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Esterel is a synchronous programming language where processes interact through signals. The logical semantics of this language express the meaning of each syntactic constructions, knowing a priori the set of emitted signals. Nevertheless, a special case have to be made for local signals, making the semantics non-deterministic. In this paper, we propose a new logical semantics where the rules are deterministic. We formalise some correspondences for usual definitions (coherence, reactivity, determinism, correctness) between the two semantics. These correspondences are formally proved in Coq.

Une sémantique logique d'Esterel sans contrainte sur les signaux locaux

Résumé : Esterel est un langage de programmation synchrone où les processus interagissent au travers de signaux. La sémantique logique de ce langage définit le comportement de chaque élément syntaxique en connaissant, à priori, l'ensemble des signaux émis. Néanmoins, un cas spécial doit être fait pour l'interprétation des signaux locaux, rendant ainsi la sématique non déterministe. Dans ce papier, nous proposons une sémantique logique où les règles deviennent déterministe. Nous formalisons une correspondance, entre les deux sémantique, pour les définitions usuelles (cohérence, réactivité, déterminisme, correction). Ces correspondances sont formellement prouvées avec le système Coq.
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Introduction

We informally present the Esterel1 programming language focusing on the notion of process. An Esterel program is made of several processes, each of them executing statements. The processes communicate via signals. A process can raise a signal S with the statement "emit S". Signals can be tested with the statement "present S then P 1 else P 2 end". If the signal S is emitted, the evaluation continues with P 1 . We will detail this statement latter in this section. A process can emit a signal but cannot reset it, as if it was never been emitted. The only way to reset a signal is to erase all signals at the same time, defining a notion of instant. All processes must cooperate to reach the end of one instant. Individually, a process may decide to finish its instant by executing the statement "pause", and it is when all processes have executed a pause or have finished their execution that the current instant is globally and synchronously closed.

Coming back to the "present" statement, if one process have to evaluate a statement "present S then P 1 else P 2 end", and if the signal S is not already emitted, we have to guess the status of this signal (emitted or not in the instant). This guess is the hardest part of the dynamic semantics (constructive behavioural semantics, chapter 7 of [START_REF] Berry | The Constructive Semantics of Pure Esterel Draft Version 3[END_REF]). But we can imagine that the guess is given as an oracle, and we can verify a posteriori, at the end of the instant, that the guess is conform to the reality. The semantics, driven by a guess of all emitted signal, is called logical behavioural semantics (chapter 6 of [START_REF] Berry | The Constructive Semantics of Pure Esterel Draft Version 3[END_REF]). This semantics allow to clearly define the properties we need for a program : coherency (a guess is correct), reactivity (at least one guess is correct), determinism (at most one guess is correct) and correctness (exactly one guess is correct). In this paper, we will talk only on this logical semantics.

An another feature of Esterel is to permit the definition of local signals, a signal which have a meaning only inside a lexical scope. A local signal is introduced in a statement : signal S in P end. The logical semantics for local signals become less intuitive since the rules have to reintroduce some guess and have to check by hand the correctness, and thus leaving a non deterministic set of rules. Moreover, the property of correctness becomes difficult to specify : A program P is strongly deterministic if it is reactive and deterministic and if, furthermore, there exists a unique proof induced by the logical semantics rules ( [START_REF] Berry | The Constructive Semantics of Pure Esterel Draft Version 3[END_REF], p69).

In this paper, we will give a set of deterministic rules for the logical semantics. In section 2, we will recall the standard semantics with non-deterministic rules for local signals. In section 3 we present a new semantics with only one rule for local signals and we give the correspondence with the previous semantics.

In section 4 we show other alternatives. In section 5 we details some lemmas needed for the main theorem introduced in section 3.

All the specifications and proofs 2 are done in the Coq system 2 Standard semantics 2.1 Abstract syntax end of an instant for the process executing this statement. Emit emits the signal s. Seq put the two statements p1 and p2 in sequence, note that p1 and/or p2 may take several instants. Par creates two processes, one executing p1, the other executing p2, the main process waiting for the completion of its two subprocesses before continuing its own execution. The execution of p1 and p2 may take several instants. The two sub-processes must join on completion before resuming the execution of their creator. If checks if the signal s is present in the current instant. If so, the statement p1 is executed, otherwise p2 is executed. Loop makes an infinite repetition of the statement p. Trap allows the control to exit from a loop, it defines an escape point named tag during the execution of p. The execution of p may be aborted with a statement Exit(tag). Signal defines a local signal named s during the execution of p.

Semantics

The semantics of Esterel is generally based on Structural Operational Semantic rules of the form :

p E ,k ---→ E p
Where E is the set of present signals during the current instant, E is the set of emitted signals during the execution of p in the same instant, k is called the completion code and denotes the fact that the evaluation of p have either finish its execution, either reach a Pause, or either aborting the computation with a pending Exit. p , called the derivative or the residual of p, is, according to the completion code, what remains to do for the next instant.

In most specifications, the completion codes are natural numbers. 0 denote the normal termination, 1 a paused statement and for n > 1, n -2 gives the number of surrounding Trap to be traversed. This encoding can be related to the de Bruijn indexes for the λ calculus and allows to remove the trap names. Even if using natural numbers for completion codes have a fast comparison for the parallel synchronisation, we have decided to keep trap names in order to facilitate the proofs. Thus, these completion codes are defined with the following inductive type :

Inductive TermFlag : Set := | TReturn | TPause | TExit (tag:name) | TError
We have added a TError constructor to complete the relation → for Loop expression as we will see later.

In order to compare trap names, the list of names of the surrounding Trap is added to the rules.

p E ,k ---→ ρ,E p
Where ρ is the list of trap names pushed every time a Trap is analyzed. All the rules defining the standard semantics are listed in figure 1.

The first three axioms (Nop, Pause and Exit), are the ones that set the completion code without emitting. The last axiom (Emit), initiates the emitted signals set.

The two next rules (If) test the presence of a signal and take the corresponding branch. These rules are logical, the absence of a signal is known a priori. The hardest work, which is to guess the absent signals, is not depicted by the rules.

The rules for Seq analyse sequences. The first one is used when the completion code for left branch p says that p is either paused or raise a TExit. In this case, the right branch q has not to be analysed. The second rule, when we know that p is fully evaluated with a normal completion, has to analyse also the right branch.

The rule for Par analyses the two branches and collect both emitted signals.The only difficulty is to answer the correct completion code. There is a total order on completion codes depicted by the order in which constructors are listed in the definition of TermFlag (TReturn < TPause < TExit < Terror) saying that an exit is higher than everything and a pause is higher than a normal completion. This is depicted with the following function :

(Nop) ∅,TReturn ------→ ρ,E (Nop) (Pause) ∅,TPause -----→ ρ,E (Nop) (Exit t) ∅,(TExit t) -------→ ρ,E (Nop) 
(Emit s) {s},TReturn -------→ ρ,E (Nop) 
s ∈ E ∧ p E ,k ---→ ρ,E p (If s p q) E ,k ---→ ρ,E p s ∈ E ∧ q E ,k ---→ ρ,E q (If s p q) E ,k ---→ ρ,E q p E ,k ---→ ρ,E p ∧ k = TReturn (Seq p q) E ,k ---→ ρ,E (Seq p q) p E ,TReturn -------→ ρ,E p ∧ q E ,k ---→ ρ,E q (Seq p q) E ∪ E ,k ------→ ρ,E q p E ,k ---→ ρ,E p ∧ q E ,l ---→ ρ,E q (Par p q) E ∪ E ,(maxk k l ρ) -------------→ ρ,E (Par p q ) p E ,k ---→ ρ,E p ∧ k = TReturn (Loop p) E ,k ---→ ρ,E (Seq p (Loop p)) p E ,TReturn -------→ ρ,E p (Loop p) E ,TError ------→ ρ,E (Seq p (Loop p)) p E ,k ------→ (tag::ρ),E p ∧ (k = TReturn ∨ k = (TExit tag)) (Trap tag p) E ,Return ------→ ρ,E (Nop) p 
E ,k ------→ (tag)::ρ,E p ∧ ¬(k = TReturn ∨ k = (TExit tag)) (Trap tag p) E ,k ---→ ρ,E (Trap tag p ) p E ,k -----→ ρ,E∪{s} p ∧ s ∈ E (Signal s p) E -{s},k ------→ ρ,E (Signal s p ) p E ,k -----→ ρ,E-{s} p ∧ s ∈ E (Signal s p) E ,k ---→ ρ,E (Signal s p ) Figure 1: standard rules RR n°8942 Definition 1. maxk (maxk k 1 k 2 ρ) ⇔ match k 1 , k 2 with | TReturn, ⇒ k 2 | , TReturn ⇒ k 1 | TPause, ⇒ k 2 | , TPause ⇒ k 1 | TError, ⇒ TError | , TError ⇒ TError | (TExit t 1 ), (TExit t 2 ) ⇒ (maxtag t 1 t 2 ρ)
For example, for a program Par p q, if p is paused with a completion code TPause, while q has a normal termination TReturn, the program have to do something for the next instant and return the TPause completion code. When both branches raise a TExit, we have to compare the trap names, and the convention wants that the deepest trap name in the stack will be taken.

Definition 2. maxtag (maxtag t 1 t 2 ρ) ⇔ match ρ with | nil ⇒ TError | t :: ρ ⇒ if t = t 1 then (TExit t 2 ) else if t = t 2 then (TExit t 1 ) else (maxtag t 1 t 2 ρ)
If the end of the stack is reached, the two trap names doesn't have a corresponding Trap in the expression, the specific TError code is returned. The same effect may be achieved by surrounding the main program by one adequate Trap, but this approach is cleaner.

The first rule of Loop checks explicitly that the body is not instantaneous. If so, the second rule raises a TError completion code. In a preliminary version of this article, we have chosen to force the termination of the body by raising the termination code to TPause in case of instantaneous loop. In Attar's thesis [START_REF] Attar | Towards a safe and secure synchronous language[END_REF] a similar rule is used where a program (Loop p) is rewritten in (Seq (Par p (Pause)) (Loop p)) 3 . Adding the explicit treatment for instantaneous loops needs only minor changes in the proofs, so we have adopted this new rule with the idea that the TError completion may have other utilities. 3 This idea seems to be assigned to Louis Mandel

The two next rules (Trap) evaluate the body with a new stack where the trap name is pushed. The first rule is applied when either the body has a normal code completion (TReturn) or a TExit with the same trap name. In this case, the whole statement have a TReturn code completion. The second rule analyses all other cases and returns the code completion of the body.

The two last rules focus on local signal declaration, this paper is mainly concerned by them. In a standard way, the presence (left) or the absence (right) of the local signal is explicitly checked by the rules. The left rule adds the local signal in the set of present signals E and check if this signal is really emitted in the result E . In the inverse, the right rule removes the local signal from E and checks that this signal is still absent in the result E . It exists some programs as (Signal s (If s (Emit s) (Nop))) that are accepted by the two rules (non determinism) and some others as (Signal s (If s (Nop) (Emit s))) that are rejected by the two rules.

Definitions of properties

The rules given in figure 1 In a similar way, we can define the set of programs that have at most one behavioral transition, a property known as deterministic :

(If s (Nop) (Emit s)) (If s (Emit s) (Emit s)) (If s (Emit s) (Nop)) (If s (Nop) (Nop)) (if A (If s (Emit s) (Nop)) (If s (Nop) (Emit s)) )
Definition 5 (Standard determinism). (deterministic P ) ⇔ ∀I O 1 P 1 O 2 P 2 , (coherent P I O 1 P 1 ) ⇒ (coherent P I O 2 P 2 ) ⇒ ((O 1 = O 2 ) ∧ (P 1 = P 2 ))
Finally a program is said to be correct when it is both reactive and deterministic :

Definition 6 (Standard correctness). (correct P ) ⇔ (reactive P ) ∧ (deterministic P )
In figure 2 we give a set-oriented representation of these properties with a program example for each subset, "A" represents an input event that can be emitted by an external device.

The definitions of coherence, reactivity, determinism and correctness affect only global signals. For local signals, the coherence in insured by the rules, but it exists programs, like (Signal s (If s (Emit s) (Nop)))), that are globally deterministic but locally non deterministic since both s being present or absent is accepted. To control this fact, [START_REF] Berry | The Constructive Semantics of Pure Esterel Draft Version 3[END_REF] gives the following definition : a program P is strongly deterministic if it is correct and if, furthermore, there exists a unique proof of the unique transition P O -→ I P . Since this kind of definition is not directly translatable in Coq, we have switched to another specification where local signals can be manipulated by general properties (reactivity, determinism, . . . ).

Logical semantics with paths

Given a program P =(Seq (Signal s . . . ) (Signal s . . . )), it is difficult, for P , to talk about s without ambiguity. The simple idea of this section is to refer a local signal not by its name but by the path where the local definition occurs.

Paths

A path is a sequence of edges from a root, the main program, to a dedicated sub-expression. An edge represents the link between an expression and one of its direct sub-expressions. For a specific constructor of the abstract syntax tree, (If s p 1 p 2 ) for example, we create as much edge's contractors as we have recursive fields to the abstract syntax tree. For our example, we create two constructor IfLeft and IfRight. Putting all the constructors together we obtain the following definition for edges : A psignal is either a local signal associated with the path of its definition or a global one, without path, only referenced by its name. For example, (Local nil) refers to the signal s for all programs with the structure (Signal s . . . ). But we can still talk about this signal for a program not beginning with a signal declaration, (Nop) for example. For a local signal (Local π), we suppose that, at the place pointed by the path π, we will find a local signal declaration, the same way that for all signal names declared as present in E in the previous rules, we suppose that the signal occurs in the program. It is the coherent property that will reject present signals with wrong paths.

Semantics

With these new kind of signals, we can define a relation :

p E ,k ---→ π,E
p Where E and E , the present and emitted signals, are now sets of psignal, and π is the path where p occurs in the main program. This path is also used to retrieve the information kept in the previous ρ argument (i.e. the surrounding traps) with the function π2ρ (path2stack in Coq):

Definition 7 (path to list of trap names : π2ρ).

(π2ρ c) = match π with | nil ⇒ nil | g :: π ⇒ match g with | (TrapIn t) ⇒ t :: (π2ρ c) | ⇒ (π2ρ π)
The only major changes, regarding previous semantics, concern rules using signals : emission, test and local signal declarations. For the emission we change the rule with :

(Emit s) {↑ π s },TReturn --------→ π,E (Nop) 
The function ↑ π s , named get_psignal in Coq, given a path π and a signal name s, will find, using π, the psignal corresponding to s. This function is defined by : Definition 8. get psignal

↑ π s = match π with | nil ⇒ (Global s) | g :: π ⇒ match g with | (SignalIn s ) ⇒ if s = s then (Local π) else ↑ π s | ⇒↑ π s
The function scans the path from left to right, or upward regarding the tree structure. If an edge (SignaIn s) is reached then a (Local π), with the current path, is returned. If the end of the path is reached, then the signal is global and (Global s) is returned.

For the signal test, we change the two rules by :

↑ π s ∈ E ∧ p E ,k -------→ IfLeft::π,E p (If s p q) E ,k ---→ π,E p RR n°8942 ↑ π s ∈ E ∧ q E ,k --------→ IfRight::π,E q (If s p q) E ,k ---→ π,E q 
The only change regarding standard rules is that we use the ↑ to verify the presence of the signal in E. Note also that every time a subtree have to be analysed, a corresponding edge must be pushed on the path.

Finally, since the present local signals are also given a priori in E, the two rules for local signal declaration are resumed in :

p E ,k -----------→ (SignalIn s)::π,E p (Signal s p) E ,k ---→ π,E (Signal s p )
We have now only one rule for local definitions and the premisses for all other rules are mutually exclusive, the relation → is restricted to a function (p, π, E) → (E , k, p ). The non-determinism appearing in the Signal standard rules is vanished. Instead of returning a triplet, in Coq, we have defined three functions with the same parameters (p, c and e) : term which returns the completion code, emit which returns the emitted signals and reduce which returns the residual program. We can observe, which is not immediate showing the rules, that these three functions are not mutually dependent : term is independent of the two others and term is used inside emit and reduce only for analyzing Seq nodes.

Definitions of properties

We will keep the names I and O for inputs and outputs of the previous specification. For inputs, we have to keep set of signal names : an external device don't have access to local signals. To convert a set of signal names to a set of global definitions we will use the function G + defined as :

Definition 9. globalize (G + I) = {(Global s)/s ∈ I}
Outputs correspond to emitted signals of the semantics. They are sets of psignal. We will note O + these kind of sets. Since we want to compare the two semantics, we will have to retrieve global signal names from set of psignal via the G -definition :

Definition 10. unglobalize (G -O + ) = {s/(Global s) ∈ O + }
Having functions instead of a relation allow to remove the residual program and the existential constructor in the coherency property definition : Definition 11 (path coherency). (coherent

+ P I O + ) ⇔ (emit P nil ((G + I) ∪ O + )) = O +
The new definition of reactivity is similar with one useless existential operator : Definition 12 (path reactivity). (reactive + P ) ⇔ ∀I, ∃ O + , (coherent

+ P I O + )
In a similar way, we can define the deterministic property :

Definition 13 (path determinism). (deterministic

+ P ) ⇔ ∀I O + 1 O + 2 , (coherent + P I O + 1 ) ⇒ (coherent + P I O + 2 ) ⇒ (O + 1 = O + 2 )
We hope that deterministic + characterise the strongly determinism property of [START_REF] Berry | The Constructive Semantics of Pure Esterel Draft Version 3[END_REF]. Finally the correct property : Definition 14 (path correctness). (correct + P ) ⇔ (reactive + P ) ∧ (deterministic + P )

Correspondences

The two definitions of coherency are related. The following theorem may be used as an alternative definition of standard coherency. In figure 3, we update the set-oriented representation showing the correspondences. Note that we don't have a simple example for a non-reactive program which is deterministic with the standard semantics but not with semantics with paths. In the presented semantics, paths are used to differentiate local signals from each other in order to name them from outside. Why not insure that all local signals have different names as a kind of Barendregt convention for the λ-calculus4 ? By doing so, we need to formalize the subset of ast we have to use, characterising a notion of well formed terms. But the well-formedness property is not composable, for example if P 1 and P 2 are individually well formed, it may, when they define the same local signal, that (Par P 1 P 2 ) will not well-formed. Therefore, direct induction on program structure becomes impossible.

In each premise, we have to insure that the main program is well formed and to keep a link from the main program to each sub-expressions. These links are paths. Moreover, the renaming process will have to be applied between each instant, because the wellformedness property is not preserved by the reduce function. This is due to the duplication of loop's body. For example the well formed term P = (Loop (Seq (Pause) (Signal s (Nop)))) is reduced to (Seq (Signal s (Nop)) P ). This is known as schizophrenia phonemena [START_REF] Tardieu | Curing schizophrenia by program rewriting in esterel[END_REF]. Therefore the renaming process must be formally described and its cor-rectness have to be proved.

Path versus context

The first version of the semantics used contexts instead of paths (in the sources, you will see that variables denoting paths are generally named c, historically for context).

Contexts was introduced by James H. Morris [START_REF] Morris | Lambda Calculus Models of Programming Languages[END_REF]. A context is a tree (an element of ast for our specification) where a hole take place of a specific sub-tree. Generally, contexts are used to specify, with the hole, where transformations/reductions would take place. For example, Esterel's context definition can be found in Olivier Tardieu's Thesis [START_REF] Tardieu | Loops in Esterel: From Operational Semantics to Formally Specified Compilers[END_REF] (fig 2.4 p45) or for Re-activeML in Louis Mandel's thesis [START_REF] Mandel | Conception, Sémantique et Implantation de ReactiveML : un langage à la ML pour la programmation réactive[END_REF] 

(p66).

A path is a simplified context. Paths definition have the same number of constructors as contexts definition, but each constructor having less fields. A path is a direct projection (injection) of a context. So, if contexts are used in the constructive semantics (the rules which really decide the set of present signals), the correspondence with the logical semantics with paths will be easy.

On the fly renaming

Instead of doing, a priori, a full renaming (see sec- 

n a f resh name ∧ p[s ← n] E ,k ---→ ρ,E p (Signal s p) E ,k ---→ ρ,E p p[s ← n]
creates a new term where each free occurrence of s is replaced by n. This strategy is appealing because, in one hand, it doesn't need to introduce the notion of well formed term discussed in 4.1, and, in other hand, it reflects what is done in a real interpreter : when a local signal declaration is evaluated, a piece of memory, containing all the information needed for this signal, is allocated. It is an axiom of the memory manager that the allocated memory is fresh, so the address (reference) of this memory can be used as the fresh name n introduced in the rule.

But two difficulties remains : how to formally define the fresh notion and how, from the outside, can we add or remove n from the present set E ? For the simple program (Par (Signal s p) (Signal s p)), we have to know a priori what will be the signal names generated for the local signal declarations. For the freshness, these two names have to be differents. Using the path, where the local signal declaration occurs, to generate the fresh name seems to be natural.

Determinism by rules

Using paths to define the logical semantics is a way to formally express the strong determinism property in Coq. The fact that the rules becomes deterministic must be view as a consequence 5 . If the strong correctness is not a goal and if we want that the rules exclude directly non-deterministic programs (instead of using an external property like definition 15), we can apply the strategy used by Olivier Tardieu in [START_REF] Tardieu | A deterministic logical semantics for pure esterel[END_REF] which imposes that the premises in the two rules for local variable declaration are mutually exclusive :

p E1,k1 -----→ ρ,E∪{s} p 1 ∧ p E2,k2 -----→ ρ,E-{s} p 2 ∧ s ∈ (E 1 ∩ E 2 ) (Signal s p) E1-{s},k1 -------→ ρ,E (Signal s p 1 ) p E1,k1 -----→ ρ,E∪{s} p 1 ∧ p E2,k2 -----→ ρ,E-{s} p 2 ∧ s ∈ (E 1 ∪ E 2 ) (Signal s p) E2,k2 ----→ ρ,E (Signal s p 2 )
This way, the relation → becomes a partial function. Following [START_REF] Tardieu | A deterministic logical semantics for pure esterel[END_REF], if a program is correct with these rules, it will correct with the rules with paths. But the inverse is not true, as pointed in [START_REF] Tardieu | A deterministic logical semantics for pure esterel[END_REF], the following program is correct with the rules with paths (the only solution is when both signals s 1 and s 2 are absent) while it is not with deterministic rules :

(Signal s 1 (Signal s 2 (If s 2 (If s 1 (Emit s 2 ) (Nop)) (Nop) )
)) Regarding the figure 3, these rules define a box inside the correct + one. Unfortunately, it seems that programs that are correct + but not correct with these rules cannot be simply characterized. [START_REF] Tardieu | A deterministic logical semantics for pure esterel[END_REF] presents a theorem showing that these programs must have a non-reactive or non-correct + sub-term, but the property may be shared by a larger class of programs.

Reusability

The way paths are introduced, and the way how they are managed for local signals, in not dedicated to the semantics of the core of Esterel we have taken. Some branches of reactive programming initiated by Frédéric Boussinot 6 , where a program cannot react instantaneously to absence of signals, can use the same kind of rules. The only difference with the rules of figure 1 is the second rule for If which becomes.

s ∈ E (If s p q) ∅,TPause -----→ ρ,E q
We can propagate this modification in the functions term, emit and reduce, and the theorems are still valid with only 5 minor changes in the proofs. But the real question is : does a path oriented semantics helps to prove other theorems ?.

We have made a try with the central lemma of reactive programming ([3] Lemma 1, p 61) stating that all coherent programs have a minimal solution for the present set :

Lemma 1 (semilattice of coherency ). ∀P I O 1 O 2 , (coherent + P I O 1 ) ⇒ (coherent + P I O 2 ) ⇒ (coherent + P I (O 1 ∩ O 2 ))
6 http://www-sop.inria.fr/mimosa/rp/ But this lemma is false due to the introduction of the couple Trap/Exit. One counterexample is : Having S1 or S2, or both, as present make the program coherent. In each case the exit T0 overtake the exit T1. But when both signals are absent, the exit T1 take place and the two pending emission are executed, thus violating the coherency.

Trap T0 in
It seems that the feature of the (Boussinot's) semantics that guarantees that absence of a signal cannot generates some emission ([3] p 61), can be stated only when TPause is the highest completion code. We have to change more deeply the semantics in order to achieve the previous lemma.

Lemmas

The theorem 1 is central. It serve to prove the other given theorems. This coherency correspondence must be proved by induction on the structure of the program. Therefore we have to make a correspondence under any path and consequently make a correspondence between all standard parameters of the standard semantics (mainly the set of present and emitted signals) and the arguments and results of the semantic functions (mainly the emit function).

These correspondences are given in Lemmas 9 and 10 in section 5.3, before that we have to introduce RR n°8942 some other definitions and lemmas.

Prefix partial order on paths

Many lemmas have to talk about local signal definitions under a given path. Since a local signal definition is also given with a path, paths must have a partial order. We will say that a path π 1 is less or equal to a path π 2 when π 1 , as a list of edges, is a suffix of π 2 . For example, if π 1 is the list (g 2 g 1 ) 7 and if π 2 is the list (g 4 g 3 g 2 g 1 ), then π 1 ≤ π 2 . ≤ is a partial order, the paths (g 1 ) and (g 2 ) are not comparable when the two edges differ. More formally this order is defined with :

Definition 17 (partial order on paths).

π 1 ≤ π 2 ⇔ if (π 1 = π 2 ) then true else match π 2 with | nil ⇒ false | (g::π 2 ) ⇒ π 1 ≤ π 2
We extend this partial order to compare a psignal to a path where global signals are less to any paths : The function locals, defined in definition 16, can redefined as : (locals e + ) = {p ∈ e + /nil ≤ p}.

Paths reflect the tree structure of programs but we need to prove that there is only one path from a given 7 Remember that the list gives the path from a node to the root node to the root. This property is achieve with the fact that the partial order is a prefix order :

Lemma 2 (≤ is a prefix order (c le prefix) ). ∀ c a b, a ≤ c ∧ b ≤ c ⇒ a ≤ b ∨ b ≤ a
For proving this lemma we have to switch to an alternative definition of the partial order Lemma 3 (≤ seen as suffix (c le prop) ).

∀ c 1 c 2 , c 1 ≤ c 2 ⇔ ∃l, l • c 1 = c 2
The other lemmas on the partial order, reflexivity, antisymmetry and transitivity are easily proved.

Signal conversion

The function ↑ π s , introduced in section 3.3, given a path, convert a signal name to a psignal. We extend this function to set of names, which can be simply defined by :

⇑ π e = {↑ π s /s ∈ e}
Since main proofs make induction on the program structure (ast), we have to switch to an equivalent definition using a recursion on the path : The main lemma prove that fetch_def recursively defined on a path structure have the same meaning with the one recursively define on a set structure. This is done firstly by proving ⇑ π e∪{s} =⇑ π e ∪ {↑ π s } by induction on π using the definition 19 (lemma fetch def add in Coq) and by proving the correspondence between the two definitions by induction on the set e (lemma fetch def corr in Coq). The same lemma is needed for the set difference : Lemma 4. fetch def rem ∀s π e, ⇑ π e-{s} =⇑ π e -{↑ π s }

RR n°8942

The proof needs that ↑ is injective for a given path, or, in other words, that only one local signal can be defined in a given path. The local coherency precondition is enough to predict which one of the two standard rules for local signal declaration must be taken : in figure 1 the predicate s ∈ E can be checked looking in ⇓ π e . The existential constructor (∃ o . . .) in the conclusion of the lemma is needed since we have refer the set o constructed by the standard rules with a structural equality, the order in which elements are added determines this equality, the proposition o = . . . in the conclusion refers to the set equality.

In the other direction, if the standard rules can be applied, then we can extend the given present set of signal e to some set of path signals e + on which the functions emit, term and reduce will return the same results. e . Since the sets ⇑ π e and l + are disjoins, we also have (coherent L p π e + ), so we can reformulate this lemma in a way which look like the reverse of the lemma 9. As described here, the lemma 10 is more precise and simpler to prove.

The two lemmas 9 and 10 are proved by induction on the structure of p. The proofs need some properties of the functions emit, term and reduce which RR n°8942 are independent of the standard rules. We give these properties in a separate subsection.

Properties of the semantics functions

The proof of the lemma 9 essentially needs that its local coherency precondition can be followed by the induction. The following lemma is quickly needed :

Lemma 11. same inside on fork ∀ p 1 g 1 p 2 g 2 π e, e c (emit p 1 (g 1 :: π) e)∪(emit p 2 (g 2 :: π) e) ∧ g 1 = g 2 ⇒ (coherent L p 1 (g 1 :: π) e) This lemma is applied for statement with two substatements, for example with g 1 = ParRight and g 2 = ParLeft. The proof of this lemma needs the fact that all the elements in the result of emit , applied to a path π, are comparable to π.

We have also to prove than emit cannot return a hidden signal. For a statement (Signal s (Signal s P )), the sub-statement P can only access to the inner signal s, the external signal s is said hidden. In other word we have to prove that ↓ π s ∈ (emit p ((SignalIn s) :: π) e).

All result's emit properties are resumed in the following lemma:

Lemma 12 (emit properties). emit prop ∀ x p π e, x ∈ (emit p π e) ⇒ (π < x ∧ ∃ π i s, ↑ πi s = x) ∨ (x = (Local π) ∧ ∃p s, p = (Signal s p ))

∨ (x < π ∧ ∃ s, ↑ c s = x)
In other words, all free signals emitted by p in a path π are comparable to π and reachable via ↑.

In an other direction, some signals declared present have no effect on the emitted signals. For example a hidden signal cannot be emitted since it is not reachable by ↑. Since the emit function use the function term for sequences, we have to prove before, that these useless signals have also no effect on term's results. This give the following lemma : Lemma 13. term useless hidden ∀ p e u s π, u ≤↑ c s ⇒ (term p π e) = (term p π (e -{↑ u s }))

If we apply this lemma with a path of a local signal declaration, we got the following lemma which is necessary for the proof of the main lemma 10 and is related to modification of emitted signals (E ∪ {s} and E -{s}) in the standard rules. The main lemma 10 is proved by induction on the structure of the program. For a statement like (Par p 1 p 2 ), in a path π, by induction we got k 1 = (term p 1 (ParLeft :: c) ⇑ c e ∪ l + 1 ) and we have to prove that k 1 = (term p 1 (ParLeft :: c) ⇑ c e ∪ (l + 1 ∪ l + 2 )) where l + 1 and l + 2 are local signals emitted by p 1 and p 2 . So we have to prove that the internal signals emitted by p 2 can be considered as present and has no effet on the computation of (term p 1 . . .). This is depicted by the following lemma : Lemma 15. term useless incomparable ∀ p π 1 π 2 e 1 e 2 , π 1 π 2 ⇒ (term p π 1 (e 1 ∪ {x ∈ e 2 /π 2 ≤ x})) = (term p π 1 e 1 )

The three previous lemmas have to be reformulated for the two other functions emit and reduce.

Conclusions

We have specified a new logical semantics for Esterel by adding a path to local signals. The rules of this new semantics become deterministic and thus are fully constructive. Even if the change seems to be minor, the full specification and proofs in Coq take 3600 lines of code.

We hope that the simplification done for local signals in the semantics, the specification and part of the proofs would be reused for further work.

RR n°8942

P

  doesn't check, except for the local signals, any correspondence between the present signals in E and the emitted signal E . For example, the fact (Emit s) {s},TRteurn -------→ nil,∅(Nop), where the signal s is absent but emitted, is directly accepted by the rule emit. The correspondence between E and E is given informally by the coherence law ([2] chapter 3) : A signal S is present in an instant if and only if an "emit S" statement is executed in this instant. A more formal definition can be found in[START_REF] Berry | The Constructive Semantics of Pure Esterel Draft Version 3[END_REF] (section 6.2) via a behavioral transition on programs depicted by : Where I and O are respectively the inputs (the set of signals that are forced by some external device) and the outputs (the set of signals that are emitted during the execution of P ) of the program. The coherence law is defined by :

Figure 2 :Definition 4 (

 24 Figure 2: standard definition diagram

  name) | SignalIn (s:name) Local signal names and trap names are kept in the edge structure to be used by the new semantics. With this definition, paths are simply list of edges : Definition path := (list edge). Given the statement (Par E 1 (Seq (If s E 2 (Signal. . . )) E 3 )), the path for the local signal declaration is generally given with (ParRight SeqLeft IfRight), giving the path from the main program to the local definition. For our specification, for induction purpose, it is simpler to built the paths in the opposite way, (IfRight SeqLeft ParRight), showing the path from the local definition to the root.

3. 2

 2 Signals In order to keep the AST definition, signals occurring in the syntax (Emit, If and Signal constructors) are still referenced by their names. But in the sets of present and emitted signals (sets E and E of the semantics) we have to add a path associated to local signals. We define the type of these signals with : Inductive psignal : Set := | Local (p:path) | Global (s:name)

Theorem 1 .Theorem 3 (

 13 coherent corr (coherent P I O P ) ⇔ ∃O + , (coherent + P I O + ) ∧ O = (G -O + ) ∧ P = (reduce P nil ((G + I) ∪ O + )) If a program is coherent with one logical semantic, it is also coherent with the other. This theorem is used to compare reactivity and determinism of the two semantics. For the reactivity, since it is enforced by the standard rules for local signals, we have an exact correspondence : Theorem 2. reactive corr (reactive P ) ⇔ (reactive + P ) For determinism, the standard rules can only express a global determinism, while the rules with paths may also talk about determinism on local signals. To compare the two definitions of determinism, we have to define the notion of local determinism, which verify that a coherent program have a unique solution restricted to local signals : Definition 15 (local determinism). (local deterministic P ) ⇔ ∀ I O + 1 O + 2 , (coherent + P I O + 1 ) ⇒ (coherent + P I O + 2 ) ⇒ (locals O + 1 ) = (locals O + 2 ) Where locals extract the local signals from its argument : Definition 16 (local definitions filter). (locals e + ) = {(Local c)/(Local c) ∈ e + } With these definitions we can make the correspondence between the two semantics for deterministic programs. Determinism correspondence). (deterministic P ) ∧ (local determinitic P ) ⇔ (deterministic + P )

Deterministic+((Figure 3

 3 Figure 3: correspondence diagram

  tion 4.1), Louis Mandel in his thesis ([3] Fig 3.4 p53) makes an on the fly renaming each time a local signal declaration is reached. If we restrict ReactiveML to the core of Esterel used here, we have a rule like :

  Definition 18 (psignal/path comparison).p ≤ π ⇔ match p with Global ⇒ true | Local π ⇒ π ≤ π π ≤ p ⇔ match p with Global ⇒ false | Local π ⇒ π ≤ πFor simplicity, when there is no ambiguity, the term a ≤ b stands for the proposition a ≤ b = true. As usual, a < b stands for (a ≤ b ∧ a = b). Following Wikipedia, we will use the notation a⊥b = a ≤ b ∨ b ≤ a when a and b are comparable and the notation a b = ¬(a⊥b) when a and b are incomparable.

  Definition 19. fetch def ⇑ π e ⇔ match π with | nil ⇒ (G + e) | ((SignalIn s)::π) ⇒ if s ∈ e then ⇑ π e-{s} ∪ {(Local π)} else ⇑ π e | ( ::c) ⇒⇑ π e

  Definition 22. local coherence (coherent L p π e) ⇔ e π (emit p π e) Local coherency is what we need to switch from semantics with paths to standard semantics. Lemma 9 (from path to standard). ter st ∀ p π e, (coherent L p π e) ⇒ ∃ o, p o,(term p π e) ---------→ (c2ρ c),⇓ π e (reduce p π e) ∧ o =⇓ c (emit p π e)

  Lemma 10 (from standard to path). st ter∀ p π e k o p , p o,k -----→ (c2ρ c),e p ⇒ ∃ l + , l + = {x ∈ (emit p π e + )/π ≤ x} ∧ k = (term p π e + ) ∧ o =⇓ c(emit p π e + ) ∧ p = (reduce p π e + ) where e + =⇑ π e ∪ l + Note that the lemma give in l + only the present (and emitted) local signals occurring in p. Globals signals and local signals already declared in the path π are computed with ⇑ π

  Lemma 14. term hidden ∀ s p π e, (term p ((SignalIn s) :: π) e) = (term p ((SignalIn s) :: π) (e -{↑ π s }))

  Lemma 5. get psignal injectivet ∀ π, (fun s →↑ π s ) is injective. In a similar way. we also need a function that convert a set of psignal to a set of names As for ⇑ we has a lemma which rely ⇓ and ↑.In one direction, we have to prove that, in a given path π, if the set argument of the functions emit, term and reduce is locally coherent, the standard rules can be applied. Before defining the meaning of local coherency, we say that two sets of path signals are equivalent under a given path π ( π ) when they coincide for all local signals under (greater than) π. Definition 21 ( π (same inside)). e 1 π e 2 ⇔ {x ∈ e 1 /π ≤ x} = {x ∈ e 2 )/π ≤ x} A program p is said locally coherent under a path π with a set of present signal e, when the set of signals emitted by p under this path coincide, considering the equivalence relation π , with e .

	Definition 20. unfetch def
	⇓ π e ⇔ match π with | nil ⇒ (G -e)
	| ((SignalIn s)::π) ⇒
	if (Local π) ∈ e
	then ⇓ π e ∪ {s} else ⇓ π e -{s} | ( ::π) ⇒⇓ π e
	Lemma 6. get psignal unfetch def
	∀ s π e, s ∈⇓ π e ⇔ ↑ π s ∈ e
	We also need lemmas playing on the structure of
	the set argument.
	Lemma 7. unfetch def sing
	∀ s π, ⇓ π {↑ π s } = {s}
	Lemma 8. unfetch def union
	∀ π e 1 e 2 , ⇓ π e1∪e2 = ⇓ π e1 ∪ ⇓ π e2
	5.3 The two main lemmas
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The rules are deterministic when the → relation is a partial function (no more than one successor), the definition 5 is when the relation coherent is a partial function RR n°8942

Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria.fr ISSN 0249-6399

name) (p1:ast) (p2:ast)