
HAL Id: hal-01350894
https://hal.science/hal-01350894v1

Submitted on 2 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite-Time and -Size Scalings in the Evaluation of
Large Deviation Functions Part II: Numerical Approach

in Continuous Time
Esteban Guevara Hidalgo, Takahiro Nemoto, Vivien Lecomte

To cite this version:
Esteban Guevara Hidalgo, Takahiro Nemoto, Vivien Lecomte. Finite-Time and -Size Scalings in the
Evaluation of Large Deviation Functions Part II: Numerical Approach in Continuous Time. Physical
Review E , 2017, 95, pp.012102. �10.1103/PhysRevE.95.012102�. �hal-01350894�

https://hal.science/hal-01350894v1
https://hal.archives-ouvertes.fr


Finite-Time and -Size Scalings in the Evaluation of Large Deviation Functions
Part II: Numerical Approach in Continuous Time

Esteban Guevara Hidalgo,1, 2, ∗ Takahiro Nemoto,2 and Vivien Lecomte2
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Rare trajectories of stochastic systems are important to understand – because of their potential
impact. However, their properties are by definition difficult to sample directly. Population dynamics
provide a numerical tool allowing their study, by means of simulating a large number of copies of
the system, which are subjected to a selection rule that favors the rare trajectories of interest.
Such algorithms are plagued by finite simulation time- and finite population size- effects that can
render their use delicate. In this second part of our study (which follows a companion paper [1]
dedicated to an analytical study), we present a numerical approach which verifies and uses the
finite-time and finite-size scalings of estimators of the large deviation functions associated to the
distribution of the rare trajectories. Using the continuous-time cloning algorithm, we propose a
method aimed at extracting the infinite-time and infinite-size limits of the estimator of such large
deviation functions in a simple system, where, by comparing the numerical results to exact analytical
ones, we demonstrate the practical efficiency of our proposed approach.

PACS numbers: 05.40.-a, 05.10.-a, 05.70.Ln

I. INTRODUCTION

Rare events and rare trajectories can be analyzed
through a variety of numerical approaches, ranging
from importance sampling [2], adaptive multilevel
splitting [3] to transition path sampling [4] (see e.g. [5, 6]
for reviews). In this paper, we focus on population
dynamics algorithms, as introduced in [7, 8], which aims
at studying rare trajectories by exponentially biasing
their probability. This makes it possible to render
typical the rare trajectories of the original dynamics
in the simulated dynamics. The idea is to perform the
numerical simulation of a large number of copies Nc of
the original dynamics, supplemented with selection rules
which favor the rare trajectories of interest.

Following the analytical study we proposed in a
companion paper [1] (to which we will refer as ‘Part I’),
we consider a simple two-state numerical example, a
creation-annihilation process, and we study trajectories
with atypical activity, using the population dynamics
algorithm in its continuous-time variant [9, 10]. Al-
though the limitations and associated improvements of
the population dynamics algorithm have been previously
considered [11–14], in this article we study in depth the
large-time and large-size scalings, aiming at improving
the numerical evaluation of large deviation functions.

The version of the population dynamics algorithm in-
troduced by Giardinà, Kurchan and Peliti [7] provides a
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method to evaluate the large deviation function (LDF)
associated to the distribution of a trajectory-dependent
observable. The LDF is obtained as the exponential
growth rate that the population would present if it was
not kept constant. Under this approach, the correspond-
ing LDF estimator is in fact valid only in the limits of
infinite simulation time t and infinite population size Nc.
The usual strategy that is followed in order to obtain
those limits is to increase the simulation time and the
population size until the average of the estimator over
several realizations does not depend on those two param-
eters, up to numerical uncertainties. Here on the other
hand, (as announced in Part I) we propose a method that
takes into account the exact scaling of the finite-time and
finite-size corrections in order to extract the asymptotic
limit of the estimator in the infinite-time and infinite-size
limits.

The paper is organized as follows. In Sec. II we
define the large deviations of our additive observable of
interest and we detail how they can be estimated using
the continuous-time population dynamics algorithm.
In Sec. III we study the behavior of this estimator as
a function of the duration of the observation time at
fixed population. We extract its infinite-time limit and
additionally we study its distribution and its associated
large deviations. In Sec. IV we analyze the behavior
of the estimator as we increase the number of clones
for a (given) fixed simulation time. Based on these
results, we present in Sec. V a method which allows us
to extract the infinite-time, infinite-size limit of the large
deviation function from a finite-time, finite-size scaling
analysis. We complement these results by studying
in Sec. VI an alternative way of defining the LDF es-
timator and finally, we gather our conclusions in Sec. VII.
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II. CONTINUOUS-TIME CLONING
ALGORITHM

A. Large Deviations of Additive Observables

We consider a general Markov process on a dis-
crete space of configurations {C}, with transition rates
W (C → C ′). A trajectory of configurations generated in
this process is denoted by (C0, . . . , CK) starting from C0

and presenting K jumps occurring at times (tk)1≤k≤K .
We denote by C(t′) the state of the system at time t′:
when tk ≤ t′ < tk+1, C(t′) = Ck (k = 0, 1, 2, · · ·K − 1)
with t0 = 0. We are especially interested in the large
deviations of additive observables of trajectories of fixed
duration t, of the form

O =

K−1∑
k=1

a(Ck, Ck+1) +

∫ t

0

dt′ b(C(t′)), (1)

where the functions a and b describe the elementary in-
crements of the observables: a accounts for quantities
associated with transitions (of state), whereas b does for
static quantities. A simple example of observables of this
form is that of the activity O = K, which is the num-
ber of configuration changes on the time interval [0, t] (in
this case one has a(C,C ′) = 1 and b ≡ 0). We denote
the joint distribution function of the state C and these
observables O at time t by P (C,O, t).

In order to analyze large deviations of these additive
observables, we follow the standard procedure as ex-
plained for example in [9, 10]. For this, we consider the
moment generating function

Z(s, t) = 〈e−sO〉, (2)

where 〈·〉 means the expected value with respect to tra-
jectories. Since the observables O are additive and the
system is described by a Markov process, Z(s, t) satisfies
at large times the scaling

Z(s, t) ∼ etψ(s) for t→∞, (3)

where ψ(s) is the growth rate of Z(s, t) with respect to
time. This exponent, known as the scaled cumulant gen-
erating function (CGF), is the quantity of interest in this
paper. It allows us to recover the large-time limit of the
cumulants of O as derivatives of ψ(s) in s = 0, and more
generically, the distribution of O/t from the Legendre
transform of ψ(s) [15] known as a (large deviation) rate
function (see also Part I). Hereafter, we use the term
“large deviation function” to refer both to the CGF and
to the rate function, because these two are equivalent in
systems that do not show any phase transition.

B. The Mutation-Selection Mechanism

The moment generating function Z(s, t) can be com-
puted numerically using the cloning algorithm [7, 8]. In

order to do that, we introduce the Laplace transform of
the probability distribution P (C,O, t), defined as

P̂ (C, s, t) =

∫
dO e−sOP (C,O, t). (4)

The moment generating function Z(s, t) is recovered from

this Laplace transform as Z(s, t) =
∑
C P̂ (C, s, t). The

Laplace transform P̂ (C, s, t) satisfies a modified Master
equation for its time-evolution (see, e.g., [16]),

∂tP̂ = WsP̂ , (5)

where the modified Master operator Ws is defined as

(Ws)C′C = Ws(C → C ′)− rs(C)δCC′ + δrs(C)δCC′ .
(6)

and where δrs(C) = rs(C)−r(C)−sb(C). The main idea
behind the cloning algorithm [7, 8] comes from interpret-
ing this time-evolution equation as a modified dynamics
with rates

Ws(C → C ′) = e−sa(C,C′)W (C → C ′) (7)

and escape rate

rs(C) =
∑
C′

Ws(C → C ′). (8)

By rewriting the modified Master equation (5) by using
these definitions, we find that this Master equation can
be interpreted as a combined process of this modified
stochastic process (equation (7)) with a selection mecha-
nism by rates

δrs(C) = rs(C)− r(C)− sb(C). (9)

As we detail below, the CGF ψ(s) is recovered from the
exponential growth (or decay) rate of a population evolv-
ing according to these rules.

C. Continuous-Time Population Dynamics
(Constant-Population Approach)

The basic idea of the population dynamics algorithm
is as follows: We prepare Nc copies of the system and we
evolve them according to the transition rates Ws(C →
C ′) given by equation (7). During this evolution some
copies are repeatedly multiplied or eliminated according
to the selection mechanism whose rate is given by equa-
tion (9). This selection process can be performed in a
number of ways. One of them consists in keeping the
total number of clones constant for each pre-fixed time-
interval ∆t (see Ref. [7] and also the Part I [1]). Another
one, (that we will use throughout this Part II) consists
in performing these selection processes along with each
evolution of the copies [6, 9, 10]. A detailed description
of this last algorithm is presented below
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The Cloning Algorithm

Lets consider Nc clones (or copies) of the system. We
denote by t = {t(i)}i=1,...,Nc the evolution times and by
c = {ci}i=1,...,Nc the configurations of each clone. Their
initial configurations do not affect the resulting scaled cu-
mulant generating function in the large-time limit. How-
ever, for the concreteness of the discussion, without loss
of generality, we assume that these copies have the same
configuration C at t = 0. The cloning algorithm is con-
stituted of the repetition of the following procedures.

1. Find the clone whose evolution time is the smallest
among all the clones: Find j = argminit

(i).

2. Choose a waiting time ∆t(cj) for clone j from an
exponential law of parameter rs(cj). The change of

configuration will occur at t(j) + ∆t(cj) (i.e., clone

j stays in the same state until time t(j) + ∆t(cj)).

3. The state cj is changed to c′j with probability
Ws(cj → c′j)/rs(cj).

4. Compute yj = bY (cj)+εc, where the cloning factor

Y (cj) is defined as e∆t(cj) δrs(cj) and ε is a random
number uniformly distributed on [0, 1].

5. Eliminate or multiply clone cj depending on yj : If
yj = 0, we remove this copy from the ensemble,
and if yj > 0, we make yj − 1 clones of this copy.

6. In order to keep the total number of copies con-
stant, if yj = 0, we choose randomly and uniformly
a clone k, k 6= j and copy it. If yj > 1, we choose
randomly and uniformly yj − 1 clones from the en-
semble and we erase them.

D. Cumulant Generating Function Estimator

The estimator Ψ
(Nc)
s of the CGF can be obtained from

the algorithm we just described from the exponential
growth rate that the population would present if it was

not kept constant [6]. More precisely, the estimator Ψ
(Nc)
s

is defined as

Ψ(Nc)
s =

1

t
log

K∏
i=1

Xi, (10)

where Xi = (Nc + yi − 1)/Nc are the “growth” factors
at each step i of the procedure described above, and K
is the total number of configuration changes in the full
population up to time t (which has not to be confused
with K). It is important to remark (as was discussed
in [17] in a non-constant population context) that this
growth rate can be also computed from a linear fit over
the reconstructed log-population and the initial transient
regime, where the discreteness effects are present, can be
discarded in order to obtain a better estimation.

For a real implementation of the algorithm, we need to
launch the simulation many times (where we denote by R
the number of realizations of the same simulation). Then,
the CGF estimator should be calculated as the arithmetic
mean of the obtained estimator (equation (10)). As the
simulation does not stop exactly at T (as discussed in
Sec. 3.2 of [17]) but at some time tFr ≤ T (which is dif-
ferent for every r ∈ {1, ..., R}), the average over R real-

izations of Ψ
(Nc)
s is then correctly defined as

Ψ
(Nc)
s =

1

R

R∑
r=1

1

tFr
log

Kr∏
i=1

Xr
i . (11)

However, we have observed that for not too short simu-

lation times T ,
∣∣∣Ψ(Nc)

s (T )−Ψ
(Nc)
s (tFr )

∣∣∣ is small. By as-

suming tFr ≈ T , equation (11) is approximated as

Ψ
(Nc)
s ' 1

R

1

T

R∑
r=1

log

Kr∏
i=1

Xr
i . (12)

Equation (12) allows us to estimate the CGF using
the constant-population approach of the continuous-time
cloning algorithm for a s-biased Markov process, given a
fixed number of clones Nc, a simulation time T and R
realizations of the algorithm.

E. Example Model: A Two-State
Annihilation-Creation Dynamics

Although the cloning algorithm explained above is gen-
eral, and although we expect that the scaling method ex-
plained in the following sections can be applied to more
general models, we focus our numerical study to a simple
two-state annihilation-creation dynamics with transition
rates

0
c→ 1

1
1−c→ 0.

(13)

We take the additive observable O as the activity K. In
this system, it is possible to obtain the analytical expres-
sion for the cumulant generating function ψ(s) as the
largest eigenvalue of Ws, which is

ψ(s) = −1

2
+

1

2

√
1− 4c(1− c)(1− e−2s). (14)

Equation (14) allows us to quantify the quality of the
numerical results obtained from the algorithm described
above.

III. THE LARGE DEVIATION FUNCTION FOR
A FINITE DURATION OF TIME

In this section, we study the large-time behavior of the
CGF estimator, at a fixed number of clones Nc, and we
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FIG. 1. Average over R = 104 realizations of the CGF esti-

mator Ψ
(Nc)
s (equation (12)) as a function of duration t of the

observation window, for Nc ∈ {10, 100, 1000} clones. The an-
alytical expression for the large deviation function ψ(s) (equa-
tion (14)) is shown with a black dashed line and the fitting

function f
(Nc)
t encoding the finite-t scaling (equation (16)) are

shown with continuous curves. The (a priori) best estimation

of the large deviation function would be given by Ψ
(Nc)
s at the

largest simulation time T = 1000, which are shown with solid

circles. The extracted infinite-time behavior f
(Nc)
∞ are shown

as dotted lines and circles (Nc = 10), diamonds (Nc = 100)
and squares (Nc = 1000). The parameters of the model are
c = 0.3, s = −0.2.

discuss how to use the scaling form of this behavior in
order to extract the asymptotic value of the estimator at
infinite time. Fig. 1 presents the average over R = 104

realizations of the estimator of the CGF Ψ
(Nc)
s as a func-

tion of the (simulation) time for given numbers of clones
Nc = {10, 100, 1000}. It is compared with the analytical

value ψ(s) (black dashed line). The curve Ψ
(Nc)
s shows

the estimation of the CGF that we would have obtained
if we had considered a simulation time t smaller than the
maximal simulation time T (which in this case is equal to
T = 1000). As can be seen in Fig. 1 for a small number of
clones (Nc = 10) and even if we would consider an “infi-
nite” simulation time, the best estimation obtained from
the continuous-time cloning algorithm is highly deviated
from the analytical value ψ(s). But as expected, as Nc
and the simulation time t become larger, the obtained
CGF estimator gets closer to the analytical value ψ(s).

One can expect that ψ(s) will be obtained from the
estimator in the T →∞ limit and Nc →∞ limit:

lim
Nc→∞

lim
T→∞

Ψ
(Nc)
s (T ) = ψ(s). (15)

Indeed, this was explicitly derived in Part I of this pa-
per from a different version of the cloning algorithm
(See [1] for the detail) under general hypotheses. In
the implementation of the algorithm, this infinite-time

and -size limit is in practice achieved by considering a
large enough simulation time T and a large enough num-
ber of clones Nc. In other words, the best naive esti-
mation of the large deviation function that we can ob-
tain from the continuous-time cloning algorithm would

be given by the value of Ψ
(Nc)
s at largest simulation time

T with the largest number of clones Nc, i.e., the value of

Ψ
(Nc)
s (T ) which is shown as a black solid circle in Fig. 1

for T = 1000 and Nc = 1000. The expression “large
enough” is of course vague but motivates our analysis of
the actual dependence of the estimator with T and Nc.
In this section, we especially focus on the dependence
with respect to T .

A. t−1 Scaling

We define a fitting curve f
(Nc)
t as

f
(Nc)
t ≡ f (Nc)

∞ + b
(Nc)
t t−1, (16)

where f
(Nc)
∞ and b

(Nc)
t are fitting parameters. We deter-

mine these parameters from the least squares method by

minimizing the deviation from Ψ
(Nc)
s (t). The obtained

results are shown with continuous curves in Fig. 1. One

important feature about these fits f
(Nc)
t are their t−1

scaling: the fitting curves describe well Ψ
(Nc)
s (t), which

implies that Ψ
(Nc)
s (t) converges to its infinite value pro-

portionally to 1/t. This property can be derived from the
remark that the cloning algorithm itself is described by a
Markov process: By expressing the number of clones by
a birth-death process, we may construct a meta-Markov
process that describes the cloning algorithm. Once this
is constructed, the CGF estimator (10) is regarded as the
time-average of the observable Xi for such meta-Markov
process. We now recall that, in general, time-averaged
quantities converge to their infinite-time limit with an
error proportional to 1/t, when the distribution function
of the variable converges exponentially (as in our Markov
processes). We thus find that the scaling property (16)
is satisfied. For more details of how to construct this
meta-dynamics, see Part I [1] where we indeed explic-
itly devise its generator for a discrete-time version of the
cloning algorithm.

We note that f
(Nc)
∞ is expected to converge to ψ(s) as

Nc → ∞, see equation (15). For checking this property,
we define the distance D between ψ(s) and its numerical

estimator Ψ
(Nc)
s ,

D
(
Ψ

(Nc)
s , ψ(s)

)
=
∣∣Ψ(Nc)

s − ψ(s)
∣∣. (17)

This quantity is shown in Fig. 2 as a function of t in log-
log scale. As we can see, as Nc increases, logD behaves
as straight line with slope −1 on a time window which
grows with Nc. This means that when Nc → ∞, the
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FIG. 2. Distance D between the analytical value of the CGF

ψ(s) and its numerical estimator Ψ
(Nc)
s , as a function of time t

in log-log scale (equation (17)). This distance behaves as a
power law of exponent −1 on a time window which increases
as Nc increases. This illustrates the limit (15).

following scaling is satisfied∣∣Ψ(Nc)
s − ψ(s)

∣∣ ∼ t−1. (18)

This illustrates that f
(Nc)
∞ converges to ψ(s) as Nc →∞.

B. Infinite-Time Limit of the CGF Estimator

1. Extraction from Finite-Time Simulations

Equation (16) allows us to extract the infinite-time
limit of the CGF using the continuous-time cloning al-

gorithm. Once we obtain the fitting curve f
(Nc)
t that de-

scribes correctly the time-dependence of Ψ
(Nc)
s (t), we can

use the fitting parameter f
(Nc)
∞ to estimate the infinite-

time limit of Ψ
(Nc)
s (t), i.e.,

lim
t→∞

Ψ
(Nc)
s (t) = f (Nc)

∞ . (19)

We denoted this infinite-time limit as f
(Nc)
∞ and it is

shown with dotted lines and circles (Nc = 10), diamonds
(Nc = 100) and squares (Nc = 1000) in Fig. 1. This

asymptotic limit to which Ψ
(Nc)
t tends as t → ∞ pro-

vides a better numerical estimate of ψ(s) than Ψ
(Nc)
s (T )

(which is obtained from finite simulation time) and it can
be achieved even for shorter simulation times through a
fit of the form given in equation (16) on the numerical

estimator Ψ
(Nc)
s (t) (See Sec. V for the summary of this

extraction method).

2. Scaling Limit

Although the method to extract the infinite-time limit
based on fitting (described above) is straightforward and
it has been verified to yield good results, an alterna-

tive method to estimate f
(Nc)
∞ is presented here. If we

modify ψ(s) by adding some values δ properly chosen,

D
(
Ψ

(Nc)
s , ψ(s) + δ

)
presents a t−1 behavior, where the

window of this scaling depends on the value of δ. We ex-
pect that the δ maximizing the duration of this window

corresponds to f
(Nc)
∞ − ψ(s).

The problem of determining such a δ thus reduces
to finding a value of Ψ∞ around ψ(s), such that

D
(
Ψ

(Nc)
s ,Ψ∞

)
is linear in time in log-log scale on a max-

imally extended window of time. In other words, we have
to determine the best Ψ∞ such that∣∣Ψ(Nc)

s −Ψ∞
∣∣ ∼ t−1. (20)

This can be done (of course) without knowing the ana-
lytical value of the large deviation function and should
be right even for small Nc. A possible method in order
to determine Ψ∞ is described below.

Let
[
ψ(s)−δ1, ψ(s)+δ2

]
be an interval (non necessarily

symmetrical) around ψ(s) (which is not necessarily to be
known). We define the quality Q(Ψ) as

Q(Ψ) =
〈∣∣ logD

(
Ψ

(Nc)
s ,Ψ

)
− F (Nc)

Ψ

∣∣〉, (21)

where F
(Nc)
Ψ = F

(
D
(
Ψ

(Nc)
s ,Ψ

))
is an affine fit of

D
(
Ψ

(Nc)
s ,Ψ

)
in time, in log-log scale. The value of

Ψ∞ ∈
[
ψ(s) − δ1, ψ(s) + δ2

]
is determined as the one

minimizing this Q(Ψ∞). We indeed checked that f
(Nc)
∞

and Ψ∞ coincide within numerical uncertainties.

C. Distribution of Ψ
(Nc)
s

From relation (12), one can infer that the dispersion of

the distribution of Ψ
(Nc)
s depends on the simulation time

t. This determines whether or not a large number of real-
izations R is required in order to minimize the statistical

error. In fact, as seen in Fig. 3, the dispersion of Ψ
(Nc)
s

is wider for shorter simulation times. This distribution
is concentrated around its mean value that is displaced
towards the analytical value ψ(s), as the simulation time
and the number of clones increase. We numerically con-
firm that these distributions are well-approximated by a
Gaussian distribution

P
(

Ψ(Nc)
s

)
∼ Ae−

1
C2 (Ψ(Nc)

s −B)
2

, (22)

where B is Ψ
(Nc)
s and A and C are numerical parameters.

As seen in Fig. 4, these parameters A and 1/C2 are of
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FIG. 3. Distribution P
(

Ψ
(Nc)
s

)
of the large deviation function estimator Ψ

(Nc)
s for (a) Nc = 10, (b) Nc = 100 and (c)

Nc = 1000 and simulation times t ∈ [10, 1000]. Each realization (R = 104 for each simulation time) is shown with gray dots

meanwhile its respective Gaussian fit (equation (22)) is shown with a dotted or a continuous curve. The dispersion of Ψ
(Nc)
s is

wider for shorter simulation times and small Nc. The mean value of the distribution displaces towards the theoretical value as
the simulation time and the number of clones increases.
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FIG. 4. Time evolution of the parameters A and C de-
termined numerically from a Gaussian fit (equation (22)) of

the distribution of large deviation functions Ψ
(Nc)
s (Fig. 3).

The parameters A and C were found to behave in time as
A = O(t1/2) (left) and 1/C2 = O(t). Due to the relation be-
tween C and the standard deviation σ

Ψ
(Nc)
s

, σ
Ψ

(Nc)
s

also be-

haves as σ
Ψ

(Nc)
s

= O(t−1/2) which is presented on the right.

The values mA ≈ 0.5 and mσ ≈ −0.5 are the slopes of A and
σ

Ψ
(Nc)
s

, in log-log scale.

the order of t1/2 and t. We note that, from this scaling,
the variance σ

Ψ
(Nc)
s

is also of the order of t−1/2.

A mathematical argument to explain this obtained
Gaussian distribution is given as follows. If at any given
time (not necessarily at T ), we take the following rescal-
ing

Ψ̂(Nc)
s =

Ψ
(Nc)
s −Ψ

(Nc)
s

σ
Ψ

(Nc)
s

, (23)

where

σ2

Ψ
(Nc)
s

=
1

R− 1

R∑
r=1

∣∣∣(Ψ(Nc)
s

)
r
−Ψ

(Nc)
s

∣∣∣2 (24)

is the variance of the R realizations of Ψ
(Nc)
s and

(
Ψ

(Nc)
s

)
r

is Ψ
(Nc)
s in the realization r, then this rescaled CGF Ψ̂

(Nc)
s

follows a standard normal distribution (according to the

central limit theorem):

P
(
Ψ̂(Nc)
s

)
=

1√
2π
e−

1
2

(
Ψ̂(Nc)

s

)2
, (25)

where σ2

Ψ̂
(Nc)
s

≈ 1. This rescaling produces a collapse of

the distributions P
(
Ψ̂

(Nc)
s

)
for ∀t and ∀Nc (Fig. 5).

In other words, by considering the scaling given by
the definition (23) we focus only on the small fluctua-

tion of Ψ
(Nc)
s around Ψ

(Nc)
s , which can be described by

a Gaussian distribution. But in general, the distribution
function is not necessarily described by this form, and
we need to consider a large deviation principle as it is
explained below.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Standard Normal 
    Distribution

FIG. 5. The distribution function of the rescaled variable
Ψ̂

(Nc)
s (23). Compatible with the central limit theorem (equa-

tion (25)), a collapse of the distribution function into a stan-
dard normal distribution for different number of clones is ob-
served.
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Large Deviations for the Distribution of Ψ
(Nc)
s

Since Ψ
(Nc)
s is itself an additive observable of the dy-

namics of the ensemble of clones (see Part I, Sec. III
for more details), the distribution of the CGF estima-

tor Ψ
(Nc)
s satisfies itself a large deviation principle of the

form

P
(
Ψ(Nc)
s

)
∼ e−tINc

(
Ψ(Nc)

s

)
, (26)

where INc

(
Ψ

(Nc)
s

)
is the rate function (LDF). Here, we

study if this large deviation function can be numerically

evaluated from the empirical distribution P
(
Ψ

(Nc)
s

)
as

INc

(
Ψ(Nc)
s

)
≈ −1

t
logP

(
Ψ(Nc)
s

)
(27)

for a large t. 1

The numerical estimation of the right-hand side of the
last expression at final simulation time T is shown in
Fig. 6, where we have defined

ÎNc

(
Ψ(Nc)
s

)
≡ −1

t
logP

(
Ψ(Nc)
s

)
+

1

t
logP

(
Ψ

(Nc)
s

)
(28)

so that ÎNc

(
Ψ

(Nc)
s

)
= 0. In the same figure, we also

show Ψ
(Nc)
s (T ) as vertical dotted lines which correspond

to the minima of the rate function ÎNc

(
Ψ

(Nc)
s

)
. As can be

seen, these minima are displaced towards the analytical
value ψ(s) (shown with a dashed line) as t → ∞. The

rate function ÎNc
also becomes more concentrated as Nc

increases.
As we already know from section III C, the obtained

rate function is well-approximated by a quadratic form
(because the logarithm of the distribution function is
proportional to the rate function). However, as shown
in Sec. IV of Part I, these LDFs are not quadratic in
general, which indicates that the full shape of the large
deviation function could not be obtained from our sim-
ulations. These rare events are indeed not relevant for
our simple model, but we expect that they might play an
important role in more complicated systems, such as the
ones presenting dynamical phase transitions.

IV. THE LARGE DEVIATION FUNCTION FOR
A FINITE NUMBER OF COPIES

In this section, for a fixed duration T of the observation
window, we study the behavior of the CGF estimator as

1 Strictly speaking

INc

(
Ψ

(Nc)
s

)
= lim
t→∞

−
1

t
logP

(
Ψ

(Nc)
s

)

0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098 0.1

1
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3

4

5

6

7x 10−3

FIG. 6. Rescaled rate function ÎNc

(
Ψ

(Nc)
s

)
(equation (28))

of the large deviation principle (equation (26)). Numeri-
cal evaluations were made for three fixed population sizes
Nc ∈ {10, 100, 1000}. The average over R realizations of

the CGF estimator Ψ
(Nc)
s (T ) corresponds to the minimum

of ÎNc

(
Ψ

(Nc)
s

)
(dotted lines). The most probable value of the

rate function (vertical dashed lines) moves to the analytical
value ψ(s) as t → ∞ and presents a smaller width as Nc
increases.

a function of the population size Nc (see also Sec. III C
of Part I [1] for an analytical study to this problem).

In Fig. 7, we present the behavior of the CGF estimator

Ψ
(Nc)
s (T ) as we increase the number of clones, for a given

fixed (simulation) time T . We considered four values of
final simulation times T = {200, 300, 500, 1000} and pop-
ulation sizes in the range 10 ≤ Nc ≤ 1000. As already

mentioned, the value
〈
Ψ

(Nc)
s (T )

〉
is generally considered

as the best estimation of the large deviation function we
can obtain for a given simulation time T and a given num-
ber of clones Nc using the continuous-time cloning algo-
rithm. However in Sec. III B 1 we saw how the estimation
of ψ(s) can be improved by extracting the infinite-time

limit f
(Nc)
∞ from the finite-t scaling (equation (16)). Be-

low, we explain how to perform a similar extraction with
respect to the number of clones: i.e., how to estimate the
infinite-Nc limit from a set of finite-Nc simulations.

A. N−1
c Scaling

We define a fitting curve as

g
(T )
Nc

= g(T )
∞ + b̃

(T )
Nc
N−1
c , (29)

where g
(T )
∞ and b̃

(T )
Nc

are fitting parameters. The obtained

g
(T )
Nc

fitted to Ψ
(Nc)
s (T ) (as a function of Nc) is shown in

Fig. 7 with continuous curves. As can be seen, the fitting
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0.0932

0.0934

0.0936

0.0938

0.094

0.0942

0.0944

fitanalytical

FIG. 7. Estimator Ψ
(Nc)
s (T ) (equation (12)) of the CGF

for given (final simulation) times T = {200, 300, 500, 1000}
as a function of the number of clones Nc (on the range
10 ≤ Nc ≤ 1000). The analytical value ψ(s) (equation (14)) is

shown with a dashed line and the fits g
(T )
Nc

(equation (29)) with
continuous curves. A large simulation time for a small num-
ber of clones, shown in (A), produces a better estimation com-
pared to the one given by the largest number of clones with a
relatively short simulation time, which is shown in (B). The
best CGF estimation we can naively obtain would be given

by Ψ
(Nc)
s (T ) at largest simulation time T and largest num-

ber of clones Nc. However, the extracted infinite-size limits

g
(T )
∞ provide a better estimation in comparison. These limits

are shown with dotted lines and circles (T = 200), crosses
(T = 300), diamonds (T = 500) and dots (T = 1000). Addi-
tionally, c = 0.3 and s = −0.2.

curves describe well the dependence in Nc of Ψ
(Nc)
s (T ),

which means that Ψ
(Nc)
s (T ) converges to its infinite Nc

limit with an error proportional to 1/Nc. This scaling
was proved under general assumptions in Sec. III C of
Part I [1]. However, it is important to remark that this
numerical observation is interesting because the proof in
Part I does not cover (i) the continuous-time algorithm

used in this Part II and (ii) the CGF estimator Ψ
(Nc)
s (T )

at finite T (in the proof was considered the T →∞ limit).
The generalization of the argument presented in Part I in
order to cover these cases (i) and (ii) is an open direction
of research.

B. Infinite-Size Limit of the CGF Estimator:
Extraction from Finite-Nc Estimations

When the fitting g
(T )
Nc

describes well the Nc-dependence

of Ψ
(Nc)
s (T ), equation (29) allow us to the extract the

Nc →∞ limit of Ψ
(Nc)
s (T ) as:

lim
Nc→∞

Ψ
(Nc)
s (T ) = g(T )

∞ . (30)

This infinite-size limit g
(T )
∞ is shown in Fig. 7 as dotted

lines. As can be seen, g
(T )
∞ is closer to ψ(s) than Ψ

(Nc)
s (T )

at the largest Nc. It is important to remark that this

extraction of limNc→∞Ψ
(Nc)
s (T ) can be achieved even for

smaller numbers of clones.

We combine the finite-time and finite-size scalings of
the CGF estimator in Sec. V when we present a method
which allows us to extract the infinite-time infinite-size
limit from simulations performed with a small number of
clones and with a small (simulation) time.

C. Distribution of Ψ
(Nc)
s (T )

and its Large Deviations

From the results presented in Sec. III C, for the range
of realization R ∼ 104 that we considered, one can find
that at final simulation time T and for a given num-

ber of clones Nc, the distribution of Ψ
(Nc)
s (T ) is well ap-

proximated by the Gaussian distribution (22), where the

parameter B is equal to
〈
Ψ

(Nc)
s (T )

〉
and with numeri-

cal parameters A and 1/C2 that are respectively of the

order of N
1/2
c and Nc (i.e. σ

Ψ
(Nc)
s (T )

= O(N
−1/2
c )). A

rescaling similar to the one given in equation (23) pro-
duces a collapse of the distribution of large deviations at
final time into the standard normal distribution (25) for
several values of Nc and R that we considered.

0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098 0.1

1

2

3

4

5

6

7x 10−4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
x 10−3

0.5

1

1.5

2

2.5

3

x 10−5

FIG. 8. Rescaled rate function 1
Nc
ÎNc

(
Ψ

(Nc)
s

)
and the same

quantity as a function of Ψ̌
(Nc)
s =

(
Ψ

(Nc)
s −Ψ

(Nc)
s

)
(inset).

Fig. 8 shows the rescaled rate function

(1/Nc)ÎNc

(
Ψ

(Nc)
s

)
(equation (28)) whose minimum

converges to the analytical value ψ(s) (black dashed
line) as Nc → ∞. In the infinite-time infinite-size limit

of Ψ
(Nc)
s , it is thus compatible with a large deviation
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principle of rate function given by

I
(
Ψ(Nc)
s

)
= − lim

Nc→∞

1

Nc
lim
t→∞

1

t
logP

(
Ψ(Nc)
s

)
(31)

which is shown (rescaled) with black dots in Fig. 8 (See
Sec. III of Part I for the argument which justifies this
large deviation principle). Moreover, by performing the

shift Ψ̌
(Nc)
s =

(
Ψ

(Nc)
s − Ψ

(Nc)
s

)
we can see in the inset

of Fig. 8 the superposition of quadratic deviations of the

numerical estimator Ψ
(Nc)
s around the minimum of the

rate function Î (especially for Nc = 100, 1000).

V. THE LARGE DEVIATION FUNCTION IN
THE INFINITE-TIME - INFINITE-SIZE LIMIT

We have shown in Sec. III B 1 that for any fixed popu-
lation Nc, it is possible to extract the infinite-time limit

f
(Nc)
∞ (equation (16)) from a finite-time CGF estimation.

Similarly in Sec. IV B, we have shown, for a given final
(simulation) time T , how one can extract the infinite-

size limit g
(T )
∞ (equation (29)) from finite-Nc CGF esti-

mations. Moreover, if we consider a set of simulations

performed at population sizes ~Nc = {N (1)
c , ..., N

(j)
c },

one observes that fNc
∞ behaves as a function of Nc (see

Fig. 10(a)) as

f (Nc)
∞ = f∞∞ + b(Nc)

∞ N−1
c (32)

exhibiting itself 1/Nc corrections for large but finite Nc
(see also Part I). These numerical results illustrate that
the analytical results, found for the cloning algorithm
in discrete-time representation in Part I, are also valid
in its continuous-time version (that we have used in the
present Part II). The observed scalings provide a method
to extract the infinite-time infinite-size limit of the CGF
estimator ΨNc

s , obtained from the simple scalings of the
finite-time and finite-size corrections. As we present be-
low, this scaling yields the better estimation of the large
deviation function within the cloning algorithm, and im-
portantly, it can be used for a relatively short simulation
time with a relatively small number of clones at least in
our numerical example.

A. Infinite-Time and -Size Limit from the
Finite-Time and -Size Scalings of the CGF

Estimator: An Example

On Fig. 9, we present a complete picture of the be-

havior of the estimator Ψ
(Nc)
s (t) as a function of the du-

ration t and of the number of clones Nc. The surface

shown in Fig. 9 shows Ψ
(Nc)
s (t) for a maximum simula-

tion time T = 500 and a maximum number of clones
max ~Nc = 100. The estimation was evaluated using
the continuous-time cloning algorithm (as described in

20
40

60
800

100
200

300
400

500 0

1000.082

0.084

0.086

0.088

0.09

0.092

0.094

0.096

FIG. 9. Estimator of the large deviation function Ψ
(Nc)
s (t) as

a function of time and the number of clones. The estimator

Ψ
(Nc)
s (T ) at final simulation time T = 500 as a function of

the number of clones (up to Nc = 100) is shown as black

circles (Ψ
(Nc=100)
s (T = 500) is shown as a yellow circle). The

analytical expression (14) for the large deviation function ψ(s)
is shown as a black dashed line. Additionally, s = −0.2,
c = 0.3, and R = 103.

Sec. II C and II D and as shown on Fig. 1) for 10 values

of Nc from ~Nc = {10 × i}i=1,2,...,10. The value of the
estimator at the final simulation time T is represented
with black circles (c.f., Fig. 7). The analytical expres-
sion for the large deviation function ψ(s) (equation (14))
is shown in a black dashed line.

When using the cloning algorithm, the numerical es-

timation of the CGF is normally taken as Ψ
(Nc)
s (t) for

the largest simulation time t = T and the largest num-
ber of clones [9, 10], which in this case corresponds to

Ψ
(Nc=100)
s (T = 500) which is shown in Fig. 9 with a yel-

low circle.

Using the results from sections III A, III B 1, IV A,
IV B, and V we detail below a method which allows us to
extract the infinite-time infinite-size limit from finite (and
short) simulation times and finite (and small) number of
clones. We emphasize that for this example we consider
just a half of the simulation time that we used in Fig. 1,
and 1/10 of the number of clones we considered in Fig. 7.

We show on Fig. 10(a) the projection of the surface of
Fig. 9 on the plane Ψ− t. The behavior in t of the esti-

mator Ψ
(Nc)
s (t) is shown for Nc = 10 and Nc = 100, in

blue dots in Fig. 10(a). The (standard) estimators of the

CGF, Ψ
(Nc)
s (T ) (at the largest simulation time t = T ),

are shown in large blue dots in Fig. 10(a) (on the axis
for T = 500) and (b) for all the values of Nc we are

considering. These fitting curves f
(Nc)
t (equation (16))

of the estimator are shown in black continuous lines (for
Nc = 10 and Nc = 100) and black dotted lines (for other
intermediate values of Nc). Next, we show in Fig. 10(b)
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FIG. 10. (a) Projection of the surface represented in Fig. 9 over the plane Ψ − t. Ψ
(Nc)
s (t) is represented for Nc = 10 and

Nc = 100 with blue dots. The estimations Ψ
(Nc)
s (T ) of the large deviation (at the final simulation time T = 500) are shown in

large blue dots for all the values of Nc considered. The fit in time (equation (16)) over Ψ
(Nc)
s (t) is shown as black solid lines

(for Nc = 10 and Nc = 100) and dotted lines (for other values of Nc). (b) Projection at the final simulation time T = 500 on

the plane Ψ−Nc, Ψ
(Nc)
s (T ) is shown in large blue dots. The infinite-time limit f

(Nc)
∞ as a function of Nc (see equation (16)) is

represented in red circles. The results of fitting Ψ
(Nc)
s (T ) (equation (29)) and f

(Nc)
∞ (equation (32)) are shown with blue and

red solid curves respectively. The infinite-Nc limit g
(T )
∞ is shown with blue dashed line and diamonds meanwhile the infinite-size

and time limit f∞∞ is shown with a red dotted line in both of (a) and (b). The extracted limit f∞∞ agrees remarkably well with
the analytical value of the large deviation function ψ(s) (equation (14)), shown in black dashed line.

the projection of the surface of Fig. 9 on the plane Ψ−Nc
where the time has been set to the largest t = T . The

fitting curve g
(T )
Nc

(equation (29)) on Ψ
(Nc)
s (T ) is shown

as a blue solid line in Fig. 10(b). As we discussed in
Sec. IV A, from these curves, we can extract the infinite-

size limit of the CGF estimator g
(T )
∞ , which is shown as

a blue dashed line and diamonds. Finally, the infinite-

time limit f
(Nc)
∞ extracted from the fitting on Ψ

(Nc)
s (t)

for each value of Nc is shown as red circles in Fig. 10(b).
According to equation (32), these values themselves are
scaled as 1/Nc and their fits are shown as a red solid
curve in the same figure. The scaling parameter f∞∞ ob-
tained from this last step renders the infinite-size and
the infinite-time limit of the CGF estimator (red dotted
line and squares). This asymptotic estimator provides
a better estimation of the large deviation function than

Ψ
(Nc=100)
s (T = 500) (and also than g

(T )
∞ ), as can be seen

in Fig. 10. Below we summarize the method to extract
this infinite-time - infinite-size limit.

B. The Scaling Method

The scaling method which allows us to extract the
infinite-time and infinite-size limit of the CGF estima-
tor is summarized as follows:

1. Determine the average over R realizations Ψ
(Nc)
s (t)

(equation (12)) up to a final simulation time T for

~Nc = {N (1)
c , ..., N

(j)
c }.

2. Extract the infinite-time limit f
(Nc)
∞ (equation (19))

from a fit in time f
(Nc)
t = f

(Nc)
∞ + b

(Nc)
t t−1 (equa-

tion (16)) over Ψ
(Nc)
s (t) for each Nc ∈ ~Nc.

3. Extract the infinite-size limit f∞∞ from a fit f
(Nc)
∞ =

f∞∞ + b
(Nc)
∞ N−1

c (equation (32)) in size of the

infinite-time limit f
(Nc)
∞ .

The value f∞∞ represents the asymptotic limit to which
the CGF estimator converges as the simulation time t
and the number of clones Nc go to infinite, i.e.,

f∞∞ = lim
Nc→∞

lim
t→∞

Ψ
(Nc)
s (t). (33)

The value obtained numerically is in very good agreement
with the analytical one.

VI. A DIFFERENT CGF ESTIMATOR

Here we introduce another CGF estimator

Φ(Nc)
s =

1

T
log

Kr∏
i=1

Xr
i (34)

which is different from Ψ
(Nc)
s defined in equation (12).

We note that, in this definition, the average with respect
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to realizations are taken inside the logarithm. As we dis-
cussed in Sec. IV.C of Part I, this estimator also provides
a correct value of CGF ψ(s) in the infinite-time infinite-
Nc limits. This is thanks to the fact that the distribution

of Ψ
(Nc)
s concentrates around ψ(s) in those limits (the

so-called “self-averaging” property). At any finite popu-

lation, one can rewrite Φ
(Nc)
s using the large-time LDF

principle (26) as follows:

Φ(Nc)
s =

1

T
log eTΨ

(Nc)
s (35)

=
1

T
log

∫
dΨ e−T [INc (Ψ)+Ψ] (36)

which proves that in the large-T limit,

Φ(Nc)
s = min

Ψ

[
INc(Ψ) + Ψ

]
, (37)

to be compared to

Ψ
(Nc)
s = argmin

Ψ
INc(Ψ). (38)

Physically, the definition (34) amounts to estimate ψ
from the exponential growth rate of the average of the
final-T population of many small “islands” where the
cloning algorithm would be operated, while the estima-
tor (12) amounts to estimate ψ from growth rate of a
large “island”. The later is thus expected to be a bet-
ter estimator of ψ(s) than the former, i.e., the estimator

Φ
(Nc)
s thus appears a priori to be worse estimator than

Ψ
(Nc)
s of ψ(s). However, as shown in Sec. IV.C of Part I,

at small |s| and finite-Nc, a supplementary bias intro-
duced by taking (34) instead of (12) in fact compensates
the finite-Nc systematic error presented by (12), for the
model that we consider. Namely, the error is O(sN−1

c )
for (12) while it is O(s2N−1

c ) for (34). This fact is illus-
trated on Fig. 11, where we show that at small s = 0.2,

Φ
(Nc)
s provides a better estimation of ψ(s) than Ψ

(Nc)
s ,

while at larger |s| (here, s = −1) the two estimators
yield a comparable error.

VII. CONCLUSION

Direct sampling of the distribution of rare trajectories
is a rather difficult numerical issue (see for instance [18]
for an exhaustive study) because of the scarcity of the
non-typical trajectories. We have shown how to increase
the efficiency of a commonly used numerical method (the
so-called cloning algorithm) in order to improve the eval-
uation of large deviation functions which quantify the dis-
tribution of such rare trajectories, in the long time limit.
Following our analytical study (Part I, [1]), we have ver-
ified and exploited the finite-size and finite-time scaling
behavior of estimators (and their distribution) in order to
design an improved version of the algorithm which pro-
vides more reliable results (i.e. less affected by systematic
errors due to finite time and finite population size).
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-0.090.79

FIG. 11. Comparison between two different estimators of the

large deviation function, Ψ
(Nc)
s (equation (12)) shown in dots

and Φ
(Nc)
s (equation (34)) in circles. The analytical value ψ(s)

(equation (14)) is shown with a dashed line. Here we have also
compared two different values of parameter s = 0.2 (blue) and
s = −1 (black). Additionally, Nc = 100, c = 0.4, T = 500
and R = 500. As discussed in the text, the non-standard

estimator Φ
(Nc)
s provides a better numerical evaluation of the

CGF at small s.

We note that the scalings which rule the convergence
to the infinite-size infinite-time limits (with corrections in
1/Nc and in 1/t) have to be taken into account properly:
indeed, as power laws, they present no characteristic size
and time above which the corrections would be negligi-
ble. The situation is very similar to the study of the
critical depinning force in driven random manifolds: the
critical force presents a corrections in one over the sys-
tem size [19] which has to be considered properly in order
to extract its actual value. Generically, such scalings also
provide a convergence criterion to the asymptotic regimes
of the algorithm: one has to confirm that the CGF esti-
mator does present corrections (first) in 1/t and (second)
in 1/Nc with respect to an asymptotic value in order to
ensure that such value does represent a correct evaluation
of the LDF.

It would be interesting to extend our study of these
scalings to systems presenting dynamical phase transi-
tions (in the form of a non-analyticity of the CGF), where
it is known that the finite-time and finite-size scalings of
the CGF estimator can be very hard to overcome [9]. In
particular, in this context, it would be useful to under-
stand how the dynamical phase transition of the original
system translates into anomalous features of the distri-
bution of the CGF estimator in the cloning algorithm.
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