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Interconnected delay and state observer for nonlineaessstvith
time-varying input delay

V. Léchappé, E. Moulay, F. Plestan and A. Glumineau

Abstract— This work presents a general framework to es- because the observer has only one gain that governs the
timate both state and delay thanks to two interconnected convergence speed of the state and the delay estimation.
obs?rvers. This SChe.";]e can be applied todal large Claass o The contribution of the present work is to provide a
nonlinear systems with time-varying Input delay. In order new structure to observe both the delay and the state for

to illustrate this approach, a new delay observer based on A ) < :
an optimization technique is proposed. Theoretical resut are SISO nonlinear systems. The first contribution is to use an

illustrated and compared with existing works in simulation. interconnected scheme to decouple delay observation from

Index Terms—Input delay, interconnected observers, time- state observation and thus to allow a separate tuning of
delay estimation, state observation. both observers. This is particularly important for inputaye

systems whose delay dynamics is often very different from

. INTRODUCTION system dynamics. The second contribution is the design of

State observation is very useful to design output feedba@g original delay observer, based on the combination of
when the whole state is not available. Many techniques ha@® Extended System Observer (ESO) and an optimization
been developed such as Luenberger observer for linear sygethod.
tems [17], Kalman filter for linear time varying systems [10] ~ This paper is organized as follows. The problem statement
high-gain observer for uniform|y observable Systems [8]|S presented in Section II. Then, a general result for state
These observers have been designed for delay free systefidd delay interconnected observers is provided in Section
For delay systems, standard state observers can often IBeln Section 1V, a state observer and a delay observer are
adapted when the delay is known [9], [11], [24]. Althoughshown to satisfy the conditions of the general scheme. The
some works deal with state observation with unknown delagerformance of the interconnected observer is confirmed by
[19], [21], very few articles tackle the issue of both statea & simulation analysis in Section V. Finally, some conclasio
delay estimation. are drawn in Section VI.

_ In practical applicaﬁo_ns, the input delay is_ of_tgn impos- Il. PROBLEM STATEMENT
sible to measure but it is also often very prejudicial for the _ . .
stability of the system. The standard way to stabilize such '.” this paper, a class of SISO nor!hnear §ystem§ with
systems is to use predictive controllers [1], [13], [15].viHo a tlme—varylng and unknown delay(t) in the inputu is
ever, the delay has to be known to compute the predictioﬁpns'dere‘d' These systems are defined as follows

Therefore, estimating the delay is an essential challenge. = Az + f(z) + g(y)u(t — 7(t))
First works about delay estimation in the control field often y=Cr = (1)
consider the delay as a parameter and apply identification z(0) = zo

techniques [2], [23]. A larger description of delay estiinat

H _ T n
techniques is provided in [14]. with z = [z1,...,2,]" €R", y €R, u €R,

Very recently, some works have arisen about state observa- A~ 0 I, () = [0 Gly)"
tion and delay estimation. In [22], parameter, state andydel o o |» 9¥ e W
estimation is proposed for chaotic and hyperchaotic delaye
systems. In [5], the authors present an observation teabniq Ji(1)
for linear systems that may be seen as a specific case of ) _ fz(:c%,:cz) and C=[1,0,...,0].
the more general framework treated here. A method based :
on a particular sample/hold technique is given in [7] but no folz1, .. zp)

interconnection is made between delay estimation and sta}tethe sequel, the following assumptions are used

observation. Finally, a new observation method is propose . . ; . .
. . . . Assumption 1: The functionsf andG are respectively in
in [14]. In this latter work, the delay is considered as a par 1(R") and C1(R) and f is globally Lipschitz,i.e. there
of an extended state and a single observer estimates bgth T

state and delay; so it is not possible to tune them separate(zws'tsc1 > 0 such that for(z, z) € R™ x R
1f(z) = F(2)|] < el — =]].

Vincent Léchappé, Franck Plestan and Alain Glumineau ath - Assumption 2: The function G is bounded.i.e. there
NAM Université, Ecole Centrale de Nantes, IRCCyN UMR CNR®B5 . = !
existsGG > 0 such that for ally € R
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Emmanuel Moulay is with Xlim, UMR CNRS 7252, Université deitizos =
emanuel . noul ay@ni v-poitiers.fr |G(y)| <G.



Assumption 3: The delay istime-varying and unknown Following the notation of Figure 1, the state estimation
and T € [Timin, Tmaz] With Tmin, Tmaes > 0. Its dynamics is error is denoted
denotedr(t) = n,(t). ex =2 —x
The subscriptt will sometimes be omitted to make the
presentation clearer.

Assumption 4: The inputw is twice time differentiable
and its time derivatives are bounde®, there exist constant

and the errors of the delay observer are

e,=%2—2z and e, =7—T.

Ui, Uz > 0 such that for allt > —7,,45 The variablez in the delay observer block of Figure 1 is an
) i auxiliary variable that will be useful to compute an estienat
la(t)] < Uy and i(t)| < Us. of the delay. The variable can contain for example the input

Thanks to the triangular form of matriA, it is clear that
system (1) is observable with respect 10 As for the
delay, the observability condition is strongly related he t
properties of the input signal. The observability condition
is given below

u(t — 7) and its time derivative as shown in the particular
example of Section IV-B. In the sequél, (respectively
V.n) will refer to a Lyapunov candidate function for the
state observer (respectively the delay observer). These tw
observers are connected by the estimated deldnat enters

Theorem 1: The delayr is observable if and only if the state observer througlfit—7) and by the state estimation
Gly(t) £0 Vt>0 @) I that enters the delay o_bserver. To study the convergence of
the whole system, the interconnected subsystems approach
and is going to be used. As it will be useful in the sequel, some
w(t) #0 Yt > —Tmas- (3) notations are reminded:

The proof is similar to the one given in [14]. Condition (3) , A continuous functiono : [0,a[— [0,00[ is said to

is quite natural because if the input is constant, the delay pelong to class if it is strictly increasing andy(0) =
has no influence on the system so it cannot be observed. ()

Nevertheless, it is restrictive because it means that thetin -, A continuous functions : [0, a[x [0, co[— [0, o] is said

should be strictly monotonic. Similarly, the condition on to belong to clas«C. if, for each fixeds, the mapping
G(y) can be restrictive. In practice, the notion of persistence B(r, s) belongs to clask with respect ta- and for each

can be used to relax these conditions [3]. Condition (3) fixed r, the mapping3(r, s) is decreasing with respect
justifies the assumption introduced by [6] to s and 3(r, s) — 0 ass — oc.

Assumption 5: There are time intervald sufficiently
large where the first derivative ofi is continuous and
bounded: for allt € I,

Next theorem states a general result for interconnected
delay and state observers.

Theorem 2: For the disturbance free system, suppose that
o < |u(t)| (4) there exist a state observer such that

with a > 0.

Indeed, if (4) holds then (3) is automatically verified én
Conditions (2) and (4) are assumed to be verified in the reand a delay observer such that
of the paper. A new general scheme is proposed in the next
section to estimate both the delay and the state of system (1)
thanks to two interconnected observers.

Vz§_0w||ew||2+cml|ew|| lle~]| (5)

Vin < —cz||ez||2—cT||€-,—||2
+earllexl] [ler|] + czalle|| [lexl]

(6)

with ¢, c., ¢ry Cor, Coz, cor > 0. An appropriate choice of

¢z, C, Cr, Quarantees the existence of a cl&s8 function
The scheme is summarized on Figure 1. Especially, al, a finite timeT" and an initial timety such that the errar =

state observers existing for system with known delay ca?, el 2|7 of the disturbed system is uniformly bounded

be used (Luenberger, Kalman, high-gain, sliding-modén.)

this section, a general framework is considered and somé|e(lﬁ)|| < B(lz(to)ll,t = to),

IIl. INTERCONNECTED STATE AND DELAY OBSERVERS

forall ta<t<ty+T

particular observers will be studied in Section IV. and
lle@®)|] <4, forall t>ty+T.
u(t) —» u(t) Remark 3.1: The constantsc,,c., ¢, Cor, Coz, Cor WIll
I #(t) depend on the observer parameters. In particular., ¢,

will be directly proportional to the observer gains as itlwil
be shown in the next section on particular examples.

Proof: First, the uniform asymptotic convergence of
the disturbance free system is worked out. The Lyapunov

4-‘—1/“) candidate function for the interconnected system is the sum
of the Lyapunov functions of the isolated systems:

Fig. 1. State observer interconnected with delay observer V=V,+ V..

(t) u(t —7)




Consequently, from (5) and (6), the time derivative 16f whereI,, is the identity matrix of dimension. Taking the

satisfies time-derivatives ofV, along the trajectories of (1) leads to
1 Cer .
. € —3Ca —%7| lleal] Vo= —poelSpes — eTOTCey + 2678, [f (2) — f(2)]+
Vs Aleablielllerll | ~geee 2 5|l ult = 7) - ult — Gy Srer
. Then, from equation (11) and Assumptions 1,2, one derives
In order to havel” negative, the matrix the inequality
1 Cor . _
fm _§sz _c2 Vm < —Pzé§||€z||2 + 2cl5z||em||2 (12)
=730 & —F +2G04||eal| |ult — 7) — u(t — 7).
i A

From the mean value theorem, there existsc [min(t —
7,t —7),max(t — 7,t — 7)] such that

ult—7)—ult—71)= (7 — 7)u(ke) (13)

has to be positive definite: then, the leading principal mgno
of S must be positive.e.

c: >0

1.2 .
CxCz — Zfzmz >0 Ly ) L so from Assumption 4 one has
CrCoCr— 4 CorCq— 5 CrCa— 7 CanCarCar — 7CrCoy > 0

’ 2 Ny 2
As reminded in Remark ; the terms, c., ¢, are proportional Vo < —gmé%I |§IH +2c10,][ea|
to the observers gains so they can be chosen sufficiently larg + 10z[leal] ler]
in order to makeS definite positive. Finally, taking p,. sufficiently large, the above equation can
The uniform boundedness of the disturbed system directlye rewritten as follows
results from the application of Lemma 9.3 in [12].

(14)

u Ve < _Cw||ew||2 + corlles|] [le]| (15)
IV. PARTICULAR SOLUTIONS FOR STATE AND DELAY with ¢;, ;- > 0. Consequently, this state observer satisfies
OBSERVERS (5). In the simulation section, this observer will be tested

In this section, some observation solutions are exhibite\ﬁf'th the delay observer designed thereafter.
to illustrate the general consideration of above sectiinst,F B New Delay Observer
a state observer is designed and it is shown that it complies__, . . S
with (5). Then, a delay observer is presented and condition.Th'.s delay observer is based on the minimization of the
(6) is checked. criterion

A. Sate Observer J(F) = [u(t — 7) — u(t — T)]z (16)
A Kalman-Like observer [4] is chosen to observe the state
of system (1). This choice has been made because of %
simplicity; indeed, it only has one tuning parameter. Obser

equations are given below

F=Ad+ f(2) + g(y)ult —7) — S;1CTC (% — x) J(7) = [u(t = 7) —a(t - 7)]*. (17)
—paSe—AT S, — S, A+CTC =0
S:(0) = S, (0)T > 0.

[Tmin, Tmaz]- HOWever, usually(t — 7) is not available.
e idea is to compute an estimatiat — 7) of u(t — 7)
and to optimize the approximated criterion

Note that the accuracy of the delay estimation is tightly
related to the accuracy @f{t — 7). The following dynamics,
inspired from [16], is proposed for the delay estimation

du(t — 7)

(8)
It is important to note that the input is affected by the

delay estimatiort and not the real delay. The dynamics

F=—prlut—7) —a(t —7)] (18)

of the state observation error is given by or
by = (/\—Sz_lCTC)em'i‘f(@)—f(x)‘f‘g(y)[U(t_%)_u(t_(;;] Since ou(t—7)  Ou(t—7)
Remark 4.1: In (9), it is clear from the continuity of. o7 . . o -
that the error termu(t — 7) — u(t — 7) will tend to zero as it results that the dynamics af is
soon asr tends tor. L AN e N a
To prove that condition (5) holds for state observer (8), the 7= prlu(t = 7) —a(t - Dt - 7). (19)
following Lyapunov candidate function is defined In practice, the time derivative af is not always available
V. =TS e (10) so it will be approximated by
with S, the unique symmetric positive definite matrix solu- u(t) = ut—7) —ut—7—h) (20)
tion of the Lyapunov equation in (8). From [4], there exist h
82,96, > 0 such that whereh is an artificial delay. Thus, equation (19) becomes

3,1, <8, < 6,1, (11) F=prlu(t —7) —a(t — 7)) u(t). (21)



In the sequel, it is assumed that there exist interyadsich
thatt — 7(t) —h € I, t — 7(¢t) € I and|u(s)| > « for
all s € I (Assumption 5). To estimate(t — 7), the ESO

(Extended System Observer) technique is used (see [18] for

then from the mean value theorem there exist [min (¢t —
7,t — 7),max(t — 7,¢t — 7)] such that

uw(t—7) —a(t —7) = (1 —7)u(e) — Cuex(t). (31)

references on this method). To achieve a better accuragy [2fh the same way, there exigls [t — 7 — h,t— 7] such that

it has been decided to also obseng — 7). Therefore, the
extended system reads as

Z2=NAz+ f.(x) +T.(1)
7(t) = n-(t) (22)
y=C,z=11,0,0]z =z,
with z = [, u(t — 7),u(t — 7)]7,
0 G(y) O
A=l0 o 1],
0 0 o]
f-(z) = [f(x),0,0]" andT.(t) = [0,0,7,(t)]" wheren, is

unknown. The output of (22) is,,; however,x,, is unknown

but the valuet,, given by state observer (8) will be used in
the observer design. The equations of the delay observer are

given below:
F=A2+ f.(2) = S7TCT [, — i)
S, =—p.S.—ATS.—S.A+CTC, (23)
S.(0) =S.(0)T >0
and
T =prlult —7) — CyuZ]u(t) (24)
with z = [z, a(t — 7),a(t — 7)]7, C. = [1,0,0] andC,, =

[0,1,0]. To sum up, the observer can be divided into two

parts. The first part (23) that allows to obsemg — /) and
the estimation delay dynamics in (24). Reminding that

C.z2—-CL,z+CLz—Chz
C.e, — Crhes

with C,, € R® andC,, = [0, 0, 1], then the dynamics of
the delay observation errors are

jn_jn

(25)

éz = [Az - SZ_ICZCZ]GZ + fn(i) - fn(ZC)—F
S1CTCpe, —T.(t) (26)
and
€r = p'r[u(t - 71) - ﬂ’(t - T)]M(t) - nr(t)' (27)

Note that the dynamic$', andn, are unknown and will
be considered as a perturbation of the error dynamics.
analyze the stability of this observer, the following Lyapu
candidate function is defined

‘/Z'r:‘/z"'v'r

with V., = el'S.e. and V, = 1(7# — 7). Taking the time
derivative ofV along the trajectories of (27) gives

Vo = pr(F = )lult = 7) — alt — 7)]u -

Since

(28)

- (29)

¢ ~ e

u(t—7) —a(t —7) = u(t — 7) — u(t — 7) — Cyes(t) (30)

(1) = i(0)) = u(t —7) —Z(t—%—h) (32)

SO one gets
Vy = —pr(F = 7)i(@0)il00) — (7 — Dlpri(6)Cucs + 1,
(33)

Provided that — 7 — h, 6; and¢; are in intervall, the terms
u(¢¢) andu(6;) have the same sign so it follows that

V‘r(t) < —p7a2||e.,-||2+p.,-U1||e.,-|| llez||+pr|lex]] Slip 1+ (s)]

(3%
with U; defined in Assumption 4. As a result, fgr = 0,
the maximization

V; < —pre?llex|” + prUrllez|| |lex|| (35)

can be deduced from the above equation.
Taking the time derivative o¥/, along the trajectories of
(26) leads to

V. = —p.elS.e, —elC.Cre, +2e7S, [f(2)— f()]
+2eTCT e,
(36)
for I, = 0. Besides, there existy > 0, such that for all

t > tg, S, verifies

0,1, < S.(t) <6.1, (37)

for p. sufficiently large and wheré, and §, are positive
constants (see [4]). Sincgis globally Lipschitz (Assump-
tion 1), one can obtain the following maximization

Vz < —pzéz||ez||2 + caalles|| [lexl| (38)

with ¢,. > 0. Then, from (35) and (38), one gets

Ver S_CZHQZHZ"'CMHQZH ||ew||_CT||eT||2+CZT||62|| e
39)
with ¢, = p.d,, ¢» = pra? andc,, = p,U;. Therefore,
delay observer (23)-(24) satisfies condition (6).
In the next section, this new delay observation method is
going to be illustrated and its performances will be comgare
with the results from [14].

To
V. SIMULATION

A. A nonlinear example: the pendulum

Simulations are carried out on a pendulum whose equa-
tions are

. T2 0
{ (1) = {—%sm:ﬁ — ip:m] * |:m:712:| ut —7) (40)
y(t) = Cx(t) = 1(1),
with ¢ = 9.81 m.s 2 the acceleration due to gravity,

m, = 0.2 kg the mass of the bold, = 0.5 m the length
of the rod andk 0.3 kg.s™! the friction coefficient.



State observer (42) ]

of [12]. The identification with (1) leads ta = |0 |

Details of the modeling are given in the Examrle sectiol os
0.4

0o o}’
flx) = [0,—2sina; — La25]7 and G(y) = 1. The =03

functions f and G satisfy Assumptions 1 and 2. In the =°? ]
simulation, the observation of a piecewise constant delay a o V\/\/\/\
a sine delay are implemented; the exact expression of tl % 20 0 60 80 100 12
delay is given below:

0

— h(t) t

0.4 for0 <t <20 15F Delay observer (43)
_ 1 for 20 <t < 40 5 L
T =9 06 forao<t<eo @Y &
0.6 4 0.45sin(0.2t) for ¢t > 60 *os
Note thatr verifies Assumption 3 withr,,;, = 0.1 s and % " - 50 o o 20
Tmaz = 1.2 S. TO analyze the influence of the input dynamic: time (s)
on the delay estimation, two signals are used: Fig. 2. u(t) = u1(t) (ramp), pz = 10, p, = 10, pr = 40
o uz(t) = sin(0.21). o ‘ ‘ | ‘ State observer 42) ]|

Both signals satisfy Assumption 4. However, onlysatisfies 04
—03

the delay observability condition of Theorem 1. kgy, the =

observer will go through observation singularities whign= Loz 1
0. The state observer o1 1
0

. . 0 0 20 40 60 80 100 120
() = AZ()+ —9sindy — %552] + |:m117l2:| u(t) | | | | |
—1T (5 L JR— |
. —57C (xl - xl) e ‘ —_— g(egy observer (43) ’
S = —pS—-ATS-SA+CTC 5 |
(42) )
and the delay observer o5
2. = A2+ f:(2) - SZ_lCZT [C:2 — Csi] % 20 20 ) 60 8 100 120
S, =—p.S.—ATS.—S.A.+CTC, time (s)
5:(0) = (00T >0 (43) Fig. 3. u(t) = u2(t) (sine), px = 10, p, = 10, pr = 40
(t) = : u{g - (?(t)) " Cuzlp(t)
u(t—7)—u(t—7—
plt) = =——F—— points. However, this delay observer is not sensitive to the
0 1 0 observability loss (persistence property).
. mypl? . .. These errors can be attenuated by increasing the observers
with A, = |0 0 1|, f(2) = [-%sind; —

gains p,, p. and p.. On Figure 4, the same input; is

k- T 0 0 0 applied but the gains have been increased. It is clear tbkat th
m_pr’O’O] C. = [1’010]’ C2 = [0,1], O“ = [0’179]’ estimation errors are reduced. However, the gains amplitud
h'= 0.1 are tested. On Figure 2, the ramp inputis applied 55 o heen chosen as a trade off between, noise amplification
to system (40). Sincé, = 0, thena(t—7) — u(i—7). When 54 opservation accuracy in practice. Theoretical results
the delay is constany, = 0 so the delay estimate convergesye,ejoped in preceding sections are confirmed by simulstion
asymptotically to the real value of the delay. Consequentlyq an interesting property of the new delay observation
the state estimation error asymptotically converges to-zertechnique is highlighted: the non sensitivity to obsenvati
When the delay is time-varying, an unavoidable error due t&ngularity ina — 0. In the next subsection, a comparison
the delay dynamics appears. As a consequence, the state QB the results of [14] is presented.

servation error can converge asymptotically to zero angmor

it converges in a ball around the origin (less tHaa error). B. A comparison with delay state observer in [14]

On Figure 3, the sine input; is applied to system (40). In The linear second order system of [14] is reminded:

this caseiiy is different from zero sai(t — 7) tends to a

neighborhood of:(¢ — 7). Consequently, this small error on (t) = 0 1 x(t) + m u(t —7)

u(t—7) causes a small error aghand finally oni. However, -2 -3 1 (44)

the radius of the errorfe, || is small (aboutl% error) and y(t) = Ca(t) = z1(1).

the delay estimation is quite accurate. The system is observable and Assumptions 1 and 2 are

Remark 5.1: The inputuy presents observation singular-verified since the system is linear. The same detagnd
ities because its time derivative cancels in some isolateédput u,, as defined in subsection V-A, are used.



State observer (42) ]

(1]
(2]

0.3 q

0.2 4

0.1 l n q
0

0 20 40 60 80 100 120

(3]

— h(t)
Delay observer (43)

(4]

15F

(5]

7 (sec)

0.5 q

(6]

80 100

0 i i
40

60
time (s)

Fig. 4. wu(t) = uz(t) (sine), pz = 20, p> = 20, pr =50

120

(7]

Figure 5 shows the results of the interconnected observer
scheme developed in the present paper and the metho%
of [14]. The observation errors on the state is better for
our method of interconnected observers because it does n
have large transients. Similarly, delay observer (43)qrer

better than the one of [14] since it is less sensitive t60]
the observation singularityaf = 0). This illustrates the

improvement of the presented method over the result in [14}1]

0.02 State observer (42) n [12]
—— Observer from [14] [13]
0.015 H
g o I [14]
" o008 I
0 ‘ ‘ / [15]
0 20 40 60 80 100 120
h(t)
: Delay observer (43)
156 / —— Observer from [14] [16]
g4 / | |
2
g M [17]
0.5 I
il ( : [18]
5 ; ; ;

i
20 40 60 100

time (s)

80 120

[19]
Fig. 5. Comparison between the observer in [14] with) = u2(t) (sine)

VI. CONCLUSION [20]

In this paper, a new scheme of interconnected observers is
: indall
proposed to estimate both the state and the delay of nonlinea
systems with input delay. The advantage of decoupling state
and delay observation is to allow an independent tuning of
both observers and to use standard state observers. A
delay estimation technique based on an optimization method
has been presented and its efficiency has been illustrated
through simulations. Future developments aim at includin(??,]
a controller that will compute a prediction using delay an
state estimations from an interconnected observer. Thgrdes
. : ; " [24]
of an adaptive gain for the delay observer is also taken |n{0
consideration for further study.
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