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ON THE LINK BETWEEN FINITE DIFFERENCES AND

DERIVATIVES OF POLYNOMIALS

KOLOSOV PETRO

Abstract. The main aim of this paper to establish the relations between
forward, backward and central finite and divided differences (that is discrete
analog of the derivative) and partial and ordinary high-order derivatives of the
polynomials.
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1. Introduction

Let introduce the basic definition of finite difference. Finite difference is differ-
ence between function values with constant increment. There are three types of
finite differences: forward, backward and central. Generally, the first order forward
difference could be noted as: ∆hf(x) = f(x + h) − f(x) backward, respectively,
is ∇hf(x) = f(x) − f(x − h) and central δhf(x) = f(x + 1

2h) − f(x − 1
2h), where

h = const, (see [1], [2], [3]). If increment is enough small, but constant, we can
say that finite difference tends to derivative, but not equals. The error of this

approximation could be counted next: ∆hf(x)
h

− f
′

(x) = O(h) → 0, where h -
increment, such that, h → 0. By means of induction as well right for backward
difference. More exact approximation we have using central difference, that is:
δhf(x)

h
− f

′

(x) = O(h2), note that function should be twice differentiable. The
finite difference is the discrete analog of the derivative (see [4]), the main distinc-
tion is constant increment of the function’s argument, while difference to be taken.
Backward and forward differences are opposite each other. More generally, high or-
der finite differences (forward, backward and central respectively) could be denoted
as (see [7]):

(1.1) ∆k
hf(x) = ∆k−1f(x+ h)−∆k−1f(x) =

n∑

k=0

(
n

k

)

(−1)k · f(x+ (n− k)h)

1
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(1.2) δnhf(x) =

n∑

k=0

(−1)k
(
n

k

)

· f
(

x+
(n

2
− k

)

h
)

(1.3) ∇k
hf(x) = ∇k−1f(x)−∇k−1f(x− h) =

n∑

k=0

(
n

k

)

(−1)k · f(x− kh)

Let describe the main properties of finite difference operator, they are next (see [5])

(1) Linearity rules ∆(f(x) + g(x)) = ∆f(x) + ∆g(x)
δ(f(x) + g(x)) = δf(x) + δg(x)
∇(f(x) + g(x)) = ∇f(x) +∇g(x)

(2) ∆(C · f(x)) = C ·∆f(x), ∇(C · f(x)) = C · ∇f(x),
δ(C · f(x)) = C · δf(x)

(3) Constant rule ∆C = ∇C = δC = 0.

Strictly speaking, divided difference (see [6]) with constant increment is discrete
analog of derivative, when finite difference is discrete analogue of function’s differ-
ential. They are close related to each other. Let define the divided difference

Definition 1.4. Divided difference of fixed increment definition (forward, centaral,
backward respectively)

f+[xi, xj ] :=
f(xj)− f(xi)

xj − xi

, j > i

f−[xi, xj ] :=
f(xi)− f(xj)

xi − xj

, j < i

f c[xi] :=
f(xi+m)− f(xi−m)

2m

Hereby, divided diffrence could be represented from the finite difference, let be
j = i± const

f±[xi, xj ] ≡
∆f(xj)

∆x
≡

∇f(xi)

∇x

fc[xi] ≡
δf(xi±m)

2m
≡

δf(xi±m)

δx

The n-order

f±[xi, xj ]
n ≡

∆nf(xj)

∆xn
≡

∇nf(xi)

∇xn

fc[xi]
n ≡

δnf(xi±m)

(2m)n
≡

δnf(xi±m)

δxn

Each properties, which holds for finite differences holds for divided differences as
well.

2. Definitions for xg distribution

Let be variable xg : xg = g ·C, C = xg+1−xg = const, C ∈ R → xg ∈ R, g ∈ Z.
Define the finite difference of function of such argument, we take C = h and rewrite
forward, backward and central differences of some analytically defined function



ON THE LINK BETWEEN FINITE DIFFERENCES AND DERIVATIVES OF POLYNOMIALS3

f(xi) next way: ∆f(xi+1) = f(xi+1)−f(xi), ∇f(xi−1) = f(xi)−f(xi−1), δf(xi) =

f

(

x
i+

1
2

)

− f

(

x
i−

1
2

)

. The n-th differences of such a function could be written as

(2.1) ∆nf(xi+1) = ∆n−1f(xi+1)−∆n−1f(xi) =

n∑

k=0

(
n

k

)

(−1)k · f(xi+n−k)

(2.2) δnf(xi) =

n∑

k=0

(−1)k
(
n

k

)

· f
(
xi+ n

2
−k

)

(2.3) ∇nf(xi−1) = ∇n−1f(xi)−∇n−1f(xi−1) =

n∑

k=0

(
n

k

)

(−1)k · f(xi−n+k)

Let be differences ∆f(xi+1), δf(xi), ∇f(xi−1), such that i ∈ Z and differences is
taken starting from point i, which divides the space Z = Z

− ∪ Z
+ symmetrically,

this way we have (i + 1) ∈ Z
+, (i − 1) ∈ Z

−, i ∈ (Z+,Z−). Let derive some
properties of that distribution:

(1) max(Z−) = min(Z+) = i

(2) Forward difference is taken starting from min(Z+), while backward from
max(Z−)

(3) card(Z+) = card(Z−)
(4) Maximal order of forward difference in which it is not equal to zero is

max(Z+)
(5) Maximal order of backward difference in which it is not equal to zero is

min(Z−)
(6) Maximal order of central difference in which it is not equal to zero is

max(Z+)
(7) Forward and backward difference equal each other by absolute value, while

to be taken from i = 0

3. Difference and derivative of power function

Since the n-order polynomial defined as sum of argument to power with higher
power n, let describe a few properties of finite(divided) difference of power function.

Lemma 3.1. For any power function with natural number as exponent holds the

equality between forward, backward and central divided differences, and derivative

with order respectively to exponent and equals to exponent under factorial sign.

Proof. Let be function f(x) = xn, n ∈ N. The derivative of power function, f
′

(x) =
nxn−1, so k-th derivative f (k)(x) = n · (n − 1) · · · (n− k + 1) · xn−k, n > k. Using
limit notation, we have: limm→n− f (m)(x) = f (n)(x) = n!. Let rewrite expressions
(2.1, 2.2, 2.3) according to definition xi = i · ∆x, note that ∆x ≡ ∇x ≡ δx. By
means of power function multiplication property (i ·∆x)n = in ·∆xn, we can rewrite
the n-th finite difference equations (2.1, 2.2, 2.3) as follows

(3.2) ∆m(xn
i+1) =

m∑

k=0

(
m

k

)

(−1)k ·
(
i+m− k

)m
·∆xm, m < n ∈ N
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Using limit notation on (3.2), we obtain

lim
m→n−

∆m(xn
i+1)

∆xm
= lim

m→n−

m∑

k=0

(
m

k

)

(−1)k ·
(
i+m− k

)m

=

n∑

k=0

(
n

k

)

(−1)k ·
(
i+ n− k

)n
= n!

Similarly, going from (2.3), backward n-th difference equals:

lim
m→n−

∇m(xn
i−1)

∇xm
= lim

m→n−

m∑

k=0

(
m

k

)

(−1)k ·
(
i−m+ k

)m

=
n∑

k=0

(
n

k

)

(−1)k ·
(
i− n+ k

)n
= n!

And n-th central (2.2)

lim
m→n−

δmf(xi)

δxm
= lim

m→n−

m∑

k=0

(
m

k

)

(−1)k ·
(

i+
m

2
− k

)m

=

n∑

k=0

(
n

k

)

(−1)k ·
(

i+
n

2
− k

)n

= n!

As we can see, the n-th forward, backward and central divided(finite) differences of
n-th power equal to same value, so they equal each other and we can to conclude

(3.3)
dnxn

dxn
=

∆n(xn
i+1)

∆xn
=

δn(xn
i )

δxn
=

∇n(xn
i−1)

∇xn
= n!, (∆x, δx, ∇x) 6→ dx

�

Definition 3.4. We introduce the difference equality operator E(f), such that

(3.5) E(f)
def
=

(
∆nf

∆xn
=

δnf

δxn
=

∇nf

∇xn

)

Property 3.6. Let be central difference written as δmf(xi) = f(xi+m)− f(xi−m)
the n-th central difference of n-th power is δnm(xn

i ) = n! · 2m · δxn, where δx =
xi+m − xi−m = const

Going from lemma (3.1), we have next properties

(1) ∆k(xk
i+1) = const, (i + 1) ∈ Z+ : max(Z+) > k −→ ∆k(xk

i+1) ≡ ∆k(xk
i )

(2) ∇k(xk
i−1) = const, (i − 1) ∈ Z− : min(Z−) ≪ k −→ ∇k(xk

i−1) ≡ ∇k(xk
i )

(3) δk(xk
i ) = const, i ∈ Z+ : max(Z+) > k −→ δk(xk

i ) ≡ δk(xk
i+j)

(4) ∀([i + 1] ∈ Z+, [i − 1] ∈ Z−) : ∆k+j(xk
i+1) = ∇k+j(xk

i−1) = 0,
j > 1, since ∆C = δC = ∇C = 0

Hereby, according to above properties, we can write the lemma (3.1) as

(3.7)
dnxn

dxn
=

∆n(xn
i )

∆xn
=

δn(xn
i )

δxn
=

∇n(xn
i )

∇xn
= n!

Or

(3.8)
dnxn

dxn
= E(xn) = n!
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4. Difference of polynomials

Let be polynomial Pn(xg) defined as

(4.1) Pn(xg) =

n∑

i=0

aix
i
g

Finite differences of such kind polynomial, are ∆Pn(xi) = Pn(xi+1) − Pn(xi),

∇Pn(xi−1) = Pn(xi) − Pn(xi−1), δPn(xi) = Pn

(

x
i+

1
2

)

− Pn

(

x
i−

1
2

)

. Such way,

according to properties (1, 2, 3) from section 1, so high order finite differences of
polynomials could be written as:

∆kPn(xi+1) = ∆k(a0 · x
0
i+1 + · · ·+ an · xn

i+1) = ∆k(a0 · x
0
i+1) + · · ·+∆k(an · xn

i+1)

Backward difference, respectively, is

∇kPn(xi−1) = ∇k(a0 · x
0
i−1 + · · ·+ an · xn

i−1) = ∇k(a0 · x
0
i−1) + · · ·+∇k(an · xn

i−1)

And central

δkPn(xi) = δk(a0 · x
0
i + · · ·+ an · xn

i ) = δk(a0 · x
0
i ) + · · ·+ δk(an · xn

i )

Above expressions hold for any build n-order polynomial.

Lemma 4.2. ∀([i+1] ∈ Z+, [i− 1] ∈ Z−) : ∆k+j(xk
i+1) = ∇k+j(xk

i−1) = 0, j > 1

Proof. According to lemma (3.1), the n-th difference of n-th power is constant,
consequently, the constant rule (3) holds ∆C = δC = ∇C = 0. �

According to lemma (4.2) and properties (2, 3), we have limits:

(4.3) ∆k→nPn(xi+1) = lim
k→n

{
∆k(a0 · x

0
i+1) + · · ·+∆k(an · x0

i+1)
}

= ∆n(an · xn
i+1) = an ·∆n(xn

i+1)

(4.4) δk→nPn(xi) = lim
k→n

{
δk(a0 · x

0
i ) + · · ·+ δk(an · xn

i )
}

= δn(an · xn
i ) = an · δn(xn

i )

(4.5) ∇k→nPn(xi−1) = lim
k→n

{
∇k(a0 · x

0
i−1) + · · ·+∇k(an · xn

i−1)
}

= ∇n(an · xn
i−1) = an · ∇n(xn

i−1)

Since the n-th difference of n-th power equals to n!, we have theorem.

Theorem 4.6. Each n-order polynomial has the constant n-th divided difference

and derivative, which equals each other and equal constant times n!.

Proof. According to limits (4.3, 4.4, 4.5), we have ∆nPn(xi+1) = an ·∆n(xn
i+1),

∇nPn(xi−1) = an · ∇n(xn
i−1), δnPn(xi) = an · δn(xn

i ), going from lemma (3.1), the
n-th difference of n-order polynomial equals to kn · n!, the properties (1, 2, 3, 4)
proofs that for enough large sets Z

+, Z
− we have ∆n(xi+1) ≡ ∆n(xi), δn(xi) ≡

δn(xi+j), ∇n(xi−1) ≡ ∇n(xi), min(Z−) < n < max(Z+). Therefore, we have
equality

(4.7)
dnPn(x)

dxn
=

∆nPn(xi)

(∆x)n
=

δnPn(xi)

(δx)n
=

∇nPn(xi)

(∇x)n
= an · n!
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Or, by means of definition (3.4)

(4.8)
dnPn(x)

dxn
= E(Pn(x)) = an · E(xn)

�

5. Relation with Partial derivatives

Let be partial finite differences defined as

(5.1) ∆f(u1, u2, . . . , un)u1
:= f(u1 + h, u2, . . . , un)− f(u1, u2, . . . , un)

(5.2) δf(u1, u2, . . . , un)u1
:= f(u1 + h, u2, . . . , un)− f(u1 − h, u2, . . . , un)

(5.3) ∇f(u1, u2, . . . , un)u1
:= f(u1, u2, . . . , un)− f(u1 − h, u2, . . . , un)

By means of mathematical induction, going from Lemma (3.1), we have equal-
ity between n-th partial derivative and n-th partial difference, while be taken of
polynomial defined function or power function.

Theorem 5.4. For each n-th natural power of many variables the n-th partial

divided differences and n-th partial derivatives equal each other.

Proof. Let be function Z = f(u1, u2, . . . , un) = (u1, u2, . . . , un)
n. We denote

the equality operator of partial difference as E(F (u1, u2, . . . , un))uk
, where uk is

variable of taken difference. On this basis

(5.5)
∂nZ

∂un
k

=
∆nZuk

∆un
k

=
δnZuk

δun
k

=
∇nZuk

∇un
k

= A · n!

Or, using equality operator

(5.6)
∂nZ

∂un
k

= E(Z)uk
= A · n!

where A is free constant, depending of relations between variables and 0 ≤ k ≤

n. �

Property 5.7. Let be partial differences ∆f(un
1 + un

2 + un
3 + · · ·+ un

k )M , δf(un
1 +

un
2 +un

3 + · · · , +un
k)M , ∇f(un

1 +un
2 +un

3 + · · ·+un
k)M , where M - set of variables,

the n-th partial differences of each variables are

(5.8) ∆nf(un
1 , un

2 , un
3 , · · · , un

k )u1, u2, u3, ··· ,uk
= k · n!(∆u1)

n · · · (∆uk)
n

(5.9) ∆nf(un
1 , un

2 , un
3 , · · · , un

k)u1, u2, u3, ··· ,uk
= k · n!(δu1)

n · · · (δuk)
n

(5.10) ∇nf(un
1 , un

2 , un
3 , · · · , un

k )u1, u2, u3, ··· ,uk
= k · n!(∇u1)

n · · · (∇uk)
n

∀(u1, u2, u3, · · · , uk) ∈ Z : max(Z) > n, (δu1) ≡ (δu2) ≡ . . . ≡ (δuk),

(∇u1) ≡ (∇u2) ≡ . . . ≡ (∇uk), (∆u1) ≡ (∆u2) ≡ . . . ≡ (∆uk)

Theorem 5.11. For each non-single variable polynomial with order n holds the

equality between k ≤ n-order partial differences and derivative.
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Proof. Let be non-single variable polynomial

(5.12) Pn(un) =

n∑

i=1

Mi · u
i
i

Going from above property (5.7), the k-th partial differences of one variable are

∆kPn(un)uk
= Mk · k! · (∆uk)

k, δkPn(un)uk
= Mk · k! · (δuk)

k,

∇kPn(un)uk
= Mk · k! · (∇uk)

k(5.13)

0 ≤ k ≤ n. The k-th partial derivative:

(5.14)
∂kPn(un)

∂uk
k

= Mk · k!

Hereby

(5.15)
∂kPn(un)

∂uk
k

=
∆kPn(un)uk

∆uk
k

=
δkPn(un)uk

δuk
k

=
∇kPn(un)uk

∇uk
k

Also could be noted as

(5.16)
∂kPn(un)

∂uk
k

= E(Pn(un))uk
= Mk · k!, k ≤ n

�

6. The error of approximation

From section 1 we know the link between ordinary finite differences and deriva-
tives, that is

∆hf(x)

h
− f

′

(x) = O1(h)

δhf(x)

h
− f

′

(x) = O1(h
2)

Note that for each particular error Ok(h) we use the index, respected to the order
of derivative and difference.

Property 6.1. While difference to be taken of power function with positive natural

exponent, holds the rule lim
k→j

(
∆kxn

∆xk − dkxn

dxk

)

= Oj(h) : Oj(h) < Oj+1(h), j < n

and finally ∀(h ∈ R) : On(h) = 0, i.e with increasing the order of difference the

limiting behavior of derivative decreasing accordingly.

Proof. Generally, the big O notation is a mathematical notation, invented by Paul
Bachmann and Edmund Landau (see [8], [9]), that describes the limiting behavior
of a function when the argument tends towards a particular value or infinity. The
O(x) could be defined as

O(x) = c

∫

g(x)dx −

∫

f(x)dx, while f(x) ≤ cg(x)

Taking that, if f(x) = xn, we integrate (1.1) and obtain the recurrent relation

Ok(h) =

∫ ∞

0

∆k
h(x

n)dx−

∫ ∞

0

f (k)(x)dx
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Using limit notation, we obtain

lim
k→n

[ ∫ ∞

0

∆k
h(x

n)dx −

∫ ∞

0

f (k)(x)dx

]

= Ok→n(h) −→ 0

�

7. Summary

In this section we summarize the obtained results in the previous chapters and
establish the relationship between them. According to lemma (3.1), theorems (4.6),
(5.4), (5.11) we have concluded

(7.1)
dnxn

dxn
= E(xn) = n!

(7.2)
dnPn(x)

dxn
= E(Pn(x)) = an · E(xn)

(7.3)
∂nZ

∂un
k

= E(Z)uk
= A · n!

(7.4)
∂kPn(un)

∂uk
k

= E(Pn(un))uk
= Mk · k!

Generalizing these expressions, we can derive the general relations between ordinary,
partial derivatives and finite (divided) differences

(7.5) E(un) = E(Pn(ug)) = E(Z)uk
= E(Pn+j(un+j))un

︸ ︷︷ ︸

Y

(7.6)
dnun

dun
=

dnPn(u)

dun
=

∂nZ

∂un
k

=
∂nPn+j(un+j)

∂un
n

︸ ︷︷ ︸

U

, j ≥ 0

∀(A, Mn, an) = 1

I.e the equalities holds with precision to constant. Function Z defined as Z =
f(u1, u2, . . . , un) = (u1, u2, . . . , un)

n. And finally

Y = U

with same limitations.

8. Conclusion

In this paper were established the equality between ordinary and partial finite
(divided) differences and derivatives of power function and polynomials, with order
equal between each other.
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