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Interconnected delay and state observer for nonlinear systems with
time-varying input delay

V. Léchappé, E. Moulay, F. Plestan and A. Glumineau

Abstract— This work presents a general framework to es-
timate both state and delay thanks to two interconnected
observers. This scheme can be applied to a large class of
nonlinear systems with time-varying input delay. In order
to illustrate this approach, a new delay observer based on
an optimization technique is proposed. Theoretical results are
illustrated and compared with existing works in simulation.

Index Terms— Input delay, interconnected observers, time-
delay estimation, state observation.

I. I NTRODUCTION

State observation is very useful to design output feedback
when the whole state is not available. Many techniques have
been developed such as Luenberger observer for linear sys-
tems [17], Kalman filter for linear time varying systems [10],
high-gain observer for uniformly observable systems [8].
These observers have been designed for delay free systems.
For delay systems, standard state observers can often be
adapted when the delay is known [9], [11], [24]. Although
some works deal with state observation with unknown delay
[19], [21], very few articles tackle the issue of both state and
delay estimation.

In practical applications, the input delay is often impos-
sible to measure but it is also often very prejudicial for the
stability of the system. The standard way to stabilize such
systems is to use predictive controllers [1], [13], [15]. How-
ever, the delay has to be known to compute the prediction.
Therefore, estimating the delay is an essential challenge.
First works about delay estimation in the control field often
consider the delay as a parameter and apply identification
techniques [2], [23]. A larger description of delay estimation
techniques is provided in [14].

Very recently, some works have arisen about state observa-
tion and delay estimation. In [22], parameter, state and delay
estimation is proposed for chaotic and hyperchaotic delayed
systems. In [5], the authors present an observation technique
for linear systems that may be seen as a specific case of
the more general framework treated here. A method based
on a particular sample/hold technique is given in [7] but no
interconnection is made between delay estimation and state
observation. Finally, a new observation method is proposed
in [14]. In this latter work, the delay is considered as a part
of an extended state and a single observer estimates both
state and delay; so it is not possible to tune them separately
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because the observer has only one gain that governs the
convergence speed of the state and the delay estimation.

The contribution of the present work is to provide a
new structure to observe both the delay and the state for
SISO nonlinear systems. The first contribution is to use an
interconnected scheme to decouple delay observation from
state observation and thus to allow a separate tuning of
both observers. This is particularly important for input delay
systems whose delay dynamics is often very different from
system dynamics. The second contribution is the design of
an original delay observer, based on the combination of
an Extended System Observer (ESO) and an optimization
method.

This paper is organized as follows. The problem statement
is presented in Section II. Then, a general result for state
and delay interconnected observers is provided in Section
III. In Section IV, a state observer and a delay observer are
shown to satisfy the conditions of the general scheme. The
performance of the interconnected observer is confirmed by
a simulation analysis in Section V. Finally, some conclusions
are drawn in Section VI.

II. PROBLEM STATEMENT

In this paper, a class of SISO nonlinear systems with
a time-varying and unknown delayτ(t) in the input u is
considered. These systems are defined as follows







ẋ = Λx+ f(x) + g(y)u(t− τ(t))
y = Cx = x1

x(0) = x0

(1)

with x = [x1, . . . , xn]
T ∈ R

n, y ∈ R, u ∈ R,

Λ =

[

0 In−1

0 0

]

, g(y) = [0, . . . , G(y)]T ,

f(x) =











f1(x1)
f2(x1, x2)

...
fn(x1, . . . , xn)











and C = [1, 0, . . . , 0].

In the sequel, the following assumptions are used.
Assumption 1: The functionsf andG are respectively in

C1(Rn) and C1(R) and f is globally Lipschitz,i.e. there
existsc1 > 0 such that for(x, z) ∈ R

n × R
n

||f(x)− f(z)|| ≤ c1||x− z||.
Assumption 2: The function G is bounded,i.e. there

existsḠ > 0 such that for ally ∈ R

|G(y)| ≤ Ḡ.



Assumption 3: The delay istime-varying and unknown
and τ ∈ [τmin, τmax] with τmin, τmax > 0. Its dynamics is
denotedτ̇ (t) = ητ (t).
The subscriptt will sometimes be omitted to make the
presentation clearer.

Assumption 4: The input u is twice time differentiable
and its time derivatives are bounded,i.e. there exist constant
U1, U2 > 0 such that for allt ≥ −τmax

|u̇(t)| ≤ U1 and |ü(t)| ≤ U2.

Thanks to the triangular form of matrixΛ, it is clear that
system (1) is observable with respect tox. As for the
delay, the observability condition is strongly related to the
properties of the input signalu. The observability condition
is given below

Theorem 1: The delayτ is observable if and only if

G(y(t)) 6= 0 ∀t ≥ 0 (2)

and
u̇(t) 6= 0 ∀t ≥ −τmax. (3)

The proof is similar to the one given in [14]. Condition (3)
is quite natural because if the input is constant, the delay
has no influence on the system so it cannot be observed.
Nevertheless, it is restrictive because it means that the input
should be strictly monotonic. Similarly, the condition on
G(y) can be restrictive. In practice, the notion of persistence
can be used to relax these conditions [3]. Condition (3)
justifies the assumption introduced by [6]

Assumption 5: There are time intervalsI sufficiently
large where the first derivative ofu is continuous and
bounded: for allt ∈ I,

α < |u̇(t)| (4)

with α > 0.
Indeed, if (4) holds then (3) is automatically verified onI.
Conditions (2) and (4) are assumed to be verified in the rest
of the paper. A new general scheme is proposed in the next
section to estimate both the delay and the state of system (1)
thanks to two interconnected observers.

III. I NTERCONNECTED STATE AND DELAY OBSERVERS

The scheme is summarized on Figure 1. Especially, all
state observers existing for system with known delay can
be used (Luenberger, Kalman, high-gain, sliding-mode...). In
this section, a general framework is considered and some
particular observers will be studied in Section IV.

State observer

u(t)
u(t)

u(t− τ̃ )

τ̃ (t)

y(t)

Delay estimator

x̂(t)

[z̃, τ̃ ]

x̂

Fig. 1. State observer interconnected with delay observer

Following the notation of Figure 1, the state estimation
error is denoted

ex = x̂− x

and the errors of the delay observer are

ez = z̃ − z and eτ = τ̃ − τ.

The variablez̃ in the delay observer block of Figure 1 is an
auxiliary variable that will be useful to compute an estimate
of the delay. Thez variable can contain for example the input
u(t − τ) and its time derivative as shown in the particular
example of Section IV-B. In the sequel,Vx (respectively
Vzh) will refer to a Lyapunov candidate function for the
state observer (respectively the delay observer). These two
observers are connected by the estimated delayτ̃ that enters
the state observer throughu(t−τ̃ ) and by the state estimation
x̂ that enters the delay observer. To study the convergence of
the whole system, the interconnected subsystems approach
is going to be used. As it will be useful in the sequel, some
notations are reminded:

• A continuous functionα : [0, a[→ [0,∞[ is said to
belong to classK if it is strictly increasing andα(0) =
0.

• A continuous functionβ : [0, a[×[0,∞[ 7→ [0,∞[ is said
to belong to classKL if, for each fixeds, the mapping
β(r, s) belongs to classK with respect tor and for each
fixed r, the mappingβ(r, s) is decreasing with respect
to s andβ(r, s) → 0 ass → ∞.

Next theorem states a general result for interconnected
delay and state observers.

Theorem 2: For the disturbance free system, suppose that
there exist a state observer such that

V̇x ≤ −cx||ex||
2 + cxτ ||ex|| ||eτ || (5)

and a delay observer such that

V̇zh ≤ −cz||ez||
2 − cτ ||eτ ||

2

+czτ ||ez|| ||eτ ||+ czx||ez|| ||ex||
(6)

with cx, cz, cτ , cxτ , czx, czτ > 0. An appropriate choice of
cx, cz , cτ , guarantees the existence of a classKL function
β, a finite timeT and an initial timet0 such that the errore =
[eTx , e

T
z , zτ ]

T of the disturbed system is uniformly bounded

||e(t)|| ≤ β(||x(t0)||, t− t0), for all t0 ≤ t ≤ t0 + T

and
||e(t)|| ≤ δ, for all t ≥ t0 + T.

Remark 3.1: The constantscx, cz, cτ , cxτ , czx, czτ will
depend on the observer parameters. In particular,cx, cz, cτ
will be directly proportional to the observer gains as it will
be shown in the next section on particular examples.

Proof: First, the uniform asymptotic convergence of
the disturbance free system is worked out. The Lyapunov
candidate function for the interconnected system is the sum
of the Lyapunov functions of the isolated systems:

V = Vx + Vzh.



Consequently, from (5) and (6), the time derivative ofV

satisfies

V̇ ≤−[||ex||, ||ez|| ||eτ ||]





cx − 1
2czx − cxτ

2
− 1

2czx cz − czτ
2

− cxτ

2 − czτ
2 cτ









||ex||
||ez||
||eτ ||



.

(7)
In order to haveV̇ negative, the matrix

S =





cx − 1
2czx − cxτ

2
− 1

2czx cz − czτ
2

− cxτ

2 − czτ
2 cτ





has to be positive definite: then, the leading principal minors
of S must be positivei.e.






cx > 0
cxcz −

1
4c

2
zx > 0

cxczcτ−
1
4c

2
zτcx−

1
4c

2
xτcz−

1
4czxcxτczτ−

1
4cτc

2
zx > 0

As reminded in Remark ; the termscx, cz, cτ are proportional
to the observers gains so they can be chosen sufficiently large
in order to makeS definite positive.

The uniform boundedness of the disturbed system directly
results from the application of Lemma 9.3 in [12].

IV. PARTICULAR SOLUTIONS FOR STATE AND DELAY

OBSERVERS

In this section, some observation solutions are exhibited
to illustrate the general consideration of above section. First,
a state observer is designed and it is shown that it complies
with (5). Then, a delay observer is presented and condition
(6) is checked.

A. State Observer

A Kalman-Like observer [4] is chosen to observe the state
of system (1). This choice has been made because of its
simplicity; indeed, it only has one tuning parameter. Observer
equations are given below






˙̂x=Λx̂+ f(x̂) + g(y)u(t− τ̃ )− S−1
x CTC(x̂− x)

−ρxSx−Λ
TSx−SxΛ+CTC = 0

Sx(0) = Sx(0)
T > 0.

(8)
It is important to note that the inputu is affected by the
delay estimatioñτ and not the real delayτ . The dynamics
of the state observation error is given by

ėx = (Λ−S−1
x CTC)ex+f(x̂)−f(x)+g(y)[u(t−τ̃)−u(t−τ)]

(9)
Remark 4.1: In (9), it is clear from the continuity ofu

that the error termu(t− τ̃ )− u(t− τ) will tend to zero as
soon as̃τ tends toτ .
To prove that condition (5) holds for state observer (8), the
following Lyapunov candidate function is defined

Vx = eTxSxex (10)

with Sx the unique symmetric positive definite matrix solu-
tion of the Lyapunov equation in (8). From [4], there exist
δ̄x, δx > 0 such that

δxIn ≤ Sx ≤ δ̄xIn (11)

whereIn is the identity matrix of dimensionn. Taking the
time-derivatives ofVx along the trajectories of (1) leads to

V̇x = −ρxe
T
xSxex − eTxC

TCex + 2eTxSx[f(x)− f(x̂)]+
2[u(t− τ̃ )− u(t− τ)]G(y)TSxex.

Then, from equation (11) and Assumptions 1,2, one derives
the inequality

V̇x ≤ −ρxδx||ex||
2 + 2c1δ̄x||ex||

2

+2Ḡδ̄x||ex|| |u(t− τ̃ )− u(t− τ)|.
(12)

From the mean value theorem, there existsκt ∈ [min(t −
τ, t− τ̃ ),max(t− τ, t− τ̃ )] such that

u(t− τ̃)− u(t− τ) = (τ − τ̃ )u̇(κt) (13)

so from Assumption 4 one has

V̇x ≤ −ρxδx||ex||
2 + 2c1δ̄x||ex||

2

+2ḠU1δ̄x||ex|| ||eτ ||.
(14)

Finally, takingρx sufficiently large, the above equation can
be rewritten as follows

V̇x ≤ −cx||ex||
2 + cxτ ||ex|| ||eτ || (15)

with cx, cxτ > 0. Consequently, this state observer satisfies
(5). In the simulation section, this observer will be tested
with the delay observer designed thereafter.

B. New Delay Observer

This delay observer is based on the minimization of the
criterion

J(τ̃ ) = [u(t− τ̃ )− u(t− τ)]2 (16)

on [τmin, τmax]. However, usuallyu(t− τ) is not available.
The idea is to compute an estimationũ(t − τ) of u(t − τ)
and to optimize the approximated criterion

J̃(τ̃ ) = [u(t− τ̃)− ũ(t− τ)]2. (17)

Note that the accuracy of the delay estimation is tightly
related to the accuracy of̃u(t− τ). The following dynamics,
inspired from [16], is proposed for the delay estimation

˙̃τ = −ρτ [u(t− τ̃)− ũ(t− τ)]
∂u(t− τ̃ )

∂τ̃
. (18)

Since
∂u(t− τ̃ )

∂τ̃
= −

∂u(t− τ̃ )

∂t
,

it results that the dynamics of̃τ is

˙̃τ = ρτ [u(t− τ̃)− ũ(t− τ)]u̇(t− τ̃). (19)

In practice, the time derivative ofu is not always available
so it will be approximated by

µ(t) =
u(t− τ̃ )− u(t− τ̃ − h)

h
(20)

whereh is an artificial delay. Thus, equation (19) becomes

˙̃τ = ρτ [u(t− τ̃ )− ũ(t− τ)]µ(t). (21)



In the sequel, it is assumed that there exist intervalsI such
that t − τ̃ (t) − h ∈ I, t − τ(t) ∈ I and |u̇(s)| > α for
all s ∈ I (Assumption 5). To estimateu(t − τ), the ESO
(Extended System Observer) technique is used (see [18] for
references on this method). To achieve a better accuracy [20],
it has been decided to also observeu̇(t− τ). Therefore, the
extended system reads as







ż = Λzz + fz(x) +Γz(t)
τ̇ (t) = ητ (t)
y = Czz = [1, 0, 0]z = xn

(22)

with z = [xn, u(t− τ), u̇(t− τ)]T ,

Λz =





0 G(y) 0
0 0 1
0 0 0



 ,

fz(x) = [f(x), 0, 0]T andΓz(t) = [0, 0, ηu(t)]
T whereηu is

unknown. The output of (22) isxn; however,xn is unknown
but the valuêxn given by state observer (8) will be used in
the observer design. The equations of the delay observer are
given below:







˙̃z = Λz z̃ + fz(x̂)− S−1
z CT

z [x̃n − x̂n]

Ṡz = −ρzSz−Λ
T
z Sz−SzΛz+CT

z Cz

Sz(0) = Sz(0)
T > 0

(23)

and
˙̃τ = ρτ [u(t− τ̃)− Cuz̃]µ(t) (24)

with z̃ = [x̃n, ũ(t− τ), ˜̇u(t− τ)]T , Cz = [1, 0, 0] andCu =
[0, 1, 0]. To sum up, the observer can be divided into two
parts. The first part (23) that allows to observeu(t− h) and
the estimation delay dynamics in (24). Reminding that

x̃n − x̂n = Cz z̃ − Czz + Czz − Cnx̂

= Czez − Cnex
(25)

with Cn ∈ R
n andCn = [0, . . . , 0, 1], then the dynamics of

the delay observation errors are

ėz = [Λz − S−1
z CT

z Cz ]ez + fn(x̂)− fn(x)+

S−1
z CT

z Cnex − Γz(t) (26)

and
ėτ = ρτ [u(t− τ̃)− ũ(t− τ)]µ(t) − ητ (t). (27)

Note that the dynamicsΓz and ητ are unknown and will
be considered as a perturbation of the error dynamics. To
analyze the stability of this observer, the following Lyapunov
candidate function is defined

Vzτ = Vz + Vτ (28)

with Vz = eTz Szez and Vτ = 1
2 (τ̂ − τ)2. Taking the time

derivative ofVτ along the trajectories of (27) gives

V̇τ = ρτ (τ̃ − τ)[u(t− τ̃ )− ũ(t− τ)]µ− (τ̃ − τ)ητ . (29)

Since

u(t− τ̃ )− ũ(t− τ) = u(t− τ̃)− u(t− τ)−Cuez(t) (30)

then from the mean value theorem there existφt ∈ [min(t−
τ, t− τ̃ ),max(t− τ, t− τ̃ )] such that

u(t− τ̃ )− ũ(t− τ) = (τ − τ̃ )u̇(φt)− Cuez(t). (31)

In the same way, there existsθt ∈ [t− τ̃ −h, t− τ̃ ] such that

µ(t) = u̇(θt) =
u(t− τ̃)− u(t− τ̃ − h)

h
(32)

so one gets

V̇τ = −ρτ (τ̂ − τ)2u̇(φt)u̇(θt)− (τ̂ − τ)[ρτ u̇(θt)Cuez + ητ ].
(33)

Provided thatt− τ̃−h, θt andφt are in intervalI, the terms
u̇(φt) and u̇(θt) have the same sign so it follows that

V̇τ (t) ≤ −ρτα
2||eτ ||

2+ρτU1||eτ || ||ez||+ρτ ||eτ || sup
s≤t

|ητ (s)|

(34)
with U1 defined in Assumption 4. As a result, forητ = 0,
the maximization

V̇τ ≤ −ρτα
2||eτ ||

2 + ρτU1||ez|| ||eτ || (35)

can be deduced from the above equation.
Taking the time derivative ofVz along the trajectories of

(26) leads to

V̇z = −ρze
T
z Szez − eTz CzCzez + 2eTz Sz [f(x̂)−f(x)]

+2eTz C
T
z Cnex

(36)
for Γz = 0. Besides, there existst0 > 0, such that for all
t ≥ t0, Sz verifies

δzIn ≤ Sz(t) ≤ δ̄zIn (37)

for ρz sufficiently large and whereδz and δ̄z are positive
constants (see [4]). Sincef is globally Lipschitz (Assump-
tion 1), one can obtain the following maximization

V̇z ≤ −ρzδz||ez||
2 + czx||ez|| ||ex|| (38)

with cxz > 0. Then, from (35) and (38), one gets

V̇zτ ≤−cz||ez||
2+czx||ez|| ||ex||−cτ ||eτ ||

2+czτ ||ez|| ||eτ ||
(39)

with cz = ρzδz, cτ = ρτα
2 and czτ = ρτU1. Therefore,

delay observer (23)-(24) satisfies condition (6).
In the next section, this new delay observation method is

going to be illustrated and its performances will be compared
with the results from [14].

V. SIMULATION

A. A nonlinear example: the pendulum

Simulations are carried out on a pendulum whose equa-
tions are






ẋ(t) =

[

x2

− g
l
sinx1 −

k
mp

x2

]

+

[

0
1

mpl2

]

u(t− τ)

y(t) = Cx(t) = x1(t),

(40)

with g = 9.81 m.s−2 the acceleration due to gravity,
mp = 0.2 kg the mass of the bob,l = 0.5 m the length
of the rod andk = 0.3 kg.s−1 the friction coefficient.



Details of the modeling are given in the Example section

of [12]. The identification with (1) leads toΛ =

[

0 1
0 0

]

,

f(x) = [0,− g

l
sinx1 − k

mp

x2]
T and G(y) = 1

mpl2
. The

functions f and G satisfy Assumptions 1 and 2. In the
simulation, the observation of a piecewise constant delay and
a sine delay are implemented; the exact expression of the
delay is given below:

τ(t) =















0.4 for 0 ≤ t < 20
1 for 20 ≤ t < 40
0.6 for 40 ≤ t < 60
0.6 + 0.45 sin(0.2t) for t ≥ 60

(41)

Note thatτ verifies Assumption 3 withτmin = 0.1 s and
τmax = 1.2 s. To analyze the influence of the input dynamics
on the delay estimation, two signals are used:

• u1(t) = 0.1t
• u2(t) = sin(0.2t).

Both signals satisfy Assumption 4. However, onlyu1 satisfies
the delay observability condition of Theorem 1. Foru2, the
observer will go through observation singularities whenu̇2 =
0. The state observer














˙̂x(t) = Λx̂(t) +

[

0
− g

l
sin x̂1 −

k
mp

x̂2

]

+

[

0
1

mpl2

]

u(t)

−S−1CT (x̂1 − x1)

Ṡ = −ρS −Λ
TS − SΛ+ CTC

(42)
and the delay observer























˙̂z = Λz ẑ + fz(x̂)− S−1
z CT

z [Cz ẑ − C2x̂]

Ṡz = −ρzSz−Λ
T
z Sz−SzΛz+CT

z Cz

Sz(0) = Sz(0)
T > 0

˙̃τ(t) = ρτ [u(t− τ̃ (t))− Cuẑ]µ(t)

µ(t) = u(t−τ̃)−u(t−τ̃−h)
h

(43)

with Λz =





0 1
mpl2

0

0 0 1
0 0 0



, fz(x̂) = [− g
l
sin x̂1 −

k
mp

x̂2, 0, 0]
T Cz = [1, 0, 0], C2 = [0, 1], Cu = [0, 1, 0],

h = 0.1 are tested. On Figure 2, the ramp inputu1 is applied
to system (40). Sincëu1 = 0, thenũ(t−τ) → u(t−τ). When
the delay is constant,ηt = 0 so the delay estimate converges
asymptotically to the real value of the delay. Consequently,
the state estimation error asymptotically converges to zero.
When the delay is time-varying, an unavoidable error due to
the delay dynamics appears. As a consequence, the state ob-
servation error can converge asymptotically to zero anymore:
it converges in a ball around the origin (less than1% error).
On Figure 3, the sine inputu2 is applied to system (40). In
this caseü2 is different from zero sõu(t − τ) tends to a
neighborhood ofu(t− τ). Consequently, this small error on
ũ(t−τ) causes a small error oñτ and finally onx̂. However,
the radius of the errors||ex|| is small (about1% error) and
the delay estimation is quite accurate.

Remark 5.1: The inputu2 presents observation singular-
ities because its time derivative cancels in some isolated
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Fig. 2. u(t) = u1(t) (ramp),ρx = 10, ρz = 10, ρτ = 40
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Fig. 3. u(t) = u2(t) (sine),ρx = 10, ρz = 10, ρτ = 40

points. However, this delay observer is not sensitive to the
observability loss (persistence property).

These errors can be attenuated by increasing the observers
gains ρx, ρz and ρτ . On Figure 4, the same inputu2 is
applied but the gains have been increased. It is clear that the
estimation errors are reduced. However, the gains amplitude
has to been chosen as a trade off between, noise amplification
and observation accuracy in practice. Theoretical results
developed in preceding sections are confirmed by simulations
and an interesting property of the new delay observation
technique is highlighted: the non sensitivity to observation
singularity in u̇ = 0. In the next subsection, a comparison
with the results of [14] is presented.

B. A comparison with delay state observer in [14]

The linear second order system of [14] is reminded:






ẋ(t) =

[

0 1
−2 −3

]

x(t) +

[

0
1

]

u(t− τ)

y(t) = Cx(t) = x1(t).
(44)

The system is observable and Assumptions 1 and 2 are
verified since the system is linear. The same delayτ and
input u2, as defined in subsection V-A, are used.
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Fig. 4. u(t) = u2(t) (sine),ρx = 20, ρz = 20, ρτ = 50

Figure 5 shows the results of the interconnected observers
scheme developed in the present paper and the method
of [14]. The observation errors on the state is better for
our method of interconnected observers because it does not
have large transients. Similarly, delay observer (43) performs
better than the one of [14] since it is less sensitive to
the observation singularity (u̇2 = 0). This illustrates the
improvement of the presented method over the result in [14].
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Fig. 5. Comparison between the observer in [14] withu(t) = u2(t) (sine)

VI. CONCLUSION

In this paper, a new scheme of interconnected observers is
proposed to estimate both the state and the delay of nonlinear
systems with input delay. The advantage of decoupling state
and delay observation is to allow an independent tuning of
both observers and to use standard state observers. A new
delay estimation technique based on an optimization method
has been presented and its efficiency has been illustrated
through simulations. Future developments aim at including
a controller that will compute a prediction using delay and
state estimations from an interconnected observer. The design
of an adaptive gain for the delay observer is also taken into
consideration for further study.
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