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The construction of non-linear normal modes for systems with
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€2328H Engineering, Department of Mechanical Engineering, Michigan State University, East Lansing, Ml 48824-1226, USA

A numerical method, based on thevémiant manifold approach, is presented for constructing non-linear normal modes
for systems with internal resonances. In order to parameterize the non-linear normal modes of interest, multiple pairs of
system state variables involved in the internal resonance are kept as ‘seeds’ for the construction of the multi-mode invariant
manifold. All the remaining degrees of freedom are then constrained to these ‘seed’, or master, variables, resulting in a system
of non-linear partial differential equations that govern the constraint relationships, and these are solved numerically. The
computationally-intensive solution procedure uses a combination of finite difference schemes and Galerkin-based expansion
approaches. It is illustrated using two examples, both of which focus on the construction of two-mode models. The first
example is based on the analysis of a simple three-degree-of-freedom example system, and is used to demonstrate the
approach. An invariant manifold that captures two non-linear normal modes is constructed, resulting in a reduced order
model that accurately captures the system dynamics. The methodology is then applied to a larger order system, specifically,
an 18-degree-of-freedom rotating beam model that features a three-to-one internal resonance between the first two flapping
modes. The accuracy of the non-linear two-mode reduced order model is verified by comparing time-domain simulations of
the two DOF model and the full system equations of motion.

has been proposed as an analogy to its linear counter-
part. The concept of non-linear nornrabdes(NNM)
was initiated by Rosenbefd] and subsequently con-
sidered by a number of other investigators and their
co-workers, including Ranf?,3], Nayfeh[4—6], and
1. Introduction Vakakais[7-9], who have studied the existence, con-
struction, stability, and bifurcations of NNMs. The
In order to obtain accurate reduced order models definition of NNMs was generalized by Shaw and
for non-linear systems, “non-linear modal analysis” pijerre [10,11] through the introduction of invariant



manifolds. The works by Nayfef12], Vakakis et al.
[13], and Camillacc[14] offer overviews of the vari-
ous methods of constructing NNMs.

A NNM invariant manifold is a two-dimensional

For ann-DOF non-linear system withl modes in-
volved in an internal resonance (or, more generally,
with M modes to be retained for any reason), the
multi-mode invariant manifold can be defined and ob-

surface in the system phase space that is tangenttained numerically in terms of 2lvhaster coordinates
to the corresponding linear modal eigenspace at the (M displacement—velocity pairs & amplitudes and

equilibrium point[10]. In order to parameterize these
manifolds for vibratory systems, a single pair of state
variables in linear modal coordinates (typically a
modal displacement—velocity pair, or a modal ampli-
tude and phase) are chosennaastercoordinates for
an individual NNM. Then, all the remaining degrees
of freedom (DOF), the so-calleslavecoordinates, are
constrained to thesmastercoordinates in a particular
manner, dictated by the equations of motion. The non-
linear partial differential equations (PDEs) describing
the geometry of the manifold are produced using an
approach that follows center manifold construction.
Based on this methodology, a numerical framework
for constructing NNMs, namely a Galerkin projec-
tion method[15], has been proposed and effectively
applied to a variety of non-linear systems, includ-
ing systems with non-smooth restoring fordd$],
as well as systems with non-proportional damping
forces, non-symmetric non-linearities, and gyroscopic
terms[17]. Once the NNM invariant manifold is ob-
tained, motions on it are governed by the dynamics of
the correspondingnastercoordinates, which are de-
scribed by two first-order ordinary differential equa-
tions. Note that these equations of motion are valid
only for initial conditions on the invariant manifold.
Unlike linear modes, NNMs will interact during a
general motion that is initiated by general initial con-
ditions. Moreover, an invariant manifold approach that
is based on a single mode reduction will break down in
the presence of internal resonances betweemihe
ter and anyslavecoordinate$18]. Hence, a non-linear
normal multi-mode methodology is required if one is
interested in the multi-mode responses of non-linear
systems. Previous studies of NNMs with internal reso-

phases). The procedure is outlined as follows. First, a
transformation to polar coordinates is applied, as in the
single-mode expansion case proposed by Pesheck et
al. [15], to each pair of master coordinates. Then, the
constraint functions for the slave coordinates are ex-
pressed in terms of these master coordinates, which are
M amplitudes: andM phasesp. Since the master co-
ordinates are represented by more than one amplitude-
phase pair, the computation of the manifolds is much
more complicated than in the single-mode case. To ad-
dress this problem, a computational approach is pro-
posed, which combines Galerkin projections in the
phase coordinates and finite difference discretizations
in the amplitude coordinates. Using this methodology,
a 2M-dimensional invariant manifold can, in princi-
ple, be constructed for the system, and motions on this
manifold are governed by a set of 2Mst-order dif-
ferential equations in the master coordinates.

It shall be noted that the procedure presented in
this paper is utilized to examine the non-linear modal
dynamics for theM modes involved in the internal
resonance. In order to obtain a complete description of
the system’s non-linear modal structure, the remaining
n — M NNMs will have to be constructed.

The multi-NNM approach is applied herein to a sim-
ple three-DOF system, as well as to a rotating blade
model in which transverse motions are non-linearly
coupled with axial extensions of the blade. For the lat-
ter system, an 18-DOF discretized model derived from
linear modal analysis is examined, which features an
internal resonance between the first and second flap-
ping modes. Using the multi-NNM procedure, the in-
ternally resonant four-dimensional invariant manifold
is constructed and the resonant dynamics are shown

nances were primarily based on perturbation methods to be accurately captured by the two-DOF (four state)

[6,8] or polynomial series expansions with the invari-
ant manifold approachil8,19]. These are applicable
only in the weakly non-linear regime. In order to ob-

tain accurate reduced-order models for non-linear sys-

reduced-order model.

The paper is organized as follows. The class of non-
linear systems under consideration and the formula-
tion of the multi-mode invariant manifold equations

tems with internal resonances in strongly non-linear are described in Section 2. In Section 3, the solution
amplitude regimes, a new method for constructing in- procedure for the invariant manifold is demonstrated
variant manifolds is proposed in this paper, as follows. on a 3-DOF example system. In Section 4, the method-



ology is applied to an 18-DOF rotating beam system S,,, are chosen amastercoordinates. Then all the

featuring an internal resonance between the first two remaining DOFs, namely thslave coordinates, are

flapping modes. Finally, some conclusions are drawn constrained such that they are dependent on the 2M

in Section 5. mastercoordinates. A straightforward expression for
the slave constraint functions is

2. Multi-mode invariant manifolds n; = Xi Mg, M) _
| | - 7.7,':Yi(77k7’;lk) s fOflgESM, ke Sy. (2)
The vibratory system considered is afDOF au-
tonomous non-linear system, which can be obtained This form has been utilized by Pesheck et[48] to
directly from Newton’s laws, Lagrange’s equations, fi- carry out an asymptotic procedure for the construc-
nite element methods (FEM), or through any assumed- tion of the invariant manifolds. In this approach, the
mode method. In order to simplify the construction constraint relationships, Eq. (2), are approximated by
procedure for the invariant manifolds, systems with- polynomial expansions in the master coordinates. Us-
out damping or gyroscopic terms are considered (the ing this method, the domain of validity of the resulting
method can be generalized to include these effects, solution is limited to some neighborhood of the sys-
but it is much more computationally intensive). For tem’s equilibrium position. In addition, this approach
these systems, one can transform to linear modal co- does not allow one to systematically control the accu-
ordinates, and the original non-linear system can be racy of the approximate solution. Hence, a new form
expressed in the following standard form: for the master coordinates and the slave constraints is
. 2 .. used here in order to overcome some of the inherent
i+ opn; = filnp, i j =1, (1) deficiencies of the polynomial expansion method.
where they; s are the linear modal coordinates, the For each pair of master coordinates, ;) k €
are the corresponding linear modal frequencies, and Sy, & polar coordinate transformation is applied,
fi(n;) is theith non-linear force, which generally de-
pends on all the linear modal coordinates, expressed 1, = ax COS@;,)
in terms of the linear modal coordinates. It should be i}, = —axwi Sin(¢,)’
noted that the non-linear forces, tlfe(nj)s, are as-
sumed to be independent of the linear modal veloci- where w; is the kth linear modal frequency, and
ties, i7;. With this assumption, the computational cost (ax, ¢;) are the master coordinates in amplitude-
for the construction of the invariant manifolds can be phase form. Then, all the slave coordinates are ex-
significantly reduced. pressed as functions of these amplitude-phase master
In order to obtain accurate reduced-order models coordinates,
for non-linear systems with internal resonances, multi-
mode invariant manifolds must be construc{é8]. n; = Pi(ak, ¢p)
Here, an invariant manifold is defined as a multi- #7; = Q;(ax, ¢)°
dimensional surface spanned by all the linear modal
displacements and velocities involved in the internal where the slave coordinates are restricted to the do-
resonance, such that any motion initiated on the man- main defined by th& pairs of amplitude—phase vari-
ifold will remain on it for all times. Following this ables. This domain is easily bounded, since the phase
definition, the invariant manifold can be constructed coordinate is periodic and the positive amplitude re-
in the following manner. gion can be dictated to a range of interest during the
Let us assume that there are a totaMbmodes in- construction of the invariant manifold, as described
volved in an internal resonance for the non-linear sys- below.
tem defined in Eq. (1). These modes are described by With the above polar form for the master coordi-
a set of indices, denoted &g;. According to the def-  nates and the slave constraint relationships, the partial
inition of invariant manifolds, each pair of state vari- differential equations governing the invariant mani-
ables involved in the internal resonancg,, ;) k € fold can be obtained as follows. For each pair of slave

for k € Sy, 3)

fori¢ Sy, ke Sy, (4)



coordinates(;, i7;), we have 3. A three-DOF example system

Qi="h oP. op . Fig. 1depicts a three-DOF mass-spring system with
= (_’gk + _’qsk) two cubic non-linear springs of coefficientg and
kesy \Oak Oy . 72, attached to masseld, and M3, respectively. The
3 5 , fori¢Sy, (5) 2 .
0; = 3 <&d1¢ + &(bk) system parameters are tuned so that the second linear
kesy \ Oa Gl modal frequency is approximately three times the first
=— wl.ZP,- + f; one, i.e.w2 ~ 3wj;. Consequently, a three-to-one in-
ternal resonance occurs between the first and second

wherew; and f; are thdth linear modal frequency and
the non-linear force defined in Eq. (1), respectively.
In order to eliminate the explicit time dependenge,
and ¢, in Eq. (5) are replaced using the governing

linear modes.
Using linear modal coordinates, the system can be
transformed to the standard form shown in Eq. (1)

equation of motion for each pair of master coordinates, i, + wiz’%' = filn;) fori, j=1,2,3, (8)
which are ] .
where the modal coordinateg are defined by the
. _fk(ﬂj) . i dal t f tion:
ap = ——2L=sing, inear modal transformation:
P , x1) [05870 —05147 062497 (1
b =or — o a] COSy {xz} = |:0.6039 —0.2357 —0.7614:| :112} )
for k € Sy, j=1n. ©) X3 05392 08243 01725 | Ly,

The linear modal frequencies arg = 0.5972rad's,
w2 =1.792rads, andws = 3.405rads, and the non-
linear forces are

B oP; (—fr . 5
Q= kEZSM 30 Lo o dr f1=0.587(—0587, + 0.5147, — 0.6249;5)

Substituting Eq. (6) into Eq. (5), the governing PDEs
for the invariant manifold are found to be

P, f — 0.8088(053927; -+ 0.8243), + 0.1725)3)°,
i (o e oot
S0k [ fo Ok - , fo= —0.5147(—0587; + 0.5147, — 0.6249;5)°
kEZSM [@ <w—k sin ¢k> _ — 1.2365(05392); + 0.8243), + 0.1725;5)%,
+? (wk _ S Cos¢k> — PP+ f, 3= 0.6249(—0587, + 0.5147, — 0.6249;3)3
for i ¢ Afk Ok | @) — 0.2588(05392;; + 0.8243,

, +0.1725;5)%. 9)
In Eq. (7), there are a total (# M) pairs of equa-
tions governing the invariant manifold, in terms of the In the presence of an internal resonance between the
constraint equations. These equations are non-linearfirst two modes, the master coordinates are chosen as
and have to be solved in some approximate manner; the state variable pairg. 77;) and (1, i1,). The cor-
here this is done numerically. Once they are solved, fésponding master coordinate index sefjs={1, 2}.
the results for all of the slave constrain®, and Q; The polar coordinate transformation is applied to these
for i ¢ Sy, can be substituted into tHd pairs of or- state variable pairs according to the definition in Eq.
dinary differential equations governing the dynamics (3)- As a result, the transformed master coordinates
of the master coordinates, Eq. (6). As a result, the re- are expressed in terms of the amplitude—phase pairs,
sponse of the original system restricted to the invariant (@1, ¢1) and(az, ¢).
manifold is captured by this 2M-DOF reduced-order  As defined in Eq. (4), the constraint relationships
model. The procedure for obtaining the numerical so- for the slave coordinates are
lution for the invariant manifolds is described in the _p
context of a simple example, and then applied to a '@~ 3(@1, a2, $1. $2),
more substantial problem. i3 = Q3(a1, az, g1, P,).



Fig. 1. Schematic diagram of the mass—spring system: madses My = M3 = 1kg; spring stiffnessek1 = 0.5N/m, K2 =5N/m,
K3=2.03N/m, K4=0.6 N/m; non-linear spring forceg; =1.0x X1()3N, 72=1.5x% X3(1)3N. X1, X2, andX3 denote the displacements

of massesM1, M», and M3, respectively.

The governing PDEs for the invariant manifold are
given in Eq. (7) and are rewritten here as

0s= 0P3 <—flsinq51>

Oay w1

@P3 (w fi COS¢1)
a(f)1 wi1al
0P < f2sin <f>2>
+
8(12 w2
@P3 f2cos¢,
a¢2 (w w24z ) ’ (10)
003 (—fl sin <f>1> 003 (w f COS¢1>
Oai w1 a(f)l wia1
6Q3 (—fzsin¢z> aQs( fzc08¢z)
+ wp — =
aaz w2 a¢2 w2d3
= —wiP3+ f3. (11)

A numerical solution scheme is given here to ap-
proximate the unknown constraint relationships,
P3(a1, a2, 1, ) and Qaz(ai, az, ¢y, ¢p), Which
define the geometry of the four-dimensional invari-
ant manifold. In the two-dimensional phase region,
defined by

{($1. 92) | 91 € [0, 27, 5 € [0, 2]},

the constraint relationshipBs and Q3, are periodic

in both ¢, and¢,. Hence, they can be efficiently ap-
proximated by two-dimensional Fourier series. In the
two-dimensional amplitude domain, defined by

{(a1,a2) |0 <a1 <aimax O0<az<azmax,

where the upper limitg1 max andai max are set during
the numerical construction procedure, finite difference
discretization methods can be used to approximate the
unknown constraint equations by a sequence of over-
lapping polynomials that interpolates and Q3 at a

set of grid points. It should be noted that the region of
the two lines{ (a1, a2) | ap =0 or ap =0}, is excluded
from the two-dimensional amplitude domain in the fi-
nite difference scheme, since this region is not defined
in the governing partial differential equations for the
invariant manifold. With the combination of finite dif-
ference methods and two-dimensional Fourier series
expansions, the unknown constraint equati®gasind

03, can be approximated at each grid point as

Ps(a}, aé, b1, $2)
Ngy Ny, o
~ YN O Ry Fu($o), (12)

=1 m=1

Q3(a§_, aév q’)lv d)z)
Ngy Ny,

~ 33 Dy Filg) (), (13)

=1 m=1

where(d}, a3) is the grid point determined by the finite
difference scheme in the amplitude region; indices
andj denote the location of the grid point along the
a1 anday directions, respectively; the Fourier terms,
Fi(¢41) and F,,(¢,), are defined as

cos(51¢), 1is odd,

sin(5¢), [iseven (14)

Fi(g) = {



and Ny, and Ny, are the number of terms of the duced to one-fourth its original number by exploiting
Fourier expansions ith; and¢,, respectively. As can  the inherent relationship betweeds and P, along
be seen in Egs. (12)—(14), the total number of the un- with the symmetric nature of the non-linear forces,
known quantities are determined by, andN,, as which are cubic and depend only on the displacement
well as the number of grid points. Once the unknown variables. The details of these simplifications are now
coefficients, theCs andDs in expressions (12) and described.
(13), have been obtained at all grid points, the invari-  For a given set of values for thes, the expression
ant manifold is completely determined in this approx- of the velocity constrainQ3, can be explicitly deter-
imate manner. mined from the following relationship:

Given the expression of3 and Q3 at each grid
point, the derivatives of the local interpolant are used

i J .
to approximate the derivatives @& and Q3 with re- Qs(ay, a3, b1, $2: C)

spgct to_al or ap. Simple two-point backward interpo- ~ ?(Cli» aé’ e
lation gives a
sin qbl]
oP3 . dad b i C
6_3((111’ a3, d1. ¢7) [ filay, ay, d1, a5 C)
ay
1 i) a, al Lo C
~ h_[PB(afp aé, ¢1, (,‘bz) ad) ( 192 ¢1 ¢2 )
1
i-1 J _ P ... COS¢hy
— P3(al 5 a2a ¢1, ¢2)] + O(hl), X | 1 fl(a]_» az’ ¢l’ ¢2’ C) o
oPs . 3P
aj(all’ @, $1. $2) + _(“1’ a2 b1, ¢2; C)
! ol [ sin
~ h_z[Ps(all’ aé, $1, $2) % —fz(al, az’ b1, ¢ C) ¢2j|
_ i Jj-1 é
Ps(ay, ay 1, $o)] T 5l i by, b )
+ O(ho), (15) ¢ ,
j ] j ' P cos
wherehy = ai - ai_l, ho = aé — aé_l are the dis- X | w2 — fz(al’ aé’ ¢l’ ¢2; 22:| ’ (16)

tances between adjacent grid points alongdhend

ap directions, respectively. The functian(-) denotes

that the errors in these approximations are orders-

of-magnitudehs and ha, respectively. If more grid

points are used in the approximation for a given ampli-

tude range, higher accuracy is obtained. The approx-

imation of the derivativespQ3/0a; and 0Q3/0az,

is determined using a similar scheme. Along the

and ¢, directions, the derivatives of the unknown

functions P3 and Q3 can be easily obtained using the . ) . ) .

two-dimensional Fourier series expansions given in simultaneously W'th thes, in an |t§rat|ve manner.

expressions (12) and (13). From expression (16), the velocity constraf at
The computational time associated with the con- €&ch grid pointay, az) is evaluated numerically at the

struction of the invariant manifold depends on the following set of phase angles:

number of unknown coefficients, which depends on

the number of grid points selected for the amplitude !‘f’l In/Ny,.

which is the algebraic form of Eq. (10). Note that the
non-linear forcesf; and f», in Eq. (16) are only de-
pendent on th€s, since all the non-linear forces are
defined in terms of the displacement field only, Eq.
(9). Otherwise, the relationship f@3; would be im-
plicit. The velocity constraintQ3, would then have

to be expanded as given in expression (13). The un-
known coefficientsPs, would need to be solved for

variables and the number of harmonics employed in Q3(aj, a2 ¢1, (]52) where
the Fourier series. For this example system, the total ¢2 =Jn/Ng,,
number of unknown coefficient§s andDs, canbere-  for /=1...2Ny . J=1...2Ny,.



Then, a two-dimensional fast Fourier transform (FFT)
can be applied to theseNg, x 2N, discrete grid
point values in order to obtain the two-dimensional
Fourier coefficients corresponding to functigiy

Q3(dl, a3, 1. do)

Noy )
2 2
=N, =N,
e 2¢1 = 2¢2

x DS eV =Tmdb1gy/~1nd; (17)

where the Ds are the complex version of thB
coefficients, as defined in Eq. (13), and, , Ny,
are set to be even. Note thatvg x 2Ny, grid

Fourier series and can be expressed in the following
simplified form:

Ny
Ps(a}.a}. ¢1. dp) ~ Y CY Ty, ),

a=1

(18)

Where(ai, aé) is a grid point in the amplitude domain
of interest,N,, is the total number of expansion func-
tions, T, (¢4, ¢,) is a simplified notation for the in-
dividual basis functions defined in Eq. (12), with odd
harmonic combination order, ar@"’ is the corre-
sponding unknown coefficient. Given an initial guess
for the C,s at all grid points in the amplitude do-
main, the complex Fourier coefficientf)s, for the
velocity constraintQs are obtained from Eqgs. (16)
and (17). Then, the value @3 and the correspond-

points in the phase domain are used to evaluate theing partial derivatives are substituted into Eq. (11)

N¢1 x Ny, complex Fourier coefficients in Eq. (17),
in order to reduce aliasing errors in the Fourier trans-
form. Once the Fourier coefficients are obtained, the
first-order derivatives0Q3/0¢,; and 0Q3/0¢,, In
Eqg. (11) can be efficiently calculated by the two-
dimensional Inverse FFT (IFFT). The derivatives of
Q3 with respect toa; anday can also be obtained
by the backward finite difference scheme defined in
Eq. (15). By this method, the total number of un-
known coefficients in Egs. (12) and (13) can be cutin
half. Specifically, only theC coefficients need to be
obtained.

For this example system, the non-linear forces in
Eq. (9) are only cubic. As a result, half of the Fourier
series terms in Eq. (12) can be eliminated. In particu-
lar, in the two-dimensional Fourier series expansion of
the constraint functiorPs, only the trigonometric ba-
sis functions whose combination orders are odd need
to be included. With respect to each individual basis
function, F;(¢q) Fm(¢5), in Eq. (12), the subscripts
of the corresponding coefficient can be used as a
guide to determine whether or not the associated ba-
sis function shall be retained. If intR2) + int[m /2] is
odd, the corresponding basis function is retained in the
expansion, otherwise it is removed (where the opera-
tor int[a] denotes the maximum integer which is not
larger thana). As a result, the total number unknown
coefficients in Eq. (12) is halved again.

At this stage, the constraint functiaPg at a grid
point is approximated by the reduced two-dimensional

along with the value oP3. The corresponding residual

function Rz, is defined at each grid pouﬁb’,az) as
follows:

R3(al, az d’lv d)Zv Ca)
0
— Q3 (a_']_’ a2’ ¢19 ¢27 CO()

S|nq,’>1

— f1(d}, a}, da, b Co)

202
@¢

w1 — f1(d}. aj. by, pa: C)

)

COS¢q

i

(., a3, d1, ¢ Co)

003, ;
+ 67120117 aé, $1, $2; Cy)

i sin
X —f2(a1» a2 d)l, ¢2, Cy) ¢2i|
6Q3 i .
+ T%(al, ay, ¢y, ¢p; Co)
i 3 i ] CoSso,
x | w2 — falay, ay, ¢y, Pp: Cy o ]

+ w3 P3(dl, ab, ¢y, dp: Co)
- f3(a§|_a aév d)lv d)27 COC)
In order to minimize the residual functio®s, a

“weighted residuals” Galerkin method is used, in
which the projection of the residual function onto the

(19)



P3(a;1,a,,0,0)

Fig. 2. A section of one component of the invariant manifold for
the system shown iffig. 1. The modal displacemeng is shown
at phase angle&py, ¢2) = (0, 0).

basis function is required to vanish

2n 2n
/ / [Tu(b1. §2)
o Jo

X Ra(al, a}, 1, dp; Cx)1depy dpy =0,
fora=1...N,, atV (aj, al), (20)

where T, is the basis function in Eq. (18). Eg. (20)
yields a set of non-linear algebraic equations in the un-
known coefficient<,. These are solved using a non-
linear solver found in the subroutine package NAG, _ . . o

L , . Fig. 3. Diagram of another section of a component of the invariant
which is based on Powell’s hyb”d meth@fd)]. The manifold for the system shown ikig. 1. The modal displace-
user must, (i) provide an initial guess for the unknown ment 5 is shown at amplitudeas . az) = (0.35,0.35). (a) An
coefficients in Eq. (18), and (ii) evaluate the “weighted illustration for the invariant manifold defined in the torus domain
residuals”, the left-hand side of Eq. (20), by numerical {(#1. ¢2)1¢1 € 10,27l, $; € [0, 2x]}; (b) A cross-sectional view
integration. of the invariant manifold at phase anglg = 2/3 .

The resulting four-dimensional invariant manifold
cannot be visualized in three-dimensional space. How-
ever, we can show specific cross-sections of the man_ghosen discretization is sufficient to capture the man-
ifold. In Fig. 2, the slave constraint relationshig is ifold geometry.
depicted at the phase angles , ¢,)=(0, 0). The two- The domain defined by(¢y, dp), where ¢, e
dimensional amplitude domain;, ap) over whichthe [0, 271 and $; € [0, 27], is a two-dimensional torus.
invariant manifold is numerically constructed is taken The invariant manifold at any grid poirtt}, a3) can
to bea; € [0.01,0.35] anda; € [0.01,0.35]. Using a be visualized in this torus domain. Fig. 3(a), the
convergence study, an 11-by-11 grid finite difference phase anglep, is defined by the angle from vector
scheme is chosen to discretize this domain. The meshWB to vectorOr. At phase angle, a cross-section
sizes forhy andhy are 0034 in thea; anday direc- of the invariant manifold along the plan®zis shown
tions. InFig. 2, the invariant manifold looks smooth in Fig. 3(b). In this cross-section, the shape of the
with this mesh scheme, which indicates that the invariant manifold is shown by the vectgs, which

) TS



dn,/dt (1

(@ (b)

t/sec t/sec

dn,/dt ()

. 0 5 10 15 20 25 0 5 10 15 20 25
(c) t/sec (d) t/sec

Fig. 4. Comparison of the time responses of the master coordinates for the system sheigynlinfor initial conditionsa;(0) = 0.28,
¢1(0) = 0.0, ap(0) = 0.28, ¢»(0) = 0.0: (—) time simulation of the original system model; (---) simulation of the reduced-order model.
Plot (a) shows the time response igf versust; (b) i71(1); (c) n2(2); (d) 772().

indicates the magnitude of the manifold at phase angle plitude domain, is equal to 8712. For each unknown
¢». For comparison, the nominal torus domain is also coefficientC,, zero is used as the initial guess value
shown here as a circle with a dashed line, on which to start Powell's hybrid solution method.

the magnitude of the invariant manifold is zero. For ~ Once the constraint relationshify is obtained for

the solution shown ifrig. 2, the number of terms for  this internal resonance case, system motions on the
the two-dimensional Fourier series in expression (12) invariant manifold can be captured by the reduced-
is taken to beNy, = Ny, = 12 for each grid point. order model, which involves the master coordinates
Since the non-linear forces are cubic for this example only. As shown in Eqg. (6), numerical time simula-
system, the total number of basis functions in the tions can be carried out for these four first-order dif-
two-dimensional phase space is reducet¥{e=72 in ferential equations for given initial conditiong; (0),
expression (18). As a result, the total number of coef- ¢4(0), a2(0), and¢p,(0). In Fig. 4, time simulations for
ficients required for the construction of the constraint the master coordinates are shown using the reduced-
relationshipPs, i.e. theC,s in expression (18) for all  order model with two DOFs and the original three-
of the 11x 11 grid points in the two-dimensional am- DOF model restricted to the invariant manifold. Based



x 1078

4
0.01
0.005
< 5 0
joy [S2]
=
o
-0.005
-0.01
-4
0 5 10 15 20 25 0 5 10 15 20 25
(@) t/sec (b) t/sec
0.5
0.4
0.3
0.2 t
0.1t -
0.1} <
©
-0.2 +
0.3}
04 |
-0.5 : : - - : : : :
0 5 10 15 20 25 0 5 10 15 20 25
(c) t/sec (d) t/sec

Fig. 5. Comparison of the time responses of the slave coordinates andMiags the system shown iifrig. 1, for initial conditions
deduced from the initial values of the master coordinaig$0) = 0.28, ¢ (0) = 0.0, a(0) = 0.28, ¢»(0) = 0.0: (—) time simulation of
the original system model; (---) simulation based on the reduced-order model. Plot (a) shows the time respgnsesoist; (b) 73(1);

(c) X3(1); (d) X3(1).

on the reduced-order model, Eq. (6), the responses oftion obtained from the original model should match the
the amplitude—phase pairs are simulated. Then, the re-response from the reduced-order model if the invari-
sponses of the modal coordinates are obtained usingant manifold has been constructed accurately enough
the definition of the polar coordinate transformation. to capture the actual geometry. fig. 4, the two cat-
For comparison, the time responses for the master co-egories of time responses are undistinguishable, indi-
ordinates can also be acquired by the direct time sim- cating that the manifold geometry is accurate.

ulation of the original system, Eq. (8), since the initial With the reduced-order model, time responses for
conditions for the slave coordinatgg(0) and#3(0) the slave coordinategs, i73) can be obtained from the
can be obtained using the slave constraint funclgn  constraint relationship®s and Q3. In Figs. 5(a) and
and Q3. According to the definition of the invariant (b), these responses are compared to simulations based
manifold, any motion initiated on the manifold will  on the original system model. An excellent match be-
remain on it for all the time, indicating that the simula- tween these two results is observed, which is further
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evidence to the accuracy of the invariant manifold. expressed as follows:
The time response of any physical coordinate, i.e. the

L
displacement or velocity of any masshig. 1, can be T == / m@@? + w?) + mQ%h + x + u)dx,
0

determined from the simulation of the reduced-order 2

model, since the responses of all modal coordinates, (21)
both masters and slaves, are calculated. The displace- 1 (L

ment and velocity of masafz, X3(r) and X3(¢), are U= > /o El(w,x)?

shown inFigs. 5(c) and (d). Again, excellent agree- 2
ment is found between the results for the reduced- + EA(u L+ l(wx)2> dx, (22)
order and original system models. T2

This example was used to demonstrate the detailswherew(x, 1) andu(x, 1) are the transverse and ax-

of the process. A more substantial example is now g displacements, respectivelf, , denotes a partial

considered. derivative with respect to the spatial variatleand()

represents a time derivative. It should be noted that the
standard linear curvature assumption is made in the
energy expressions; this is done since the model still

h hodol . lied i provides the non-linear coupling of interest, resulting
Here the methodology is applied to a vibratory sys- i, the sjow modal convergence described abidl.

tem of more practical interest, and with more degrees Hamilton’s principle is used to develop the weak for-
of freedom. A uniform rotating Euler—Bernoulli beam, mulation for the equation of motion

shown inFig. 6, is considered. This system has been o
. . 2
studied by Pesheck et 41.8], who approximated the / / ([ — Elw, s low
1 0

4. The rotating beam system

invariant manifold in the case of an internal reso-
nance using asymptotic methods. Apiwattanalunggarn 1 5
et al.[21] also studied this system and obtained the  — [EA<“’X + é(w’x) ) w%] oW, x
single-mode non-linear invariant manifold for large
amplitude motions using a non-linear finite element 1
approach. - [EA (w,x)2:| 5u,x} dxdr =0, (23)
This rotating beam system can be considered as a 2
hlghly SlmpllfIEd model of a helicopter rotor blade, in Where&() denotes the variation of a quantity_
which the following effects are neglected: lead-lagmo- | order to obtain the discretized version of the
tion, torsional motion, aerodynamic loading, and the equations of motion in the standard form (1), the lin-
weight of the blade. Even with this simplified model, it earized partial differential equations off the non-linear
has been shown that typical discretization procedures rotating beam system are given here
for this system suffer from very slow modal conver- ,
gence, since a comparatively large number of axial miia —mQ%uq — EAug xx =0, (24)
modes must be included in order to accurately describe ;. 1 Ejy, . — EAGUs c W, xy + Us rx W, x)
the transverse bending motion of the befi8,21]. -0 (25)
Due to the non-linear axial/bending coupling effects, ’
the resulting discrete models are computationally cum- Whereug is the dynamic component of the axial elon-
bersome, even for direct time simulations. Hence, a 9ation,u(x, 1), defined as
ractical model order reduction technique would be
Sery useful for the analysis of this syste-qm. ud(x, 1) = ux, 1) = us(x). (26)
A detailed derivation of the PDE’s governing the The static partu(x), is the static elongation of the
transverse bendingy(x, r), and the axial elongation, beam due to rotation when the transverse deflection is
u(x, ), of this beam can be found in R4L8]. The zero. Linear mode shapes corresponding to Egs. (24)
derivation procedure is briefly described here. The and (25) can be obtained using a Rayleigh—Ritz proce-
potential energyU, and kinetic energyl, may be dure. Once these modes are determined, the solutions

+ [—mii + mQ?(x 4+ h + u) + EAu., |ou
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Fig. 6. Schematic diagram of the rotating beam system. Rotating $paedctonstant. The uniform beam has the following material and
geometrical parameters: Young's modulascross-sectional are®, second moment of cross-sectional akelength L, and mass per unit

lengthm. The hub radius i&. (Abridged from Ref[18].)

to the non-linear system (23) are sought in the form
of an expansion as

N”

ua(x, 1) ="y n;(T; (x),
i=1
Ne

wix, 1) =Y &OWix),

i=1

(27)

whereU; andW; are the linear modes corresponding to
Egs. (24) and (25), and the integ&¥s and N: denote

the number of axial and transverse linear modes used,

respectively.

These expansions are substituted into the weak
formulation, Eq. (23), and the discretized non-linear
equations of motion are obtained as follows:

i+ 0f 0 = fri(€))

fori =1-N,, j=1-Ng, (28)
&+ wgifi = fei(&jm)
fori, j =1-N¢, k=1-Ny, (29)

wherew, ; andw¢ ; are the linear modal frequencies
associated with théh modes in the axial and trans-
verse directions, respectively. These equations of mo-
tion are non-linearly coupled because the quadratic
non-linear forces corresponding to the axial motion
fn.i» depend on the transverse motiop, while the
quadratic and cubic non-linear forces in the transverse
direction f¢ ;, are dependent on both axial and trans-
verse motions¢; and.

The convergence of this model has been thoroughly
investigated in Ref[18]. It has been found that at
least an 18-DOF model, withv;, = N: =9, must be

corresponding to a transverse deflection amplitude of
about 0.1 m at the beam tip, for a 9.0 m beam. This 18-
DOF discretized model is used here as tbkerence
model. Based on this model, the invariant manifold is
constructed. Consequently, a reduced-order model can
be obtained for the representation of the dynamics on
the invariant manifold.

As in the case studied in R¢1.8], the parameters of
the uniform rotating beam are set as followis=9 m,
m=10kg/m,El=3.99x 10° N m?, EA=2.23x 10° N,

Q = 23.85rads, andiz = 0.5m. Under these con-
ditions, a three-to-one internal resonance occurs be-
tween the first two transverse modes; » ~ 3w 1.

The master coordinates are chosen as the state variable
pairs,(&q, &1) and(&,, £5). Polar coordinate transfor-
mations, defined in Eq. (3), are applied to these two
pairs of state variables, resulting in two amplitude-
phase pairs as the transformed master coordinates,
(a1, ¢1) and(az, ¢,). Allthe remaining DOFs, includ-

ing 7 transverse deflection modes and 9 axial modes,
form the slave coordinates, which are constrained as
follows:

&= Pi(a1, a2, @1, ¢5),

& = Qilar, az, p1, ), i=3...9,
n; = Piro(ay, az, 1, ¢o),
;= Qivolar, az, ¢1, ¢p), i=1...9. (30)

Thus, there are a total of 16 pairs of constraint rela-
tionships, Eq. (30), that need to be solved. The gov-
erning PDEs for these constraint functions are given
in Eq. (7).

The invariant manifold is solved for numerically in
the following four-dimensional domain:

used to accurately capture the periodic response in the {(a1, a2, ¢4, ¢5) |a1 € [0.01,0.75], @ € [0.01,0.4],

vicinity of the first non-linear mode for an energy level

12
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Fig. 7. A section of one component of the invariant manifold for the system showigir6. The displacement constraint relationship for
the third transverse deflection mods, is shown at phase angle1, ¢,) = (0, 0).

where the amplitude range is carefully chosen so that case: Let us divide the two-dimensional amplitude

the non-linear effect in the system is sufficiently strong
and the invariant manifold obtained from the asymp-
totic expansion method in RefL8] becomes inaccu-
rate over this domain.

In the solution procedure, the constraint relation-
ships for the velocitie®);s, in Eq. (30) are not solved
for, due to the fact that the velocity constraint is the
time derivative of the corresponding displacement con-
straint. The details of the reduction have been given in
Section 3, Egs. (16) and (17), for the construction of
the invariant manifold of the 3-DOF example system.
Hence, only the displacement constraint relationships,
P;s, need to be solved.

For the two-dimensional phase domai;,, ¢,),
the two-dimensional Fourier series, defined in Eq.
(12), is utilized for the expansion functions for the

domain into 8/8 grid points, and set the number of
terms in the Fourier expansion a§ = Ny, =8 at
each grid point. Then, the total number of unknown
coefficients is 4096 for each displacement constraint
relationshipP;. With 16 slave constraints in Eq. (30),
the final number of unknowns is 65,536. It is ineffi-
cient to solve for the invariant manifold with such a
large number of unknowns.

A strategy to overcome this numerical difficulty
is to discretize the two-dimensional amplitude do-
main into small elements, and then utilize low-order
polynomials as expansion functions in the discretized
elements. For this example system, the amplitude do-
main, {(a1, a2) | a1 € [0.01,0.75], a € [0.01,0.4]},
is evenly divided into 7/7 equal-sized patches. The
width of each patch is.Q057 along the:; direction,

displacement constraints. Because both quadraticand Q05571 along the> direction. The displacement

and cubic non-linear terms exist in this system, the
expansion cannot be further simplified. For the two-
dimensional amplitude domaings, az), the finite
difference discretization scheme, which was used in
the 3-DOF example system, cannot be utilized here
due to limitations in computational capacity. The nu-
merical difficulty is clearly shown by the following

13

constraint relationships, thgs in Eg. (30), are then
expanded in each discretized four-dimensional ele-
ment

{(a1. a2, §1. §p) a1 € [aP™. a}"), az € [a5™, ay"l,
d)l € [O’ 27—5]’ ¢2 € [O’ 27‘5]}
(31)



as
Pi(a1, az, ¢1, ¢p)

2 2 Nop Nop
~ D22 D CijumTi(@nTi(az)
j=1 k=1 I=1 m=1

x Fi(¢1) Fm (o), (32)

whereT; (a1) are piecewise linear functions defined in
the amplitude segments; € [a”V, a;"], as follows:

fori =3...18,

ai — a'low aijp —a1
I(a1) = wp——ow: 120a1) = <55—ow- (33)
ap — 4 ap — 4

The definition of the piecewise linear functions,
Ti(az), is the same as fof;(a1), where the lower

that the computational cost is tremendously reduced
for the non-linear solver, since the invariant manifold,

defined by Eq. (30), is now solved for independently

in each four-dimensional discretized element.

The initial values used in the numerical solution of
the Cs for each discretized element are determined
as follows. For the first element, which has a two-
dimensional amplitude domain given by

{(a1, a2) | ay € [0.01,0.1157], @ € [0.01,0.06571]},

zeros are good initial values, due to the fact that the
non-linearities are weak near the origin. Then, for sub-
sequent elements, which have incremental values in
thea1 or az directions, the expansion coefficients ob-

tained from the preceding element are used as the ini-

and upper limits of the amplitude segments are set tja| values. Once the results for all discretized elements

asay € [a, a,"]. The Fourier termsf;(¢,) and

Fn(¢,), are defined in Eq. (14).

In each element, given by Eqg. (31), the deduction
of the velocity constraint (9 from the correspond-
ing displacement constraint (P and the evaluation
of the residue functiongR;, are again given by Egs.
(16), (17), and (19). It should be noted that in the
present example, the numerical values of the veloc-
ity constraints (@) and the residue functions (Rare

are obtained, the expansion coefficients from contigu-
ous elements are averaged at their interface. The re-
sulting solution for the invariant manifold is stitched
together to cover the entire domain of interest. With
the obtained invariant manifold, the reference model
with 36 states can be reduced to a 4-state model for
this internally resonant case.

A cross-section of the invariant manifold is shown
in Fig. 7. The slave constraint relationship for the third

now evaluated at the Gaussian quadrature points for transverse deflection modg; in Eq. (30), is depicted

polynomials in the discretized two-dimensional ampli-

at the phase angle®-, ¢,) = (0, 0). The amplitude

tude domain. A three-by-three-point Gaussian quadra- domain,a; € [0.01,0.75] and a, € [0.01,0.4], is

ture formula is sufficient in the regiofias, a2) | a1 €
[al®, a;], a € [a, a;"]}, using the inner prod-
uct between the residue functions;$Rand the basis

functions defined in Eq. (32). This yields

lllljp alsz 2n  p2n
f | / . / / (7} (a0) Tic(a2) Fi (1) Fin ()
a™ Jazp" JO 0

X Ri(a1, az, ¢y, ¢o; C)1d¢p; do, dap dag
=0,
for k=12, I=1...Nyp; m=1...Ny;
i=3...18. (34)

We set the number of the Fourier terms in expansion
(32) to beNy, = Ny, = 8. As a result, the total num-
ber of the unknown coefficients, th@s in expansion
(32), is equal to 4096 for each element, for each of
the 16 slave constraint relationships. Note that the to-
tal number of unknown quantities resulting from the
finite difference discretization scheme in the whole
amplitude domain is equal to 6536. Thus, it is seen
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evenly divided into 7/7 patches, and the invariant man-
ifold appears smooth with this mesh. Note that the in-
variant manifold defined in Eq. (30) is the ensemble of
the displacement and velocity constraint relationships
for all 16 slave coordinates, aridg. 7 represents sim-
ply the cross-section of one slave coordinate among
the 16.

Time responses for the displacements of the mas-
ter and slave coordinates are shown and compared
in Figs. 8and9 using three different simulation ap-
proaches: (i) direct time simulations based on the
36-state reference model, with initial conditions that
satisfy the constraint relationships; (ii) time simu-
lations for the master coordinates using the 4-state
reduced-order model, along with the reconstruction
of the slave coordinate responses using the constraint
functions; and (iii) simulations based on the reduced-
order model obtained by the asymptotic expansion
method described in Pesheck et[4B], wherein the
invariant manifold and the corresponding reduced-
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Fig. 8. Comparison of the time histories of the master coordinates

¢1(1) and &o(1) for the system shown ifFig. 6, with initial con- Fig. 9. Time histories of the slave coordinatés(r) and r3(r)

ditions a3 (0) = 0.63, ¢1(0) = 0.0, a2(0) = 0.38, ¢»(0) =0.0. (—) for the system shown irFig. 6, for initial conditions deduced
time simulation of the full reference model; (---) simulation of  from the initial values of the master coordinates:(0) = 0.63,
the redyced-order model; (— - — .)-resu|t§ from the asymptotic _ ¢1(0) = 0.0, ap(0) = 0.38, ¢»(0) = 0.0. (—) time simulation of
expansion method. Plot (a) shows the first transverse modal dis- the full reference model; (---) simulation of the reduced-order

placement(; (1); (b) second transverse modal displacemgit). model; (— - — - -) results from the asymptotic expansion method.

Plot (a) shows the ninth transverse modal displacendgyit); (b)

first axial modal displacement (7).
order model were generated using asymptotic series
expansions. It is seen that simulations obtained from
the reduced-order model match the reference modelas large as eight. Consequently, the invariant man-
results precisely, while the results from the asymp- ifolds constructed here are more accurate than the
totic method depart from the reference response rathermanifolds obtained 18], and the simulations will
quickly as time progresses. This is not surprising, be- match more closely over a longer period of time,
cause the combination orders of the multi-dimensional especially at larger amplitudes. The better accuracy
polynomials used in the asymptotic expansion method of the reduced-order model can also be verified by
are limited to thred18]. Here, the combination or-  observing simulations of the transverse displacement
der of the trigonometric functions in Eq. (32) can be of the tip of the beam, as shown kig. 10.
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Fig. 10. Time history of the transverse displacement at the tip of the 0.39
beam for the system shown fig. 6, for initial conditions deduced '
from the initial values of the master coordinateg:0) = 0.63,
$1(0) = 0.0, az(0) = 0.38, ¢5(0) = 0.0. (—) time simulation of 0.385}
the reference model; (---) simulation of the reduced-order model;
(=« — - —) results from the asymptotic expansion method. 0.38
€ 0375}
In Figs. 8-10, the accuracy of the reduced-order
model has been verified by comparisons of the simu- 0.37}
lated time responses. The 4-state reduced-order model
can then be utilized to investigate the dynamic behav- 0.365 1
ior of this system, which arises from the existence of
the internal resonance. Amplitude modulation of the 0-36 o oz o6 e 1
responses for the two master coordinatesy) and (b) t/sec

az(t), is demonstrated ifrig. 11. Note that there ex-
ists a continuous exchange of energy between the two Fig. 11. Time histories of the master coordinate) andaz (1) for
modes. Within the first second, the time period of the system shown ifrig. 6for 1's, under initial condltlonsl(O):O.§3,

. . ¢$1(0)=0.0, a2(0)=0.38, ¢»(0)=0.0. Plot (a) shows the amplitude
energy e_xc_hange Can_be apprOX|mater det?rmmed aSof the first transverse modal displacement(r); (b) amplitude of
012 S. S'm'lar prOpeI’tIeS can a|SO be foun(ﬂ:lg 12, the second transverse modal d|sp|acern@mt)
where motions are simulated over a long time period.

The energy exchange shown fifig. 12 occurs at a
much slower time scale, with a period of about 9s.  ple system and for the rotating beam system, using a
combination of finite difference or finite element dis-

cretization schemes in the amplitude domain and two-

5. Conclusions

The following conclusions can be drawn from this
study: (i) Multi-NNMs can be effectively generated by
the invariant manifold approach. A systematic solu-
tion methodology for the invariant manifold has been

dimensional Fourier series expansions in the phase
domain. (ii) A reduced-order model can be generated
once the multi-NNM is obtained, and motions on the

invariant manifold can be accurately captured by this
model. The precision of the reduced-order model is
controlled by the numerical parameters used in the

proposed, which uses the polar form of the master co- solution procedure. (iii) Although only quadratic and
ordinates. Four-dimensional invariant manifolds have cubic order non-linear forces were considered in the
been successfully constructed for the 3-DOF exam- systems considered, the construction method can be
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