N
N

N

HAL

open science

Logical semantics of Esterel with unconstrained local
signals

Bernard Paul Serpette

» To cite this version:

Bernard Paul Serpette. Logical semantics of Esterel with unconstrained local signals. [Research
Report] RR-8942, INRIA Sophia Antipolis - Méditerranée. 2016. hal-01351005

HAL Id: hal-01351005
https://hal.science/hal-01351005
Submitted on 2 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01351005
https://hal.archives-ouvertes.fr

Logical semantics of
Esterel with

unconstrained local
signals

Bernard P. Serpette

RESEARCH
REPORT

N° 8942

Aolit 2016

ISSN 0249-6399 ISRN INRIA/RR--8942--FR+ENG

Project-Team Indes

V4

: in]armutics,mathemutics

Logical semantics of Esterel with
unconstrained local signals

Bernard P. Serpette
Project-Team Indes

Research Report n°® 8942 — Aout 2016 — 16 pages

Abstract: Esterel is a synchronous programming language where processes interact through
signals. The logical semantics of this language express the meaning of each syntactic constructions,
knowing a priori the set of emitted signals. Nevertheless, a special case have to be made for local
signals, making the semantics non-deterministic. In this paper, we propose a new logical semantics
where the rules are deterministic. We formalise some correspondences for usual definitions (coher-
ence, reactivity, determinism, correctness) between the two semantics. These correspondences are
formally proved in Coq.

Key-words: Esterel, synchronous languages, local signals, operational semantics, determinism,
formal proof

RESEARCH CENTRE
SOPHIA ANTIPOLIS — MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Une sémantique logique d’Esterel sans contrainte sur les signaux
locaux

Résumé : Esterel est un langage de programmation synchrone ou les processus interagissent au travers de
signaux. La sémantique logique de ce langage définit le comportement de chaque élément syntaxique en con-
naissant, a priori, ’ensemble des signaux émis. Néanmoins, un cas spécial doit étre fait pour l'interprétation
des signaux locaux, rendant ainsi la sématique non déterministe. Dans ce papier, nous proposons une
sémantique logique ou les régles deviennent déterministe. Nous formalisons une correspondance, entre les
deux sémantique, pour les définitions usuelles (cohérence, réactivité, déterminisme, correction). Ces corre-
spondances sont formellement prouvées avec le systeme Coq.

Mots-clés : Esterel, langages synchrones, signaux locaux, sémantique opérationnelle, déterminisme,
preuve formelle

Logical semantics of Esterel with unconstrained local signals 3

1 Introduction

We informally present the Esterel' programming
language focusing on the notion of process. An Es-
terel program is made of several processes, each of
them executing statements. The processes communi-
cate via signals. A process can raise a signal S with
the statement ”emit S”. Signals can be tested with
the statement ”present S then P, else P, end”.
If the signal S is emitted, the evaluation continues
with P;. We will detail this statement latter in this
section. A process can emit a signal but cannot reset
it, as if it was never been emitted. The only way to
reset a signal is to erase all signals at the same time,
defining a notion of instant. All processes must coop-
erate to reach the end of one instant. Individually, a
process may decide to finish its instant by executing
the statement ”pause”, and it is when all processes
have executed a pause or have finished their execution
that the current instant is globally and synchronously
closed.

Coming back to the ”present” statement,
if one process have to evaluate a statement
"present S then P; else P, end”, and if the sig-
nal S is not already emitted, we have to guess the
status of this signal (emitted or not in the instant).
This guess is the hardest part of the dynamic seman-
tics (constructive behavioural semantics, chapter 7 of
[2]). But we can imagine that the guess is given as an
oracle, and we can verify a posteriori, at the end of
the instant, that the guess is conform to the reality.
The semantics, driven by a guess of all emitted sig-
nal, is called logical behavioural semantics (chapter
6 of [2]). This semantics allow to clearly define the
properties we need for a program: coherency (a guess
is correct), reactivity (at least one guess is correct),
determinism (at most one guess is correct) and cor-
rectness (exactly one guess is correct). In this paper,
we will talk only on this logical semantics.

An another feature of Esterel is to permit the defi-
nition of local signals, a signal which have a meaning
only inside a lexical scope. A local signal is intro-
duced in a statement: signal S in P end. The log-
ical semantics for local signals become less intuitive

1In this paper, all underlined bold words can be found in
Wikipedia.

RR n° 8942

since the rules have to reintroduce some guess and
have to check by hand the correctness, and thus leav-
ing a non deterministic set of rules. Moreover, the
property of correctness becomes difficult to specify :
A program P is strongly deterministic if it is reactive
and deterministic and if, furthermore, there exists a
unique proof induced by the logical semantics rules
(12], p69).

In this paper, we will give a set of deterministic
rules for the logical semantics. In section 2, we will
recall the standard semantics with non-deterministic
rules for local signals. In section 3 we present a new
semantics with only one rule for local signals and we
give the correspondence with the previous semantics.
In section 4 we show other alternatives. In section 5
we details some lemmas needed for the main theorem
introduced in section 3.

All the specifications and proofs? are done in the
Coq system

2 Standard semantics

2.1 Abstract syntax

We start with the Coq inductive type ot the Abstract
Syntax Tree (AST) of Esterel.

Inductive ast : Set :=

| Nop

| Pause

| Emit (s:name)

| Seq (pl:ast) (p2:ast)

| Par (pl:ast) (p2:ast)

| If (s:name) (pl:ast) (p2:ast)
| Loop (p:ast)

| Trap (tag:name) (p:ast)

| Exit (tag:name)

| Signal (s:name) (p:ast)

The domain of names (name) is unspecified, we only
need an equality on them, the Leibniz equality of Coq
- the structural equality - is convenient.

Nop is a statement that does nothing, runs in no
time without emitting any signal. Pause delimits the

2ftp:ftp-sop.inria.fr/indes/rp/Esterellogical.tar

Logical semantics of Esterel with unconstrained local signals 4

end of an instant for the process executing this state-
ment. Emit emits the signal s. Seq put the two state-
ments pl and p2 in sequence, note that pl and/or p2
may take several instants. Par creates two processes,
one executing pl, the other executing p2, the main
process waiting for the completion of its two sub-
processes before continuing its own execution. The
execution of pl and p2 may take several instants. The
two sub-processes must join on completion before re-
suming the execution of their creator. If checks if the
signal s is present in the current instant. If so, the
statement pl is executed, otherwise p2 is executed.
Loop makes an infinite repetition of the statement p.
Trap allows the control to exit from a loop, it defines
an escape point named tag during the execution of
p. The execution of p may be aborted with a state-
ment Exit(tag). Signal defines a local signal named
s during the execution of p.

2.2 Semantics

The semantics of Esterel is generally based on Struc-
tural Operational Semantic rules of the form:

E'k
p— *p

Where F is the set of present signals during the
current instant, F’ is the set of emitted signals during
the execution of p in the same instant, k is called
the completion code and denotes the fact that the
evaluation of p have either finish its execution, either
reach a Pause, or either aborting the computation
with a pending Exit. p’, called the derivative or the
residual of p, is, according to the completion code,
what remains to do for the next instant.

In most specifications, the completion codes are
natural numbers. 0 denote the normal termination,
1 a paused statement and for n > 1, n — 2 gives the
number of surrounding Trap to be traversed. This en-
coding can be related to the de Bruijn indexes for
the A calculus and allows to remove the trap names.
Even if using natural numbers for completion codes
have a fast comparison for the parallel synchronisa-
tion, we have decided to keep trap names in order to
facilitate the proofs. Thus, these completion codes
are defined with the following inductive type:

RR n° 8942

Inductive TermFlag : Set :=
| TReturn

| TPause

| TExit (tag:name)

| TError

We have added a TError constructor to complete
the relation — for Loop expression as we will see later.

In order to compare trap names, the list of names
of the surrounding Trap is added to the rules.

E'k
p %—E> p

Where p is the list of trap names pushed every
time a Trap is analyzed. All the rules defining the
standard semantics are listed in figure 1.

The first three axioms (Nop, Pause and Exit), are
the ones that set the completion code without emit-
ting. The last axiom (Emit), initiates the emitted
signals set.

The two next rules (If) test the presence of a signal
and take the corresponding branch. These rules are
logical, the absence of a signal is known a priori. The
hardest work, which is to guess the absent signals, is
not depicted by the rules.

The rules for Seq analyse sequences. The first one
is used when the completion code for left branch p
says that p is either paused or raise a TExit. In this
case, the right branch ¢ has not to be analysed. The
second rule, when we know that p is fully evaluated
with a normal completion, has to analyse also the
right branch.

The rule for Par analyses the two branches and
collect both emitted signals.The only difficulty is to
answer the correct completion code. There is a to-
tal order on completion codes depicted by the order
in which constructors are listed in the definition of
TermFlag (TReturn < TPause < TExit < Terror)

saying that an exit is higher than everything and
a pause is higher than a normal completion. This is
depicted with the following function :

Logical semantics of Esterel with unconstrained local signals 5

(Nop) m (Nop) (Pause) 9, 1Pause (Nop) (Exit t) m (Nop)
pE pE pE
(Emit s) —>{S}’:R;t“m (Nop)
sEE/\p—>p s&E/\qE—]’;H]’
p,E P,
(If s p q) — pf (If s p @) —2 '
p.E p.E
pik%p’/\k#TReturn Eﬂnﬁp’/\qﬂ’—k)q
P
E'U E”,k
(Seq p @) =% (Seq ' q) (Seqpgq) ——— ¢
pE pE
Bk, A B,
p p,E> p q p,E> q
’ //7 k l
(Par p q) LB LD, (par gy)
pE
D —>E ok p" A k # TReturn I TReturn, ’TR:UIH !
P,
E’ TError
(Loop p) -~ v % (Seq p (Loop p)) (Loop p) ; =+ (Seq p’ (Loop p))

Pk p’ A (k=TReturn V k= (TExit tag)) »p _ Bk, p" A —(k =TReturn V k = (TExit tag))
(tag:p),E (tag)::p,E
(Trap tag p) —— (Nop) (Trap tag p) =~ (Trap tag p/)
"k f E'k '
p—>p AN seFE p—>p AN sé¢€FE
pEU{s} pE—{s }
E'—{s}.k
(Signal s p) %) (Signal s p') (Signal s p) (Slgnal sp)
P,

Figure 1: standard rules

RR n° 8942

Logical semantics of Esterel with unconstrained local signals 6

Definition 1. maxk
(maxk k1 ko ,0) < match kl, ko with
| TReturn,_= ko
| -, TReturn = k;
| TPause,_= ko
| _, TPause = k;
| TError,_= TError
| _, TError = TError
| (TExit 1), (TExit t3) = (maxtag t; t2 p)

For example, for a program Par p q, if p is paused
with a completion code TPause, while ¢ has a normal
termination TReturn, the program have to do some-
thing for the next instant and return the TPause com-
pletion code. When both branches raise a TExit, we
have to compare the trap names, and the convention
wants that the deepest trap name in the stack will be
taken.

Definition 2. maxtag
(maxtag t; to p) < match p with
| nil = TError
| tup=ift=t
then (TExit t9)
else if t =ty
then (TExit ¢;)
else (maxtag t1 t2 p)

If the end of the stack is reached, the two trap
names doesn’t have a corresponding Trap in the ex-
pression, the specific TError code is returned. The
same effect may be achieved by surrounding the main
program by one adequate Trap, but this approach is
cleaner.

The first rule of Loop checks explicitly that the
body is not instantaneous. If so, the second rule
raises a TError completion code. In a preliminary
version of this article, we have chosen to force the
termination of the body by raising the termination
code to TPause in case of instantaneous loop. In At-
tar’s thesis [1] a similar rule is used where a program
(Loop p) is rewritten in (Seq (Par p (Pause)) (Loop
p))®. Adding the explicit treatment for instantaneous
loops needs only minor changes in the proofs, so we
have adopted this new rule with the idea that the
TError completion may have other utilities.

3This idea seems to be assigned to Louis Mandel

RR n° 8942

The two next rules (Trap) evaluate the body with a
new stack where the trap name is pushed. The first
rule is applied when either the body has a normal
code completion (TReturn) or a TExit with the same
trap name. In this case, the whole statement have a
TReturn code completion. The second rule analyses
all other cases and returns the code completion of the
body.

The two last rules focus on local signal declaration,
this paper is mainly concerned by them. In a stan-
dard way, the presence (left) or the absence (right)
of the local signal is explicitly checked by the rules.
The left rule adds the local signal in the set of present
signals E and check if this signal is really emitted in
the result E’. In the inverse, the right rule removes
the local signal from E and checks that this signal is
still absent in the result E’. It exists some programs
as (Signal s (If s (Emit s) (Nop))) that are accepted
by the two rules (non determinism) and some others
as (Signal s (If s (Nop) (Emit s))) that are rejected
by the two rules.

2.3 Definitions of properties

The rules given in figure 1 doesn’t check, except for
the local signals, any correspondence between the

present signals in F and the emitted signal E’. For

{s},TRteurn

example, the fact (Emit s) (Nop), where

s

the signal s is absent but emitted, is directly accepted
by the rule emit. The correspondence between F and
E' is given informally by the coherence law ([2] chap-
ter 3) : A signal S is present in an instant if and only
if an "emit S” statement is executed in this instant.
A more formal definition can be found in [2] (section
6.2) via a behavioral transition on programs depicted
by :

P%P’

Where I and O are respectively the inputs (the set
of signals that are forced by some external device)
and the outputs (the set of signals that are emitted
during the execution of P) of the program. The co-
herence law is defined by :

Logical semantics of Esterel with unconstrained local signals 7

(ifA Reactive
(If s (Emit s) (Nop))

(If s (Nop) (Emit s))) (If s (Emit s) (Nop))

Deterministic Correct

(If s (Nop) (Emit s)) (If s (Emit s) (Emit s))

(If s (Nop) (Nop))

Figure 2: standard definition diagram

Definition 3 (Standard coherence).

(coherent P I O P') < 3k, P Ok_, pr
i1,7UO
Then, we can define the set of programs that have
at least a behavioral transition, a property known as
reactivity.

Definition 4 (Standard reactivity).
(reactive P) < VI, 30 P’ (coherent P I O P')

In a similar way, we can define the set of programs
that have at most one behavioral transition, a prop-
erty known as deterministic:

Definition 5 (Standard determinism).
(deterministic P) < VI Oy P Oy Pa,
(coherent P I Oy P;) =
(coherent P I Oy P) =
(01 =02) A (P1=P))

Finally a program is said to be correct when it is
both reactive and deterministic:

Definition 6 (Standard correctness).
(correct P) < (reactive P) A (deterministic P)

In figure 2 we give a set-oriented representation
of these properties with a program example for each
subset, 7 A” represents an input event that can be
emitted by an external device.

The definitions of coherence, reactivity, determin-
ism and correctness affect only global signals. For
local signals, the coherence in insured by the rules,
but it exists programs, like (Signal s (If s (Emit

RR n° 8942

s) (Nop)))), that are globally deterministic but locally
non deterministic since both s being present or absent
is accepted. To control this fact, [2] gives the follow-
ing definition: a program P is strongly determinis-
tic if it is correct and if, furthermore, there exists a
unique proof of the unique transition P % P’. Since

this kind of definition is not directly translatable in
Coq, we have switched to another specification where
local signals can be manipulated by general proper-
ties (reactivity, determinism, ...).

3 Logical semantics with paths

Given a program P=(Seq (Signal s...) (Signal s

..)), it is difficult, for P, to talk about s without
ambiguity. The simple idea of this section is to refer
a local signal not by its name but by the path where
the local definition occurs.

3.1 Paths

A path is a sequence of edges from a root, the main
program, to a dedicated sub-expression. An edge rep-
resents the link between an expression and one of its
direct sub-expressions. For a specific constructor of
the abstract syntax tree, (If s p; p2) for example, we
create as much edge’s contractors as we have recur-
sive fields to the abstract syntax tree. For our exam-
ple, we create two constructor IfLeft and IfRight.
Putting all the constructors together we obtain the
following definition for edges:

Inductive edge : Set :=
| SeqLeft

| SeqRight

| ParLeft

| ParRight

| IfLeft

| IfRight

| LoopIn

| TrapIn (tag:name)
| Signalln (s:name)

Local signal names and trap names are kept in the
edge structure to be used by the new semantics. With
this definition, paths are simply list of edges:

Logical semantics of Esterel with unconstrained local signals 8

Definition path := (list edge).

Given the statement (Par E; (Seq (If s E»
(Signal...)) Ej)), the path for the local signal dec-
laration is generally given with (ParRight SeqlLeft
IfRight), giving the path from the main program to
the local definition. For our specification, for induc-
tion purpose, it is simpler to built the paths in the
opposite way, (IfRight SeqLeft ParRight), showing
the path from the local definition to the root.

3.2 Signals

In order to keep the AST definition, signals occurring
in the syntax (Emit, If and Signal constructors) are
still referenced by their names. But in the sets of
present and emitted signals (sets E and E’ of the
semantics) we have to add a path associated to local
signals. We define the type of these signals with :
Inductive psignal : Set :=
| Local (p:path)

| Global (s:name)

A psignal is either a local signal associated with
the path of its definition or a global one, without
path, only referenced by its name. For example,
(Local nil) refers to the signal s for all programs
with the structure (Signal s ...). But we can still
talk about this signal for a program not beginning
with a signal declaration, (Nop) for example. For a
local signal (Local 7), we suppose that, at the place
pointed by the path m, we will find a local signal
declaration, the same way that for all signal names
declared as present in E in the previous rules, we
suppose that the signal occurs in the program. It is
the coherent property that will reject present signals
with wrong paths.

3.3 Semantics

With these new kind of signals, we can define a rela-
tion :

RR n° 8942

Where E and E’, the present and emitted signals,
are now sets of psignal, and 7 is the path where p
occurs in the main program. This path is also used to
retrieve the information kept in the previous p argu-
ment (i.e. the surrounding traps) with the function
m2p (path2stack in Coq):

Definition 7 (path to list of trap names: 72p).
(7m2p ¢) = match 7 with
| nil = nil
| ¢g:: 7= match g with
| (TrapInt)=-t: (72p c)
| -= (72p)

The only major changes, regarding previous se-
mantics, concern rules using signals: emission, test
and local signal declarations. For the emission we
change the rule with:

(Emit s) % (Nop)
ux
The function 17, named get_psignal in Coq,
given a path 7 and a signal name s, will find, us-
ing 7, the psignal corresponding to s. This function

is defined by :

Definition 8. get_psignal
17 = match 7 with
| nil = (Global s)
| ¢g:: 7= match g with
| (Signalln s') =
if s=4¢
then (Local)
else 17
| =

The function scans the path from left to right,
or upward regarding the tree structure. If an edge
(SignalIn s) is reached then a (Local), with the
current path, is returned. If the end of the path is
reached, then the signal is global and (Global s) is
returned.

For the signal test, we change the two rules by :

E .k ,

TeE A
Ts p IfLeftum,F

(1£ 5 p q) =2 pf
T, FE

Logical semantics of Esterel with unconstrained local signals 9

’

YEE N g —t

IfRightum, B

(If s p q) =2 ¢
w,F

The only change regarding standard rules is that
we use the 1 to verify the presence of the signal in
E. Note also that every time a subtree have to be
analysed, a corresponding edge must be pushed on
the path.

Finally, since the present local signals are also given
a prioriin E| the two rules for local signal declaration
are resumed in:

E'k ’

) *p
(Signalln s)um,E

(Signal s p) % (Signal s p’)

We have now only one rule for local definitions
and the premisses for all other rules are mutually
exclusive, the relation — is restricted to a function
(p,m, E) = (E', k,p’). The non-determinism appear-
ing in the Signal standard rules is vanished. In-
stead of returning a triplet, in Coq, we have defined
three functions with the same parameters (p, ¢ and
e): term which returns the completion code, emit
which returns the emitted signals and reduce which
returns the residual program. We can observe, which
is not immediate showing the rules, that these three
functions are not mutually dependent: term is in-
dependent of the two others and term is used inside
emit and reduce only for analyzing Seq nodes.

3.4 Definitions of properties

We will keep the names I and O for inputs and out-
puts of the previous specification. For inputs, we
have to keep set of signal names: an external device
don’t have access to local signals. To convert a set of
signal names to a set of global definitions we will use
the function Gt defined as:

Definition 9. globalize
(Gt I) ={(Global s)/s € I}

Outputs correspond to emitted signals of the se-
mantics. They are sets of psignal. We will note

RR n° 8942

O these kind of sets. Since we want to compare the
two semantics, we will have to retrieve global signal
names from set of psignal via the G~ definition:

Definition 10. unglobalize
(G~ O") ={s/(Global s) € OT}

Having functions instead of a relation allow to re-
move the residual program and the existential con-
structor in the coherency property definition:

Definition 11 (path coherency).
(coherent™ P I OF) &
(emit P nil ((GT I)UuO™))=07"

The new definition of reactivity is similar with one
useless existential operator :

Definition 12 (path reactivity).
(reactive™ P) < VI, 30T, (coherent™ P I OT)

In a similar way, we can define the deterministic
property :

Definition 13 (path determinism).
(deterministict P) < VI Of OF,
(coherent® P I Of) =
(coherent™ P I OF) =
(0 = 0F)

We hope that deterministict characterise the
strongly determinism property of [2]. Finally the cor-
rect property :

Definition 14 (path correctness).
(correct™ P) &
(reactive™ P) A (deterministic™ P)

3.5 Correspondences

The two definitions of coherency are related. The
following theorem may be used as an alternative def-
inition of standard coherency.

Logical semantics of Esterel with unconstrained local signals 10

Theorem 1. coherent_corr
(coherent P I O P') & 30T,
(coherent™ P I OT)
A O= (G~ 0%
A P’ = (reduce P nil ((Gt I)uO™))
4

If a program is coherent with one logical semantic,
it is also coherent with the other. This theorem is
used to compare reactivity and determinism of the
two semantics. For the reactivity, since it is enforced
by the standard rules for local signals, we have an
exact correspondence :

Theorem 2. reactive_corr
(reactive P) &< (reactive’ P)

%

For determinism, the standard rules can only ex-
press a global determinism, while the rules with paths
may also talk about determinism on local signals. To
compare the two definitions of determinism, we have
to define the notion of local determinism, which ver-
ify that a coherent program have a unique solution
restricted to local signals:

Definition 15 (local determinism).
(Llocal deterministic P) &V I OF OF,
(coherent® P I OF) =
(coherent™ P I OF) =
(locals OF) = (locals OF)

Where locals extract the local signals from its
argument :

Definition 16 (local definitions filter).
(Locals e™) = {(Local c)/(Local c) € et}

With these definitions we can make the correspon-
dence between the two semantics for deterministic
programs.

Theorem 3 (Determinism correspondence).
(deterministic P) A (local_determinitic P)

& (deterministic™ P)

In figure 3, we update the set-oriented represen-
tation showing the correspondences. Note that we
don’t have a simple example for a non-reactive pro-
gram which is deterministic with the standard seman-
tics but not with semantics with paths.

RR n° 8942

(if A
(If s (Emit s) (Nop))
(If s (Nop) (Emit s)))

Reactive = Reactive+

(If s (Emit s) (Nop))

Deterministic

(ifA
(Signal s (If s (Emit s) (Nop))
(Signal s (If s (Nop) (Emit s)))

Correct

(Signal s (If s (Emit s) (Nop)))

[Deterministic+ Correct+

(Signal s (If s (Nop) (Emit s))) (Signal s (If s (Emit s) (Emit s)))

Figure 3: correspondence diagram

4 Discussions

4.1 Full renaming

In the presented semantics, paths are used to differ-
entiate local signals from each other in order to name
them from outside. Why not insure that all local sig-
nals have different names as a kind of Barendregt
convention for the M-calculus 4? By doing so, we
need to formalize the subset of ast we have to use,
characterising a notion of well formed terms. But
the well-formedness property is not composable, for
example if P; and P, are individually well formed,
it may, when they define the same local signal, that
(Par P; P,) will not well-formed. Therefore, direct
induction on program structure becomes impossible.
In each premise, we have to insure that the main
program is well formed and to keep a link from the
main program to each sub-expressions. These links
are paths.

Moreover, the renaming process will have to be
applied between each instant, because the well-
formedness property is not preserved by the reduce
function. This is due to the duplication of loop’s
body. For example the well formed term P =
(Loop (Seq (Pause) (Signal s (Nop)))) is reduced
to (Seq (Signal s (Nop)) P). This is known as
schizophrenia phonemena [7]. Therefore the renam-
ing process must be formally described and its cor-

4note that De Bruijn indexes are not adequate because
we may refer local names outside of their definitions

Logical semantics of Esterel with unconstrained local signals 11

rectness have to be proved.

4.2 Path versus context

The first version of the semantics used contexts in-
stead of paths (in the sources, you will see that vari-
ables denoting paths are generally named ¢, histori-
cally for context).

Contexts was introduced by James H. Morris [4].
A context is a tree (an element of ast for our specifi-
cation) where a hole take place of a specific sub-tree.
Generally, contexts are used to specify, with the hole,
where transformations/reductions would take place.
For example, Esterel’s context definition can be found
in Olivier Tardieu’s Thesis [5] (fig 2.4 p45) or for Re-
activeML in Louis Mandel’s thesis [3] (p66).

A path is a simplified context. Paths definition
have the same number of constructors as contexts
definition, but each constructor having less fields. A
path is a direct projection (injection) of a context. So,
if contexts are used in the constructive semantics (the
rules which really decide the set of present signals),
the correspondence with the logical semantics with
paths will be easy.

4.3 On the fly renaming

Instead of doing, a priori, a full renaming (see sec-

tion 4.1), Louis Mandel in his thesis ([3] Fig 3.4 p53)

makes an on the fly renaming each time a local signal

declaration is reached. If we restrict ReactiveML to

the core of Esterel used here, we have a rule like:
"k

n a fresh name A pls < n] E? P
P,

(Signal s p) EZELN e
p,E

p[s < n] creates a new term where each free oc-
currence of s is replaced by n. This strategy is ap-
pealing because, in one hand, it doesn’t need to in-
troduce the notion of well formed term discussed in
4.1, and, in other hand, it reflects what is done in
a real interpreter: when a local signal declaration is
evaluated, a piece of memory, containing all the in-
formation needed for this signal, is allocated. It is
an axiom of the memory manager that the allocated

RR n° 8942

memory is fresh, so the address (reference) of this
memory can be used as the fresh name n introduced
in the rule.

But two difficulties remains: how to formally de-
fine the fresh notion and how, from the outside, can
we add or remove n from the present set £ ? For the
simple program (Par (Signal s p) (Signal s p)), we
have to know a priori what will be the signal names
generated for the local signal declarations. For the
freshness, these two names have to be differents. Us-
ing the path, where the local signal declaration oc-
curs, to generate the fresh name seems to be natural.

4.4 Determinism by rules

Using paths to define the logical semantics is a way
to formally express the strong determinism property
in Coq. The fact that the rules becomes determin-
istic must be view as a consequence®. If the strong
correctness is not a goal and if we want that the rules
exclude directly non-deterministic programs (instead
of using an external property like definition 15), we
can apply the strategy used by Olivier Tardieu in [6]
which imposes that the premises in the two rules for
local variable declaration are mutually exclusive:

Bk Bk
p—pr A p—2Zpy A s€(B1NEy)
p EU{s} pE—{s}
. E1—{s},k1 .
(Signal s p) — (Signal s p1)
o,
k k
P A p 2R g A s ¢ (B1U Ey)
p,EU{s} p,E—{s}

(Signal s p) % (Signal s pa)

This way, the relation — becomes a partial func-
tion. Following [6], if a program is correct with these
rules, it will correct with the rules with paths. But
the inverse is not true, as pointed in [6], the following
program is correct with the rules with paths (the only
solution is when both signals s; and so are absent)

5The rules are deterministic when the — relation is a partial
function (no more than one successor), the definition 5 is when
the relation coherent is a partial function

Logical semantics of Esterel with unconstrained local signals 12

while it is not with deterministic rules:

(Signal s
(Signal s
(If S92

(If 51 (Emit s2) (Nop))
(Nop))))

Regarding the figure 3, these rules define a box
inside the correct™ omne. Unfortunately, it seems
that programs that are correct™ but not correct
with these rules cannot be simply characterized. [6]
presents a theorem showing that these programs must
have a non-reactive or non-correct®™ sub-term, but
the property may be shared by a larger class of pro-
grams.

4.5 Reusability

The way paths are introduced, and the way how they
are managed for local signals, in not dedicated to
the semantics of the core of Esterel we have taken.
Some branches of reactive programming initiated by
Frédéric Boussinot®, where a program cannot react
instantaneously to absence of signals, can use the
same kind of rules. The only difference with the rules
of figure 1 is the second rule for If which becomes.

s¢k

(If sp q) 0, TPause

)

We can propagate this modification in the func-
tions term, emit and reduce, and the theorems are
still valid with only 5 minor changes in the proofs.
But the real question is: does a path oriented se-
mantics helps to prove other theorems ?.

We have made a try with the central lemma of
reactive programming ([3] Lemma 1, p 61) stating
that all coherent programs have a minimal solution
for the present set:

Lemma 1 (semilattice of coherency).
VP I O O,

(coherent™ P I O;) =

(coherent™ P I O) =

(coherent™ P I (01 N Os))

Shttp://www-sop.inria.fr/mimosa/rp/

RR n° 8942

But this lemma is false due to the introduction of
the couple Trap/Exit. One counterexample is:

Trap TO in
Trap T1 in
present S1 then
emit S1;
exit TO
end
[l
present S2 then
emit S2;
exit TO
end
Il
exit T1
end;
emit S1;
emit S2
end

Having S1 or S2, or both, as present make the pro-
gram coherent. In each case the exit TO overtake
the exit T1. But when both signals are absent, the
exit T1 take place and the two pending emission are
executed, thus violating the coherency.

It seems that the feature of the (Boussinot’s) se-
mantics that guarantees that absence of a signal can-
not generates some emission ([3] p 61), can be stated
only when TPause is the highest completion code. We
have to change more deeply the semantics in order to
achieve the previous lemma.

5 Lemmas

The theorem 1 is central. It serve to prove the other
given theorems. This coherency correspondence must
be proved by induction on the structure of the pro-
gram. Therefore we have to make a correspondence
under any path and consequently make a correspon-
dence between all standard parameters of the stan-
dard semantics (mainly the set of present and emitted
signals) and the arguments and results of the seman-
tic functions (mainly the emit function).

These correspondences are given in Lemmas 9 and
10 in section 5.3, before that we have to introduce

Logical semantics of Esterel with unconstrained local signals 13

some other definitions and lemmas.

5.1 Prefix partial order on paths

Many lemmas have to talk about local signal defini-
tions under a given path. Since a local signal defi-
nition is also given with a path, paths must have a
partial order. We will say that a path m; is less or
equal to a path mo when 7y, as a list of edges, is a
suffix of 5. For example, if 7; is the list (g2 g1)” and
if 7o is the list (g4 g3 g2 g1), then m < mo. < is a
partial order, the paths (g1) and (g2) are not compa-
rable when the two edges differ. More formally this
order is defined with :

Definition 17 (partial order on paths).
m < my & if (71'1 :772)
then true
else match 7 with
| nil = false
| (g::ﬂ‘g) = T < T2

We extend this partial order to compare a psignal
to a path where global signals are less to any paths:

Definition 18 (psignal/path comparison).
p <7< match p with Global _ = true
| Local @’ = 7' <

7 < p < match p with Global _ = false
| Local 7' = 7 <«

For simplicity, when there is no ambiguity, the term
a < b stands for the proposition a < b = true. As
usual, a < b stands for (a < b A a # b). Following
Wikipedia, we will use the notation alb=a <0b V
b < a when a and b are comparable and the notation
a || b= —(alb) when a and b are incomparable.

The function locals, defined in definition 16, can
redefined as: (locals e™) = {p € e /nil < p}.

Paths reflect the tree structure of programs but we
need to prove that there is only one path from a given

"Remember that the list gives the path from a node to the
root

RR n° 8942

node to the root. This property is achieve with the
fact that the partial order is a prefiz order:

Lemma 2 (< is a prefix order (c_le_prefix)).
Vecab, a<c ANb<c=a<bV b<a

For proving this lemma we have to switch to an
alternative definition of the partial order

Lemma 3 (< seen as suffix (c_le_prop)).
Y ¢ ca2, c1 < co <=>E|l,l.cl = C2

The other lemmas on the partial order, reflexivity,
antisymmetry and transitivity are easily proved.

5.2 Signal conversion

The function 17, introduced in section 3.3, given a
path, convert a signal name to a psignal. We ex-
tend this function to set of names, which can be sim-
ply defined by :

fte={15 /s €e}

Since main proofs make induction on the program
structure (ast), we have to switch to an equivalent
definition using a recursion on the path:

Definition 19. fetch_def
17 < match m with

| nil = (G* e)

| ((Signalln s)um) =
if sce
then 7_, ., U {(Local 7)}
else {7

| (i) =12

The main lemma prove that fetch_def recursively
defined on a path structure have the same meaning
with the one recursively define on a set structure.
This is done firstly by proving 17, =17 U {17}
by induction on 7 using the definition 19 (lemma
fetch def_add in Coq) and by proving the corre-
spondence between the two definitions by induction
on the set e (lemma fetch def_corr in Coq). The
same lemma is needed for the set difference:

Lemma 4. fetch_def_rem

Vs e, TTQ_{S}ZTTQ {15}

Logical semantics of Esterel with unconstrained local signals 14

The proof needs that 1 is injective for a given path,
or, in other words, that only one local signal can be
defined in a given path.

Lemma 5. get_psignal injectivet
Vm, (fun s =17) is injective.

In a similar way. we also need a function that con-
vert a set of psignal to a set of names

Definition 20. unfetch_def
|7 < match m with
| nil= (G~ ¢)
| ((Signalln s)um) =
if (Local 7) € e
then |7 U {s}
else |7 — {s}

| (um) =47

As for f we has a lemma which rely || and 1.

Lemma 6. get_psignal unfetch _def
Vsme, sell & 1hce

We also need lemmas playing on the structure of
the set argument.

Lemma 7. unfetch_def_sing
s p—

Vs, lL{T;’} = {s}

Lemma 8. unfetch_def_union

Ve ez, Ugue= s UL,

5.3 The two main lemmas

In one direction, we have to prove that, in a given
path 7, if the set argument of the functions emit,
term and reduce is locally coherent, the standard
rules can be applied. Before defining the meaning of
local coherency, we say that two sets of path signals
are equivalent under a given path 7 (<) when they
coincide for all local signals under (greater than) .

Definition 21 (i, (same_inside)).
eaXz ey {rece/mr<z}={rc€e)/m <z}

A program p is said locally coherent under a path m
with a set of present signal e, when the set of signals
emitted by p under this path coincide, considering
the equivalence relation i, with e .

RR n° 8942

Definition 22. local_coherence
(coherent, p me) < e<, (emit p 7 €)

Local coherency is what we need to switch from
semantics with paths to standard semantics.

Lemma 9 (from path to standard). ter_st

Vpme, (coherenty pme)
=3 o, oltemp T o), (reduce p 7 e)
(c2p), 4T
NG :U’gemit pme)

The local coherency precondition is enough to pre-
dict which one of the two standard rules for local
signal declaration must be taken: in figure 1 the
predicate s € E’ can be checked looking in 7. The
existential constructor (3 o...) in the conclusion of
the lemma is needed since we have refer the set o
constructed by the standard rules with a structural
equality, the order in which elements are added de-
termines this equality, the proposition o = ... in the
conclusion refers to the set equality.

In the other direction, if the standard rules can
be applied, then we can extend the given present set
of signal e to some set of path signals e on which
the functions emit, term and reduce will return the
same results.

Lemma 10 (from standard to path). st_ter
/ o,k /
Vpmekop, p——p
(c2p c)e
=3I, IT={z € (emit pmet)/m <z}
N k= (termpme™)
A o= femit p wet)
A p' = (reduce p me™)
where et =7 U [T

Note that the lemma give in [T only the present
(and emitted) local signals occurring in p. Globals
signals and local signals already declared in the path
7 are computed with f7. Since the sets 7 and [T
are disjoins, we also have (coherent, p m e™), so we
can reformulate this lemma in a way which look like
the reverse of the lemma 9. As described here, the
lemma 10 is more precise and simpler to prove.

The two lemmas 9 and 10 are proved by induction
on the structure of p. The proofs need some prop-
erties of the functions emit, term and reduce which

Logical semantics of Esterel with unconstrained local signals 15

are independent of the standard rules. We give these
properties in a separate subsection.

5.4 Properties of the semantics func-
tions

The proof of the lemma 9 essentially needs that its
local coherency precondition can be followed by the
induction. The following lemma is quickly needed :

Lemma 11. same_inside_on_fork
V' p1g1p2 92 e,
e, (emit py1 (g1 =
N g1 # g2
= (coherent, p1 (g1 =

) e)

) e)U(emit pa (g2 ::

7) e)

This lemma is applied for statement with two sub-
statements, for example with g; = ParRight and
g2 = ParLeft. The proof of this lemma needs the
fact that all the elements in the result of emit , ap-
plied to a path m, are comparable to 7.

We have also to prove than emit cannot return a
hidden signal. For a statement (Signal s (Signal
s P)), the sub-statement P can only access to the
inner signal s, the external signal s is said hid-
den. In other word we have to prove that |7¢
(emit p ((Signalln s) :: 7) e).

All result’s emit properties are resumed in the fol-
lowing lemmai

Lemma 12 (emit properties). emit_prop
Vepme, x€(emitpme)=
(r<z A Ims, TTi=1)
V (z = (Local w) A Jp' s, p= (Signal s p'))
V (e<m A Js, te=ux)

In other words, all free signals emitted by p in a
path m are comparable to m and reachable via 1.

In an other direction, some signals declared present
have no effect on the emitted signals. For example a
hidden signal cannot be emitted since it is not reach-
able by 1. Since the emit function use the function
term for sequences, we have to prove before, that
these useless signals have also no effect on term’s re-
sults. This give the following lemma :

RR n° 8942

Lemma 13. term_useless_hidden
Vpeusn, u<l=
(term p 7 ¢) = (term p 7 (c — {14}))

If we apply this lemma with a path of a local sig-
nal declaration, we got the following lemma which is
necessary for the proof of the main lemma 10 and is
related to modification of emitted signals (F U {s}
and E — {s}) in the standard rules.

Lemma 14. term hidden
Vspme, (termp ((Signallns):m)e)
= (term p ((Signalln s) = m) (e — {17}))

The main lemma 10 is proved by induction on
the structure of the program. For a statement like
(Par p; p2), in a path 7, by induction we got ki =
(term p; (ParLeft :: ¢) ¢ Ul and we have to prove
that k1 = (term p; (ParLeft :: ¢) ¢ U (If UL))
where I and [are local signals emitted by p; and
p2. So we have to prove that the internal signals
emitted by ps can be considered as present and has
no effet on the computation of (term p; ...). This is
depicted by the following lemma :

Lemma 15. term_useless_incomparable
Vp7T17T2€1 €9, T || Ty =
(term p m1 (e1 U{x € ea/ma < z})) = (term p m €1)

The three previous lemmas have to be reformulated
for the two other functions emit and reduce.

6 Conclusions

We have specified a new logical semantics for Es-
terel by adding a path to local signals. The rules
of this new semantics become deterministic and thus
are fully constructive. Even if the change seems to be
minor, the full specification and proofs in Coq take
3600 lines of code.

We hope that the simplification done for local sig-
nals in the semantics, the specification and part of
the proofs would be reused for further work.

Logical semantics of Esterel with unconstrained local signals

16

References

[1] Pejman Attar. Towards a safe and secure syn-
chronous language. These, Université Nice Sophia
Antipolis, December 2013.

[2] G. Berry. The Constructive Semantics of Pure
Esterel Draft Version 3. 2002.

[3] Louis Mandel. Conception, Sémantique et Im-
plantation de Reactive ML : un langage a la ML
pour la programmation réactive. PhD thesis, Uni-
versité Paris 6, 2006.

[4] James H. Morris. Lambda Calculus Models of Pro-
gramming Languages. PhD thesis, Massachusetts
Institute of Technology, 1968.

[5] Olivier Tardieu. Loops in Esterel: From Opera-
tional Semantics to Formally Specified Compilers.
Theses, Ecole Nationale Supérieure des Mines de
Paris, September 2004.

[6] Olivier Tardieu. A deterministic logical seman-
tics for pure esterel. ACM Trans. Program. Lang.
Syst., 29(2), April 2007.

[7] Olivier Tardieu and Robert de Simone. Curing
schizophrenia by program rewriting in esterel. In
MEMOCODE, pages 39-48. IEEE, 2004.

RR n° 8942

V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
SOPHIA ANTIPOLIS — MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

