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The main aim of this paper to establish the relations between forward, backward and central finite (divided) differences (that is discrete analog of the derivative) and partial & ordinary high-order derivatives of the polynomials.

Introduction

Let introduce the basic definition of finite difference. Finite difference is difference between function values with constant increment. There are three types of finite differences: forward, backward and central. Generally, the first order forward difference could be noted as:

∆ h f (x) = f (x + h) -f (x) backward, respec- tively, is ∇ h f (x) = f (x) -f (x -h) and central δ h f (x) = f (x + 1 2 h) -f (x -1 2 h
), where h = const, (see [START_REF] Wilmott | The Mathematics of Financial Derivatives: A Student Introduction[END_REF], [START_REF] Chaudhry | Open-Channel Flow[END_REF], [START_REF] Olver | Introduction to Partial Differential Equations[END_REF]). When the increment is enough small, but constant, we can say that finite difference divided by increment tends to derivative, but not equals. The error of this approximation could be counted next:

∆ h f (x) h -f (x) = O(h) → 0
, where h -increment, such that, h → 0. By means of induction as well right for backward difference. More exact approximation we have using central difference, that is:

δ h f (x) h -f (x) = O(h 2
), note that function should be twice differentiable. The finite difference is the discrete analog of the derivative (see [START_REF] Weisstein | Finite Difference[END_REF]), the main distinction is constant increment of the function's argument, while difference to be taken. Backward and forward differences are opposite each other. More generally, high order finite differences (forward, backward and central, respectively) could be denoted as (see [START_REF] Fichtenholz | Differential and integral calculus[END_REF]):

(1.1) ∆ k h f (x) = ∆ k-1 f (x + h) -∆ k-1 f (x) = n k=0 n k (-1) k • f (x + (n -k)h) (1.2) δ n h f (x) = n k=0 (-1) k n k • f x + n 2 -k h (1.3) ∇ k h f (x) = ∇ k-1 f (x) -∇ k-1 f (x -h) = n k=0 n k (-1) k • f (x -kh)
Let describe the main properties of finite difference operator, they are next (see [START_REF] Gleich | Finite Calculus: A Tutorial for Solving Nasty Sums p 6-7[END_REF])

(1) Linearity rules ∆(f (x) + g(x)) = ∆f (x) + ∆g(x) δ(f (x) + g(x)) = δf (x) + δg(x) ∇(f (x) + g(x)) = ∇f (x) + ∇g(x) (2) ∆(C • f (x)) = C • ∆f (x), ∇(C • f (x)) = C • ∇f (x), δ(C • f (x)) = C • δf (x) (3) Constant rule ∆C = ∇C = δC = 0
Strictly speaking, divided difference (see [START_REF] Bakhvalov | Numerical Methods: Analysis, Algebra[END_REF]) with constant increment is discrete analog of derivative, when finite difference is discrete analog of function's differential. They are close related to each other. To show this, let define the divided difference.

Definition 1.4. Divided difference of fixed increment definition (forward, centaral, backward respectively)

f + [x i , x j ] := f (x j ) -f (x i ) x j -x i , j > i, ∆x ≥ 1 f -[x i , x j ] := f (x i ) -f (x j ) x i -x j , j < i, ∇x ≥ 1 f c [x i ] := f (x i+m ) -f (x i-m ) 2m
Hereby, divided diffrence could be represented from the finite difference, let be j = i ± const, backward as -, respectively + as forward and c as centered

f ± [x i , x j ] ≡ ∆f (x j ) ∆x ≡ ∇f (x i ) ∇x f c [x i ] ≡ δf (x i±m ) 2m ≡ δf (x i±m ) δx The n-order f ± [x i , x j ] n ≡ ∆ n f (x j ) ∆x n ≡ ∇ n f (x i ) ∇x n f c [x i ] n ≡ δ n f (x i±m ) (2m) n ≡ δ n f (x i±m )
δx n Each properties, which holds for finite differences holds for divided differences as well.

Definitions for x g distribution

Let be variable x g :

x g = g • C, C = x g+1 -x g = const, C ∈ R >0 → x g ∈ R >0 , g ∈ Z.
To define the finite difference of function of such argument, we take C = h and rewrite forward, backward and central differences of some analytically defined function f (x i ) next way: ∆f

(x i+1 ) = f (x i+1 ) -f (x i ), ∇f (x i-1 ) = f (x i ) - f (x i-1 ), δf (x i ) = f x i+ 1 2 -f x i- 1 2 
. The n-th differences of such a function could be written as

(2.1) ∆ n f (x i+1 ) = ∆ n-1 f (x i+1 ) -∆ n-1 f (x i ) = n k=0 n k (-1) k • f (x i+n-k ) (2.2) δ n f (x i ) = n k=0 n k (-1) k • f x i+ n 2 -k (2.3) ∇ n f (x i-1 ) = ∇ n-1 f (x i ) -∇ n-1 f (x i-1 ) = n k=0 n k (-1) k • f (x i-n+k )
Let be differences ∆f (x i+1 ), δf (x i ), ∇f (x i-1 ), such that i ∈ Z and differences is taken starting from point i, which divides the space Z into Z = Z -∪ Z + symmetrically (note that +/-symbols mean the left and right sides of start point i = 0, i.e backward and forward direction), this way we have (i + 1) ∈ Z + , (i -1) ∈ Z -, i = 0 ∈ (Z + , Z -). Let derive some properties of that distribution:

(1) max(Z -) = min(Z + ) = i (2) Forward difference is taken starting from min(Z + ), while backward from max(Z -) (3) card(Z + ) = card(Z -), i.e k∈Z + 1 = k∈Z -1 (4) Maximal order of forward difference in which it is not equal to zero is max(Z + )

(5) Maximal order of backward difference in which it is not equal to zero is min(Z -) (6) Maximal order of central difference in which it is not equal to zero is max(Z + ) (7) Forward and backward difference equal each other by absolute value, while to be taken from i = 0 Limitation 2.4. Note that most expression generated as case of i = 0, so the initial start point of each difference and inducted expressions are 0.

Definitions 2.5. Generalized definitions complete this section (1)

Z + := N 1 -positive integers (2) Z -:= {-1, -2, . . . , min(Z -)} -negative integers (3) {f, f (x), f (x i )} := x n -
power function, value of power function in point i of difference table (4) i = 0 -initial point of every differentiating process, δf (x 0 ) exist only for operator of centered difference (as per limitation 2.4) (5)

x i := i • ∆x ≡ ∇x ≡ (δx)/2 = ∆x -value of function's argument in point i of difference table (6) ∆x ≡ ∇x ≡ (δx)/2 -function's argument differentials, constant values ∈ R >0 (7) ∆f (x i+1 ), ∇f (x i-1 ) -forward and backward finite differences in points i + 1 and i -1 of difference table (8) δf (x i ) -centered finite difference in point i of difference table (9) ∆ 0 f ≡ δ 0 f ≡ ∇ 0 f ≡ f

Difference and derivative of power function

Since the n-order polynomial defined as summation of argument to power multiplied by coefficient, with higher power n, let describe a few properties of finite (divided) difference of power function.

Lemma 3.1. For each power function with natural number as exponent holds the equality between forward, backward and central divided differences, and derivative with order respectively to exponent and equals to exponent under factorial sign multiplied by argument differential to power.

Proof. Let be function f (x) = x n , n ∈ N. The derivative of power function, f (x) = nx n-1 , so k-th derivative f (k) (x) = n • (n -1) • • • (n -k + 1) • x n-k , n > k. Using limit notation, we have: lim m→n -f (m) (x) = f (n) (x) = n!. Let rewrite expressions (2.1, 2.2, 2.3) according to definition x i = i • ∆x, note that ∆x ≡ ∇x ≡ δx/2.

By means of power function multiplication property

(i • ∆x) n = i n • ∆x n , we can rewrite the n-th finite difference equations (2.1, 2.2, 2.3) as follows (3.2) ∆ m (x n i+1 ) = m k=0 m k (-1) k • i + m -k m • ∆x m , m < n ∈ N
Using limit notation on divided by ∆x to power (3.2), we obtain

(3.3) lim m→n - ∆ m (x n i+1 ) ∆x m = lim m→n - m k=0 m k (-1) k • i + m -k m = n k=0 n k (-1) k • i + n -k n-0 = n!
Similarly, going from (2.3), backward n-th difference equals:

(3.4) lim m→n - ∇ m (x n i-1 ) ∇x m = lim m→n - m k=0 m k (-1) k • i -m + k m = n k=0 n k (-1) k • i -n + k n-0 = n!
And n-th central (2.2), respectively

(3.5) lim m→n - δ m f (x i ) δx m = lim m→n - m k=0 m k (-1) k • i + m 2 -k m = n k=0 n k (-1) k • i + n 2 -k n-0 = n!
As we can see the next conformities hold

(3.6) lim ∆x→0 ∆ n f ∆x n ≡ lim ∆x→C ∆ n f ∆x n ≡ n! (3.7) lim δx→0 δ n f δx n ≡ lim δx→C δ n f δx n ≡ n! (3.8) lim ∇x→0 ∇ n f ∇x n ≡ lim ∇x→C ∇ n f ∇x n ≡ n! (3.9) lim ∆x→C ∆ n f ∆x n ≡ lim δx→C δ n f δx n ≡ lim ∇x→C ∇ n f ∇x n ∀(C ∈ R + )
In partial case when C = 0 (3.10)

d n f dx n ≡ lim δx→0 δ n f δx n ≡ lim ∇x→0 ∇ n f ∇x n As well holds (3.11) df dx (x 0 ) = lim ∇x→0 ∇f ∇x (x 0 ) (3.12) d n f dx n ≡ lim ∆x→C ∆ n f ∆x n ≡ lim δx→C δ n f δx n ≡ lim ∇x→C ∇ n f ∇x n , ∀(C ∈ R + )
where f = x n . And there is exist the continuous derivative and difference of order k ≤ n since f ∈ C n class of smoothness. Thus, from (3.6, 3.7, 3.8), we can conclude

(3.13) d n x n dx n = ∆ n (x n i+1 ) ∆x n = δ n (x n i ) δx n = ∇ n (x n i-1 ) ∇x n = n!, (∆x, δx, ∇x) → dx
This completes the proof.

Definition 3.14. We introduce the difference equality operator E(f ), such that

(3.15) E(f ) def = ∆ n f ∆x n = δ n f δx n = ∇ n f ∇x n Property 3.16. Let be central difference written as δ m f (x i ) = f (x i+m ) -f (x i-m ) the n-th central difference of n-th power is δ n m (x n i ) = n! • 2m • δx n , where δx = x i+1 -x i = const.
Going from lemma (3.1), we have next properties

(1) ∆ k (x k i+1 ) = const, (i + 1) ∈ Z+ : max(Z+) > k -→ ∆ k (x k i+1 ) ≡ ∆ k (x k i ) (2) ∇ k (x k i-1 ) = const, (i -1) ∈ Z-: -min(Z-) k -→ ∇ k (x k i-1 ) ≡ ∇ k (x k i ) (3) δ k (x k i ) = const, i ∈ Z+ : max(Z+) > k -→ δ k (x k i ) ≡ δ k (x k i+j ) (4) ∀([i + 1] ∈ Z+, [i -1] ∈ Z-) : ∆ k+j (x k i+1 ) = ∇ k+j (x k i-1 ) = 0, j > 1, since ∆C ≡ δC ≡ ∇C ≡ 0 (5) ∀(f = x n , n ∈ N, k ≤ n) : ∆ k f = (-1) n-1 • ∇ k f . (6) ∆f (x i+1 ) = |∇f (x i-1 )| (7) δ 2 f (x 0 ) = 2 • (δx) n , ∀(f (x j ) = x n j , n mod2 = 0) (8) ∀n mod2 = 0 : δ 2j+1 f (x 0 ) = 0, j ∈ N 0 (see Appendix 1 for reference) (9) ∀n mod2 = 1 : δ 2j f (x 0 ) = 0, j ∈ N 1
Hereby, according to above properties, we can write the lemma (3.1) for enough large sets Z + , Z -as (3.17)

d n x n dx n = ∆ n (x n i ) ∆x n = δ n (x n i ) δx n = ∇ n (x n i ) ∇x n = n! Or (3.18) d dx n x n = E(x n ) = n!

Difference of polynomials

Let be polynomial P n (x g ) defined as (4.1)

P n (x g ) = n i=0 a i x i g Finite differences of such kind polynomial, are ∆P n (x i ) = P n (x i+1 ) -P n (x i ), ∇P n (x i-1 ) = P n (x i ) -P n (x i-1 ), δP n (x i ) = P n x i+ 1 2 -P n x i- 1 2 
. Such way, according to the properties (1, 2, 3) from section 1, high order finite differences of polynomials could be written as:

∆ k P n (x i+1 ) = ∆ k (a 0 • x 0 i+1 + • • • + a n • x n i+1 ) = ∆ k (a 0 • x 0 i+1 ) + • • • + ∆ k (a n • x n i+1 ) (4.2) = a 0 • ∆ k (x 0 i+1 ) + • • • + a n • ∆ k (x n i+1 ) Backward difference, respectively, is ∇ k P n (x i-1 ) = ∇ k (a 0 • x 0 i-1 + • • • + a n • x n i-1 ) = ∇ k (a 0 • x 0 i-1 ) + • • • + ∇ k (a n • x n i-1 ) (4.3) = a 0 • ∇ k (x 0 i-1 ) + • • • + a n • ∇ k (x n i-1 ) And central δ k P n (x i ) = δ k (a 0 • x 0 i + • • • + a n • x n i ) = δ k (a 0 • x 0 i ) + • • • + δ k (a n • x n i ) (4.4) = a 0 • δ k (x 0 i ) + • • • + a n • δ k (x n i )
Above expressions hold for each build natural n-order polynomial.

Lemma 4.5. ∀([i + 1] ∈ Z + , [i -1] ∈ Z -) : ∆ k+j (x k i+1 ) ≡ ∇ k+j (x k i-1 ) ≡ 0, j ≥ 1
Proof. According to lemma (3.1), the n-th difference of n-th power is constant, consequently, the constant rule (3) holds ∆C = δC = ∇C = 0.

According to lemma (4.5) and properties (2, 3), taking the limits of (4.2, 4.3, 4.4), receive:

(4.6) ∆ k→n P n (x i+1 ) = lim k→n ∆ k (a 0 • x 0 i+1 ) + • • • + ∆ k (a n • x 0 i+1 ) = ∆ n (a n • x n i+1 ) = a n • ∆ n (x n i+1 ) (4.7) δ k→n P n (x i ) = lim k→n δ k (a 0 • x 0 i ) + • • • + δ k (a n • x n i ) = δ n (a n • x n i ) = a n • δ n (x n i ) (4.8) ∇ k→n P n (x i-1 ) = lim k→n ∇ k (a 0 • x 0 i-1 ) + • • • + ∇ k (a n • x n i-1 ) = ∇ n (a n • x n i-1 ) = a n • ∇ n (x n i-1
) Since the n-th difference of n-th power equals to n!, we have theorem.

Theorem 4.9. Each n-order polynomial has the constant n-th finite (divided) difference and derivative, which equals each other and equal constant times n!, where n is natural.

Proof. According to limits (4.6, 4.7, 4.8), we have

∆ n P n (x i+1 ) = a n • ∆ n (x n i+1 ), ∇ n P n (x i-1 ) = a n • ∇ n (x n i-1 ), δ n P n (x i ) = a n • δ n (x n i )
, going from lemma (3.1), the n-th difference of n-order polynomial equals to k n • n!, the properties [START_REF] Wilmott | The Mathematics of Financial Derivatives: A Student Introduction[END_REF][START_REF] Chaudhry | Open-Channel Flow[END_REF][START_REF] Olver | Introduction to Partial Differential Equations[END_REF][START_REF] Weisstein | Finite Difference[END_REF] proofs that for enough large sets Z + , Z -we have ∆

n (x n i+1 ) ≡ ∆ n (x n i ), δ n (x n i ) ≡ δ n (x n i+j ), ∇ n (x n i-1 ) ≡ ∇ n (x n i ), min(Z -) ≤ n ≤ max(Z + )
. Therefore, we have equality (4.10) x n e -βk sin(ωk + ϕ 0 ) Property 4.12 as well holds for polynomials.

d n P n (x) dx n = ∆ n P n (x i ) (∆x) n = δ n P n (x i ) (δx) n = ∇ n P n (x i ) (∇x) n = a n • n! Or,

Relation with Partial derivatives

Let be partial finite differences defined as

(5.1) ∆f (u 1 , u 2 , . . . , u n ) u1 := f (u 1 + h, u 2 , . . . , u n ) -f (u 1 , u 2 , . . . , u n ) (5.2) δf (u 1 , u 2 , . . . , u n ) u1 := f (u 1 + h, u 2 , . . . , u n ) -f (u 1 -h, u 2 , . . . , u n ) (5.3) ∇f (u 1 , u 2 , . . . , u n ) u1 := f (u 1 , u 2 , . . . , u n ) -f (u 1 -h, u 2 , . . . , u n )
By means of mathematical induction, going from Lemma (3.1), we have equality between n-th partial derivative and n-th partial difference, while be taken of polynomial defined function or power function.

Theorem 5.4. For each n-th natural power of many variables the n-th partial divided differences and n-th partial derivatives equal each other.

Proof. Let be function

Z = f (u 1 , u 2 , . . . , u n ) = (u 1 , u 2 , . . . , u n ) n
, where dots mean the general relations, i.e multiplication and summation between variables.

We denote the equality operator of partial difference as E(F (u 1 , u 2 , . . . , u n )) u k , where u k is variable of taken difference. On this basis (5.5)

∂ n Z ∂u n k = ∆ n Z u k ∆u n k = δ n Z u k δu n k = ∇ n Z u k ∇u n k = A • n!
Or, using equality operator

(5.6) ∂ n Z ∂u n k = E(Z) u k = A • n!
where A is free constant, depending of relations between variables and 0 ≤ k ≤ n.

Property 5.7. Let be partial differences of the function

f (u 1 , • • • , u k ) = u n 1 ± u n 2 ± • • • ± u n k , n ∈ N, ∆f (u 1 , • • • , u k ) M , δf (u 1 , • • • , u k ) M , ∇f (u 1 , • • • , u k ) M
, where M -complete set of variables, i.e M = {u i } k i the n-th partial differences of each variables are

(5.8) ∆ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3,...,u k = ±k • n! • (∆u 1 ) n • • • (∆u k ) n
(5.9) (5.12)

δ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3, ...,u k = ±k • n! • (δu 1 ) n • • • (δu k ) n (5.10) ∇ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3, ...,u k = ±k • n! • (∇u 1 ) n • • • (∇u k ) n ∀k ∈ Z : max(Z + ) > n > min(Z -), (δu 1 ) ≡ (δu 2 ) ≡ . . . ≡ (δu k ), ( ∇u 
δ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3, ...,u k = n! • k i=1 (δu i ) n (5.13) ∇ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3, ...,u k = n! • k i=1 (∇u i ) n
Note that here the partial differences of non-single variable defined as

∆ n f (u , 1 . . . , u k ) M = ∆ n-1 f (u 1 + h, . . . , u k + h) M -∆ n-1 f (u 1 , . . . , u k ) M δ n f (u 1 , . . . , u k ) M = δ n-1 f (u 1 + h, . . . , u k + h) M -δ n-1 f (u 1 -h, . . . , u k -h) M ∇ n f (u 1 , . . . , u k ) M = ∇ n-1 f (u 1 , . . . , u k ) M -∇ n-1 f (u 1 -h, . . . , u k -h) M
Moreover, the n-th partial difference taken over enough large set Z + and ∀i : ∆x i = 1 has the next connection with single variable n-th derivative of n-th power Theorem 5.16. For each non-single variable polynomial with order n holds the equality between k ≤ n-order partial differences and derivative.

Proof. Let be non-single variable polynomial (5.17)

P n (u n ) = n i=1 M i • u i i
Going from property (5.7), the k-th partial differences of one variable are (5.18)

∆ k P n (u n ) u k = M k • k! • (∆u k ) k , δ k P n (u n ) u k = M k • k! • (δu k ) k , ∇ k P n (u n ) u k = M k • k! • (∇u k ) k 0 ≤ k ≤ n. The k-th partial derivative: (5.19) ∂ k P n (u n ) ∂u k k = M k • k! Hereby, (5.20) ∂ k P n (u n ) ∂u k k = ∆ k P n (u n ) u k ∆u k k = δ k P n (u n ) u k δu k k = ∇ k P n (u n ) u k ∇u k k
Also could be denoted as (5.21)

∂ k P n (u n ) ∂u k k = E(P n (u n )) u k = M k • k!, k ≤ n
And completes the proof.

Relations between finite differences

In this section are shown relations between central, backward and central finite differences, generally, they are (6.1)

δ div f (x) := f (x + ∆x) -f (x -∆x) 2 • ∆x def = 1 2 f (x + ∆x) ∆x - f (x -∇x) ∇x = f (x + ∆x) = ∆f (x) + f (x) f (x -∇x) = f (x) -∇f (x) = 1 2 ∆f (x) + f (x) ∆x - f (x) -∇f (x) ∇x = 1 2 ∆f (x) + ∇f (x) ∆x ≡ ∇x where "div" means divided, i.e δ div f (x) := δf (x)/(2 • ∆x). Hereby, (6.2) 2 • δ div f (x) • ∆x = ∆f (x) + ∇f (x)
And so on. Let be ∆x → 0

(6.3) lim ∆x→0 2 • δ div f (x) • ∆x = 2 • df (x) Or (6.4) 2 • lim ∆x→0 δ div f (x) = 2 • df (x) dx -→ lim ∆x→0 δ div f (x) = df (x)
dx where f (x) is power function, hence, the general relation between derivative and each kind finite difference is reached, as desired.

The error of approximation

The error of derivative approximation done by forward finite difference with respect to order k ≤ n could be calculated as follows Where O -Landau-Bachmann symbol (see [START_REF] Bachmann | Analytische Zahlentheorie[END_REF], [START_REF] Landau | Handbuch der Lehre von der Verteilung der Primzahlen[END_REF]).

Summary

In this section we summarize the obtained results in the previous chapters and establish the relationship between them. According to lemma (3.1), theorems (4.9), (5.4), (5.16) we have concluded 

Conclusion

In this paper were established the equalities between ordinary and partial finite (divided) differences and derivatives of power function and polynomials, with order equal between each other.
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 1 Figure 1. Plot of ∇ k x n i (k), i ∈ Z - It's seen that each k-order backward difference (acc. to app 1) of power n, such that n ≥ k could be well interpolated by means of general Harmonic oscillator equation (4.13) x = A 0 e -βt sin(ωt + ϕ 0 ) Particularizing 4.13 we get (4.14)∇ k x n i (j ≤ k) =x n e -βk sin(ωk + ϕ 0 ) In the points of local minimum and maximum of x n e -βk sin(ωk + ϕ 0 )dk we have∇ k x n , k ∈ [1; n] ⊂ N 1 .By means of (5) we have relation with forward difference(4.15) ∆ k x n i (k) = (-1) n-1x n e -βk sin(ωk + ϕ 0 ) Property 4.12 as well holds for polynomials.
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 1 ≡ (∇u 2 ) ≡ . . . ≡ (∇u k ), (∆u 1 ) ≡ (∆u 2 ) ≡ . . . ≡ (∆u k ) Otherwise (5.11) ∆ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3, ...,u k = n! • k i=1 (∆u i ) n

( 5 .

 5 14)∆ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3,...,u k = we have relation (5.15)∆ n f (u 1 , u 2 , u 3 , . . . , u k ) u1, u2, u3,...,u k = k i=1 ∂ ∂u i n f (u 1 , u 2 , u 3 , . . . , u k )Multiplied (5.14) and (5.15) by coefficient, as defined, gives us relation with n-th partial polynomial.

(8. 1 )=

 1 d n x n dx n = E(x n ) = n! (8.2) d n P n (x) dx n = E(P n (x)) = a n • E(x n ) E(Z) u k = A • n! (8.4) ∂ k P n (u n ) ∂u k k = E(P n (u n )) u k = M k • k!Generalizing these expressions, we can derive the general relations between ordinary, partial derivatives and finite (divided) differences(8.5) E(u n ) = E(P n (u g )) = E(Z) u k = E(P n+j (u n+j )) , M n , a n ) = 1I.e the equalities hold with precision to constant. Function Z defined as Z = f (u 1 , u 2 , . . . , u n ) = (u 1 , u 2 , . . . , u n ) n . And finally Y = U with same limitations.