
HAL Id: hal-01350976
https://hal.science/hal-01350976v2

Preprint submitted on 23 Oct 2016 (v2), last revised 6 May 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the link between finite differences and derivatives of
polynomials
Kolosov Petro

To cite this version:
Kolosov Petro. On the link between finite differences and derivatives of polynomials. 2016. �hal-
01350976v2�

https://hal.science/hal-01350976v2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


ON THE LINK BETWEEN FINITE DIFFERENCES AND

DERIVATIVES OF POLYNOMIALS

KOLOSOV PETRO

Abstract. The main aim of this paper to establish the relations between
forward, backward and central finite and divided differences (that is discrete
analog of the derivative) and partial and ordinary high-order derivatives of the
polynomials.
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1. Introduction

Let introduce the basic definition of finite difference. Finite difference is differ-
ence between function values with constant increment. There are three types of
finite differences: forward, backward and central. Generally, the first order forward
difference could be noted as: ∆hf(x) = f(x + h) − f(x) backward, respectively,
is ∇hf(x) = f(x) − f(x − h) and central δhf(x) = f(x + 1

2h) − f(x − 1
2h), where

h = const, (see [1], [2], [3]). If increment is enough small, but constant, we can say
that finite difference divided by increment tends to derivative, but not equals. The

error of this approximation could be counted next: ∆hf(x)
h

− f
′

(x) = O(h) → 0,
where h - increment, such that, h → 0. By means of induction as well right for
backward difference. More exact approximation we have using central difference,

that is: δhf(x)
h

− f
′

(x) = O(h2), note that function should be twice differentiable.
The finite difference is the discrete analog of the derivative (see [4]), the main dis-
tinction is constant increment of the function’s argument, while difference to be
taken. Backward and forward differences are opposite each other. More generally,
high order finite differences (forward, backward and central, respectively) could be
denoted as (see [7]):

(1.1) ∆k
hf(x) = ∆k−1f(x+ h)−∆k−1f(x) =

n∑

k=0

(
n

k

)

(−1)k · f(x+ (n− k)h)

1
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(1.2) δnhf(x) =

n∑

k=0

(−1)k
(
n

k

)

· f
(

x+
(n

2
− k

)

h
)

(1.3) ∇k
hf(x) = ∇k−1f(x)−∇k−1f(x− h) =

n∑

k=0

(
n

k

)

(−1)k · f(x− kh)

Let describe the main properties of finite difference operator, they are next (see [5])

(1) Linearity rules ∆(f(x) + g(x)) = ∆f(x) + ∆g(x)
δ(f(x) + g(x)) = δf(x) + δg(x)
∇(f(x) + g(x)) = ∇f(x) +∇g(x)

(2) ∆(C · f(x)) = C ·∆f(x), ∇(C · f(x)) = C · ∇f(x),
δ(C · f(x)) = C · δf(x)

(3) Constant rule ∆C = ∇C = δC = 0

Strictly speaking, divided difference (see [6]) with constant increment is discrete
analog of derivative, when finite difference is discrete analogue of function’s differ-
ential. They are close related to each other. To show thus, let define the divided
difference.

Definition 1.4. Divided difference of fixed increment definition (forward, centaral,
backward respectively)

f+[xi, xj ] :=
f(xj)− f(xi)

xj − xi

, j > i, ∆x ≥ 1

f−[xi, xj ] :=
f(xi)− f(xj)

xi − xj

, j < i, ∇x ≥ 1

f c[xi] :=
f(xi+m)− f(xi−m)

2m

Hereby, divided diffrence could be represented from the finite difference, let be
j = i± const

f±[xi, xj ] ≡
∆f(xj)

∆x
≡

∇f(xi)

∇x

fc[xi] ≡
δf(xi±m)

2m
≡

δf(xi±m)

δx

The n-order

f±[xi, xj ]
n ≡

∆nf(xj)

∆xn
≡

∇nf(xi)

∇xn

fc[xi]
n ≡

δnf(xi±m)

(2m)n
≡

δnf(xi±m)

δxn

Each properties, which holds for finite differences holds for divided differences as
well.
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2. Definitions for xg distribution

Let be variable xg : xg = g ·C, C = xg+1−xg = const, C ∈ R → xg ∈ R, g ∈ Z.
Define the finite difference of function of such argument, we take C = h and rewrite
forward, backward and central differences of some analytically defined function
f(xi) next way: ∆f(xi+1) = f(xi+1)−f(xi), ∇f(xi−1) = f(xi)−f(xi−1), δf(xi) =

f

(

x
i+

1
2

)

− f

(

x
i−

1
2

)

. The n-th differences of such a function could be written as

(2.1) ∆nf(xi+1) = ∆n−1f(xi+1)−∆n−1f(xi) =

n∑

k=0

(
n

k

)

(−1)k · f(xi+n−k)

(2.2) δnf(xi) =
n∑

k=0

(
n

k

)

(−1)k · f
(
xi+ n

2
−k

)

(2.3) ∇nf(xi−1) = ∇n−1f(xi)−∇n−1f(xi−1) =

n∑

k=0

(
n

k

)

(−1)k · f(xi−n+k)

Let be differences ∆f(xi+1), δf(xi), ∇f(xi−1), such that i ∈ Z and differences is
taken starting from point i, which divides the space Z = Z

− ∪ Z
+ symmetrically

(note that +/− symbols mean the left and right sides of start point i, i.e backward
and forward direction), this way we have (i+1) ∈ Z

+, (i− 1) ∈ Z
−, i ∈ (Z+,Z−).

Let derive some properties of that distribution:

(1) max(Z−) = min(Z+) = i
(2) Forward difference is taken starting from min(Z+), while backward from

max(Z−)
(3) card(Z+) = card(Z−)
(4) Maximal order of forward difference in which it is not equal to zero is

max(Z+)
(5) Maximal order of backward difference in which it is not equal to zero is

min(Z−)
(6) Maximal order of central difference in which it is not equal to zero is

max(Z+)
(7) Forward and backward difference equal each other by absolute value, while

to be taken from i = 0

3. Difference and derivative of power function

Since the n-order polynomial defined as summation of argument to power mul-
tiplied by coefficient, with higher power n, let describe a few properties of finite
(divided) difference of power function.

Lemma 3.1. For any power function with natural number as exponent holds the
equality between forward, backward and central divided differences, and derivative
with order respectively to exponent and equals to exponent under factorial sign.

Proof. Let be function f(x) = xn, n ∈ N. The derivative of power function, f
′

(x) =
nxn−1, so k-th derivative f (k)(x) = n · (n − 1) · · · (n− k + 1) · xn−k, n > k. Using
limit notation, we have: limm→n− f (m)(x) = f (n)(x) = n!. Let rewrite expressions
(2.1, 2.2, 2.3) according to definition xi = i · ∆x, note that ∆x ≡ ∇x ≡ δx. By
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means of power function multiplication property (i ·∆x)n = in ·∆xn, we can rewrite
the n-th finite difference equations (2.1, 2.2, 2.3) as follows

(3.2) ∆m(xn
i+1) =

m∑

k=0

(
m

k

)

(−1)k ·
(
i+m− k

)m
·∆xm, m < n ∈ N

Using limit notation on (3.2), we obtain

(3.3) lim
m→n−

∆m(xn
i+1)

∆xm
= lim

m→n−

m∑

k=0

(
m

k

)

(−1)k ·
(
i+m− k

)m

=

n∑

k=0

(
n

k

)

(−1)k ·
(
i+ n− k

)n−0
= n!

Similarly, going from (2.3), backward n-th difference equals:

(3.4) lim
m→n−

∇m(xn
i−1)

∇xm
= lim

m→n−

m∑

k=0

(
m

k

)

(−1)k ·
(
i−m+ k

)m

=

n∑

k=0

(
n

k

)

(−1)k ·
(
i− n+ k

)n−0
= n!

And n-th central (2.2)

(3.5) lim
m→n−

δmf(xi)

δxm
= lim

m→n−

m∑

k=0

(
m

k

)

(−1)k ·
(

i +
m

2
− k

)m

=

n∑

k=0

(
n

k

)

(−1)k ·
(

i+
n

2
− k

)n−0

= n!

As we can see the next conformities hold

(3.6) lim
∆x→0

∆nf

∆xn
≡ lim

∆x→C

∆nf

∆xn
≡ n!

(3.7) lim
δx→0

δnf

δxn
≡ lim

δx→C

δnf

δxn
≡ n!

(3.8) lim
∇x→0

∇nf

∇xn
≡ lim

∇x→C

∇nf

∇xn
≡ n!

(3.9) lim
∆x→C

∆nf

∆xn
≡ lim

δx→C

δnf

δxn
≡ lim

∇x→C

∇nf

∇xn
∀(C ∈ R

+)

In partial case when C = 0

(3.10)
dnf

dxn
≡ lim

δx→0

δnf

δxn
≡ lim

∇x→0

∇nf

∇xn

As well holds

(3.11)
df

dx
(x0) =

∣
∣
∣
∣
lim

∇x→0

∇nf

∇xn
(x0)

∣
∣
∣
∣

(3.12)
dnf

dxn
≡ lim

∆x→C

∆nf

∆xn
≡ lim

δx→C

δnf

δxn
≡ lim

∇x→C

∇nf

∇xn
, ∀(C ∈ R

+)
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where f = xn. And there is exist the continuous derivative and difference of order
k ≤ n since f ∈ Cn class of smoothness. Thus, from (3.6, 3.7, 3.8), we can conclude

(3.13)
dnxn

dxn
=

∆n(xn
i+1)

∆xn
=

δn(xn
i )

δxn
=

∇n(xn
i−1)

∇xn
= n!, (∆x, δx, ∇x) 6→ dx

This completes the proof. �

Definition 3.14. We introduce the difference equality operator E(f), such that

(3.15) E(f)
def
=

(
∆nf

∆xn
=

δnf

δxn
=

∇nf

∇xn

)

Property 3.16. Let be central difference written as δmf(xi) = f(xi+m)−f(xi−m)
the n-th central difference of n-th power is δnm(xn

i ) = n! · 2m · δxn, where δx =
xi+m − xi−m = const

Going from lemma (3.1), we have next properties

(1) ∆k(xk
i+1) = const, (i + 1) ∈ Z+ : max(Z+) > k −→ ∆k(xk

i+1) ≡ ∆k(xk
i )

(2) ∇k(xk
i−1) = const, (i − 1) ∈ Z− : min(Z−) ≪ k −→ ∇k(xk

i−1) ≡ ∇k(xk
i )

(3) δk(xk
i ) = const, i ∈ Z+ : max(Z+) > k −→ δk(xk

i ) ≡ δk(xk
i+j)

(4) ∀([i + 1] ∈ Z+, [i − 1] ∈ Z−) : ∆k+j(xk
i+1) = ∇k+j(xk

i−1) = 0,
j > 1, since ∆C = δC = ∇C = 0

(5) ∀(f = xn, n ∈ N, k ≤ n) : ∆kf = (−1)n−1 · ∇kf .
(6) ∆f(xi+1) = |∇f(xi−1)|

Hereby, according to above properties, we can write the lemma (3.1) as

(3.17)
dnxn

dxn
=

∆n(xn
i )

∆xn
=

δn(xn
i )

δxn
=

∇n(xn
i )

∇xn
= n!

Or

(3.18)

(
d

dx

)n

xn = E(xn) = n!

4. Difference of polynomials

Let be polynomial Pn(xg) defined as

(4.1) Pn(xg) =
n∑

i=0

aix
i
g

Finite differences of such kind polynomial, are ∆Pn(xi) = Pn(xi+1) − Pn(xi),

∇Pn(xi−1) = Pn(xi) − Pn(xi−1), δPn(xi) = Pn

(

x
i+

1
2

)

− Pn

(

x
i−

1
2

)

. Such way,

according to the properties (1, 2, 3) from section 1, high order finite differences of
polynomials could be written as:

∆kPn(xi+1) = ∆k(a0 · x
0
i+1 + · · ·+ an · xn

i+1) = ∆k(a0 · x
0
i+1) + · · ·+∆k(an · xn

i+1)

(4.2) = a0 ·∆
k(x0

i+1) + · · ·+ an ·∆k(xn
i+1)

Backward difference, respectively, is

∇kPn(xi−1) = ∇k(a0 · x
0
i−1 + · · ·+ an · xn

i−1) = ∇k(a0 · x
0
i−1) + · · ·+∇k(an · xn

i−1)

(4.3) = a0 · ∇
k(x0

i−1) + · · ·+ an · ∇k(xn
i−1)
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And central

δkPn(xi) = δk(a0 · x
0
i + · · ·+ an · xn

i ) = δk(a0 · x
0
i ) + · · ·+ δk(an · xn

i )

(4.4) = a0 · δ
k(x0

i ) + · · ·+ an · δk(xn
i )

Above expressions hold for any build natural n-order polynomial.

Lemma 4.5. ∀([i+1] ∈ Z+, [i− 1] ∈ Z−) : ∆k+j(xk
i+1) = ∇k+j(xk

i−1) = 0, j > 1

Proof. According to lemma (3.1), the n-th difference of n-th power is constant,
consequently, the constant rule (3) holds ∆C = δC = ∇C = 0. �

According to lemma (4.2) and properties (2, 3), taking the limits from (4.2, 4.3,
4.4), receive:

(4.6) ∆k→nPn(xi+1) = lim
k→n

{
∆k(a0 · x

0
i+1) + · · ·+∆k(an · x0

i+1)
}

= ∆n(an · xn
i+1) = an ·∆n(xn

i+1)

(4.7) δk→nPn(xi) = lim
k→n

{
δk(a0 · x

0
i ) + · · ·+ δk(an · xn

i )
}

= δn(an · xn
i ) = an · δn(xn

i )

(4.8) ∇k→nPn(xi−1) = lim
k→n

{
∇k(a0 · x

0
i−1) + · · ·+∇k(an · xn

i−1)
}

= ∇n(an · xn
i−1) = an · ∇n(xn

i−1), k ≤ n

Since the n-th difference of n-th power equals to n!, we have theorem.

Theorem 4.9. Each n-order polynomial has the constant n-th finite (divided) dif-
ference and derivative, which equals each other and equal constant times n!, where
n is natural.

Proof. According to limits (4.6, 4.7, 4.8), we have ∆nPn(xi+1) = an ·∆n(xn
i+1),

∇nPn(xi−1) = an · ∇n(xn
i−1), δnPn(xi) = an · δn(xn

i ), going from lemma (3.1), the
n-th difference of n-order polynomial equals to kn · n!, the properties (1, 2, 3, 4)
proofs that for enough large sets Z

+, Z
− we have ∆n(xn

i+1) ≡ ∆n(xn
i ), δn(xn

i ) ≡
δn(xn

i+j), ∇n(xn
i−1) ≡ ∇n(xn

i ), min(Z−) < n < max(Z+). Therefore, we have
equality

(4.10)
dnPn(x)

dxn
=

∆nPn(xi)

(∆x)n
=

δnPn(xi)

(δx)n
=

∇nPn(xi)

(∇x)n
= an · n!

Or, by means of definition (3.14)

(4.11)

(
d

dx

)n

Pn(x) = E(Pn(x)) = an ·E(xn)

�
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5. Relation with Partial derivatives

Let be partial finite differences defined as

(5.1) ∆f(u1, u2, . . . , un)u1
:= f(u1 + h, u2, . . . , un)− f(u1, u2, . . . , un)

(5.2) δf(u1, u2, . . . , un)u1
:= f(u1 + h, u2, . . . , un)− f(u1 − h, u2, . . . , un)

(5.3) ∇f(u1, u2, . . . , un)u1
:= f(u1, u2, . . . , un)− f(u1 − h, u2, . . . , un)

By means of mathematical induction, going from Lemma (3.1), we have equal-
ity between n-th partial derivative and n-th partial difference, while be taken of
polynomial defined function or power function.

Theorem 5.4. For each n-th natural power of many variables the n-th partial
divided differences and n-th partial derivatives equal each other.

Proof. Let be function Z = f(u1, u2, . . . , un) = (u1, u2, . . . , un)
n, where dots

mean the general relations, i.e multiplication and summation between variables.
We denote the equality operator of partial difference as E(F (u1, u2, . . . , un))uk

,
where uk is variable of taken difference. On this basis

(5.5)
∂nZ

∂un
k

=
∆nZuk

∆un
k

=
δnZuk

δun
k

=
∇nZuk

∇un
k

= A · n!

Or, using equality operator

(5.6)
∂nZ

∂un
k

= E(Z)uk
= A · n!

where A is free constant, depending of relations between variables and 0 ≤ k ≤
n. �

Property 5.7. Let be partial differences of the function f(u1, · · · , uk) = un
1 ±

un
2 ± · · · ± un

k , n ∈ N, ∆f(u1, · · · , uk)M , δf(u1, · · · , uk)M , ∇f(u1, · · · , uk)M ,
where M - complete set of variables, i.e M = {ui}

k
i the n-th partial differences of

each variables are

(5.8) ∆nf(u1, u2, u3, . . . , uk)u1, u2, u3,...,uk
= ±k · n! · (∆u1)

n · · · (∆uk)
n

(5.9) δnf(u1, u2, u3, . . . , uk)u1, u2, u3, ...,uk
= ±k · n! · (δu1)

n · · · (δuk)
n

(5.10) ∇nf(u1, u2, u3, . . . , uk)u1, u2, u3, ...,uk
= ±k · n! · (∇u1)

n · · · (∇uk)
n

∀k ∈ Z : max(Z+) > n > min(Z−), (δu1) ≡ (δu2) ≡ . . . ≡ (δuk),

(∇u1) ≡ (∇u2) ≡ . . . ≡ (∇uk), (∆u1) ≡ (∆u2) ≡ . . . ≡ (∆uk)

Otherwise

(5.11) ∆nf(u1, u2, u3, . . . , uk)u1, u2, u3, ...,uk
= n! ·

k∑

i=1

(∆ui)
n

(5.12) δnf(u1, u2, u3, . . . , uk)u1, u2, u3, ...,uk
= n! ·

k∑

i=1

(δui)
n

(5.13) ∇nf(u1, u2, u3, . . . , uk)u1, u2, u3, ...,uk
= n! ·

k∑

i=1

(∇ui)
n
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Note that here the partial differences of non-single variable defined as

∆nf(u,
1 . . . , uk)M = ∆n−1f(u1 + h, . . . , uk + h)M −∆n−1f(u1, . . . , uk)M

δnf(u1, . . . , uk)M = δn−1f(u1 + h, . . . , uk + h)M − δn−1f(u1 − h, . . . , uk − h)M

∇nf(u1, . . . , uk)M = ∇n−1f(u1, . . . , uk)M −∇n−1f(u1 − h, . . . , uk − h)M

Moreover, the n-th partial difference taken over enough large set Z
+ and ∀i :

∆xi = 1 has the next connection with single variable n-th derivative of n-th power

(5.14) ∆nf(u1, u2, u3, . . . , uk)u1, u2, u3,...,uk
=

k∑

i=1

(
d

dui

)n

f(ui)

With partial derivative we have relation
(5.15)

∆nf(u1, u2, u3, . . . , uk)u1, u2, u3,...,uk
=

k∑

i=1

(
∂

∂ui

)n

f(u1, u2, u3, . . . , uk)

Theorem 5.16. For each non-single variable polynomial with order n holds the
equality between k ≤ n-order partial differences and derivative.

Proof. Let be non-single variable polynomial

(5.17) Pn(un) =

n∑

i=1

Mi · u
i
i

Going from above property (5.7), the k-th partial differences of one variable are

∆kPn(un)uk
= Mk · k! · (∆uk)

k, δkPn(un)uk
= Mk · k! · (δuk)

k,

∇kPn(un)uk
= Mk · k! · (∇uk)

k(5.18)

0 ≤ k ≤ n. The k-th partial derivative:

(5.19)
∂kPn(un)

∂uk
k

= Mk · k!

Hereby

(5.20)
∂kPn(un)

∂uk
k

=
∆kPn(un)uk

∆uk
k

=
δkPn(un)uk

δuk
k

=
∇kPn(un)uk

∇uk
k

Also could be noted as

(5.21)
∂kPn(un)

∂uk
k

= E(Pn(un))uk
= Mk · k!, k ≤ n

�

6. The error of approximation

The error of derivative approximation done by forward finite difference with
respect to order k ≤ n could be calculated as follows

(6.1)

(
∆

∆x

)k

xn −

(
d

dx

)k

xn = O(xn−k)

For polynomials is

(6.2)

(
∆

∆x

)k

Pn(x)−

(
d

dx

)k

Pn(x) = O(xn−k)
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The partial, if m ≤ k

(6.3)

(
∆

∆uk

)m

Z −

(
∂

∂uk

)m

Z = O(u k−m
k )

Where O - Landau-Bachmann symbol (see [8], [9]).

7. Summary

In this section we summarize the obtained results in the previous chapters and
establish the relationship between them. According to lemma (3.1), theorems (4.9),
(5.4), (5.14) we have concluded

(7.1)
dnxn

dxn
= E(xn) = n!

(7.2)
dnPn(x)

dxn
= E(Pn(x)) = an · E(xn)

(7.3)
∂nZ

∂un
k

= E(Z)uk
= A · n!

(7.4)
∂kPn(un)

∂uk
k

= E(Pn(un))uk
= Mk · k!

Generalizing these expressions, we can derive the general relations between ordinary,
partial derivatives and finite (divided) differences

(7.5) E(un) = E(Pn(ug)) = E(Z)uk
= E(Pn+j(un+j))un

︸ ︷︷ ︸

Y

(7.6)
dnun

dun
=

dnPn(u)

dun
=

∂nZ

∂un
k

=
∂nPn+j(un+j)

∂un
n

︸ ︷︷ ︸

U

, j ≥ 0

∀(A, Mn, an) = 1

I.e the equalities hold with precision to constant. Function Z defined as Z =
f(u1, u2, . . . , un) = (u1, u2, . . . , un)

n. And finally

Y = U

with same limitations.

8. Conclusion

In this paper were established the equalities between ordinary and partial finite
(divided) differences and derivatives of power function and polynomials, with order
equal between each other.
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