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Abstract. This paper deals with an automated preflight aircraft inspection using a pan-tilt-zoom camera mounted
on a mobile robot moving autonomously around the aircraft. The general topic is image processing framework for
detection and exterior inspection of different types of items, such as closed or unlatched door, mechanical defect
on the engine, the integrity of the empennage, or damage caused by impacts or cracks. The detection step
allows to focus on the regions of interest and point the camera toward the item to be checked. It is based
on the detection of regular shapes, such as rounded corner rectangles, circles, and ellipses. The inspection
task relies on clues, such as uniformity of isolated image regions, convexity of segmented shapes, and perio-
dicity of the image intensity signal. The approach is applied to the inspection of four items of Airbus A320: oxygen
bay handle, air-inlet vent, static ports, and fan blades. The results are promising and demonstrate the feasibility
of an automated exterior inspection. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.6.061110]
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1 Introduction
Airplanes are periodically inspected, either on the airport
tarmac between flights or in a hangar during maintenance
operations. Today, these inspections are done by human
operators, mainly visually and sometimes with the help of
some inspection tools, for instance, to evaluate the criticality
of a crack detected on the airplane fuselage. In order to make
the inspection quicker, more exhaustive, and more accurate,
as well as for traceability reasons, a multipartner’s research
project is being carried on in order to develop a mobile robot
equipped with several optical sensors [cameras and three-
dimensional (3-D) scanners] to perform an automatic inspec-
tion of an airplane.

The approach chosen in the project is based on an autono-
mous mobile robot on the ground, capable of communicating
with human operators and infrastructures around the aircraft.
The collaborative robot (cobot) has to move autonomously
between different checkpoints while interacting with pilots,
workers, vehicles, and airport information systems. In addi-
tion to the long-range navigation task, at each checkpoint
(around 20 for a preflight inspection), the cobot has to per-
form an inspection task of several items (probes, doors, etc.).
Around 130 items to be inspected are identified for the whole
aircraft. Automated image acquisition is provided by con-
trolling sensors and pointing them toward the item to be
inspected. There are two advantages in the present context.
First, the navigation algorithms lead the robot to a checking
position, which is localized in the aircraft model. Second,
the 3-D model of the airplane with the items to be detected
is known (Fig. 1). Therefore, it is possible, for vision inspec-
tion, to project the 3-D model onto the image plane to
obtain the expected shape and position of the desired item.

Inspection is then performed by processing the pan-tilt-zoom
(PTZ) camera images and 3-D point clouds provided by a
3-D scanner. For each item, integrity or right configuration
should be verified. Accordingly, one of three general strat-
egies is then chosen and applied: (A) single-view, two-
dimensional (2-D) image processing; (B) model-based image
processing (single-view image processing by using 3-D com-
puter-aided design model of the element); and (C) processing
of 3-D point clouds. The first strategy is preferred whenever
possible, for its shorter time requirement. The second strat-
egy is used when image processing is not sufficient, e.g., for
inspecting probes. The third strategy is employed for
detecting damages on the airplane skin (cracks, dents, and
bumps).

Robotic airplane inspection from the ground, based on
computer vision, is a specific application not studied enough.
Previous efforts1–5 were mainly focused on detailed airplane
skin inspection with robots crawling on the airplane surface.
In most cases, industrial automation systems6 are used to
inspect known objects at fixed positions with appropriate
illumination necessary to extract meaningful features. In
our application, however, sensors are mounted on the mov-
ing robot, and no additional illumination is used. Moreover,
our intention is to enable the robot to cover as many items as
possible from one position, i.e., to move as little as possible.
Since 2-D image processing approaches are preferred, initial
strategy is to assess performances of those approaches, and
this paper is focused on presenting these results.

This paper is an extension of our work reported in Ref. 7.
Compared to our previous work, we introduce here some
improvements. The testing dataset is increased by varying
brightness and contrast. Several texture-detector approaches
are compared in order to achieve the best result in the back-
ground elimination step. We also suggest and compare
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alternative approaches for detecting items: edge-drawing
circles (EDCircles) and low-contrast detector. The low-con-
trast detector is proposed as a solution for the inspection step
as well, e.g., for the static port, due to the difference in shape
in covered and uncovered cases. The detection of the spiral in
the fan blade region enables locating problematic blades. We
also introduce alternative line segment detectors (LSDs) with
the needed postprocessing step of filtering and merging.

This paper is organized as follows. The dataset, the con-
text, and our inspection process are explained in Sec. 2.
Section 3 presents two strategies for item detection. The
first one focuses on the shape edges and the second one
focuses on the normals to the shape boundary. The numerical
results on four items (oxygen bay handle, air-inlet vent, static
ports, and fan blades) are given in Sec. 4.

2 Dataset, Context, and Process

2.1 Dataset
The methods are tested on a dataset of real A320 airplane
images acquired by PTZ camera in the Airbus hangar

(Fig. 1). The dataset is extended by programmatically
increasing/decreasing brightness and/or contrast. For this
purpose, the computationally efficient alternatives8 of bias
and gain functions proposed in Ref. 9 are computed. From
each acquired image, we generate several new images with
different levels of brightness and contrast (Fig. 2) in order to
test the robustness of our approaches. We are simulating the
conditions where the inspection will be done at the end of
the day or in various weather conditions. The processed
images have a resolution of 1920 × 1080.

2.2 Context and Process
For all the items, the approach comprises detection of region
of interest (ROI) and the inspection, i.e., making decision.
When possible, the presence of other detectable elements
is exploited to narrow down the search area for an item to
be inspected. Further, the expected position and size of the
item in the image are also known. They are calculated by
using a 3-D model of the airplane and the item within, as
well as current position of the robot. Localization of the

Fig. 1 (a) AIR-COBOT and A320 in the hangar (courtesy of Airbus). (b) Simplified three-dimensional
model of the airplane.

Fig. 2 (a–d) Image with different values of brightness and contrast.
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robot is provided by simultaneous localization and mapping
and visual servoing techniques. Due to the possible inclina-
tion of the robot, items can be rotated (Fig. 7). The PTZ cam-
era allows us to correct the potential errors of robot poses at
the checking points.

First, a blind pointing is made by knowing the airplane
model and robot pose. Second, the item is detected in the
low-zoom PTZ camera image (Fig. 3), and a visual servoing
is performed to center the item. Lastly, the image is zoomed
(Fig. 12) to obtain a better resolution, and the item state is
verified by the inspection algorithm. Since the inspection is
done only on high-zoom images, we can accept a certain
level of imprecision in the region of interest (ROI) detection
on low-zoom images.

The usual weakness of an inspection system is being spe-
cialized in inspecting one particular type of object. In that
sense, each of the items on the airplane could be an isolated,
specific, inspection problem. Our intention is to design more
general strategies, applicable to a class of similar items by
changing just the parameters and geometry. For instance,
there are many rectangular items (doors) as well as circular
shapes (vents, probe frames, etc.) on the airplane.

2.3 Background Removal
When the robot is placed on one of the sides of the airplane
(Fig. 3), complex structures behind the aircraft, such as
the hangar construction, are eliminated as highly textured
areas close to the image borders. This way, only the upper,
mainly uniform, part of the image, which corresponds to
the airplane surface, is kept. This preprocessing step is
performed by enhancing textured regions. The original,
grayscale, smoothed image is convolved with 5 × 5 Laws’
kernel mask10 obtained by multiplying two one-dimensional
(1-D) vectors

EQ-TARGET;temp:intralink-;sec2.3;326;752½ 1 −4 6 −4 1 �T × ½−1 0 2 0 −1 �.
On the resulting image, a windowing operation of neighbor-
hood averaging followed by morphological dilation and
contrast enhancement is then applied [Fig. 3(b)]. Further,
region-growing segmentation is performed on the texture
image [Fig. 3(c)]. For locating the border between the air-
plane and the background, we rely on the fact that this border
is almost a straight line and that the airplane is in the upper
part of the image. By employing the random sample consen-
sus technique11 for removing outliers, we are fitting a straight
line to the points obtained as peaks of the regions emerging
from lower border of the image [Fig. 3(d)]. Finally, the
image region below the fitted line is eliminated in further
processing.

Many other texture approaches could be used.12,13

Figure 4 presents four results with the texture-transform
operator using a square window size of 32 pixels.14,15

These results are based on the same method. Given an image,
consider a w × w square neighborhood of a pixel and let its
gray values define the matrix W. Like any square matrix,
it can be converted into a diagonal or triangular matrix,
by pre- and postmultiplication of suitable matrices. The num-
bers α ¼ ðα1; : : : ; αwÞ in the diagonal of the matrix are num-
bered in decreasing order of magnitude. For example, these
numbers can be computed with different decompositions of
W: singular value decomposition, eigenvalues decomposi-
tion, decomposition into a product of an orthogonal and
an upper triangular matrix (QR decomposition), or lower
upper decomposition. A set of w numbers describes each
pixel in the image. The texture transform is defined as

EQ-TARGET;temp:intralink-;sec2.3;326;412ϕðl; wÞ ¼
Xw
k¼l

kαkkγ; 1 ≤ l ≤ w.

Fig. 3 Background removal. (a) Original image, (b) texture image after dilation and contrast enhance-
ment (textured regions are darker), (c) region-growing segmentation on texture image, and (d) line fitted
on the points that are on the top of the regions emerging from the low border of the image.
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Each pixel is represented by a single number, which depends
on three parameters. The number w obviously corresponds to
the scale. The two second parameters l and γ are chosen
empirically, l ¼ bw∕2c and γ ¼ 2, the same values as in
Targhi’s work.15 Since texture is a local rather than a point-
wise feature, it is not necessary to compute the descriptor at
each pixel. A spacing parameter δ set to 8 is used in the pre-
sented results. To avoid undesirable effects, the image patch
is rotated by an angle θ ¼ 22.5, 45, 67.5 and only the mini-
mum response over orientation θ is kept.15

The results are quite similar among these approaches. The
dataset needs to be extended with other hangar and outside
acquisitions to have a better comparison between them. So
far, the best approach, in terms of computing time, is Laws’
kernel mask.

3 Proposed Strategies for Item Detection
The two main strategies for airplane item detection are pro-
posed. The items to be inspected are shown in Sec. 4. The
first strategy is based on the shape edges. It is computation-
ally more efficient and strongly relies on the geometric
feature extraction techniques. Algorithms based on a Hough
transform (HT) provide good results in high enough contrast
conditions. Another approach, EDCircles, is also presented.
This algorithm is efficient in low contrast as well.

The second strategy is based on the normals to the shape
boundary. It could be seen as a template-matching-based
approach, and it is robust to low-contrast conditions (Fig. 17),
because it is using a normalized image gradient. However,
it is less computationally efficient than the previous one.

3.1 Detectors Based on Shape Edges
3.1.1 Hough transform

Originally published in Ref. 16, the Hough transform (HT)
with its numerous variants is traditionally used technique for
extracting geometric features, particularly straight lines,

circles, and ellipses, from an edge image. In the case of
straight lines, each possible line is represented by its distance
from the origin ρ and the angle formed by the line normal to
the positive part of the X-axis θ.17 Note that ðρ; θÞ are polar
coordinates of the line point ðx; yÞ, which is closest to the
origin. The relation is given by a known Eq. (1):

EQ-TARGET;temp:intralink-;e001;326;403ρ ¼ y sinðθÞ þ x cosðθÞ: (1)

The line parameter space (also known as the Hough space) is
further defined as a matrix, whose rows and columns are
denoted with ρ and θ values, respectively. Therefore, each
cell in this accumulator array determines one straight line.
The size of the accumulator depends on the predefined quan-
tization step for possible ρ and θ values. Firstly, this matrix is
initialized with zeros. Further, each edge pixel increases by
one all the cells representing lines which pass through this
pixel. This process is called “voting” and an example of the
resulting accumulator array can be seen in Fig. 5(a). This
simple case with no other objects in the scene clearly
shows four peaks (four darkest pixels) in the array, which
correspond to four lines of our rectangle. After all the
edge pixels “voted,” the parameter space is thresholded in
order to detect the most prominent straight lines [Fig. 5
(a)]. The detection result is sensitive to quantization step
and the threshold applied on parameter space. In the case
of a fine step or high threshold, there is a risk of missed
detections while the coarse step and low threshold bring
lot of false positives (FPs).18 For these reasons, in our
work, quantization step is empirically tuned according to
our dataset, and the detection threshold is avoided by keep-
ing a constant number of most prominent lines.

3.1.2 Edge-drawing circles

Akinlar and Topal19 have proposed a robust circle-detection
method, named EDCircles, which works in a bottom-up

Fig. 4 Examples of texture detection with the texture-transform operator. (a) Texture-transform result
with eigenvalues, (b) texture-transform result with lower upper, (c) texture-transform result with QR,
and (d) texture-transform result with singular value decomposition.
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manner. They start by extracting the set of connected edge
segments by employing their edge segment detector.20 Then,
the line segments are fitted giving one or more line segments
on each of the connected edge segments.21 Further, circular
arcs are searched as sequences of line segments, which form
the angles in between certain thresholds. A circle is then fit-
ted to each such an arc, and only arcs with a small least-
square error are kept. Finally, the circular arcs with similar
centers and radii are combined into circles.

3.2 Detector Based on the Normal to the Boundary
Since the aircraft inspection has to be performed indoors and
outdoors, at any time of the day and with different weather
conditions, the item-detection algorithms have to work even
with low-contrast ROI. In difficult light conditions, the
localization and orientation of the robot can be shifted a
bit. However, it is possible to generate a set of potential
shapes with different rotations and scales by projecting the
3-D model onto the image plane.

The low-contrast detector presented in this section is
general and depends on the normal of the boundary shape.
It has been used in many different contexts, such as in nuclei
extraction in biology22 or automatic visual grading of grain
kernels.23,24 It works with high and low contrast and returns a
value in the range ½−1; 1�. Let Ω be the image domain, u be
the image, ω be the shape to test, ∂ω be its boundary, and x ∈
Ω a location. The function is defined as follows:

EQ-TARGET;temp:intralink-;e002;63;276EðωÞ ¼ 1

j∂ωj
Z
∂ω

�
∇uðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∇uðxÞj2 þ ε2
p ; nðxÞ

�
dx; (2)

where h:; :i denotes the Euclidean scalar product, nðxÞ
denotes the outward normal to ω at location x ∈ ∂ω, and
ε is a regularization parameter that discards faint transitions.

The computation of the energy map is quite simple and
fast. First, a filter corresponding to the operation is built.
Second, a simple convolution with the image is performed.
The speed comes from the fact that the convolution is the
pointwise product in the Fourier domain. The number of
filters depends on the set of possible shapes. The tests are
performed starting with the most-expected shape to the
less-expected ones, and the algorithm stops if a good match
is found.

4 Results on Four Types of Items
In this section, the detection and inspection approaches will
be explained in more detail depending on the item to be
inspected. Numerical results on inspecting four different
types of items will be reported. The detection phase is evalu-
ated by counting images on which the approach was able to
isolate ROI successful enough that the zooming is possible.
Inspection approaches are evaluated by calculating the false
positive rate (FPR) and false negative rate (FNR). The input
image in terms of the tested approach is classified as FP, in
the case when the defect is not present and the approach
reported a defect. It is classified as false negative (FN), in
the case when there is a defect and the method reports no
defect. FPR is the ratio between number of FP images
and the total number of images with no defect. This is the
measure of false alarms

EQ-TARGET;temp:intralink-;sec4;326;398FPR ¼ FP

FPþ TN
:

FNR is the ratio between the number of FN images and the
total number of images with defects. This is the measure of
missed defects and is considered critical in our application

EQ-TARGET;temp:intralink-;sec4;326;324FNR ¼ FN

FNþ TP
;

where TN is the number of images with no defect on which
the method reported no defect, and TP is the number of
images with defect on which the method reported a defect.

FNR increases when some defects are missed. Our prior-
ity is to achieve a very low FNR; ideally it should be zero.
FPR is a measure of false-alarm rate, and it increases when
our system reports nonexisting defects. FPR is less critical
than FNR, but it is also desired to have it low.

4.1 Oxygen Bay Handle
4.1.1 Objective

The objective is to check if the handle is latched [Fig. 6(a)].
The problem of ROI detection is to a certain degree similar to
the problem of edge-based door detection25–28 with a
monocular camera. Neither of the cited methods is fully
applicable to our problem. Reference 25 relies on corners
and our corners are rounded, while Refs. 26–28 are not
invariant to the rotation of a door.

Fig. 5 Extraction of straight lines with Hough transform (HT). (a) Hough space (accumulator array) and
(b) lines obtained after thresholding Hough space.
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Jovančević et al.: Automated exterior inspection of an aircraft with a pan-tilt-zoom. . .



4.1.2 ROI detection

On the edge image, we apply HT17 in order to detect the
straight lines. HT suffers from computational complexity,
but in our case, the edge set is not large. Since the scene can
be complex, we allow detection of many lines in order not to
miss some of the lines we are seeking. In order to filter the
HT result, clusters of lines that are similar in terms of both ρ
and θ are identified, and only one line from each cluster is
preserved. The resulting set of lines in the simple case is
shown in Fig. 5(b).

Among many detected lines, the challenge is to pick four
lines that bound the oxygen bay. First, many of the four lines’
(two pairs) candidates are selected such that within each pair
two lines are close to parallel, and between two pairs, lines
are far from parallel (ideally perpendicular). We can safely
assume that perspective distortion of the airplane surface is
negligible, i.e., we can count to a certain degree on affine
invariants such as parallelism of lines. The weakness of
the HT is that it returns rays and not continuous segments,
neglecting the gaps between the parts of a ray. Therefore, it
can happen that we obtain a ray that is constituted by two or
more distant-aligned segments [Fig. 7(b)]. To avoid this,
once the four rays and their intersections are detected, seg-
ments that correspond to rectangle sides are checked for the
“fill-ratio measure” similar to Ref. 25. The fill ratio of a seg-
ment is a measure of how much of the segment is supported
by edge pixels. We are interested only in candidates whose
all four segments are well supported by the edges [Fig. 7(a)],
and we reject those whose segments have big gaps

[Fig. 7(b)]. When calculating the measure, we take into
account only the middle part of the segment, having in
mind that the corners are rounded; hence, the end parts of
the segment are not expected to be supported by the edges.

After the fill-ratio criteria are verified, the knowledge
about the real-world “aspect ratio” of the sides of the rectan-
gle is used to find the candidate whose sides are closest to
this ratio. Finally, the ROI is extracted as an area bordered by
the four rays [Fig. 7(a)].

Another considered strategy is to start with one of the
LSDs present in the literature, such as LSD29 and edge-draw-
ing lines (EDLines).21 Outputs of these methods demand a
sensitive postprocessing step of “filtering” due to the large
set of detected segments (second and third image of Fig. 8).
First, segments that are aligned (approximately belong to one
ray) are identified, and the average ray is calculated. Then,
this set of aligned segments is projected onto the average ray,
and the projections are divided into clusters of overlapping
(or nearby) segments. The segments of each such cluster are
finally merged into one segment. This step is shown in Fig. 9.
This approach is being considered mainly due to the FP con-
trol provided by proposed detectors and the fact they are
parameterless, as opposed to traditional HT.

In our work, we have chosen to employ the well-known
HT technique. The HT approach was sufficient in our appli-
cation due to the fact that in our scenario, the position of
the robot with respect to the airplane is expected to be nearly
the same each time when inspecting one item. Therefore, the
scene does not change significantly from case to case, and it

Fig. 6 Oxygen bay. (a) Latched and (b) unlatched.

Fig. 7 Two candidates with their four segments (red). (a) Good candidate for being the oxygen bay—all
four segments are well supported by the edges. (b) Bad candidate for being the oxygen bay—three out of
four segments are poorly supported by the edges.
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was possible to tune the parameters. As it can be seen in
Fig. 8(a), searched lines are clearly identified by HT, even
though some FPs are present as well.

Like the background subtraction, other approaches could
replace the one currently used for the line-features extraction.
Further experiments with different aircraft and light condi-
tions will be needed before determining the best one.

4.1.3 Inspection

The smaller ROI (handle) is further isolated in the zoomed
image as a convex hull of the set of edge points in the upper
half of the big ROI [Figs. 10(a) and 10(c)]. This small ROI is
binarized by using the well-known Otsu method30 for adap-
tive thresholding. A clue used for making the decision
(latched/unlatched) is the ratio between the area of the
black region and the area of the whole smaller ROI. It is
low in the latched case [Fig. 10(b)] and high in the unlatched
case [Fig. 10(d)].

4.1.4 Evaluation

The detection approach was tested on a dataset of 128 images
of four different kinds of rectangular doors with different
dimensions. It was successful in 96% of the cases. The
inspection method was evaluated on a dataset of 122 images
(86 negative and 36 positive cases) of four different kinds of

doors, each having a different position of the handle. It has
shown accuracy with 0% FNR and 4.6% FPR.

4.2 Air-Inlet Vent
4.2.1 Objective

The objective is to verify that the vent is “closed”
[Fig. 12(a)]. A challenging case is when the inlet is “partially
open” [Fig. 12(c)].

4.2.2 ROI detection

ROI detection is a known image-processing problem of
ellipse detection. The original HT-based method17 suffers
from inefficiency due to the five-dimensional (5-D) accumu-
lator array (five parameters of an ellipse). Many studies have
been conducted on improving the randomized HT approach
for ellipse detection in terms of performance. In that sense, in
Ref. 31, the authors apply HTon low-resolution images in an
image pyramid data structure and then gradually increase
resolution until the original resolution is reached.

The method proposed in Ref. 32 saves computational time
by simplifying the problem to a 1-D parameter space instead
of 5-D one used by the generalized HT. By employing this
algorithm, we could detect the air-inlet vent with 95% accu-
racy on our 23-image dataset. Nevertheless, this result is

Fig. 8 Comparison of line detectors. (a) HT result, (b) line segment detector (LSD) result, and
(c) EDLines result.

Fig. 9 Postprocessing filtering step. (a) Output of LSD segment detector and (b) set of segments after
filtering and merging. In this case, only nearly horizontal or vertical segments are kept after filtering and
merging.

Fig. 10 Oxygen bay—region of interest (ROI) binarization by Otsu method. (a) Latched case: ROI,
(b) latched case: binarized ROI, (c) unlatched case: ROI, and (d) unlatched case: binarized ROI.
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obtained after significant narrowing down the search area by
detecting other items such as the neighboring static port
(Sec. 4.3). Also, the size of the ellipse’s major and minor
axis had to be preset according to our dataset.

Therefore, we have chosen the recent EDCircles method
proposed in Ref. 19, which has shown fewer false alarms
[Fig. 11(c) and 11(d)] and less missed detections [Fig. 11(a)
and 11(b)] while being faster as well. Another advantage of
this approach is that it is parameter-free (as opposed to HT-
based methods). It is capable to detect ideal circles and near-
circular ellipses; however, it is not suitable for detecting
strongly elliptical shapes. Since the position of the robot
is such that the circles are not very distorted, we can accept
this constraint.

Another strategy that is considered involves fitting the
ellipses on the edge points. This approach contains two
steps: preprocessing the edge image in order to link cut-edge
sets and then running one of the ellipse-fitting methods33 on
each set of connected edge points. However, this approach
has been shown to be sensitive to the edge-linking step.
Consequentially, often the ellipse is not fitted precisely
because it used only part of the edge set. It is clear that fit-
ting-based methods rely strongly on the edge-detection
method, which provides input to the fitting.

After all the ellipses in the image are detected [Fig. 11(b)],
by knowing the placement of elliptical items in the scene,
and having an idea about the size of the items in the
image, we search for the correspondences between items
expected to be in the scene and detected ellipses.

4.2.3 Inspection

In order to perform the inspection, we estimate the binarized
vent region similarly as we did with the handle in Sec. 4.1.
However, since the vent can only be “partially open”
[Fig. 12(c)], the binarization result of the whole ROI
could be ambiguous as a clue. Thereby, for a more detailed

inspection, a small sliding window is moved along the border
of the ROI (Fig. 12), and the uniformity of the sliding win-
dow is estimated by the binarization.

In the case of the open vent, there are two different regions
within sliding window, while for the closed vent, the sliding
window is uniform.

4.2.4 Evaluation

The EDCircles algorithm was evaluated on a dataset of 23
low-zoom images (Fig. 2). It detected the vent in 100% of
the cases, together with other present ellipses. This result
did not change even on the same dataset with very low-
brightness conditions [Fig. 11(c) and 11(d)].

Inspection was evaluated on 32 high-zoom (Fig. 12)
images (13 negative and 19 positive cases) of two different
kinds of vents. On this dataset, our sliding window method
performed with both FNR and FPR equal to 0%. The same
result was obtained on the same dataset in low-brightness
conditions.

4.3 Static Ports
4.3.1 Objective

The aim is to verify that the protecting cover is removed from
the static ports (Fig. 13).

4.3.2 ROI detection

Since there are red regions on the image, the original RGB
image is converted to a CIELAB color space. A* channel of
this color space is suitable for segmenting red regions.
Further, from the input edge set, only edges corresponding
to red regions are kept. The improvement can be seen in
Fig. 14. On the reduced set of edges [Fig. 14(b)], the
approach explained in Sec. 4.1 is employed to detect rectan-
gular ROI.

Fig. 11 Comparison of the results one-dimensional (1-D) HT/EDCircles. (a) Standard conditions, 1-D HT
result. (b) Standard conditions, EDCircles result. (c) Low-brightness conditions, 1-D HT result. (d) Low-
brightness conditions, EDCircles result.
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4.3.3 Inspection

On the zoomed image, segmentation based on a region-
growing technique is employed in order to segment the static
port region, by setting the seed pixel in the mean position of
the previously segmented rectangular ROI. A* channel is
used as a clue for making a decision as well. Namely, mean
gray-level values of the regions shown in Figs. 15(a) and
15(b) are very close to each other (uncovered case); whereas
in the case shown in Figs. 15(c) and 15(d) (covered case),
they are different.

Another clue is convexity of the detected static port
region, which is convex in the uncovered case [Fig. 15(a)]
and concave in the covered case [Fig. 15(c)]. This convexity
is estimated by the ratio of the area of the segmented region
and the area of its convex hull.

4.3.4 Evaluation

The detection approach was tested on a dataset of 75 images
of two different kinds of static ports, and it was successful in
97% of the cases. There was no occlusion of the red frame,

Fig. 12 Air-inlet vent—sliding window inspection. (a) Closed vent (negative), (b) open vent (positive), and
(c) partially open vent (positive).

Fig. 13 First officer and captain static ports. Wrong situation is when protecting cover is still present.
(a) Uncovered (negative) and (b) covered (positive).

Fig. 14 Significant reduction of edge set by rejecting edges of nonred regions. (a) All the edges of the
input image and (b) edges corresponding to red regions.
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but brightness and contrast are changed as explained in
Sec. 2.1 (Fig. 2). As expected, failure occurred when the
image is too dark because the red color information is
lost in some parts of the frame.

The difficulty that occurred with darker images in the
inspection step is that the region-growing process did not
stop at the boundaries of the static port. This problem is
solved by estimating the brightness of the image and tuning
the stopping criteria for the region-growing segmentation
(setting lower values in case of dark images). The inspection
method was evaluated on a dataset of 96 images (37 negative
and 59 positive cases) with two different cover shapes.
Images are also changed in terms of contrast and brightness.
The approach has shown accuracy with both FNR and FPR
equal to 0%.

4.3.5 Application of low-contrast detector

Since the line-based method (Sec. 4.1) relies on the edges
and it assumes the item is fully visible, its weakness is iden-
tified in the case of occlusion (no edges) and in low-contrast
conditions (weak edges). This could be caused, e.g., by an
error in controlling the camera [Fig. 16(a)—occlusion] or by

specular reflection [Fig. 17(a)—low contrast]. In these cases,
none of the four segments’ candidates satisfied required con-
ditions, so we employed a low-contrast detector, which is
slower because it has to consider slight rotations and differ-
ent scales of the element.

Figure 16 shows the interest of using the full shape of the
target. The top line of the rounded square is out of the origi-
nal image. The right image presents the associated energy
map with the target shown in the bottom-left corner. The
local minima of the energy map are in blue, and it is well
centered on the static ports. The low-contrast detector is
working with a partial target.

Figure 17 shows the interest of using low-contrast detec-
tor in the case of reflection on a portion of the static ports.
The right corner of the rounded square is different from the
other edges. In the red channel, it could be missed. One can
note that the x- and y-derivatives of image gradient are still
well defined even in the lighting zone (Fig. 17). It is why the
low-contrast detector could be used when other detectors are
unable to find a good candidate or when a too-bright zone is
detected in the ROI where the item is supposed to be.

With the low-contrast detector, it is possible to define two
filters to detect the state of the static ports. One adapted for

Fig. 15 (a) Uncovered case: static ports region, (b) uncovered case: frame without static ports region,
(c) covered case: static ports region, and (d) covered case: frame without static ports region.

Fig. 16 Example of camera-control problem on one of the static ports. (a) Original image and (b) energy
map.

Fig. 17 Example of light-condition problem on one of the static ports. (a) Original image, (b) x -derivative
of image gradient, and (c) y -derivative of image gradient.
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the covered case and one for the uncovered case. Figure 18
presents some detection results with a covered case in the
first line and an uncovered case in the second line. In each
energy map, the target shape is provided in the bottom-left
corner: filled superellipse in the covered case and just super-
ellipse in the uncovered case. The two filters allow identifi-
cation of each of the two cases.

4.4 Fan Blades
4.4.1 Objective

In the blades’ region, we should detect a large defect such as
presence of visible object (Fig. 21) or big damage like a
missing blade. The low-contrast detector is used to find the
tip of the reactor. The detected transition is the one between

the black circular shape containing the spiral and the rest of
the reactor. Figures 19(a) and 19(b) present the original
image and the energy map, where the tip is well detected
(dark blue region). Figures 19(c) and 19(d) provide the nor-
malized image derivatives along x and y. After the tip is
detected, the whole engine region is further calculated as
a circle concentric to the detected tip.

4.4.2 Inspection

Gray-scale intensity image is treated with histogram equali-
zation technique for contrast enhancement, because blades
are usually not well illuminated being placed deep inside
the engine inlet. Further, we extract pixel values of many
circles from the blades region (white in Fig. 22). Each circle
is a 1-D signal that is extracted from the image and smoothed

Fig. 18 Low-contrast detection algorithm applied to the static ports: (a–c) covered and (d–f) uncovered.
(a–c) Covered static ports, energy map (covered test), and energy map (uncovered test). (d–f) Uncovered
static ports, energy map (covered test), and energy map (uncovered test).

Fig. 19 Detection of the tip of the reactor with the low-contrast detection algorithm. (a and b) Original
image, energy map. (c and d) x -derivative of the normalized image gradient and y -derivative of the
normalized image gradient.
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with a Gaussian filter in order to eliminate small details.
When there is no defect, a signal close to periodic is obtained
[Fig. 20(b)]. However, in the case of defect, there is usually a
breach of this periodicity [Fig. 21(b)].

By Fourier analysis, we compute the frequency of the high-
est magnitude component within the sliding window moved
along the 1-D signal. In the favorable case, this frequency is
constant as the sliding window is moved. In the case when a
defect is present, frequency is changed when the sliding win-
dow is in the region of the defect. Nevertheless, some false
alarms are present in the case of nonilluminated regions
and in the regions where details behind the blades are visible
[Fig. 22(b)]. To avoid these false alarms, only a defect that is
present on many consecutive circles is reported as a foreign

object or damage [Fig. 22(a)]. For this reason, at this time,
the method is able to detect only large defects.

4.4.3 Evaluation

On a dataset of 49 images (24 negative and 25 positive
cases), the inspection approach performed with 0% FNR
and 16% FPR. It failed in the cases with blades being poorly
illuminated and not zoomed enough.

4.4.4 Spiral detection

When a defect is detected, it is useful to localize the prob-
lematic blades. The fan blades are numbered but they
are not in fixed positions during every inspection session.

Fig. 20 Example of 1-D signal read from the input image with no defect. (a) Extracted circle and (b) cor-
responding 1-D signal of pixel intensities on the circle.

Fig. 21 Example of 1-D signal read from the input image with defect. (a) Extracted circle. Black part is
reported as defected. (b) Corresponding 1-D signal of pixel intensities on the circle with black part cor-
responding to the defect.

Fig. 22 Fan blades—two cases to be distinguished and circular pixel sets which are analyzed. White:
circles that are extracted from the image; black: parts where the approach reported a defect, i.e., breach
of periodicity. (a) Defect—presence of an object and (b) no defect.
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The white spiral at the tip helps to determine exactly
the blades on which the defect is reported. If there is
enough contrast, the spiral shape can be detected by a
region growing or Otsu’s binarization of the disk area.
If these approaches do not work, there is probably not
enough contrast and the spiral is detected by the low-

contrast detector. One can note from Fig. 23(a) that the
spiral is well defined in the normalized image gradient.
Further, several possible orientations of the spiral are
tested and then the best match is kept. Figure 23 presents
the spiral energy maps with a low-contrast detector and
three orientations.

Fig. 23 Low-contrast detection algorithm applied to the spiral at the tip of the aircraft engine. (a) Original
image; x - and y -derivatives of the normalized image gradient. (b) Target 90; x - and y -normalized deriv-
atives; energy map. (c) Target −90; x - and y -normalized derivatives; energy map. (d) Target 0; x - and
y -normalized derivatives; energy map.

Table 1 Evaluation results.

Item Oxygen bay Air-inlet vent Static port Fan blades

Detection dataset 128 23 75 —

Detection accuracy 96% 100% 97% —

Inspection dataset 122 (86 negative 36
positive)

32 (13 negative 19
positive)

96 (37 negative 59
positive)

49 (24 negative 25
positive)

Inspection false positive rate 4.6% 0% 0% 16%

Inspection false negative rate 0% 0% 0% 0%

Journal of Electronic Imaging 061110-13 Nov∕Dec 2015 • Vol. 24(6)
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5 Conclusion
Several image-processing approaches, each solving a spe-
cific airplane-inspection problem, were developed and evalu-
ated on the real airplane exterior images. On our dataset,
without occlusions or contrast problems, the detection
approaches showed accuracy of at least 95%, while inspec-
tion approaches could reach 0% FNR with acceptable false-
alarm rates. Evaluation results are summarized in Table 1. In
general, the whole process depends on the detection phase,
which has been shown as more challenging than the inspec-
tion task. Since detection is performed on small-zoom
images, knowledge about the presence of more than one
item is integrated, and sets of neighboring items are detected
instead of detecting one particular item. Notably, our method
for red region detection has been shown to be quite robust;
therefore, it is often employed to facilitate the detection
of other items. In this paper, we presented inspection
approaches for four representative types of items.
Nevertheless, other items marked as highly important by
human inspectors have been treated as well.

The testing dataset is obtained in a hangar with constant
illumination. Some artificial illumination is added to make
the dataset more representative. Furthermore, contrast and
brightness are programmatically changed. Some proposed
approaches work in low contrast, but more data are necessary
to estimate their practical usability. Next, acquisition on the
tarmac with various conditions, possibly with other airplanes
present in the scene, and with various weather conditions are
planned in the next few months.

Our dataset was limited to one plane in a hangar, but other
validations are planned to be done. So far, the proposed
methods were adapted for each item based on heuristics.
A comparison with more general algorithms based on binary
classification will also be investigated once sufficient train-
ing data are obtained.
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7. I. Jovančević et al., “Automated visual inspection of an airplane
exterior,” Proc. SPIE 9534, 95340Y (2015).

8. C. Schlick, “Fast alternatives to Perlin’s bias and gain functions,” in
Graphics Gems IV, pp. 401–403, Academic Press Professional, Inc.,
San Diego, California (1994).

9. K. Perlin and E. M. Hoffert, “Hypertexture,” in SIGGRAPH Computer
Graphics, Vol. 23, pp. 253–262 (1989).

10. K. Laws, “Textured image segmentation,” Ph.D. Dissertation,
University of Southern California (1980).

11. M. Fischler and R. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartog-
raphy,” Commun. ACM 24, 381–395 (1981).

12. K. I. Laws, “Rapid texture identification,” Proc. SPIE 0238, 376–380
(1980).

13. A. Materka and M. Strzelecki, “Texture analysis methods—a review,”
Tech. Rep., EU COST B11 report, Institute of Electronics, Technical
University of Lodz, Poland (1998).

14. A. Targhi et al., “The eigen-transform and applications,” Lect. Notes
Comput. Sci. 3851, 70–79 (2006).

15. A. Targhi, “The texture-transform: an operator for texture detection and
discrimination,” PhD Thesis, KTH School of Computer Science and
Communication, Stockholm, Sweden (2009).

16. P. Hough, “Method and means for recognizing complex patterns,” U.S.
Patent No. 3,069,654 (1962).

17. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect
lines and curves in pictures,” Commun. ACM 15, 11–15 (1972).

18. V. Pătrăucean, P. Gurdjos, and R. Grompone von Gioi, “A parameterless
line segment and elliptical arc detector with enhanced ellipse fitting,” in
Computer Vision ECCV 2012, pp. 572–585, Springer, Berlin,
Heidelberg (2012).

19. C. Akinlar and C. Topal, “EDCircles: a real-time circle detector with
a false detection control,” Pattern Recognit. 46(3), 725–740 (2013).

20. C. Topal and C. Akinlar, “Edge drawing: a combined real-time edge
and segment detector,” J. Visual Commun. Image Represent. 23(6),
862–872 (2012).

21. C. Akinlar and C. Topal, “EDLines: a real-time line segment
detector with a false detection control,” Pattern Recognit. Lett.
32(13), 1633–1642 (2011).

22. E. Soubiès, P. Weiss, and X. Descombes, “A 3D segmentation algorithm
for ellipsoidal shapes. Application to nuclei extraction,” in ICPRAM—
Int. Conf. on Pattern Recognition Applications and Methods,
pp. 97–105, Barcelona, Spain, (2013).

23. P. Dubosclard et al., “Deterministic method for automatic visual grad-
ing of seed food products,” in Int. Conf. on Pattern Recognition
Applications and Methods, SciTePress (2015).

24. P. Dubosclard et al., “Automated visual grading of grain kernels by
machine vision,” Proc. SPIE 9534, 95340H (2015).

25. Y. Tian, X. Yang, and A. Arditi, “Computer vision-based door
detection for accessibility of unfamiliar environments to blind persons,”
in Proc. of the 12th Int. Conf. on Computers Helping People with
Special Needs, ICCHP’10, pp. 263–270, Springer-Verlag, Berlin,
Heidelberg (2010).

26. C. Juenemann, A. Corbin, and J. Li, “Robust door detection,” Final
Project, Course EE368, Stanford Electrical Engineering Department,
Stanford, California (2010).

27. J. Majumdar et al., “Intelligent vision system for door sensing mobile
robot,” IAES Int. J. Rob. Autom. 1(4), 190–202 (2012).

28. R. Muñoz Salinas, E. Aguirre, and M. García-Silvente, “Detection of
doors using a genetic visual fuzzy system for mobile robots,” Auton.
Rob. 21(2), 123–141 (2006).

29. R. G. von Gioi et al., “LSD: a fast line segment detector with a
false detection control,” IEEE Trans. Pattern Anal. Mach. Intell.
32(4), 722–732 (2010).

30. N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).

31. C.-F. Chien, Y.-C. Cheng, and T.-T. Lin, “Robust ellipse detection based
on hierarchical image pyramid and Hough transform,” J. Opt. Soc. Am.
A 28, 581–589 (2011).

32. Y. Xie and Q. Ji, “A new efficient ellipse detection method,” in Proc.
16th Int. Conf. on Pattern Recognition, Vol. 2, pp. 957–960, IEEE, New
York (2002).

33. D. K. Prasad, M. K. Leung, and C. Quek, “Ellifit: an unconstrained,
non-iterative, least squares based geometric ellipse fitting method,”
Pattern Recognit. 46(5), 1449–1465 (2013).
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