
HAL Id: hal-01350826
https://hal.science/hal-01350826v1

Submitted on 1 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new robust approach for a production scheduling and
delivery routing problem

Azeddine Cheref, Christian Artigues, Jean-Charles Billaut

To cite this version:
Azeddine Cheref, Christian Artigues, Jean-Charles Billaut. A new robust approach for a produc-
tion scheduling and delivery routing problem. 8th IFAC Conference on Manufacturing Modelling,
Management and Control, Jun 2016, Troyes, France. �hal-01350826�

https://hal.science/hal-01350826v1
https://hal.archives-ouvertes.fr

A new robust approach for a production
scheduling and delivery routing problem ?

Azeddine Cheref ∗,∗∗ Christian Artigues ∗∗

Jean-Charles Billaut ∗

∗Université François-Rabelais Tours/CNRS, 64 av. J. Portalis, 37200
Tours, France (e-mail:

{azeddine.cheref,jean-charles.billaut}@univ-tours.fr)
∗∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

(e-mail: artigues@laas.fr)

Abstract: In a supply chain, two essential elements are the production and the distribution.
These two problems used to be solved separately, but it it well known that considering them
jointly may lead to a global optimization of the supply chain performances. In this paper, we
incorporate the delivery plan of a vehicle into a single machine scheduling problem, representing
a single manufacturing facility. We consider the simplified case where there is only one vehicle
available to serve the customers, with infinite capacity. However, we assume that the data are
known with uncertainty. The objective is to find a schedule and a delivery plan so that a
robustness criteria is minimized, under a scenario-based uncertainty modeling. In contrast with
standard robust optimization approaches for scheduling, we do not propose a single complete
solution to the problem that has to be feasible w.r.t. all scenarios and minimizes a worst-
case criterion over the scenarios. Instead, we adopt the recoverable robustness framework that
considers first-stage decisions and second-stage recovery options. We propose for the first-stage
a set of solutions by using the concept of groups of permutable jobs. At second stage, a greedy
and online recovery algorithm exploits the revealed information about the jobs available to be
scheduled or to be delivered at decision time. We propose two tabu search algorithms, one based
on the standard robust optimization scheme and one based on the new approach. We compare
the two robust heuristics on a set of randomly generated problem instances.

Keywords: Integrated production scheduling and delivery routing, robust optimization,
recoverable robustness, groups of permutable jobs, tabu search

1. INTRODUCTION

More and more research is devoted to integrated produc-
tion scheduling and delivery problems, see for instance
Chen (2010). However most of the work that has been
done in the literature consider deterministic problems.
However such integrated problems are highly subject to
uncertainty. Data such as processing times or release dates
are generally not known with an absolute certitude, and
for delivery problems, transportation durations are time
dependent and subject to fluctuations due to traffic. In
this context, it is generally important to find a solution to
the problem which is not only a good solution, but also
a solution that keeps a good performance in presence of
uncertainties. Robustness considerations in scheduling are
frequently treated in the literature and it is not possible
to make here an exhaustive review of the state-of-the-
art. We voluntarily restrain our work to robust scheduling
approaches where no probability distribution is available
for the uncertain data. Instead there is a set of possible
scenarios for the input data. In particular we consider,
as a reference method, the standard robust discrete opti-

? This work was supported by the financial support of the ANR
ATHENA project, grant ANR-13- BS02-0006 of the French Agence
Nationale de la Recherche.

mization framework proposed by Kouvelis and Yu (1997)
(see also Bertsimas and Sim (2003)) . In this framework, a
complete sequence of jobs on each machine is the output
of the robust scheduling method. The uncertainty is rep-
resented by a discrete finite set of scenarios, each scenario
corresponding to a deterministic value of the problem pa-
rameters. On a particular scenario, the performance of the
sequence is generally measured by computing the earliest
start schedule compatible with the prescribed sequence
and the realized scenario. Hence, the worst case perfor-
mance of a sequence on the scenario set can be computed
a priori. The well-known problem with this framework is
its conservativeness, as mentioned by Bertsimas and Sim
(2004), due to the fact that issuing a complete sequence
lacks flexibility w.r.t. the realized scenario.

As an alternative we propose to extend these framework by
integrating two other families of approaches for scheduling
under uncertainty. The first family originates from produc-
tion scheduling, and was described in Billaut and Roubel-
lat (1996). It aims at computing on a machine a sequence
of groups of permutable jobs such that any permutation
of the job inside each group yields a feasible job sequence.
The final sequence is then selected in real time so as to
better react to disruptions. In Wu et al. (1999), the author

have shown through simulation of various processing time
disturbances that computing a static way such a solution
structure and then allowing the remaining decisions to be
taken dynamically via dispatching rules yields promising
results in a job-shop scheduling setting. The second family
of approaches is based on recoverable robustness. This
framework, defined in Liebchen et al. (2009), aims at re-
ducing the conservativeness of robust optimization. Recov-
erable robustness considers two sets of decision variables
and consists in providing an assignment for the first-stage
decision variables and a family of recovery algorithms such
that, for each scenario, there exists one recovery algorithm
in the family that computes feasible assignments for the
second-stage decision variables. Recently the recoverable
robustness framework has been successfully applied as
such to a scheduling problem by Caprara et al. (2014) and
to vehicle routing problem by Agra et al. (2013) that used
the close concept of adjustable robustness as proposed by
Ben-Tal et al. (2004).

To integrate these frameworks, we consider as in the stan-
dard robust scheduling approach a set of finite scenarios
such that a scenario corresponds to a realization of uncer-
tain parameters. We address a single machine scheduling
problem, representing a single manufacturing facility in
which a set of jobs with release dates is scheduled non
preemptively. In addition, there is one vehicle available
to deliver the jobs, with infinite capacity which has to
be routed according to a travel time matrix between job
locations. The vehicle takes a batch of completed jobs
and delivers the customers at each job location preferably
before the job delivery time and then return to the man-
ufacturing facility to select another batch and, so on until
all jobs are delivered. All parameters are assumed to be
uncertain, i.e. job release dates, job processing times, job
delivery dates and vehicle travel times The objective is to
find a schedule and a delivery plan so that the maximum
lateness over all jobs and all scenarios is minimized.

In the recoverable robustness framework, we propose to
compute, as the output of the first decision level, a set of
groups of permutable jobs on the machine, a set of batches
and, inside each batch, a set of permutable job deliveries.
To evaluate this first set of decision, a second level decision
set adapts to the realized scenario in a greedy and online
manner : by scheduling the production jobs inside each
production group according to the earliest release date
criterion (jobs are schedule as soon as they are available)
and by scheduling the delivery jobs according to the
nearest neighbor criterion (the vehicle always delivers the
nearest job). This limited recovery algorithms simulates
a real time decision making process which implies that a
decision has to de made as soon as a portion of the scenario
is revealed in an online framework. This means that when
a group of production or delivery jobs is completed, the
recovery algorithms wait for the next job to be released in
the new group in the realized scenario for the production
part or for the nearest job to visit according to the realized
scenario for the delivery part.

In this work we formally present the standard robust
and the online recovery robust integrated scheduling an
delivery routing problem in Section 2. Then we present
two tabu search heuristic, one implementing the standard
robust scheme and one implementing the online recovery

scheme in Section 3. In Section 4 we provide computational
experiments to validate our proposal. Concluding remarks
and directions for further research are pointed out in
Section 5.

2. STANDARD ROBUST VS ONLINE
RECOVERABLE ROBUST APPROACH FOR

INTEGRATED PRODUCTION SCHEDULING AND
DELIVERY ROUTING

Following the classical three-field notation of scheduling
problems ?, Z-L. Chen introduces in Chen (2010) a five-
field notation α|β|π|δ|γ for the problems where schedul-
ing and routing are integrated at an operational level.
In this notation, α, β and γ correspond to the machine
configuration, scheduling constraints and objective func-
tion respectively, similarly to the notation of scheduling
problems. Fields π and δ specify the characteristics of the
delivery process and the number of customers, respectively.
In the following, we focus on a single machine environment
(α = 1), with routing as a delivery problem (i.e. solving a
vehicle routing problem is part of the decision), we have a
single vehicle with unbounded capacity and n customers
to deliver (π = {routing, V (1,∞)}, δ = n).

We consider a set J = {J1, ..., Jn} of n jobs to schedule
on a single machine representing a manufacturing facility
(plant). We denote by pj the processing time of Jj , rj
the release date of Jj that corresponds to the earliest
possible start time of production and dj the delivery due
date of Jj , i.e. the date at which Jj is supposed to be
delivered to the customer. It is assumed that the storage
capacity of jobs after production is not limited. However,
we also consider that the jobs have strict due dates, which
is equivalent to say that the maximum lateness is bounded.
Each job Jj is associated with a customer location j, and
0 denotes the location of the plant. t0,j denotes the travel
time between the plant and the customer location j and
ti,j is the travel time between customer locations i and j
(∀i, j, 1 ≤ i, j,≤ n). Variables Cj denote the production
completion time of Jj at the plant (∀j, 1 ≤ j ≤ n). Vari-
ables Dj denote the delivery completion time of Jj , i.e. the
date of delivery at the customer location (∀j, 1 ≤ j ≤ n).
Remember that jobs are delivered by a single vehicle that
may return to the plant several times (as in the multi-
trip traveling salesman problem) with unlimited capacity
(capacity K = n). Without uncertainty considerations,
the problem can be denoted by 1|rj |routing, V (1,∞)|n|γ
where γ is the objective function. In the following, we have
γ = Lmax where Lmax denotes the maximum delivery
lateness, defined by Lmax = max1≤j≤n(Dj − dj). The
deterministic problem is to find a production sequence of
jobs (equivalently, to determine jobs production comple-
tion times), a batching of jobs and a route for each batch,
so that the objective function is minimized. A batch can
only start when all the jobs of the batch are completed.

We assume that some uncertainty affect the input data and
that our objective is to find a robust solution. To represent
the uncertainty, we use a scenario based approach similar
to the one introduced in Kouvelis and Yu (1997). The
data associated to the jobs and to the transportation times
between sites vary according to predefined scenarios. We
denote by S the set of possible scenarios over the planning

horizon. Now, we say that to each job Jj is associated a
release date rsj , a processing time psj and a due date of
delivery dsj for each scenario s ∈ S. The matrix of travel
times T s = (tsi,j)0≤i≤n,0≤j≤n gives the transportation time
from any site i to any site j under scenario s ∈ S.

We denote by Csj the production completion time of job
Jj under scenario s and by Ds

j its delivery completion
time under scenario s. The maximum lateness of Jj under
scenario s is denoted by Lsj = Ds

j − dsj . Under uncertainty,
the maximum lateness is Lmax = maxs∈S(max1≤j≤n L

s
j).

We now formally define the concept of online recoverable
robustness. Let us consider the standard robust optimiza-
tion problem that we can denote as

min
x∈∪s∈SXs

max
s∈S

f(x, s)

where S is the set of scenarios, Xs is the set of solutions
feasible for scenario s and f(x, s) is some performance
indicator of solution x ∈ Xs under scenario s ∈ S. This
definition implies that x has to be feasible for any sce-
nario, inducing a high degree of conservativeness Bertsi-
mas and Sim (2004). The concept of recoverable robustness
Liebchen et al. (2009) is often considered in the literature
as a two-stage extension to the robust optimization prob-
lem, in which the (first-stage) solution x can be modified
in a limited way in the second-stage to fit with the realized
scenario to obtain solution y = A(x, s) where A(x, s) is the
application-dependent recovery algorithm of solution x un-
der scenario s. Hence the recoverable robust optimization
problem becomes:

min
x∈X

max
s∈S

f (A(x, s), s)

where X is the scenario-independent set of first-stage so-
lutions, which is a more realistic definition in practical
applications. Note that x does not necessarily assign all
the decision variables of the problem. As in stochastic
programming x can be only the subset of first-stage deci-
sion variables, while algorithms A(x, s) returns a complete
solution, giving values to both first-stage and second stage
decision variables.

Instantiating this concept to our integrated scheduling and
vehicle routing problem, we define two different robust
problems by using different definition of the first stage
decisions x and of the second-stage online algorithm A.

The standard robust integrating scheduling and delivery
routing problems defines x = (π,B,Σ) where π a complete
of the jobs on the machines B a batching (i.e. a partition
of the jobs) and Σ = {σ(B), B ∈ B} the complete ojob
delivery sequence inside each batch B ∈ B). Algorithm
A(x, s) is a simple completion time adjustment algorithm
that sets feasible completion times Csj and Ds

j according
to the realized parameters following the prescribed pro-
duction and delivery sequences.

We illustrate the robust optimization scheme with the
following example.

The matrices (t1i,j) and (t2i,j) are the following:

s = 1 J1 J2 J3 J4 J5
r1j 0 7 3 4 3

p1j 3 4 1 2 4

d1j 11 18 9 10 17

s = 2 J1 J2 J3 J4 J5
r2j 3 3 0 1 7

p2j 2 5 1 3 3

d2j 9 17 10 11 18

(t1i,j) =

0 2 4 3 2 2
2 0 3 2 1 3
3 3 0 3 2 2
3 2 3 0 1 3
2 1 2 1 0 2
2 3 2 3 2 0

 (t2i,j) =

0 3 2 2 2 3
3 0 4 1 2 3
2 4 0 4 3 2
2 1 4 0 2 4
2 2 3 2 0 4
3 3 2 4 4 0

Let consider the schedule (3, 4, 1, 5, 2) for the production
phase, two batches composed by jobs {1, 3, 4} and {2, 5}
with routings (4, 3, 1) and (5, 2), respectively. The produc-
tion and transportation phases are illustrated in Fig. 1 for
each scenario. tr denotes the departure time of tour r.

-
(4)
-

(0)

r1
(1)

- -
(0)(3) (2)

r2- -
(5)

-
(0)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Lmax = 3

-

Scenario s = 2

J1 J2J3 J4 J5

0 2 4 6 8 10 12 14 16 18 20 22 24 26

-
(3) (2)

r2
(4)
-

(0)

r1
(1)

- -
(0)(0)

- -
(5)

-
(0)

Lmax = 3

J1 J2J3 J4 J5

Scenario s = 1

-

Fig. 1. Robust solution for two scenarios

The online recovery robust integrating scheduling and
delivery routing problems defines x′ = (π′,B′,Σ′) where
π′ a sequence of groups of permutable jobs of the jobs on
the machines B a batching (i.e. a partition of the jobs) and
Σ = {σ(B), B ∈ B} the sequence of groups of permutable
delivery jobs inside each batch B ∈ B). Algorithm A′(x′, s)
is a greedy algorithms that takes the jobs inside a group of
permutable production jobs in the earliest release date first
order and the jobs inside a group of permutable delivery
jobs in the nearest neighbor order, to simulate an online
reaction to the revealed scenario.

We consider here the same example as for the standard
robust approach.

Let consider the sequence of groups of permutable jobs
GJ1 = {J1, J3, J4} and GJ2 = {J2, J5}. For the transporta-
tion phase, one batch contains jobs {J1, J3, J4} and the
other batch contains the jobs {J2, J5} (notice that the
composition of batches may be different than the definition
of groups). In the first batch, there are two groups of
permutable deliveries GD1 = {3} and GD2 = {1, 4} and
in the second batch there is only one group GD3 = {2, 5}.
Transportation phases are illustrated in Fig. 2 for each
scenario and global solution that includes the production
and transportation phases are illustrated in Fig. 3 for
each scenario. For this example the maximum lateness
found is Lmax = 0. This illustrates the potential gain

of applying the online recoverable robustness scenario.
Indeed, the recoverable robustness framework has two
merits: it is more realistic as such repairing elements
are often present in practice and it is able in theory
to reach better worst-case performances on the scenario
set. However the question remains whether under limited
CPU time, recoverable robustness algorithms are able to
actually reach better performance than robust algorithms
for reasonable problem instance size. To make such a
comparison we propose two heuristics in Section 3 and
we compare them under a fair setting in Section 4.

batch 1 batch 2

-m0 m2
m5Y

-
y

-m0 mJ3 mJ1
mJ4

1

y
-m0 m3 m4

m1
? ?i

m0 m2
m5

1Scenario 2

q

9 -m0 m3 m4
m1
6 6

q

m0 m2
m5

)
Scenario 1

Fig. 2. Tours {(3), (1, 4)} and {(2, 5)} under the two
possible scenarios

0 2 4 6 8 10 12 14 16 18 20 22 24 26
-

-
(0)

-
(3)

r1

(4)
-

(0)
--

(1) (0)

J3 J4 J1 J2 J5
Lmax = 0

Scenario s = 2

(5)

r2-
(2)

-
(0)

Lmax = 0

Scenario s = 1

J1 J3 J4 J5 J2
0 2 4 6 8 10 12 14 16 18 20 22 24 26

-

(0)

r1 -
(4)(3)

-
(1)

- -
(0) (2)

r2- -
(5)

-
(0)

Fig. 3. Production and transportation phases under the
two possible scenarios

3. TABU SEARCH HEURISTICS

We propose in this section two tabu search algorithms for
the integrated scheduling and vehicle routing problem. The
first one is called SRT (Scheduling, Routing, Tabu search)
to solve the standard robust approach and, a second called
OSRT (Online, Scheduling, Routing, Tabu search) to solve
the online recoverable robust approach. In order to com-
pare them, the two algorithms proposed are relatively
the same and can be presented together. Note that to
simplify the procedure we assume that OSRT makes only
one delivery group by delivery batch. This means that the
routing of deliveries of each batch is decided by the greedy
NN algorithm on the realized scenario. We consider that

Algorithm 1. Tabu search algorithm

(1) Generate an initial solution (π,B,Σ) for SRT and
(π′,B′,Σ′) for OSRT

(2) Perform tabu search on the production scheduling
part with fixed batches and routing with NN (on
the reference scenario for SRT and on the realized
scenario for OSRT).

(3) Perform tabu search on the batching part with fixed
production schedule and routing with NN (on the ref-
erence scenario for SRT and on the realized scenario
for OSRT).

(4) (For SRT only) Post optimize the routing part with
the 2-opt heuristic.

(5) Return to step 1 until a stopping criterion (global
time limit) is met

among the scenario there is a particular scenario s0 cor-
responding to the average case, or to a reference scenario
(see Section 4). The routing part of SRT is also simplified
in a first step by routing the jobs according to NN on the
reference scenario s0, but the routing is post-optimized
in a second phase. The Tabu algorithm implemented is
quite standard. This metaheuristic starts from an initial
solution and then searches the most appropriate solution
among neighbors. A solution can be chosen if it is not tabu
(i.e. not in the tabu list) or if it satisfies the aspiration
criterion. The chosen neighbor immediately becomes tabu
and the search process is then repeated using this chosen
neighbor as a new basic solution. Algorithm 3 summarized
the common process, with an additional step top post-
optimize the routing for SRT. This post-optimization is
used to compensate the fact that SRT is not allowed to
react to the realized scenario.

We detail the different elements hereafter.

3.1 Inital solution

We first describe how we obtain a feasible solution for SRT.
We first find a sequence of production jobs by sorting the
jobs according to their increasing due dates on scenario
s0 (Earliest Due Date rule). From this sequence, we build
batch by selecting the best solution in terms of maximum
lateness over all scenarios between creating a new batch
with the current job or inserting this job into the previous
batch. The routing is performed by the NN heuristic on
the average scenario.

For OSRT, we also first sort the jobs according to their in-
creasing due dates on scenario s0 but we then build groups
of permutable production jobs and batches simultaneously.
More precisely, there are four options for each job, the best
option is selected at each iteration:

• Insert the job in the current group; insert the job in
the current batch

• Insert the job in the current group; create a new batch
and insert the job

• Create a new group insert the job; insert the job in
the current batch

• Create a new group and insert the job; create a new
batch and insert the job

For OSRT, each option is evaluated by ERD on the
realized scenario for the groups of permutable production

jobs and by NN on the realized scenario for the routing of
each delivery batch.

3.2 Solution encoding

The problem of routing the jobs of a batch is systemat-
ically solved by the nearest neighbor algorithm (NN) in
the STR algorithm as well as in the OSTR algorithm. In
fact, assuming that there is only one group of permutable
delivery for each batch fact that for each batch and each
scenario the nearest neighbor search is used in OSTR
algorithm. Therefore, it suffices to have the scheduling part
and the composition of the batches to encode a solution. A
solution of the problem S is encoded directly by a vector
of size 2n. The first part of size n contains the scheduling
part which is not the same for both algorithms STR and
OSTR, whereas, the second part of size n contains the
batching part witch is similar in both algorithms. For STR
the first vector gives the position of each production job in
the sequence while in OSR, the first vector gives the group
number of the job.

3.3 Neighbor definition

Starting from this encoding, several neighborhoods have
been defined. The neighborhood generation of the schedul-
ing sub-problem are first presented for the two algorithms,
then we present those of the batching sub-problem whose
are similar in the two algorithms. We use a perimeter δ as
the search area from a solution and fix it to 0.4. In each
case, some details are given for more accuracy.
In the neighborhood generation of the scheduling sub-
problem of STR, two types of neighborhood generation
methods are used: (1) Position sequence exchange: this
neighborhood performs the exchange of two values v′i and
v′j in the first part of the encoding. The perimeter δ is
taken into consideration in the sense that |v′i − v′j | ≤ δn.
Then, the best move is retained over all possible changes.
(2) Insertion at position in the sequence: this neighborhood
performs the exchange of the position v′i of the job Ji by
inserting the job Ji at a position v′k and where, |v′i −
v′k| ≤ δn. The best move is retained and the jobs at
positions v′i+1, .., v

′
k are advanced in the sequence if v′i > v′k

or, jobs at positions v′k, .., v
′
i−1 are delayed if v′i < v′k.

In a neighborhood generation of the scheduling sub-
problem of the OSTR, neighbors concerns groups of per-
mutable jobs. We denote by |G| the number of groups
and have the following four types of neighborhood gen-
eration methods: (1) Groups exchange: this neighborhood
performs the exchange of two values in the first part of
the encoding, i.e., the swap of the assignment of two jobs
to groups with taking into consideration the perimeter δ.
Let v′′j the group of the job Ji and v′′i the group of the
job Jj , the exchange is possible if and only if v′′i 6= v′′j
and v′′i − δ|G| ≤ v′′j ≤ v′′i + δ|G|. (2) Insertion group at
position: this neighborhood states that a job Ji of the
group v′′j can be inserted in an existing group v′′k with v′′i −
δ|G| ≤ v′′k ≤ v′′i + δ|G|. (3) Group split: this neighborhood
states that one group can be split into two groups, which
delays the next groups. Since the sequence into the groups
depends to the scenario, the number of possible cases to
cut a group is exponential. Therefore, we order the jobs of

a group according to the average due dates of the jobs over
the scenarios, which reduces the number of cases for the
sizes of the groups. (4) Group merging: this neighborhood
performs the grouping of two consecutive groups into one,
which advances the next groups.

Since the second sub-problem is the constitution of the
batches, witch is the same for SRT and tOSRT, the
neighborhood generation is then the same for the two
problems. One can see also that the types of neighbors
used for the scheduling part of OSTR algorithm where
the goal was to form groups can be used to form batches.
Then, we have the previously four types of neighborhood
generation methods which are applied to the batches.

3.4 Other elements : tabu list, aspiration criterion and
stop condition

To discourage the tabu algorithm to select the solutions
that have been visited recently, a tabu list is integrated and
it contains solutions can not be selected. These solutions
are called Tabu. In our case, since the scheduling part and
the routing part are treated separately, we opted for two
tabu list with a fixed size equal to the number of jobs. The
first list contains the part of the vector corresponding to
the scheduling, so that the second list contains the part
corresponding to the batches.The fact of having two tabu
list can ensure that a solution is considered tabu only
if her scheduling part or her routing part is tabu. For
this reason, a solution is aspired if it is better than the
best solution ever found. We have a fixed time limit, the
general algorithm stops when the time limit is reached.
However, for the scheduling sub-problem and the batching
sub-problem, there is no time limit but the algorithm stops
when the solution is not improved.

4. COMPUTATIONAL EXPERIMENTS

4.1 Data generation

To validate our models, we generate random data sets.
For the generation of scenarios, we call scenario s = 1
the “reference scenario” and we first generate this instance
(r1j , p

1
j , d

1
j). Given that r1j and d1j depend on the processing

times p1j , we first generate the p1j for all the jobs. We take

p1j ∈ [1, 50] and we denote by P =
∑n
j=1 p

1
j . The release

dates r1j are generated in the interval [0, γP] where γ is a

given parameter. Dues dates d1j are generated in the inter-

val [α− β
2P, α+ β

2P], where α and β are given parameters.
For the generation of the matrix of distances between sites,
we generate randomly the coordinates (X1

j , Y
1
j) of each

site j in the interval [0, 50] and the distance between two
sites is the classical euclidian distance. For modeling the
uncertainty on the data, scenario s (s ≥ 2) is generated
by a random perturbation of the reference scenario. For a
given parameter vsj , we perturb the reference scenario [(1−
ωv)v1j , (1 + ωvv1j)] where ωv represents the perturbation
magnitude. To have a fair comparison, the same time limit
was used for SRT and OSRT.

4.2 Computational Results

In this section, we compare the tabu search algorithms
SRT and OSRT, as well as the initials solutions for both
cases, on the instances presented above. The number of
jobs varies from 10 to 100, the parameters α, β and γ
are fixed to 1. There are different classes of problems
depending on the number of jobs n and the coefficient
of variation ω between the scenarios. An instance is then
represented by his type called (n, ω) and for each n and
ω ∈ {20, 40, 60}, 10 instances are generated with a number
of scenarios |S| ∈ 2, 5, 10. The size of the tabu lists
is equal to the number of jobs n and the perimeter δ
to 0.4. For each (n,S, ω), the algorithms are tested for
the ten instances and the displayed results represent an
average for the ten instances. In Table 1, column ∆(1) =
(GSR − GOSR)/GSR is the average gap between the
initial solutions GSR and GOSR and ∆(2) = (SRT −
OSRT)/SRT is the average gap between the solutions
SRT and OSRT.

SRT Vs OSRT
n S ω ∆1(%) ∆2(%)
10 2 20 38.31 5.58

40 36.08 1.95
60 28.75 -4.32

5 20 35.77 1.30
40 29.67 0.54
60 27.46 10.24

10 20 38.26 2.40
40 31.19 -0.24
60 26.85 -0.83

20 2 20 56.38 2.44
40 47.68 1.32
60 51.43 3.78

5 20 54.60 3.92
40 47.08 4.72
60 47.79 2.00

10 20 48.98 4.88
40 45.03 5.62
60 44.12 5.01

30 2 20 55.82 0.88
40 55.30 4.50
60 57.20 1.44

5 20 54.56 3.59
40 52.19 4.22
60 49.20 3.43

10 20 54.50 5.01
40 48.80 2.49
60 45.54 5.46

50 2 20 64.22 2.31
40 59.17 3.10
60 59.16 4.59

5 20 59.45 4.27
40 54.49 5.26
60 51.00 5.95

10 20 59.24 6.76
40 49.48 3.19
60 48.37 6.44

100 2 20 62.70 1.30
40 60.54 5.41
60 61.09 4.90

5 20 61.21 4.39
40 52.08 3.13
60 49.11 3.77

10 20 58.37 16.15
40 51.64 9.28
60 47.90 17.82

Table 1. Comparison of methods on the in-
stances with |S| ∈ {2, 5, 10}

5. CONCLUSION

The results shown in table 1 show that the recoverable
robustness framework based on groups of permutable jobs
generally allows to find most robust solutions than the

standard robust optimization framework, under the same
experimental framework. This is especially true for an
important number of jobs and the largest number of sce-
narios (up to near 18% improvement). The improvement
is even drastic for the comparison of the simple greedy
initial solution procedures. In the future we will compare
the proposed methods on a larger scenario set. It would
be indeed interesting to compare the robust framework
and the recoverable robust framework on a test bed of
scenarios that are generated according to the same random
perturbation scheme on the reference scenario, but which
was not used to compute the robust solutions. More pre-
cisely, we would have a training set of scenarios of reduced
cardinality to compute the robust solution, while these
solutions will be evaluated on a larger set, which would be
closer to the real life context.

ACKNOWLEDGEMENTS

This work was supported by the financial support of the
ANR ATHENA project, grant ANR-13- BS02-0006 of the
French Agence Nationale de la Recherche.

REFERENCES

The robust vehicle routing problem with time windows A.
Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum,
M. Poss and C. Requejo. Computers & Operations
Research, 40(3), pp. 856–866, 2013.

A. Ben-Tal, A. Goryashko, E. Guslitzer and A. Ne-
mirovski. Adjustable robust solutions of uncertain linear
programs Mathematical Programming, 99(2), pp. 351–
376, 2004.

D. Bertsimas and M. Sim. Robust discrete optimization
and network flows, 2003. Mathematical Programming,
98(1–3), pp. 49–71.

D. Bertsimas and M. Sim. The price of robustness. Oper-
ations Research, 52(1), pp. 35–53, 2004.

J-C. Billaut and F. Roubellat. A new method for workshop
real time scheduling, International Journal of Produc-
tion Research, 34 (6), 1555-1579, 1996.

Z-L. Chen. Integrated production and outbound distri-
bution scheduling: review and extensions, Operations
Research, 58(1), 130–148, 2010.

A. Caprara, L. Galli, S. Stiller and P. Toth. Delay-Robust
Event Scheduling, 2014. Operations Research, 62(2), pp
274–283.

P. Kouvelis and G. Yu. Robust discrete optimisation and
its applications, Kluwer Academic Publishers, 1997.

C. Liebchen, M. Lübbecke, R. Möhring and S. Stiller.
The Concept of Recoverable Robustness, Linear Pro-
gramming Recovery, and Railway Applications in R. K.
Ahuja, R. H. Möhring and C. D. Zaroliagis (editors),
Robust and Online Large-Scale Optimization, Models
and Techniques for Transportation, Lecture Notes in
Computer Science, Volume 5868, Springer Berlin Hei-
delberg, 2009.

S. D. Wu, E.-S. Byeon and R. H. Storer. A Graph-
Theoretic Decomposition of the Job Shop Scheduling
Problem to Achieve Scheduling Robustness. Operations
Research, 47(1), pp. 113–214, 1999.

