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ABSTRACT. The main aim of this paper to establish the relations between for-
ward, backward and central finite(divided) differences (that is discrete analog
of the derivative) and partial & ordinary high-order derivatives of the polyno-
mials.
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1. INTRODUCTION

Let introduce the basic definition of finite difference. Finite difference is dif-
ference between function values with constant increment. There are three types
of finite differences: forward, backward and central. Generally, the first order
forward difference could be noted as: Ay, f(z) = f(x + h) — f(z) backward, respec-
tively, is Vi f(z) = f(x) — f(z — h) and central 6, f(z) = f(z + $h) — f(z — 3h),
where h = const, (see [1], [2], [3]). When the increment is enough small, but
constant, we can say that finite difference divided by increment tends to deriv-
ative, but not equals. The error of this approximation could be counted next:
%(z) — f'(x) = O(h) — 0, where h - increment, such that, b — 0. By means of
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2 KOLOSOV PETRO

induction as well right for backward difference. More exact approximation we have
using central difference, that is: %(I) — f'(x) = O(h?), note that function should
be twice differentiable. The finite difference is the discrete analog of the derivative
(see [4]), the main distinction is constant increment of the function’s argument,
while difference to be taken. Backward and forward differences are opposite each
other. More generally, high order finite differences (forward, backward and central,
respectively) could be denoted as (see [7]):

(1) B = &+ - 257w = 3 ()1 ok (0= o)

(1.2) 5gf(x)=znj(—1)k(7;) -f(:v—i— (g —k) h)
k=

0

(13)  Vif@) =V f@) -V fe—h) =) (Z) (1) - f(x — kh)
k=0
Let describe the main properties of finite difference operator, they are next (see [B])
(1) Linearity rules A(f(z) + g(z)) = Af(z) + Ag(x)
5(F(x) + g(a)) = 6£(x) + dg(x)
V(f(2) +g(x)) = Vf(2) + Vg()
(2) AC- f(2)) = C- Af(a), V(C - f(x) = C- Vf(a),
o(C- f(x)) =C-df(x)
(3) Constant rule AC =VC =§C =0
Strictly speaking, divided difference (see [6]) with constant increment is discrete
analog of derivative, when finite difference is discrete analog of function’s differ-
ential. They are close related to each other. To show this, let define the divided
difference.

Definition 1.4. Divided difference of fixed increment definition (forward, centaral,
backward respectively)

[, x;] = L >, Az >1
xj — Ty
[, ] = W, j<i, Ve >1
fc[xz] — f(xi+m)2;nf(xi*m)

Hereby, divided diffrence could be represented from the finite difference, let be
j =1+ const, backward as —, respectively + as forward and c as centered

Af(zj) _ V(i)

e 7] = Az ~—  Vx
_ 0f(Titm) _ 0f(Titm)
felm] = 2m - ox

The n-order
A f(z;) V" f(x)
YAV AL Vazn

f:t[xia Ij]n =
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n_ 0" f@itm) _ 0" f(Titm)

Felwl” = (2m)n oxm
Each properties, which holds for finite differences holds for divided differences as
well.

2. DEFINITIONS FOR Z4y DISTRIBUTION

Let be variable 24 : x4y = g-C, C = z441 — x4 = const, C € Ryo — 24 €
R, g € Z. To define the finite difference of function of such argument, we take
C = h and rewrite forward, backward and central differences of some analytically
defined function f(z;) next way: Af(zi1) = f(wis1) — f(w:), V(i) = (i) —

flriz1), 0f(x) = f <x_+1) —f (:C 1 ) The n-th differences of such a function
(2 5 175

could be written as

1) AN () = A i) = A @) = 3 (1) (1F - Sainn)
k=0

n . n
(22) 1) =3 (1) (-1F £ (wirg-s)
k=0
n n— n— . n
23) T flaien) = T ) -V ) = 3 ()0 Saionn)
k=0

Let be differences Af(zit1), 0f(z;), Vf(zi—1), such that ¢ € Z and differences is
taken starting from point 4, which divides the space Z into Z = Z~ UZ" symmetri-
cally (note that +/— symbols mean the left and right sides of start point i = 0, i.e
backward and forward direction), this way we have (i +1) € ZT, (i—1) € Z™, i #
0 € (Z*,Z7). Let derive some properties of that distribution:

(1) max(Z~) = min(Z") =1

(2) Forward difference is taken starting from min(Z"), while backward from

max(Z™)
(3) card(Z*) = card(Z™),i.e Y e L =D pep-1
(4) Maximal order of forward difference in which it is not equal to zero is

max(Z™)

(5) Maximal order of backward difference in which it is not equal to zero is
min(Z™)

(6) Maximal order of central difference in which it is not equal to zero is
max(Z™)

(7) Forward and backward difference equal each other by absolute value, while
to be taken from ¢ =0

Limitation 2.4. Note that most expression generated as case of i = 0, so the
initial start point of each difference and inducted expressions are 0.

Definitions 2.5. Generalized definitions complete this section
(1) Z* := Nj - positive integers
(2) Z= :={-1, =2, ..., min(Z7)} - negative integers
(3) {f, f(x), f(z:)} := «™ - power function, value of power function in point
1 of difference table
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(4) i = 0 - initial point of every differentiating process, d f(zo) exist only for
operator of centered difference (as per limitation 2:4)

(5) @i :=1i-Ax =Va = (0x)/2 = Ax - value of function’s argument in point
i of difference table

(6) Az = Va = (dz)/2 - function’s argument differentials, constant values
€R>o

(7) Af(xiy1), Vf(xi—1) - forward and backward finite differences in points
1+ 1 and ¢ — 1 of difference table

(8) 0f(x;) - centered finite difference in point 4 of difference table

9) A’f=8f=Vof=Ff
3. DIFFERENCE AND DERIVATIVE OF POWER FUNCTION

Since the n-order polynomial defined as summation of argument to power mul-
tiplied by coefficient, with higher power n, let describe a few properties of finite
(divided) difference of power function.

Lemma 3.1. For each power function with natural number as exponent holds the
equality between forward, backward and central divided differences, and derivative
with order respectively to exponent and equals to exponent under factorial sign mul-
tiplied by argument differential to power.

Proof. Let be function f(x) = 2™, n € N. The derivative of power function, f (z) =
na™1, so k-th derivative f*)(z) =n-(n—1)---(n —k+1)-2" % n > k. Using
limit notation, we have: lim,,_,,- ™) (z) = " (2) = n!. Let rewrite expressions
@1 22 R23) according to definition z; = i - Az, note that Az = Va = §z/2.
By means of power function multiplication property (i - Az)™ = "™ - Axz™, we can
rewrite the n-th finite difference equations (211 222 23] as follows

(3.2) A™Maf) = <’Z) (-1)F - (i+m—k)" -Az™, m<neN
k=0
Using limit notation on divided by Az to power ([B.2]), we obtain
. Am(x?ﬂ) .  (m k(s m
(3:3) S R =m0 )V (=)

_Z(> (i+n—k)"""=n

Similarly, going from (23]), backward n-th difference equals:

(3.4) lim Vieiy) _ lim ) (TZ) ()% (i—m+k)"

m—n— Vam m—n—
k=0

_Z(> (i=n+k)" =nl

And n-th central ([2.2]), respectively

(3.5) lim % = lim Zm: (’;:) (—1). (z + % - k)m

m—n m—n
k=0
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= Zn: <Z>(—1)k - (i+ g - k)n_o —

As we can see the next conformities hold

LA AT
(36) A0 R = e Bgr =
(3.7) lim S lim S n!

5250 0T sp—C O

VO o VS

= =n!
(3.8) Vo0 Vat  Vamc Var
A Uy N
(3.9) Aliglc A" ssmC 0z Vasc Van V(O eRT)
In partial case when C =0
arf _ . o"f_ . V'f
(3.10) dan 513H0 dxn vlilgo Vazn
As well holds
df
(3.11) g (@0) = | lim == ()
(3.12) 7 = lim Ay = lim s = lim v—f, V(C € RT)

dz™ ~ Az—C Az 535C 02" VasC Va

where f = ™. And there is exist the continuous derivative and difference of order
k < nsince f € C" class of smoothness. Thus, from [B.6] B7, [3.8), we can conclude
dra™  AMai,) o on(a) V(i)
1 — 1+ — 7 — 7 — ' A
(3.13) T A 5o Tan nl, (Az, dx, Vz) A dx

This completes the proof. O

Definition 3.14. We introduce the difference equality operator E(f), such that
det (A"f —6"f V[
(3.15) B (5 = 5t =

Azm  ozn Van
Property 3.16. Let be central difference written as 0 f(x;) = f(@igm) — [(Xiem)

the n-th central difference of n-th power is 6™ (%) = n!- 2m - 6a™, where dx =
Ti+1 — Ty = const.

Going from lemma (B.1), we have next properties

(1) AF(z l+1) = const, (i+ 1) € Z+ : max(Z+) > k — AF(x H_1) AF(xF)
(2) VF(zF ) =const, (i —1) € Z— : —min(Z—) < k — V¥(zF ) = VF(aF)
(3) 0% (x} )_const i € Z+ : max(Z+) > k — 6*(z} )*5’“( H_J)

(4) ([z—i—l]EZ—i— [i—1]€Z-): A2l ) = Vkﬂ( 1) =0,

j>1, since AC=6C=VC=0

) V(f=a", neN, k<n): AFf = (-1)""1.Vkf.

) Af(ﬂ?m)— IV f (@il

) 0%f(wo) =2+ (0x)", V(f(z;)
8) ¥Yn mod2 =0 : 52J+1f( 0) =

5)
6
7 z?, n mod2 = 0)

(
(
( =
( 0, j € Ny (see for reference)
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(9) Vn mod2 =1:6% f(x9) =0, j € N;
Hereby, according to above properties, we can write the lemma (B.I]) for enough
large sets ZT, Z~ as

dra®  AM(z) _ "(xf) _ V'(a7)

1 = = nl
(3.17) dxm Az oz Vzr "
Or

(3.18) (%) 2" = E(2") =n!

4. DIFFERENCE OF POLYNOMIALS

Let be polynomial P, (z,) defined as

n

(4.1) Pu(zg) = > aix)

i=0

Finite differences of such kind polynomial, are AP,(x;) = P,(xiy1) — Pu(x;),

VP,(xi—1) = Pp(x;) — Po(zi—1), 6Pu(2;) = Py (:1:,+1) - P, <3: 1>. Such way,
K3 5 ’L—E

according to the properties (Il 2 Bl) from section [ high order finite differences of

polynomials could be written as:

AFPy(xip1) = AF(ag - adyy + -+ an - afyy) = A¥(ag - ayy) + - + Ay - 2y y)
(42) = ag- AM(aly) + - +an - AF(aly)
Backward difference, respectively, is
VEP (2io1) = V(a0 - 20 |+ Fan 27 ) =VFag-2) )+ -+ V¥a, -2 )
(4.3) =ao- V() + - +an VE(a] )
And central

kP, () = 6% (ag -2 + -+ a, - 2?) = 6%(ag - 29) + - - - 4 6% (ap - 1)

(4.4) =aqg - 5k($?) + - +ay- 5k(:1:?)

Above expressions hold for each build natural n-order polynomial.

Lemma 4.5. V([i + 1] € ZT, [i— 1] € Z7) : Ak (ah ) = VFi (2l ) =0, j > 1
Proof. According to lemma (B.1), the n-th difference of n-th power is constant,
consequently, the constant rule (@) holds AC = 6C = VC = 0. (]

According to lemma (@A) and properties (@ [, taking the limits of (@2 E3
[, receive:

(4.6) AFZ P, (2541) = Jim {AMag - alyy) + -+ AF(an - 2fy) ]}
= A"(an - @) = an - A™(27,)

(4.7) §F7 Py (2i) = lim {6%(ag - af) + -+ + 6" (an - 2})}
k—n

=6"(ap - 2}) = ap - 0" (x})
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k— 3 k 0 k
(48)  VEPu(rin) = lim {VF(ag 2l ) + o+ V(o o))

= V(an - 2i ) = an - V" (@i 4)
Since the n-th difference of n-th power equals to n!, we have theorem.

Theorem 4.9. Each n-order polynomial has the constant n-th finite (divided) dif-
ference and derivative, which equals each other and equal constant times n!, where
n is natural.

Proof. According to limits (4.6, A7 B.8), we have A" P, (xi11) = an - A" (x{, ),
VP (ziz1) = apn - V™"(z_ ), 0"Pp(x;) = ap - 0™(z]), going from lemma BI)), the
n-th difference of n-order polynomial equals to k, - n!, the properties (I 2] [ M)
proofs that for enough large sets Z*, Z~ we have A™(z, ;) = A"(a?), 6" (a]) =
M(x;), VM(apy) = V™(2}), min(Z~) < n < max(Z"). Therefore, we have
equality

d"P,(x)  A"Py(x;)  0"Pu(x;)  V"Py(x;)

dzm (Az)»  (6x)»  (Va)"

Or, by means of definition (8:I4) one has

(4.10)

=ay, -n!

d n
(4.11) <%> P, (z) = E(Py(x)) = an - E(z")
([
Property 4.12. Let be a plot of V¥a'(k), i € Z~ (see[Appendiz 1} second line for

reference)

1010
T
11 N
05 .
=2
=z I ]
=
&g 0 N
>
—0.5 | s
L | | | | | | il
0 2 4 6 8 10

k € [0;10]

Figure 1. Plot of Vka(k), i € Z~
It’s seen that each k-order backward difference (acc. tolapp 1)) of power n, such that
n >k could be well interpolated by means of general Harmonic oscillator equation

(4.13) x = Age Pt sin(wt + o)
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Particularizing [{-13 we get
(4.14) vk (j < k) = 2"e P*sin(wk + ¢o)

In the points of local minimum and mazimum of [ z"e Pk sin(wk + @o)dk we have
VFEz™ k€ [1; n] C Ny. By means of (3) we have relation with forward difference

(4.15) AFz? (k) = (=1)"La"e P* sin(wk + o)
Property 4.12] as well holds for polynomials.

5. RELATION WITH PARTIAL DERIVATIVES
Let be partial finite differences defined as
(5.1) Af(ur, g,y Up)uy = flur +h, ug,..., up) — flur, ugy..., up)

(5.2)  Of(ur, ugye.oy Up)y, = flur+h, ugy..oy up) — flur —h, ug, ..., up)

(5.3) Vf(ur, ug, ..., Un)uy := flur, ugy..oy un) — flur —h, ug,..., up)

By means of mathematical induction, going from Lemma (B1I), we have equal-
ity between n-th partial derivative and n-th partial difference, while be taken of
polynomial defined function or power function.

Theorem 5.4. For each n-th natural power of many variables the n-th partial
divided differences and n-th partial derivatives equal each other.

Proof. Let be function Z = f(uy, uz,..., un) = (u1, uz,..., uy)", where dots
mean the general relations, i.e multiplication and summation between variables.
We denote the equality operator of partial difference as E(F(u1, uz, ..., Un))ux,
where uy is variable of taken difference. On this basis

"z  A“Z, §"Z, V'Z

5.5 = = = Yk — A.pl
(5.5) ouy Au} douy Vup "
Or, using equality operator

oz
5.6 =F(Z)y, =A-n!
(56) Gur = P = Ao
where A is free constant, depending of relations between variables and 0 < k <
n. O
Property 5.7. Let be partial differences of the function f(uy, --- ,ur) = uf £
ug:t iuZaHENvAf(ulv 7uk)Ma 5f(u17 7uk)Ma vf(ula ,Uk)M;

where M - complete set of variables, i.e M = {u;}¥ the n-th partial differences of
each variables are

(5.8)  A"f(u1, Uz, U3y .-y Uk)uy, us, ugsup = £kl (Aug)™ - (Aug)”

(5.9) 0" f(ur, uay U3y -y Uk)uy, us, us, ouy = £E -0l (0ug)™ -+ (dug)"™

(5.10) V" f(u1, u2, U3, .oy Uk)ur, us, us, oun = £k -1l (Vug)™ - (V)"
Vk € Z:max(Z") >n >min(Z7), (Jur) = (6uz) = ... = (dug),

(Vui) = (Vug) =... = (Vug), (Auy) = (Aug) = ... = (Auy)
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Otherwise
k

(5.11) A" f(ur, ug, U3, oy Uk)uy, us, uss oup = M- Z(Aul)"
i=1
k

(5.12) 0" fur, U2, U3y -y Uk)uy, us, us, coup = 1 Z(&ui)"
i=1
k

(5.13) V7 f(u1, vz, Uz, -y Uk)uy, us, us, oo = M- Z(VUZ)"
i=1

Note that here the partial differences of non-single variable defined as
A"f(uy .o ur)ar = A" f(ug + by ug A — AT f(ug, k)
8" fur, .. yup)ar = 0" flur + by ue + R — 0" f(ur — by uk — R
Vo f(ur, .. up)yr =V f(ur, . u)y — VP f(ur = by — B

Moreover, the n-th partial difference taken over enough large set Z* and Vi :
Ax; = 1 has the next connection with single variable n-th derivative of n-th power

k n
d
(514) Anf(ulu Uz, U3, ..., uk)ul, U2y US,eeyUl — Z ( ) f(uz)

du;
i=1 v

With partial derivative we have relation
(5.15)

k
Anf(ulv U2, U3, ..., uk)uh U2, U3,..., up — Z <
=1

) n
6U> f(ulv Uz, U3, ..., uk)

Multiplied (BI4) and (BI5) by coefficient, as defined, gives us relation with n-th

partial polynomial.

Theorem 5.16. For each non-single variable polynomial with order n holds the
equality between k < n-order partial differences and derivative.

Proof. Let be non-single variable polynomial
(5.17) Polun) =Y M;-u
i=1
Going from property (5.7)), the k-th partial differences of one variable are

(5.18) AP (Un )y, = My - K- (Aug)®, 5P (un)u, = My, - k! - (Sug)”,

VEP, () u, = My, - k! - (Vg )"
0 < k < n. The k-th partial derivative:

OF P, (un)
1 — W — M- k!
(5.19) - )
Hereby,
k k k E

k - k - k - k
ouy Auy ouy Vuy
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Also could be denoted as

k
(5.21) %iu") =EPn(un))u, = My -k, k<n
ouy
And completes the proof. O

6. RELATIONS BETWEEN FINITE DIFFERENCES

In this section are shown relations between central, backward and central finite
differences, generally, they are

o) flom ) e 1 (flot o) _ Jia— V)

2. Az 2 B

(6.1)  daivf(x):= Az Va

flz+Ar) = Af(z) + f(z)
fle=Vz) = f(z) - Vf(z)

Az Vzx

_ ! (Af(x) +f@)  flz) - Vf(x))

[\

ZE(M)

2 Az =Vz
where ”div” means divided, i.e daiv f(2) := df(2)/(2 - Az). Hereby,
(6.2) 2-daivf(2) - Ar = Af(x) + V()
And so on. Let be Az — 0
(6.3) lim 2 dqiv f(x) - Az =2 - df (x)
Az—0
Or
N _, df(z) N _ df(=)
(64) 2: Jim Gaivf(w) =2- =5 = — Jim daif(z) = =57

where f(z) is power function, hence, the general relation between derivative and
each kind finite difference is reached, as desired.

7. THE ERROR OF APPROXIMATION

The error of derivative approximation done by forward finite difference with
respect to order k£ < n could be calculated as follows

(7.1) (%)kx” - (%)kx” =0z

For n-order polynomial is

(7.2) (%)kpn(x) - (%)kpn(x) — 0"k
The partial, if m < k
(7.3) (Aiuk)m Z - (%)m Z=0(u"™)

Where O - Landau-Bachmann symbol (see [§], [9]).
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8. SUMMARY

In this section we summarize the obtained results in the previous chapters and
establish the relationship between them. According to lemma (B]), theorems (9],

E4), (EI6) we have concluded

(8.1) d;;: = BE(z") = n!

(8.2) %ﬁf@ = E(Pa(2)) = an - E(z")
(8.3) ‘g;g — E(Z)u, = A-nl

(8.4) m%(g‘") = E(Pu(ttn))uy = M, - K

Generalizing these expressions, we can derive the general relations between ordinary,
partial derivatives and finite (divided) differences

(8.5) E(u") = E(Py(ug)) = E(Z)u, = E(Pn+;j(Un+j))u.,
Y
d'u”  d"Pp(u) 0"Z  0"Pnyj(untj) .
(86) du™ du™ ou}l our 0720
U

V(A, M,, a,)=1
I.e the equalities hold with precision to constant. Function Z defined as Z =
flug, ua, ...y uy) = (u1, uo,..., up)™. And finally

Y=U

with same limitations.

9. CONCLUSION

In this paper were established the equalities between ordinary and partial finite
(divided) differences and derivatives of power function and polynomials, with order
equal between each other.
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10. APPENDIX 1. DIFFERENCE TABLE UP TO TENTH POWER

T ; BT/ [ A NZF T [ A NPT | (AN F/67F [ (BN T/ [ (A,
-10 | -10 | 10000000000 | -6513215599 4100173022 -2478397020 1425878520 -771309000 38
-9 | -9 | 3486784401 -2413042577 1621776002 -1052518500 654569520 -385945560 21
-8 | -8 1073741824 -791266575 569257502 -397948980 268623960 -173554920 10
-7 -7 282475249 -222009073 171308522 -129325020 95069040 -67609080 4¢
-6 | -6 60466176 -50700551 41983502 -34255980 27459960 -21538440 1¢
-5 | -5 9765625 -8717049 7727522 -6796020 5921520 -5103000 -522
-4 | -4 1048576 -989527 931502 -874500 818520 4443586560 | -21
-3 ] -3 59049 -58025 57002 -55980 -3715891200 | 1937295360 =78
-2 | -2 1024 -1023 1022 3096576000 | -1703116800 727695360 -23
-1 | -1 1 -1 -1857945600 | 1703116800 -619315200 234178560 -5
0 0 0 3715891200 0 1238630400 0 108380160

1 1 1 1 1857945600 1703116800 619315200 234178560 54
2 2 1024 1023 1022 3096576000 1703116800 727695360 23
3 3 59049 58025 57002 55980 3715891200 1937295360 78
4 4 1048576 989527 931502 874500 818520 4443586560 21"
5 5 9765625 8717049 7727522 6796020 5921520 5103000 522
6 6 60466176 50700551 41983502 34255980 27459960 21538440 1¢
7 7 282475249 222009073 171308522 129325020 95069040 67609080 4(
8 8 1073741824 791266575 569257502 397948980 268623960 173554920 10
9 9 3486784401 2413042577 1621776002 1052518500 654569520 385945560 21
10 | 10 | 10000000000 | 6513215599 4100173022 2478397020 1425878520 771309000 38

Note that central differences divided by bold typeset and kept in the middle of table. The table shows
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