ξ(x))x∈X
denote a Gaussian process with mean function m and covariance function k, defined

on a probability space (Ω,F ,P) and indexed by a metric space X. Assume that ξ can be observed
at sequentially selected (data-dependent) design points X1, X2, . . . , with additive heteroscedatic
Gaussian noise:

Zn = ξ(Xn) + τ(Xn)Un, n = 1, 2, . . . (2.1)

where τ : X → R+ gives the (known) standard deviation τ(x) of an observation made at the design
point x ∈ X, and (Ui)i≥1 denotes a sequence of independent and identically distributed N (0, 1)
variables, independent from ξ. Let Fn denote the σ-algebra generated by X1, Z1, . . . , Xn, Zn.

Definition 2.1. A sequence (Xn)n≥1 will be said to form a (non-randomized) sequential design if,
for all n ≥ 1, Xn is Fn−1-measurable.

Standing assumptions 2.2. We will assume in the rest of the paper that

i) X is a compact metric space,
ii) ξ has continuous sample paths,
iii) τ : X → R+ is continous.

Remark 2.3. Note that that the variance function τ2 is not assumed to be strictly positive. Indeed,
the special case where τ2 ≡ 0 is actually an important model to consider given its widespread use in
Bayesian numerical analysis [see, e.g. 13, 24, 35, 40] and in the design and analysis of deterministic
computer experiments [see, e.g., 2, 41, 42].
Remark 2.4. The setting described in this section arises, notably, when considering from a Bayesian
point a view the following non-parametric interpolation/regression model with heteroscedastic
Gaussian noise:

Zn = f(Xn) + τ(Xn)Un, n = 1, 2, . . . (2.2)

with a continuous Gaussian process prior on the unknown regression function f . In this case,m and k
are the prior mean and covariance functions of ξ.

2.2. Gaussian random elements and Gaussian measures on C(X)

Let S = C(X) denote the set of all continuous functions on X. Since X is assumed compact, S becomes
a separable Banach space when equipped with the supremum norm ‖·‖∞. We recall [see, e.g., 1,
Theorem 2.9] that any Gaussian process (ξ(x))x∈X

with continuous sample paths on a compact
metric space satisfies E(‖ξ‖∞) <∞.
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Any Gaussian process (ξ(x))x∈X
with continuous sample paths can be seen as a Gaussian random

element in S. More precisely, the mapping ξ : Ω → S, ω 7→ ξ(ω, ·) is F/S-measurable, where S
denotes the Borel σ-algebra on S, and the probability distribution Pξ of ξ is a Gaussian measure
on S. A proof of these facts is provided in the Appendix A.1. The reader is referred to Vakhania et al.
[48] and Ledoux and Talagrand [30] for background information concerning random elements and
measures in Banach spaces, and to van der Vaart et al. [49] and Bogachev [6] for more information
on the case of Gaussian random elements and measures.

We will denote by M the set of all Gaussian measures on S. Any ν ∈ M is the probability
distribution of some Gaussian process with continuous sample paths, seen as a random element
in X. The mean function mν and covariance function kν of this Gaussian process are continous (see,
e.g., Lemma 1 in [26]) and fully characterize the measure, which we will denote as GP(mν , kν). We
endow M with the σ-algebra M generated by the evaluation maps πA : ν 7→ ν(A), A ∈ S. Using this
σ-algebra, conditional distributions on S—i.e., transition kernels—can be conveniently identified to
random elements in M [see, e.g. 28, p. 105–106].

Given a Gaussian random element ξ in S, we will denote by P(ξ) the set of all Gaussian condi-
tional distributions of ξ, i.e., the set of all random elements ν in (M,M) such that ν = P

(
ξ ∈ · | F ′

)

for some σ-algebra F ′ ⊂ F .

2.3. Conditioning on finitely many observations

It is well known that Gaussian processes remain Gaussian under conditioning with respect to point-
wise evaluations, or more generally linear combination of pointwise evaluations, possibly corrupted
by independent additive Gaussian noise. In the language of nonparametric Bayesian statistics (see
Remark 2.4), Gaussian process priors are conjugate with respect to this sampling model. The fol-
lowing result formalizes this fact in the framework of Gaussian measures on S, and states that the
conjugation property still holds when the observations are made according to a sequential design.

Proposition 2.5. For all n ≥ 1, there exists a measurable mapping

(X× R)n ×M → M,

(x1, z1, . . . , xn, zn, ν) 7→ Condx1,z1,...,xn,zn(ν),
(2.3)

such that, for any sequential design (Xn)n≥1, CondX1,Z1,...,Xn,Zn
(Pξ) is a conditional distribution

of ξ given Fn.

A proof of this result is provided in Appendix A.3. In the rest of the paper, we will denote
by Pξ

n = GP(mn, kn) the conditional distribution CondX1,Z1,...,Xn,Zn
(Pξ) of ξ given Fn, which can

be seen as a random element in (M,M). Note that mn (respectively kn) is an Fn-measurable
process2 on X (respectively X×X), with continuous sample paths. Note also that m0 = m and k0 =
k. Conditionally to Fn, the next observation follows a normal distribution:

Zn+1 | Fn ∼ N
(
mn(Xn+1), s

2
n(Xn+1)

)
, (2.4)

where s2n(x) = kn(x, x) + τ2(x).

2i.e., a measurable process when considered as defined on (Ω,Fn) instead of (Ω,F)
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2.4. Convergence in M

We consider in this paper the following notion of convergence on M:

Definition 2.6. Let νn = GP
(
mn, kn

)
∈ M, n ∈ N∪{+∞}. We will say that (νn) converges to ν∞,

and write νn → ν∞, if mn → m∞ uniformly on X (i.e., mn → m∞ in S) and kn → k∞ uniformly
on X× X.

Remark 2.7. In other words, we consider the topology on M induced by the strong topology on
the Banach space C(X) × C(X × X), where M is identified to a subset Θ of this space through the
injection ν 7→ (mν , kν).

Let us now state two important convergence results in this topology, that will be needed in
Section 3. In the first of them, and later in the paper, we denote by F∞ =

∨
n≥1 Fn the σ-algebra

generated by
⋃

n≥1 Fn.

Proposition 2.8. For any sequential design, the conditional distribution of ξ given F∞ admits a
version Pξ

∞ which is an F∞-measurable random element in M, and Pξ
n → Pξ

∞ almost surely.

Proposition 2.9. Let ν ∈ M and let (xj , zj) → (x, z) in X×R. Assume that kν(x, x) + τ2(x) > 0.
Then Condxj , zj (ν) → Condx, z(ν).

Proof. See Appendix A.4 for proofs of both results.

3. Stepwise Uncertainty Reduction

3.1. Uncertainty functionals and uncertainty reduction

As explained in the introduction, the definition of a SUR strategy starts with the choice of an
uncertainty functional H, which maps the posterior distribution of ξ to a measure of residual
uncertainty for the quantity of interest.

More formally, let H : M → [0,+∞) denote a measurable map3. Since Pξ
n is an Fn-measurable

random element in (M,M), the residual uncertaintyHn = H(Pξ
n) is an Fn-measurable random vari-

able. The SUR sampling criterion introduced informally as Jn(x) = En,x (Hn+1) in Equation (1.2)
can be more precisely defined as

Jn(x) = En

(
H
(
Condx, Zn+1(x)

(
Pξ
n

)))
, (3.1)

where Zn+1(x) = ξ(x) + Un+1τ(x). Then, observe that Jn(x) = Jx(P
ξ
n), where the functional

Jx : M → [0,+∞] is defined for all x ∈ X and ν ∈ M by

Jx(ν) =

∫∫

S×R

H
(
Condx, f(x)+u τ(x) (ν)

)
ν(df)φ(u) du (3.2)

=

∫

R

H
(
Condx,mν(x)+v sν(x)(ν)

)
φ(v) dv, (3.3)

with s2ν(x) = kν(x, x) + τ2(x) and φ denotes the probability density function of the standard
normal distribution. The mapping (x, ν) 7→ Jx(ν) is B(X) ⊗ M-measurable (see Proposition A.8

3Only non-negative uncertainty functionals are considered in this paper, but our results could easily be adapted,
with appropriate integrability conditions, to the case of signed uncertainty functionals.
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in the appendix). As a consequence, Jn is an Fn-measurable process for all n and thus, for any
sequential design, Jn(Xn) is a well-defined Fn-measurable random variable.

A key observation for the convergence results of this paper is that many uncertainty functionals
of interest—examples of which will be given in Section 4—enjoy the following property:

Definition 3.1. A measurable functional H on M will be said to have the supermartingale property
if, for any Pξ

0 ∈ M and any sequential design (Xn)n≥1, the sequence (Hn)n≥1, with Hn = H(Pξ
n),

is an (Fn)-supermartingale.

It is straightforward to prove the following characterization of this property:

Proposition 3.2. H has the supermartingale property if, and only if, Jx(ν) ≤ H(ν) for all x ∈ X

and ν ∈ M.

The supermartingale property echoes with DeGroot’s observation that “reasonable” measures
of uncertainty should be decreasing on average for any possible experiment [12]. To discuss this
connexion more precisely in our particular setting, let us consider the following definition.

Definition 3.3. Let M0 denote a set of probability measures on S. Let M0 denote the σ-algebra
generated on M0 by the evaluation maps. For any random element ν in (M0,M0), let ν denote the
probability measure defined by ν(A) = E (ν(A)), A ∈ S. We will say that a measurable function H
on M0 is decreasing on average (DoA) if, for any random element ν in (M0,M0) such that ν ∈ M0,
E (H(ν)) ≤ H(ν).

Note that, if the set M0 is convex, DoA functionals on M0 are concave. The converse statement is
expected to be false, however, since Jensen’s inequality does not hold for all concave functionals in
infinite dimensional settings [see 36, for extensions of Jensen’s inequality under various assumptions].
The set M of all Gaussian measures on S is not convex, but all the uncertainty functionals presented
in Section 4 can in fact be extended, if infinite values are allowed, to DoA functionals defined on
its convex hull (i.e., on the set of all mixtures of Gaussian measures).

The supermartingale and DoA properties are easily seen to be connected as follows:

Proposition 3.4. Let M0 denote a set of probability measures on S. Assume that M0 is conju-
gate with respect to the sampling model (cf. Sections 2.1–2.3). Let H denote a (measurable) DoA
functional on M0. Then H has the supermartingale property.

Remark 3.5. The converse would hold for a sampling model that allows conditioning with respect
to any σ-algebra [see 12, Theorem 2.1, for a proof with “concave” instead of “DoA”].

Let us conclude this section with an additional definition:

Definition 3.6. A measurable functional H on M will be said to be P-uniformly integrable if, for
any Gaussian random element ξ in S, the family (H(ν))

ν∈P(ξ) is uniformly integrable.

Proposition 3.7. Let H denote a measurable functional on M. If there exists L+ ∈ ∩ν∈ML1 (S,S, ν)
such that |H(ν)| ≤

∫
S
L+dν for all ν ∈ M, then H is P-uniformly integrable.

Proof. Let ξ denote a Gaussian random element in S and let ν = P
(
ξ ∈ · | F ′

)
∈ P(ξ). We

have |H(ν)| ≤ E (L+(ξ) | F ′), and the result follows from the uniform integrability of conditional
expectations [see, e.g., 28, Lemma 5.5].

Remark 3.8. If H is P-uniformly integrable and has the supermartingale property then, for any
sequential design, the sequence (Hn) is a uniformly integrable supermartingale (since {Pξ

n} ⊂ P(ξ)).
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3.2. Existence of SUR and quasi-SUR strategies

A SUR sequential design is built by selecting at each step (possibly after some initial design) the
next design point as a minimizer of the SUR sampling criterion Jn. More formally:

Definition 3.9. We will say that (Xn) is a SUR sequential design (or SUR strategy) associated
with the uncertainty functional H if it is a sequential design such that Xn+1 ∈ argminJn for
all n ≥ n0, for some integer n0. Given a sequence ε = (εn) of positive real numbers such that
εn → 0, we will say that (Xn) is an ε-quasi-SUR sequential design (or strategy) if it is a sequential
design such that Jn (Xn+1) ≤ inf Jn + εn for all n ≥ n0, for some integer n0.

In order to provide sufficient conditions for the existence of an ε-quasi-SUR strategy associated
with a certain uncertainty functional H, we will need to assume a form of continuity of the uncer-
tainty functional on M. Assuming H to be continuous, however, would be too strong a requirement,
that some important examples would fail to satisfy (see Sections 4.1 and 4.2). The following weaker
notion of continuity will turn out to be suitable for our needs:

Definition 3.10. A measurable functional H on M will be said to be P-continuous if, for any
Gaussian random element ξ in S and any sequence of random elements νn ∈ P(ξ) such that

νn
a.s.

−−→ ν∞ ∈ P(ξ), the convergence H(νn)
a.s.

−−→ H(ν∞) holds.

Remark 3.11. Note that the definition of “P-continuous” does not put any restriction on the dis-
tribution of the Gaussian random element ξ. In particular, we are not requiring that ξ should be
such that any ν∞ ∈ P(ξ) belongs almost surely to the set of continuity points of H.

We are now in a position to state a general existence result for ε-quasi-SUR strategies. Recall
that X is assumed, thoughout the paper, to be a compact metric space (see Assumptions 2.2).

Theorem 3.12. Let H denote a measurable uncertainty functional on M. Assume that H = H0 +
H1, where H0(ν) =

∫
S
L0 dν for some L0 ∈ ∩ν∈ML1 (S,S, ν), and H1 is P-uniformly integrable,

P-continuous and has the supermartingale property. Then,

a) for any sequential design, the sample paths of Jn are continuous on
{
x ∈ X : s2n(x) > 0

}
;

b) for any sequence ε = (εn) of positive real numbers, there exists an ε-quasi-SUR sequential
design (Xn)n≥1 associated with H.

Proof. We will assume without loss of generality that H0 = 0, since H0 only adds a constant term
(i.e., a term that does not depend on x) to the value of the sampling criterion.

Let us first prove Assertion (a). Since Jn(x) = Jx

(
Pξ
n

)
, it is equivalent to prove that the result

holds at n = 0 for any Pξ
0 ∈ M. Assume then that n = 0, fix x ∈ X such that that s20(x) = k(x, x)+

τ2(x) > 0, and let (xj) denote a sequence in X such xj → x. Recall from Equation (3.1) that J0(x) =
Jx(P

ξ
0) = E

(
H
(
Condx, Z1(x)

(
Pξ
0

)))
. Set νk = Condxk, Z1(xk)

(
Pξ
0

)
and ν∞ = Condx, Z1(x)

(
Pξ
0

)
. We

have νk ∈ P(ξ) for all n ∈ N∪ {+∞}, and νk → ν∞ by Proposition 2.9. It follows that H(νk)
a.s.
−−→

H(ν∞) since H is P-continuous, and thus Jxk
(Pξ

0) = E
(
H(νk)

)
→ E

(
H(ν∞)

)
= Jx(P

ξ
0) since

(H(νk)) is uniformly integrable. Assertion (a) is proved.
Consider now the following compact subsets of X:

Bn,γ(ω) =
{
sn (ω, ·) ≥ γ−1 > 0

}
, (3.4)

An,γ(ω) = Bn,γ(ω) ∩ {Jn (ω, ·) ≤ inf Jn(ω, ·) + εn} . (3.5)
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Observe that, on the event {sn 6≡ 0} ∈ Fn, Bn,γ(ω) is non-empty when γ is large enough. Since
Jn (ω, ·) ≤ Hn(ω) by Proposition 3.2, and Jn(ω, x) = Hn(ω) for any x such that s2n(x) = 0, An,γ(ω)
is also non-empty for large values of γ on {sn 6≡ 0}. Moreover, since X is a compact metric space,
it is easily proved that ω 7→ An,γ(ω) is an Fn-measurable random closed set, and thus admits [see,
e.g., 34, Theorem 2.13] an Fn-measurable selection X

(γ)
n+1, i.e., an X-valued random variable such

that X(γ)
n+1 ∈ An,γ on the event {An,γ 6= ∅}. Finally, let x̃ denote an arbitrary fixed point in X.

Setting

Xn+1 =

{
x̃ if sn ≡ 0,

X
(k)
n+1 if An,k 6= ∅ and An,l = ∅, ∀l < k.

(3.6)

provides the desired ε-quasi-SUR strategy and thus finishes the proof.

In some situations, it is possible to prove directly the continuity of the sampling criteria Jn (see
Section 4.4 for an example), in which case a stronger existence result can be formulated as in [51],
that does not even require the supermartingale property:

Theorem 3.13. Let H denote a measurable uncertainty functional on M, such that, for all ν ∈ M,
x 7→ Jx(ν) is finite and continuous on X. Then,

a) for any sequential design, the sample paths of Jn are continuous on X;
b) there exists a SUR sequential design (Xn)n≥1 associated with H.

Proof. Assertion a) follows trivially from the fact that Jn(x) = Jx

(
Pξ
n

)
, and a SUR sequential

design is again obtained using the mesurable selection theorem for random closed sets.

3.3. General convergence results

Given a measurable uncertainty functional H : M → [0,+∞) with the supermartingale property,
let Gx : M → [0,+∞) denote the corresponding expected gain functional

Gx(ν) = H(ν)− Jx(ν), (3.7)

and let G : M → [0,+∞) denote the maximal expected gain functional :

G(ν) = sup
x∈X

Gx(ν). (3.8)

Remark 3.14. Following [12], Gx could be called the “information” brought by an evaluation at x
about the quantity of interest. This is consistent with the usual definition of mutual information,
when H is taken to be the posterior Shannon entropy of some discrete quantity of interest.

Denote by ZH and ZG the subsets of M where the functionals H and G, respectively, vanish. The
inclusion ZH ⊂ ZG always hold: indeed, 0 ≤ Jx ≤ H for all x by Proposition 3.2, thus 0 ≤ Gx ≤ H,
and therefore 0 ≤ G ≤ H. The reverse inclusion plays a capital role in the following result, which
provides sufficient conditions for the almost sure convergence of SUR strategies, and more gener-
ally ε-quasi-SUR strategies, associated with uncertainty functionals that enjoy the supermartingale
property.

Theorem 3.15. Let H denote a non-negative, measurable functional on M with the supermartingale
property. Let (Xn) denote a quasi-SUR sequential design for H. Then G

(
Pξ
n

)
→ 0 almost surely. If,

moreover,
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i) Hn = H
(
Pξ
n

)
→ H

(
Pξ
∞

)
almost surely,

ii) G
(
Pξ
n

)
→ G

(
Pξ
∞

)
almost surely (or, equivalently, G

(
Pξ
∞

)
= 0 almost surely);

iii) ZH = ZG ;

then Hn → 0 almost surely.

Proof. Since Xn+1 is Fn-measurable, we have:

Jn (Xn+1) = En

(
H
(
Condx,Zn+1(x)

(
Pξ
n

)))
|x=Xn+1

= En

(
H
(
CondXn+1,Zn+1

(
Pξ
n

)))
= En (Hn+1) .

(3.9)

Set ∆n+1 = Hn −Hn+1 and ∆n+1 = En (∆n+1) = Hn − En (Hn+1). The random variables ∆n are
non-negative since (Hn) is a supermartingale and, using that (Xn) is an ε-quasi-SUR design, we
have for all n ≥ n0:

∆n+1 = Hn − En (Hn+1) = Hn − Jn (Xn+1) ≥ Hn − inf
x∈X

Jn(x) − εn, (3.10)

i.e., since Jn(x) = Jx

(
Pξ
n

)
and Gx = H−Jx,

∆n+1 ≥ sup
x∈X

Gx

(
Pξ
n

)
− εn = G

(
Pξ
n

)
− εn. (3.11)

Moreover, for any n, we have
∑n−1

k=0 ∆k = H0 −Hn, and therefore

E

(
n−1∑

k=0

∆k

)
= E

(
n−1∑

k=0

∆k

)
= E (H0 −Hn) ≤ E (H0) < +∞.

It follows that E
(∑∞

k=0 ∆k

)
< +∞, and thus ∆n → 0 almost surely. As a consequence, G

(
Pξ
n

)
→ 0

almost surely, since 0 ≤ G
(
Pξ
n

)
≤ ∆n+1 + εn.

Let now Assumptions i–iii hold. It follows from the first part of the proof that G
(
Pξ
n

)
→ 0

almost surely. Thus, G
(
Pξ
∞

)
= 0 almost surely according to Assumption ii. Then H

(
Pξ
∞

)
= 0 since

ZG ⊂ ZH, and the conclusion follows from Assumption i.

Remark 3.16. Note that the conclusions of Theorem 3.15 still hold partially if it is only assumed
that the condition Jn (Xn+1) ≤ inf Jn + εn holds infinitely often, almost surely: in this case the
conclusion of the first part of the theorem is weakened to lim inf G

(
Pξ
n

)
= 0, but the final conclusion

(Hn → 0 a.s.) remains the same.

Assumptions i and ii) of Theorem 3.15 hold if H and G, respectively, are P-continuous. Checking
that G is P-continuous, however, is not easy in practice. The following results provides sufficient
conditions that are easier to check.

Theorem 3.17. Let the assumptions of Theorem 3.12 hold. Then, for any quasi-SUR sequential
design, G

(
Pξ
∞

)
= 0 almost surely.

Proof. We will assume without loss of generality that H0 = 0. Indeed, it is easy to check that H0

contributes the same additive term to both H and Jx, and thus has no influence on the value of
Gx = H−Jx.
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Let x ∈ X. We haveH
(
Pξ
n

) a.s.
−−→ H

(
Pξ
∞

)
since H is P-continuous, Gx

(
Pξ
n

) a.s.
−−→ 0 by Theorem 3.15,

and thus
Jx

(
Pξ
n

) a.s.
−−→ H

(
Pξ
∞

)
. (3.12)

Let Pξ
n,x = Condx,Z(x), with Z(x) = ξ(x) + τ(x)U and U ∼ N (0, 1) independent from ξ and

the Un’s, and observe that Jx

(
Pξ
n

)
= En

(
H
(
Pξ
n,x

))
. Consider then the decomposition:

Jx

(
Pξ
n

)
= En

(
H
(
Pξ
n,x

)
−H

(
Pξ
∞,x

))
+ En

(
H
(
Pξ
∞,x

))
. (3.13)

It follows from Theorem 6.23 in Kallenberg [28] that

En

(
H
(
Pξ
∞,x

)) a.s., L1

−−−−→
n→∞

E∞

(
H
(
Pξ
∞,x

))
. (3.14)

Moreover, note that

Pξ
n,x = CondX1, Z1, ..., Xn, Zn, x, Z(x)

(
Pξ
0

)

= Condx, Z(x), X1, Z1, ..., Xn, Zn

(
Pξ
0

)

is the conditional distribution of ξ at the (n + 1)th step of the modified sequential design
(
X̃n

)
,

where X̃1 = x and X̃n+1 = Xn for all n ≥ 1, with a modified sequence of “noise variables”
(
Ũn

)

defined by Ũ1 = U and Ũn+1 = Un for all n ≥ 1. Note also that Pξ
∞,x corresponds to the conditional

distribution with respect to the σ-algebra generated by X̃1, Z̃1, X̃2, Z̃2 . . ., where the Z̃n’s have been
defined accordingly. As a result,

En

(
H
(
Pξ
n,x

)
−H

(
Pξ
∞,x

)) L1

−−−−→
n→∞

0 (3.15)

since H is P-continuous and P-uniformly integrable. Combine Equations (3.13), (3.14) and (3.15),
to prove that Jx

(
Pξ
n

)
→ E∞

(
H
(
Pξ
∞,x

))
in L1. Then, it follows a comparison with Equation (3.12)

that H
(
Pξ
∞

)
= E∞

(
H
(
Pξ
∞,x

))
almost surely, and therefore

Gx

(
Pξ
∞

)
= H

(
Pξ
∞

)
− E∞

(
H
(
Pξ
∞,x

))
= 0 almost surely. (3.16)

To conclude, note that by Assertion (a) of Theorem 3.12 the sample paths of J∞ : x 7→
E∞

(
H
(
Pξ
∞,x

))
are continuous on

{
x ∈ X : s2∞(x) > 0

}
. Let {xj} denote a countable dense sub-

set of X. We have proved that, almost surely, Gxj

(
Pξ
∞

)
= 0 for all j. Using the continuity of J∞

on
{
s2∞ > 0

}
, and the fact that Gx = 0 on

{
s2∞ = 0

}
, we conclude that, almost surely, Gx

(
Pξ
∞

)
= 0

for all x, and therefore G
(
Pξ
∞

)
= 0, which concludes the proof.

3.4. Uncertainty functionals based on a loss function

Let us now consider specific uncertainty functionals H of the form

H(ν) = inf
d∈D

∫

S

L(f, d) ν(df) = inf
d∈D

Lν(d), (3.17)



J. Bect, F. Bachoc and D. Ginsbourger/Supermartingale approach to Gaussian process design of experiments 12

where D is a set of “decisions”, L : S×D → [0,+∞] a “loss function” such that L(·, d) is S-measurable
for all d ∈ D, and Lν(d) =

∫
S
L(f, d) ν(df). All the examples that will be discussed in Section 4 can

be written in this form.
The following result formalizes an important observation of DeGroot [12, p.408] about such

uncertainty functionals—namely, that they always enjoy the DoA property introduced in Section 3.1
(and thus can be studied using Theorem 3.15).

Proposition 3.18. Let H denote a measurable functional on M. If H is of the form (3.17), then
it is DoA on M, and consequently has the supermartingale property.

Proof. The result follows directly from the fact that H is the infimum of a family of linear functionals
(ν 7→ Lν(d), for all d ∈ D) that commute with expectations in the following sense: for any random
element ν in M and any d ∈ D,

E
(
Lν(d)

)
= E

(∫

S

L(f, d)ν(df)

)
= Lν(d),

where ν is defined as in Definition 3.3.

An uncertainty functional of the form (3.17) is clearly M-measurable if the infimum over d can
be restricted to a countable subset of D (since the linear functionals ν 7→ Lν(d) are M-measurable
by Lemma A.3). This is true, for instance, if D is separable and d 7→ Lν(d) is continuous for all ν.
The following result provides more general sufficient conditions for the measurability of H, that
can cope with the case where Lν takes infinite values—an important example of which is discussed
in Section 4.4. The reader is referred to Molchanov [34, Section 2.1] for the definition of Effros
measurability.

Proposition 3.19. Assume that D is a Polish space. For all ν ∈ M, set

DL,ν =
{
d ∈ D : Lν(d) < +∞

}
. (3.18)

If the following conditions are satisfied:

i) L is S ⊗ B (D)-measurable;
ii) Lν is continuous on DL,ν for all ν;
iii) DL,ν is closed for all ν, and ν 7→ DL,ν is Effros-measurable with respect to M;

then H is M-measurable.

Remark 3.20. Assumption iii) is always satisfied if Lν does not take infinite values (i.e., when
DL,ν = D).

Proof. To establish the measurability of H we follow closely the proof of the upper semi-continous
part of Lemma 2.1 of Hiai and Umegaki [25]. Since ν 7→ DL,ν is M/Effros-measurable, the set
ML = {ν ∈ M : DL,ν 6= ∅} is in M and there exists a Castaing representation of DL,ν, i.e., a
countable family of mesurable selections Uk : M → D such that DL,ν = cl{Uk(ν)} on ML [see, e.g.,
34, Theorem 2.3, 3) ⇒ 5)]. Therefore, by continuity of Lν on DL,ν,

H(ν) =

{
+∞ if ν ∈ ML,

infk Lν(Uk(ν)) otherwise.
(3.19)

Since (ν, d) 7→ Lν(d) is M⊗B (D)-measurable by Lemma A.3, ν 7→ Lν(Uk(ν)) is measurable for all k,
and therefore H is measurable as the infinimum of a countable family of measurable functions.
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Remark 3.21. The assumption of continuity of Lν over DL,ν can be relaxed to lower semi-continuity,
in which case it can be proved (following the lower semi-continuous part of Lemma 2.1 in Hiai
and Umegaki [25]) that ν 7→ H(ν) = infd Lν(d) is Mµ

0 -measurable for any probability measure µ
on (M,M), where Mµ denotes the completion of M with respect to µ.

Three of the examples of SUR sequential designs from the literature that will be analyzed in
Section 4 are based on regular non-negative loss functions in the following sense.

Definition 3.22. We will say that a non-negative loss function L : S× D → [0,+∞) is regular if

i) D is a separable space,
ii) for all d ∈ D, L(·, d) is S-measurable,
iii) for all ν ∈ M, Lν takes finite values and is continuous on D,

and if the corresponding functionals H and G satisfy:

iv) H = H0+H1, where H0(ν) =
∫
S
L0 dν for some L0 ∈ ∩ν∈ML1 (S,S, ν), and H1 is P-uniformly

integrable and P-continuous,
v) ZH = ZG .

The following result is provided as a convenient summary of the results that hold for uncertainty
functionals based on regular non-negative loss functions.

Corollary 3.23. Let H denote a functional of the form (3.17) for some non-negative loss func-
tion L. If L is regular, then

a) H is a measurable functional that satisfies the assumptions of Theorems 3.12, 3.15 and 3.17.

In particular,

b) for any sequence ε = (εn) of positive real numbers, there exists an ε-quasi-SUR sequential
design (Xn)n≥1 associated with H,

c) for any quasi-SUR design, Hn = H
(
Pξ
n

)
→ 0 almost surely.

4. Applications to popular sequential design strategies

We now present applications of the previously established results to four popular sequential design
strategies, two of them adressing the excursion case (Sections 4.1 and 4.2), and the other two
adressing the optimization case (Sections 4.3 and 4.4). For each example, the convergence results are
preceded by details on the associated loss functions, uncertainty functionals and sampling criteria.

4.1. The integrated Bernoulli variance functional

Here we focus on the case where X is endowed with a finite measure µ and we let T ∈ R be a given
excursion threshold. For any measurable function f : X 7→ R, we let Γ(f) = {u ∈ X : f(u) ≥ T } and
α(f) = µ(Γ(f)). The quantities of interest are then Γ(ξ) and α(ξ). Let pn(u) = En

(
1Γ(ξ)(u)

)
=

Pn (ξ(u) ≥ T ). A typical choice of measure of residual uncertainty in this case is the integrated
indicator—or “Bernoulli”—variance [3]:

Hn =

∫

X

pn (1− pn) dµ, (4.1)
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which corresponds to the uncertainty functional

H(ν) =

∫

X

pν (1− pν) dµ, ν ∈ M, (4.2)

where pν(u) = Pν (ξ(u) ≥ T ). See [10] for more information on the computation of the corresponding
SUR sampling criterion Jn.

The functional (4.2) can be seen as the uncertainty functional induced by the loss function

L : S× D → R+,

(f, d) 7→ ‖1Γ(f) − d‖2L2(X),
(4.3)

where D ⊂ L2(X) is the set of “soft classification” functions on X (i.e., measurable functions defined
on X and taking values in [0, 1]). Indeed, for all ν ∈ M,

Lν(d) = Eν (L(ξ, d)) = ‖pν − d‖2L2(X) +

∫
pν(1− pν) dµ

is minimal for d = pν , and therefore H(ν) = infd∈D Lν(d).
The following theorem establishes the convergence of SUR (or quasi-SUR) designs associated to

this uncertainty functional using the theory developed in Section 3.4 for regular loss functions.

Theorem 4.1. The loss function (4.3) is regular in the sense of Definition 3.22, so that all the

conclusions of Corollary 3.23 apply. In particular H(Pξ
n)

a.s.
−−→ 0 for any quasi-SUR design associated

with H.

Proof. The proof consists in six points, as follows:

a) D is separable;
The space L2(X) is a separable metric space since X is a separable measure space (see, e.g.,

Theorem 4.13 in [7]). Hence D is also separable.

b) for all d ∈ D, L(·, d) is S-measurable;
Indeed, f 7→

∫
X

(
1f(x)≥T − d(x)

)2
dµ(x) is S-measurable by Fubini’s theorem since the integrand

is S ⊗ B(X)-jointly measurable in (f, x).

c) for all ν ∈ M, Lν takes finite values and is continuous on D;
Here Lν is clearly finite since the loss is upper-bounded by µ(X), and its continuity directly

follows from the continuity of the norm.

d) H = H0 +H1, where H0(ν) =
∫
S
L0 dν for some L0 ∈ ∩ν∈ML1 (S,S, ν), and H1 is P-uniformly

integrable;
Here this holds with L0 = 0 and H1 = H. Indeed, H is trivially P-uniformly integrable since the

loss is upper-bounded.

e) H1 is P-continuous;
Let ξ : (Ω,F ,P)×X → R be a Gaussian process on S with mean and covariance functions m and

k. Let (νn) be a sequence of random elements in P(ξ) so that a.s. νn → ν∞. For n ∈ N∪{∞}, let mn
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and kn be the mean and covariance functions of νn. Let also σ2(u) = k(u, u) and σ2
n(u) = kn(u, u).

For u ∈ X and n ∈ N ∪ {∞}, let

gn(u) = g

(
Φ̄

(
T −mn(u)

σn(u)

))
,

where g(p) = p(1 − p) and Φ̄(t) = P (Z ≥ t) where Z is a standard Gaussian variable, with the
convention that Φ̄(0/0) = 1. Using this notation, for n ∈ N ∪ {+∞} and for almost all ω ∈ Ω,

H(νn) =

∫

X

gn(u) dµ(u) =

∫

A(ω)

gn(u) dµ(u) (4.4)

where A(ω) = {u ∈ X : σ(u) > 0, σ∞(ω, u) = 0,m∞(ω, u) 6= T } ∪ {σ(u) > 0, σ∞(ω, u) > 0}, as
proven below. The property then follows using that, since νn → ν∞ almost surely, for almost all
ω ∈ Ω and for all u ∈ A(ω), mn(u) →n→∞ m∞(u) and σn(u) →n→∞ σ∞(u). Furthermore, either
σ∞(u) > 0 or σ∞(u) = 0,m∞(u) 6= T . Hence, we have that g(Φ̄([mn(u) − T ]/σn(u))) →n→∞

g(Φ̄([m∞(u) − T ]/σ∞(u))). So, for almost all ω ∈ Ω we can apply the dominated convergence
theorem and obtain that

H(νn) =

∫

A(ω)

gn(u) dµ(u) →n→∞ H(ν∞) =

∫

A(ω)

g∞(u) dµ(u).

Let us now prove Equation (4.4). Observe first that, for u so that σ(u) = 0, we have σn(u) = 0 for
all n ∈ N ∪ {∞} since νn ∈ P(ξ). Hence, gn(u) = 0 when σ(u) = 0. Thus, setting B(ω) = {u ∈
X; σ(u) > 0, σ∞(u) = 0, m∞(u) = T }, we have

H(νn) =

∫

A(ω)

gn(u) dµ(u) +

∫

B(ω)

gn(u) dµ(u).

Then, since (ω, u) 7→ m∞(ω, u) is jointly measurable by continuity of m∞ for all ω ∈ Ω, we obtain
from Fubini’s theorem:

E(µ(B(ω))) =

∫

X

1σ(u)>0 E(1σ∞(u)=01m∞(u)=T ) dµ(u) = 0. (4.5)

This follows from 0 = 1σ∞(u)=0σ
2
∞(u) = E(1σ∞(u)=0(ξ(u) −m∞(u))2|F ′

∞) so that, almost surely,
1σ∞(u)=0(ξ(u) −m∞(u))2 = 0 and thus 1σ∞(u)=01m∞(u)=T = 1σ∞(u)=01ξ(u)=T . Finally, as ξ(u) is
a Gaussian variable, we have E(1σ∞(u)=01m∞(u)=T ) = 0 when σ(u) > 0.

f) ZH = ZG .
Let ν ∈ ZG and let ξ ∼ ν. Let m, k, σ2 be defined as above. Let U ∼ N (0, 1) be independent

of ξ. Since G(ν) = 0, we have from Fubini theorem and the law of total variance
∫

X

var
[
E
(
1ξ(u)≥T |Zx

)]
dµ(u) = 0

for all x ∈ X, where Zx = ξ(x) + τ(x)U . Hence, for all x ∈ X, for almost all u ∈ X, we have

var


Φ̄


T −m(u)− k(x,u) (Zx−m(x))

σ2(x)+τ2(x)√
σ2(u)− k(x,u)2

σ2(x)+τ2(x)




 = 0,
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which implies that k(x, u) = 0 (as can be proven without difficulty by separating the cases of nullity
and non-nullity of the denominator). Hence, if there exists x∗ for which σ2(x∗) = k(x∗, x∗) > 0, we
obtain a contradiction, since then k(x, u) > 0 in a neighboorhood of x∗ by continuity. We conclude
that σ2(x) = 0 for all x ∈ X, and therefore H(ν) = 0.

In the next proposition, we refine Theorem 4.1 by showing that it entails a consistent estimation
of the excursion set Γ(ξ).

Proposition 4.2. For any quasi-SUR design associated with H, as n → ∞, almost surely and
in L1, ∫

X

(
1ξ(u)≥T − pn(u)

)2
dµ(u) → 0

and ∫

X

(
1ξ(u)≥T − 1pn(u)≥1/2

)2
dµ(u) → 0.

Proof. From the proofs of e) and f) in the proof of Theorem 4.1, it follows that a.s.
∫

X

(
1ξ(u)≥T − pn(u)

)2
dµ(u) =

∫

A(ω)

(
1ξ(u)≥T − pn(u)

)2
dµ(u).

Also, for all u ∈ A(ω), pn(u) goes almost surely to 1ξ(u)≥T as n → ∞ since σ∞ ≡ 0 a.s. from
the proof of f) in Theorem 4.1 and the conclusion of this theorem. Hence the first part of the
proposition follows by applying the dominated convergence theorem twice. The proof of the second
part of the proposition is identical.

4.2. The variance of excursion volume functional

Following up on the previous example of Section 4.1, we now consider the alternative measure of
residual uncertainty from [3, 10]:

Hn = H
(
Pξ
n

)
= varn(α(ξ)) = varn(µ(Γ(ξ))). (4.6)

The corresponding sampling criterion is

Jn(x) = En varn(α(ξ)|Zn+1(x)),

with Zn+1(x) as in Eq. 2.1 with Xn replace by x and Un replaced by Un+1. This uncertainty again
derives from a loss function, and even a simpler one as here L(f, d) = (α(f)− d)2 with D = R leads
to

LPξ
n
(d) = En[(α(ξ) − d)2] = varn(α(ξ)) + (En(α(ξ)) − d)2

whereof LPξ
n

reaches its infimum for d = En(α(ξ) and Hn = infd∈D LPξ
n
(d). As in the last section,

the theorem below ensures that L is regular and that the further pre-requisites are met towards
establishing almost sure convergence of Hn to 0 for corresponding (quasi-)SUR sequential designs.

Theorem 4.3. The loss function L(f, d) = (α(f) − d)2, where d ∈ D = R, is regular in the sense

of Definition 3.22, so that all the conclusions of Corollary 3.23 apply. In particular H(Pξ
n)

a.s.
−−→ 0

for any quasi-SUR design associated with H.
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Proof. The proof consists in the same six points as in the proof of Theorem 4.1. Here a) and c) are
obvious. Let us now prove the four remaining points:

b) We have L(f, d) = (
∫
X
1f(u)≥Tdµ(u)−d)

2, so that for fixed d, L(f, d) is a S-measurable function
of f , as can be shown similarly as in the proof of Theorem 4.1.

d) We use again L0 = 0 for this criterion. The functional H1 = H is trivially P-uniformly integrable
since 0 ≤ H1 ≤ 1

4 µ(X)
2 by Popoviciu’s inequality.

e) Let us now show that H1 = H is P-continuous. We use the same notation ξ, σ, σn, m and mn,
for n ∈ N ∪ {+∞}, as in the proof of Theorem 4.1. We have

H(νn) =

∫

X

∫

X

cn(u1, u2)dµ(u1)dµ(u2),

where cn(u1, u2) = cov(1ξ(u1)≥T ,1ξ(u2)≥T |F
′
n) for n ∈ N ∪ {+∞}. Using the same notation A(ω)

and a similar reasoning as in the proof of Theorem 4.1, we have that for n ∈ N∪{+∞} and ω-almost
surely,

H(νn) =

∫

A(ω)

∫

A(ω)

cn(u1, u2)dµ(u1)dµ(u2).

For j = 1, 2 and uj ∈ A(ω), we have either σ∞(uj) > 0 or σ∞(uj) = 0,m∞(uj) 6= T . Hence, for
almost all ω ∈ Ω, for u1 ∈ A(ω) and u2 ∈ A(ω), we obtain cn(u1, u2) →n→∞ c∞(u1, u2) by Lemma
4.4 (proven later):

Lemma 4.4. Let mn = (mn1,mn2)
t → (m1,m2)

t = m as n → ∞. Consider a sequence of
covariance matrices Σn so that

Σn =

(
σn1 σn12
σn12 σn2

)
→n→∞

(
σ1 σ12
σ12 σ2

)
= Σ.

Assume that for i = 1, 2 we have mi 6= T or σi > 0. Let Zn ∼ N (mn,Σn) and Z ∼ N (m,Σ). Then
as n→ ∞, cov(1{Zn1≥T},1{Zn2≥T}) → cov(1{Z1≥T},1{Z2≥T}).

Hence, for almost all ω ∈ Ω, we can use the dominated convergence theorem to obtain that
H(νn) →n→∞ H(ν∞). Hence, H is P-continuous.

f) Observe that, for any ν ∈ M,

G(ν) = 0 ⇐⇒ ∀x ∈ X, Gx(ν) = 0

⇐⇒ ∀x ∈ X, E (var(α(ξ) | Zx)) = var(α(ξ))

⇐⇒ ∀x ∈ X, var (E(α(ξ) | Zx)) = 0

⇐⇒ ∀x ∈ X, α(ξ)− E(α(ξ)) ⊥ L2(Zx), (4.7)

where ξ ∼ ν and Zx = ξ(x) + τ(x)U , with U ∼ N (0, 1) independent from ξ.
Let ν ∈ ZG . Using Lemma A.9, it follows from Equation (4.7) that α(ξ) − E(α(ξ)) ⊥ L2(ξ(x)),

for all x ∈ X. In particular, α(ξ) − E(α(ξ)) ⊥ 1ξ(x)≥T , for all x ∈ X, and thus

var (α(ξ)) =

∫
cov

(
α(ξ),1ξ(x)≥T

)
µ(dx) = 0,

which concludes the proof.
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Proof of Lemma 4.4. By the convergence of moments and Gaussianity, (Zn1, Zn2) →d
n→∞ (Z1, Z2).

Furthermore, from the assumptions the cumulative distribution functions of Z1 and Z2 are con-
tinuous at T so that by the Portemanteau theorem, P (Zni ≥ T ) →n→∞ P (Zi ≥ T ). In addi-
tion, Y := min(Z1, Z2) then also has a continuous cumulative distribution function at T and,
as E(1{Z1≥T}1{Z2≥T}) = P (Y ≥ T ), we similarly get that n → ∞, E(1{Zn1≥T}1{Zn2≥T}) →
E(1{Z1≥T}1{Z2≥T}) which suffices to conclude.

Similarly as before, in the next proposition, we show that Theorem 4.3 yields a consistent esti-
mation of the excursion volume.

Proposition 4.5. For any (quasi-)SUR design associated with H, as n → ∞, almost surely and
in L1, En(α(ξ)) → α(ξ).

Proof. Let α = α(ξ). From Theorem 4.3, varn(α) →a.s.
n→∞ 0 so that, by dominated convergence,

E(varn(α)) →n→∞ 0. Hence, E(En[(En(α) − α)2]) →n→∞ 0 so that En(α) →L1

n→∞ α. Now, En(α)
is a martingale bounded in L1 so, by Theorem 6.23 in [28], it converges a.s. to a random variable.
Thus En(α) →a.s.

n→∞ α.

4.3. The Knowledge Gradient functional

Coming to the topic of sequential design for global optimization, we now focus on the knowledge
gradient criterion that has been used within Gaussian Process modelling following [18, 19]. The
knowledge gradient sampling criterion (with maxima taken over the whole domain X) is defined by

J̃n(x) = En

(
max
u∈X

En[ξ(u)|Zn+1(x)]

)
−max

u∈X

En[ξ(u)].

Here we consider a slightly modified criterion that defines the same strategy and fits more naturally
in our framework (note that J̃n is to be maximized while Jn is to be minimized as the criteria of
the previous sections):

Jn(x) = En[max
u∈X

ξ(u)]− En

(
max
u∈X

En[ξ(u)|Zn+1(x)]

)
.

Indeed the latter corresponds to the uncertainty

Hn = H
(
Pξ
n

)
= En[max

u∈X

ξ(u)]−max
u∈X

En[ξ(u)]. (4.8)

This time again, H derives from a loss function, with D = X and L(f, d) = maxu∈X f(u) − f(d),
leading to

LPξ
n
(d) = En[max

u∈X

ξ(u)]− En[ξ(d)]

whereof LPξ
n

reaches its infimum for d ∈ argmaxu∈X En[ξ(u)] and Hn = infd∈D LPξ
n
(d). Still follow-

ing the same route as in the last two sections, we have:

Theorem 4.6. The loss function L(f, d) = maxu∈X ξ(u) − ξ(d), where d ∈ D = X, is regular
in the sense of Definition 3.22, so that all the conclusions of Corollary 3.23 apply. In particular
H(Pξ

n)
a.s.
−−→ 0 for any quasi-SUR design associated with H.
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Proof. The proof consists in the same six points as in the proof of Theorem 4.1.

a) X is a compact metric space, hence separable.

b) The mapping L(·, d) : f 7→ max f − f(d) is continuous on S, hence S-measurable.

c) Lν : d 7→
∫
max f dν −mν(d) is continuous since mν ∈ S for all ν ∈ M.

d) Let L0(f) = max f . Then L0 ∈ ∩ν∈ML1 (S,S, ν) since |L0(f)| ≤ L+(f) := max |f | and
E(maxX |ξ|) < ∞ for any continuous Gaussian process ξ on a compact metric space X. More-
over, it follows from Proposition 3.7 that H1 : ν 7→ −maxmν is P-uniformly integrable, since
|H1(ν)| ≤

∫
L+dν.

e) We have that H1(ν) = infd∈X

∫
S
(−f(d))dν(f) = −maxu∈Xm(u), where m is the mean function

of ν. Consider a sequence of measures νn ∈ M, with mean functions mn converging, as n → ∞,
to ν∞ ∈ M with mean function m∞, in the sense of Definition 2.6. Then, mn converges uniformly
to m∞ as n → ∞, so that maxu∈Xmn(u) converges as n → ∞ to maxu∈Xm∞(u). Hence H1(νn)
converges as n→ ∞ to H1(ν∞).

f) Let ν ∈ ZG and let ξ ∼ ν. Let m, k, σ2 be defined, w.r.t. ξ, as in the proof of Theorem 4.1. Let
vx = ξ(x) + τ(x)U with U ∼ N (0, 1) independently of ξ. Let x∗ satisfy m(x∗) = maxu∈Xm(u). We
have, after some standard computations, for all x ∈ X,

0 = Gx(ν) = E(max
u∈X

E(ξ(u)|vx))−m(x∗).

This implies that, for all x, y ∈ X,

E [max(E(ξ(y)|vx),E(ξ(x
∗)|vx))− E(ξ(x∗)|vx)] = 0.

Hence, for all x, y ∈ X,
E
[
(E(ξ(y)|vx)− E(ξ(x∗)|vx))

+
]
= 0.

This implies, by Gaussianity, that for all x, y ∈ X,

var (E(ξ(y)|vx)− E(ξ(x∗)|vx)) = 0.

Hence, for all x, y ∈ X,

0 = var

(
m(y)−m(x∗) + 1σ2(x)+τ2(x)>0

k(x, y)− k(x, x∗)

σ2(x) + τ2(x)
(vx −m(x))

)

= 1σ2(x)+τ2(x)>0
(k(x, y)− k(x, x∗))2

σ2(x) + τ2(x)
.

Hence, for all x, y ∈ X, whether or not σ2(x) + τ2(x) = 0, we have

k(x, y) = k(x, x∗). (4.9)
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Now, for all x, y ∈ X,

var(ξ(x) − ξ(y)) ≤ 4max
x∈X

var(ξ(x) − ξ(x∗))

≤ 4max
x∈X

|k(x, x) + k(x∗, x∗)− 2k(x, x∗)|

≤ 4max
x∈X

|k(x, x) − k(x, x∗)|+ 4max
x∈X

|k(x∗, x∗)− k(x, x∗)|

= 0

from (4.9). Hence, for all x, y ∈ X, ξ(x) − m(x) = ξ(y) − m(y) a.s. Hence E(maxu∈X ξ(u)) =
E[m(x∗) + ξ(x∗)−m(x∗)] = m(x∗) = maxu∈Xm(u). Hence H(ν) = 0.

In the next proposition, we refine Theorem 4.6, by showing that the loss goes to zero for an
optimal decision in argmaxu∈X En[ξ(u)].

Proposition 4.7. Let x∗n be any (Fn-measurable) sequence in argmaxu∈X En[ξ(u)]. Then, for any
(quasi-)SUR design associated with H, as n→ ∞, almost surely and in L1, ξ(x∗n) → max ξ.

Proof. From the proof of f) in the proof of Theorem 4.6, and the fact that H(P ξ
∞) = 0 a.s., it

follows that a.s. var∞(ξ(x) − ξ(y)) = 0 for all x, y ∈ X. Hence, a.s. for all x, y ∈ X ξ(x) − ξ(y) =
m∞(x) −m∞(y). Let x∗ ∈ argmax ξ. We then have a.s.

lim sup
n→∞

(ξ(x∗)− ξ(x∗n)) = lim sup
n→∞

(m∞(x∗)−m∞(x∗n)) = lim sup
n→∞

(mn(x
∗)−mn(x

∗
n)) ≤ 0.

Hence ξ(x∗n) →n→∞ max ξ a.s. The convergence in the L1 sense is obtained by the dominated
convergence theorem.

4.4. The Expected Improvement functional

In this subsection, we address the celebrated expected improvement sequential strategy Jones et al.
[27], Mockus et al. [33]. We address the case of exact observations for which τ(x) = 0 for all x ∈ X.
Then, the expected improvement strategy is defined by

Xn+1 ∈ argmaxx∈X En (Mn+1,x −Mn) , (4.10)

with Mn = maxσn(u)=0 ξ(u) and Mn+1,x = maxσn(u|x)=0 ξ(u), where σn(u|x) is the conditional
variance of ξ(u) given ξ(x) under Pn. We remark that, in the case when σn(u) = 0 if and only if
u ∈ {X1, ..., Xn}, the strategy can be written more familiarly as

Xn+1 ∈ argmaxx∈X En

(
[ξ(x) −max(ξ(X1), ..., ξ(Xn))]

+
)
. (4.11)

The criterion in Equation (4.10) brings more generality than that of Equation (4.11), since it allows,
for instance, for Gaussian processes whose sample paths satisfy symmetry properties.

It is plain that the expected improvement strategy can be written as Xn+1 ∈ argmaxx∈X En(H(
Condx,ξ(x)(P

ξ
n))), with

H(ν) = E(max ξ)− max
σ(u)=0

m(u),
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where ξ ∼ ν and ν has mean and standard deviation functions m and σ. We now associate a loss
function to H. We let D = X × R, endowed with the sigma-algebra B(X) ⊗ B(R) = B(X × R) (as
these two spaces are separable). We let d = (x∗, z∗),

L (f, d) =

{
max f − z∗ if f(x∗) = z∗

+∞ otherwise
(4.12)

Lν (d) =

{
E (max ξ)−m(x∗) if σ(x∗) = 0 and m(x∗) = z∗

+∞ otherwise.
(4.13)

Then, L̄ν is minimized at d∗ = (x∗,m(x∗)), with x∗ ∈ argmaxσ=0m so that infd∈D L̄ν(d) = H(ν).
Contrary to the case of the previous three criteria, the loss function above is not regular, as we

show in the next proposition.

Proposition 4.8. The loss function given in (4.12) is not a regular loss function.

Proof. Assume that L is a regular loss function. Then, for any sequential design of experiments
(Xn), En(L0(ξ)) is a martingale bounded in L1 so that it converges to E∞(L0(ξ)) a.s. Hence,
from Proposition 2.8 and by assumption on H1, H(P ξ

n) converges to H(P ξ
∞) a.s. Also, by the same

martingale argument, En(max ξ) converges to E∞(max ξ) a.s. Hence, maxσn(u)=0mn(u) converges
to maxσ∞(u)=0m∞(u).

We now show that this last convergence does not hold for a certain choice of the Gaussian
process ξ on X = [0, 1], which yields a contradiction. We consider ξ with mean m : X → R,
u 7→ m(u) = u and covariance function k : X2 → R, (u, v) 7→ k(u, v) = exp(−(u− v)2). We let (Xn)
be a deterministic dense sequence on [0, 1/3]. Then, as follows from the proof of Proposition 1 in
[52], we have σ∞(u) = 0 for all u ∈ [0, 1]. Hence, maxσ∞(u)=0m∞(u) = maxu∈[0,1] ξ(u). Also, since
Xk ∈ [0, 1/3] for all k ∈ N, we have maxσn(u)=0mn(u) ≤ maxu∈[0,1/3]mn(u). This upper bound
converges to maxu∈[0,1/3] ξ(u) a.s. Hence we have a.s. maxu∈[0,1/3] ξ(u) = maxu∈[0,1] ξ(u). This last
equality can not hold because by symmetry maxu∈[0,1/3](ξ(u)− u) and maxu∈[2/3,1](ξ(u)− u) have
the same distribution.

Because of the previous proposition, we apply the more general results of Section 3 in order to
show the consistency of the expected improvement. We first apply Proposition 3.19 to show that
H is M-measurable so that Hn is a well-defined random variable for any quasi-SUR strategy.

Proposition 4.9. The conditions of Proposition 3.19 hold. As a consequence, H is M-measurable.

Proof. Proposition 3.19 i) holds since all the operations involved in L are S ×B(D) measurable. In
particular f, x∗ 7→ f(x∗) is continuous (as is easy to see) and hence measurable. Proposition 3.19 ii)
holds since m is a continuous function for all ν ∈ M. The set DL,ν = {(x∗, z∗); |m(x∗)−z∗|+σ(x∗) =
0} is clearly closed for all ν since σ and m are continuous. Also, from Lemma A.3, since f, d 7→ f(d)
and f, d 7→ f(d)2 are S×B(D) measurable, the functions ν, d 7→ m(d) and ν, d 7→ σ(d) are M⊗B(D)-
measurable. Hence, the function (ν, x∗, z∗) 7→ |m(x∗)− z∗|+ σ(x∗) is M⊗B(D)-measurable. Also,
for all ν, (x∗, z∗) 7→ |m(x∗) − z∗| + σ(x∗) is continuous. Hence, from Lemma A.4, the set DL,ν is
Effros-measurable with respect to M. Hence Proposition 3.19 iii) holds.

We now prove the consistency of the expected improvement strategy, based on applying Theorem
3.15, which shows that the maximum expected gain G(P ξ

n) vanishes asymptotically.
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Proposition 4.10. For any quasi-SUR sequential design associated with H, as n → ∞, almost
surely and in L1, maxmn −Mn → 0, Hn → 0 and Mn → max ξ.

Proof. We have that (Hn) is an Fn supermartingale since σn(.) decreases with n so that H has
the supermartingale property. Hence Theorem 3.15 applies and G(P ξ

n) →
a.s.
n→∞ 0. Observe also that

G(P ξ
n) = supx∈X En[Mn+1,x −Mn] ≥ supx∈X En[(ξ(x) −Mn)

+] so that a.s.

max
u∈X

γ(mn(u)−Mn, σ
2
n(u)) →n→∞ 0, (4.14)

with γ(a, b) = E((Z+
a,b)), where Za,b ∼ N (a, b).

Recall from Section 3 in Vazquez and Bect [51] that γ is continuous and satisfies

• γ(z, s2) > 0 if s2 > 0,
• γ(z, s2) ≥ z > 0 if z > 0.

Note that, from Proposition 2.8 a.s. lim supn→∞ maxu∈X |mn(u)| < +∞, and that 0 ≤ σn(u) ≤
maxu∈X σ(u) < +∞. Hence, from (4.14) and from the properties of γ, we have a.s. σ∞(u) = 0 for
all u ∈ X and lim supn→∞ maxu∈X(mn(u) −Mn) ≤ 0. Also, cleary Mn ≤ maxu∈X(mn(u)) so that
a.s. maxu∈Xmn(u)−Mn →n→∞ 0. Hence a.s. Hn−(En(max ξ)−maxu∈Xmn(u)) →n→∞ 0. We also
have a.s. En(max ξ) −maxu∈Xmn(u)) →n→∞ E∞(max ξ) −maxu∈Xm∞(u), from Proposition 2.8
and the martingale convergence theorem (see, e.g., Theorem 7.23 in [28]). Also, a.s. E∞(max ξ) −
maxu∈Xm∞(u) = 0, since a.s. σ∞(u) = 0 for all u ∈ X. Hence, we have shown that Hn →a.s.

n→∞ 0.
Also, since almost surely mn converges uniformly to ξ (as σ∞ = 0) we have maxu∈Xmn(u) →n→∞

max ξ a.s. and so Mn →n→∞ max ξ a.s.
We conclude the proof by observing that all three convergence results also hold in the L1-sense

by the dominated convergence theorem.

Finally, we remark that Proposition 4.10 improves the consistency result of [51], since it does
not impose the no-empty-ball property on the covariance function k. Hence, Proposition 4.10 also
holds with very smooth Gaussian processes, or with Gaussian processes which sample paths have
symmetry properties.

Appendix A: Proofs

A.1. Random element in C(X)

Let X be a compact metric space and let S = C(X) be the separable Banach space of all continuous
functions on X. Denote by S the Borel σ-algebra on S.

Proposition A.1. Let (ξx)x∈X
denote a stochastic process defined on (Ω,F ,P), indexed by X.

Assume that (ξx)x∈X
has continuous sample paths (i.e., that (x 7→ ξx(ω)) ∈ S, for all ω ∈ Ω) and

define ξ : Ω → S, ω 7→ ξ
·
(ω). Then,

i) ξ is a random element in S (i.e., it is F/S-measurable);
ii) if (ξx)x∈X

is a Gaussian process, Pξ is a Gaussian measure on (S,S).

Proof. Let ϕ ∈ S′ and let µϕ denote the unique signed measure on S such that ϕ(f) =
∫
X
f dµϕ.

Then
ϕ(ξ) : ω 7→

∫

X

ξx(ω)µϕ(dx)



J. Bect, F. Bachoc and D. Ginsbourger/Supermartingale approach to Gaussian process design of experiments 23

is measurable by Fubini’s theorem (because (ω, x) 7→ ξx(ω) is measurable). Since S′ separates the
points of S (Hahn-Banach theorem), and since S is a separable Banach space, we conclude from
Proposition 1.10 of Vakhania et al. [48] that ξ is measurable, which proves i).

Assume now that ξ is Gaussian. Assume further, without loss of generality, that ξ is centered.
Let H denote the closed linear span of (ξx)x∈X

in L2 (Ω,F ,P). For any ϕ ∈ S
′, we can write

ϕ(ξ) = η1 + η2, with η1 ∈ H and η2 ⊥ H . Then

var (η2) = E (η2 ϕ(ξ)) = E

(
η2

∫

X

ξx µϕ(dx)

)
=

∫

X

E (η2 ξx) µϕ(dx) = 0.

Therefore ϕ(ξ) ∈ H , which proves ii) since H is a Gaussian space.

Remark A.2. Since C(X) is a Polish space, all Borel measures are actually Radon measures, and
therefore the Gaussian probability measures that we are dealing with are actually Radon Gaussian
measures, as studied in depth by Bogachev [6, Chapter 3].

A.2. Measurability results

Lemma A.3. Let (E, E) denote a measurable space. Let ϕ : S × E → [0,+∞] denote an S ⊗ E-
measurable function. Then the function M × E → [0,+∞], (P, v) 7→

∫
ϕ(f, v) P(df), is M ⊗ E-

measurable.

Proof of Lemma A.3. The result is clear for any ϕ = 1A×B, with A ∈ S and B ∈ E . Indeed,∫
ϕ(f, v) P(df) = πA(P)1B(v), where πA denotes the evaluation map P 7→ P(A), and the restriction

of πA to M is M-measurable. It can be extended to any ϕ = 1Γ, with Γ ∈ S ⊗ E , using a standard
monotone class argument, and then to any S ⊗ E-measurable function by linearity and increasing
approximation by simple functions.

Lemma A.4. Assume that D is a locally compact metric space and that there exists a measurable
function ψ : M× D → R such that, for all ν, ψ(ν, ·) is continous and let Dν = {ψ(ν, ·) = 0}. Then
ν 7→ Dν is Effros-measurable with respect to M.

Proof. Level sets of measurable processes with continuous paths are random closed sets in locally
compact spaces [34, Example 1.2.iv, page 4]. The reason is that, in locally compact spaces, Effros-
measurability can be tested using compact sets instead of open sets [34, Section 2.1, page 26], and
the infinimum and supremum of a continuous process over a compact set are measurable (because
compact subsets of a metric space are separable).

In the following lemma, the Banach space C(X× X) is endowed with its Borel σ-algebra.

Lemma A.5. The mappings m• : M → S, ν 7→ mν and k• : M → C(X×X), ν 7→ kν are measurable.

Proof. The mapping m• is measurable if, and only if, ν 7→ ϕ(mν) is measurable for all ϕ ∈ S′

[see, e.g., 48, Theorem 2.2]. Let ϕ ∈ S′: there exists a unique signed measure µϕ on X such that
ϕ(f) =

∫
X
f dµϕ. It is then easy to check with Fubini’s theorem that ϕ(mν) =

∫
ϕ(f) ν(df), and

the conclusion follows from Lemma A.3. The measurability of k• is established in a similar way,
working on X× X instead of X.

Let Θ ⊂ S× C(X×X) denote the range of Ψ = (m•, k•), and let T denote the trace on Θ of the
Borel σ-algebra on S× C(X× X).
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Lemma A.6. Ψ is a bi-measurable mapping from (M,M) to (Θ, T ).

Proof. The measurability of Ψ follows from Lemma A.5. Since M is generated by the evaluation
maps (see Section 2.2), Ψ−1 is measurable if, and only if, (m, k) 7→ [GP(m, k)] (A) is measurable for
all A ∈ S. This is easily checked for any finite intersection of the form A = ∩k {f ∈ S | f(xk) ∈ Γk},
where (xk) ∈ Xn and (Γk) ∈ B(R)n. The result extends to the ball σ-algebra S0 using a standard
monotone class argument, which concludes the proof since S0 = S [see, e.g., 4].

A.3. The conditioning operator

Let Zn = (Z1, . . . , Zn) and Xn = (X1, . . . , Xn). For any (m, k) ∈ Θ, xn ∈ Xn and zn ∈ Rn, it is
well-known that conditional mean and covariance functions of (ξ(x))x∈X given Zn = zn, assuming
a deterministic design Xn = xn (see Section 2.1), are given by

mn( · ; xn, zn) = m+ k(·, xn)K(xn)
† (zn −m(xn)) (A.1)

kn( · ; xn) = k − k( ·, xn)K(xn)
† k(xn, · ), (A.2)

where K(xn)
† denotes the pseudo-inverse of K(xn) = (k(xi, xj) + τ(xi)δi,j)1≤i,j≤n, k(xn, · ) and

the other notations should be self-explanatory.

Lemma A.7. κ̃n : (xn, zn, (m, k)) 7→ (mn( · ; xn, zn), kn( · ; xn)) is a measurable mapping from
Xn × Rn ×Θ to Θ, where Θ is endowed with the σ-algebra T defined in the preceding section.

Proof. First observe that for any xn, kn( · ; xn) is the covariance function of ξ−mn( · ;xn, Zn), which
is a Gaussian process with continuous sample paths. Thus, (mn( · ; xn, zn), kn( · ; xn)) is indeed an
element of Θ. The result then follows from the continuity of (m,x) 7→ m(x), (k, x) 7→ k(x, · ),
and (k, x, y) 7→ k(x, y), and the measurability of K 7→ K† [43].

Proof of Proposition 2.5. Let κn : Xn × Rn ×M → M denote the mapping defined by

κn(xn, zn, ν) = GP (mn( · ; xn, zn), kn( · ; xn)) , (A.3)

where ν = GP(m, k) ∈ M. Observe that, using the notations introduced in the previous section,
κn(xn, zn, ν) = Ψ−1 (κ̃n(xn, zn,Ψ(ν))): thus, it follows from Lemmas A.6 and A.7 that κn is mea-
surable. Standard algebraic manipulations then show that

κn+m

(
xn+m, zn+m, ν

)
= κm

(
xn+1:m, zn+1:m, κn (xn, zn, ν)

)
,

whence it is easy to prove recursively that Pξ
n := κn

(
Xn, Zn,P

ξ
)

satisfies the property E
(
U Pξ

n(γ)
)
=

E (U 1ξ∈Γ) for any sequential design (Xi), any Fn-measurable U of the form U = Πn
i=1ϕi(Zi) and

any Γ ∈ S of the form Γ = ∩J
j=1 {ξ(x̃j) ∈ Γj}, with x̃j ∈ X, Γj ∈ B(R), 1 ≤ j ≤ J . The result

extends to any Fn-measurable U and any Γ ∈ S thanks to a monotone class argument, which
proves that Pξ

n is a conditional distribution of ξ given Fn. Proposition 2.5 is thus established with
Condx1,z1,...,xn,zn = κn (xn, zn, · ).

Proposition A.8. The mapping (x, ν) 7→ Jx(ν) is B(X)⊗M-measurable.
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Proof. Observe that Jx(ν) can be rewritten as

Jx(ν) =

∫

R

H (κ1 (x, mν(x) + v sν(x), ν)) φ(v) dv, (A.4)

where s2ν = kν(x, x) + τ2(x) and κ1 is defined as in the proof of Proposition 2.5. Using Lemma A.6
and the measurability of κ1, the integrand in the right-hand side of Equation (A.4) is easily seen to
be a B(X)⊗M⊗B(R)-measurable function of (x, ν, v). The result follows from Fubini’s theorem.

A.4. Convergence in M

Proof of Proposition 2.8. Recall from Proposition 2.5 that the conditional distribution of ξ given Fn

is of the form Pξ
n = GP(mn, kn). Moreover, ξ is a Bochner-integrable S-valued random element:

indeed, it is measurable by Proposition A.1, and ‖ξ‖∞ is integrable (see, e.g., Theorem 2.9 in [1]).
The conditional expectation E (ξ | Fn) of ξ given Fn is thus well-defined as a S-valued random
element (since S = C(X) is a separable Banach space; see, e.g., Theorem 5.1.12 in [47]) and is
easily seen to coincide with mn. As a consequence, it follows from Theorem 6.1.12 in [47] that mn

converges uniformly, almost surely and in L1 (Ω,F ,P), to m∞ := E (ξ | F∞). The limit m∞ is, by
definition of the conditional expectation, an F∞-measurable random element in S.

Let us now prove that the sequence kn converges uniformly to a continuous function k∞. Since
Pξ
n = CondX1,Z1,...,Xn,Zn

(Pξ) by Proposition 2.5, and since the sequence of conditional covariance
functions depends only on the design points Xi (not on the observed values Zi), we can reduce
without loss of generality to the case of a deterministic design (Xi = xi ∈ R, for all i ∈ N)
and consider the associated deterministic sequence (kn). Let µ =

∑p
i=1 µiδx̃i

denote any finitely
supported measure on X, and let σ2

n(µ) =
∑p

i,j=1 µiµjkn(x̃i, x̃j) denote the conditional variance
of Z =

∑p
i=1 µiξ(x̃i) given Fn. Because Z and the observations are jointly Gaussian, the sequence(

σ2
n(µ)

)
n≥1

is decreasing and therefore converges to a limit σ2
∞(µ), for all µ. Thus,

kn(x, y) =
1

4

(
σ2
n (δx + δy)− σ2

n (δx − δy)
)

−−−−→
n→∞

1

4

(
σ2
∞ (δx + δy)− σ2

∞ (δx − δy)
)
,

which proves convergence to a limit k∞(x, y). Moreover, we have for any x, y, x′, y′ ∈ X:

|kn (x, y)− kn (x′, y′)| ≤ σn(δx)σn (δy − δy′) + σn(δy′)σn (δx − δx′) (A.5)

≤ σ0(δx)σ0 (δy − δy′) + σ0(δy′)σ0 (δx − δx′) . (A.6)

Letting n go to +∞ in the left-hand side, we conclude that k∞ is continuous. To see that the
convergence kn → k∞ is uniform, consider the sequence of functions X2 → R, (x, y) 7→ σ2

n (δx + δy).
This is a decreasing sequence of continuous functions, which converges pointwise to the continuous
function (x, y) 7→ σ2

∞ (δx + δy). Since X2 is compact, the convergence is uniform by Dini’s first
theorem. The same argument applies to (x, y) 7→ σ2

n (δx − δy) and therefore to kn by polarization.
Finally, let Q denote any conditional distribution of ξ given F∞. We will prove that the F∞-

measurable random measure Q is almost surely a Gaussian measure. Let x ∈ X and let φx denote
the (random) characteristic function of Q ◦ δ−1

x . It follows from Theorem 6.23 in Kallenberg [28]
that, for all u ∈ R, φx(u) = E∞

(
eiuξ(x)

) a.s.
= limn→∞ En

(
eiuξ(x)

)
. Since

En

(
eiuξ(x)

)
= eiumn(x) e−

1
2
kn(x,x)u

2 a.s.
−−−−→
n→∞

eium∞(x) e−
1
2
k∞(x,x)u2

,
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we conclude from the continuity of φx and Levy’s theorem that Q ◦ δ−1
x = N (m∞(x), k∞(x, x))

almost surely. The argument extends to any image measure of the form Q ◦ h−1, with h =
(δy1

, . . . , δym
). Considering first the case where the yj ’s are taken in a countable dense subset

of X and then using the continuity of the elements of S, we conclude that there is an almost sure
event Ω0 ∈ F∞ such that, for ω ∈ Ω0, (δx)x∈X

is a Gaussian process defined on the probability
space (S,S,Q(ω, ·)). Then it follows from Proposition A.1 (with Ω ≡ S, ξ ≡ Id, etc.) that Q(ω, ·) is
a Gaussian measure for all ω ∈ Ω0. Finally, letting

Pξ
∞(ω, ·) =

{
Q(w, ·) if w ∈ Ω0,

GP(0, 0) otherwise,

we have constructed an F∞-measurable random element in M such that Pξ
n → Pξ

∞ a.s. for the
topology introduced in Definition 2.6, thereby concluding the proof.

Proof of Proposition 2.9. Let ν = GP(m, k) ∈ M and let (xj , zj) → (x∞, z∞) in X × R. For any
j ∈ N∪{+∞}, we have Condxj , zj (ν) = GP(m1( · ; xj , zj), k1( · ; xj), where m1 and k1 are given by
Equations (A.1)–(A.2). It is then easy to check that m1( · ; xj , zj) and k1( · ; xj) converge uniformly
to m1( · ; x∞, z∞) and k1( · ; x∞), respectively, using the uniform continuity of k over X × X and
the fact that K 7→ K† is continuous at any invertible matrix (a scalar in this case).

A.5. Miscellaneous

Lemma A.9. Let U , V and W be real-valued random variables such that

1. W is independent from (U, V ),
2. V and W are Gaussian.

If U is orthogonal to L2(V +W ), then U is orthogonal to L2(V ).

Remark A.10. The reverse implication is also true, but not needed in the paper.

Proof. Assume without loss of generality that U , V and W are centered. Assume further that U
is not orthogonal to L2(V ). Then, there exists a smallest integer k0 such that cov(U, V k0) 6= 0.
Indeed, we would have otherwise cov(U,Hk(V )) = 0 for all k, where Hk denotes the kth Hermite
polynomial, and thus U would be orthogonal to L2(V ) since (Hk(V ))k∈N

is an orthonormal basis
of L2(V ). Using that cov(U, V k) = 0 for all k < k0, we have:

cov
(
U, (V +W )k0

)
=

k0∑

k=0

(
k0
k

)
E
(
UV k

)
E
(
W k−k0

)
= E

(
UV k0

)
6= 0. (A.7)

Therefore U is not orthogonal to L2(V +W ), which concludes the proof by contraposition.
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