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A numerical method, based on the invariantmanifold approach, is presented for constructing non-linear normal modes
for systems with internal resonances. In order to parameterize the non-linear normal modes of interest, multiple pairs of
system state variables involved in the internal resonance are kept as ‘seeds’ for the construction of the multi-mode invariant
manifold. All the remaining degrees of freedom are then constrained to these ‘seed’, or master, variables, resulting in a system
of non-linear partial differential equations that govern the constraint relationships, and these are solved numerically. The
computationally-intensive solution procedure uses a combination of finite difference schemes and Galerkin-based expansion
approaches. It is illustrated using two examples, both of which focus on the construction of two-mode models. The first
example is based on the analysis of a simple three-degree-of-freedom example system, and is used to demonstrate the
approach. An invariant manifold that captures two non-linear normal modes is constructed, resulting in a reduced order
model that accurately captures the system dynamics. The methodology is then applied to a larger order system, specifically,
an 18-degree-of-freedom rotating beam model that features a three-to-one internal resonance between the first two flapping
modes. The accuracy of the non-linear two-mode reduced order model is verified by comparing time-domain simulations of
the two DOF model and the full system equations of motion.

1. Introduction

In order to obtain accurate reduced order models
for non-linear systems, “non-linear modal analysis”

has been proposed as an analogy to its linear counter-
part. The concept of non-linear normalmodes(NNM)
was initiated by Rosenberg[1] and subsequently con-
sidered by a number of other investigators and their
co-workers, including Rand[2,3], Nayfeh[4–6], and
Vakakais[7–9], who have studied the existence, con-
struction, stability, and bifurcations of NNMs. The
definition of NNMs was generalized by Shaw and
Pierre [10,11] through the introduction of invariant
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manifolds. The works by Nayfeh[12], Vakakis et al.
[13], and Camillacci[14] offer overviews of the vari-
ous methods of constructing NNMs.
A NNM invariant manifold is a two-dimensional

surface in the system phase space that is tangent
to the corresponding linear modal eigenspace at the
equilibrium point[10]. In order to parameterize these
manifolds for vibratory systems, a single pair of state
variables in linear modal coordinates (typically a
modal displacement–velocity pair, or a modal ampli-
tude and phase) are chosen asmastercoordinates for
an individual NNM. Then, all the remaining degrees
of freedom (DOF), the so-calledslavecoordinates, are
constrained to thesemastercoordinates in a particular
manner, dictated by the equations of motion. The non-
linear partial differential equations (PDEs) describing
the geometry of the manifold are produced using an
approach that follows center manifold construction.
Based on this methodology, a numerical framework
for constructing NNMs, namely a Galerkin projec-
tion method[15], has been proposed and effectively
applied to a variety of non-linear systems, includ-
ing systems with non-smooth restoring forces[16],
as well as systems with non-proportional damping
forces, non-symmetric non-linearities, and gyroscopic
terms[17]. Once the NNM invariant manifold is ob-
tained, motions on it are governed by the dynamics of
the correspondingmastercoordinates, which are de-
scribed by two first-order ordinary differential equa-
tions. Note that these equations of motion are valid
only for initial conditions on the invariant manifold.
Unlike linear modes, NNMs will interact during a

general motion that is initiated by general initial con-
ditions. Moreover, an invariant manifold approach that
is based on a single mode reduction will break down in
the presence of internal resonances between themas-
terand anyslavecoordinates[18]. Hence, a non-linear
normal multi-mode methodology is required if one is
interested in the multi-mode responses of non-linear
systems. Previous studies of NNMs with internal reso-
nances were primarily based on perturbation methods
[6,8] or polynomial series expansions with the invari-
ant manifold approach[18,19]. These are applicable
only in the weakly non-linear regime. In order to ob-
tain accurate reduced-order models for non-linear sys-
tems with internal resonances in strongly non-linear
amplitude regimes, a new method for constructing in-
variant manifolds is proposed in this paper, as follows.

For ann-DOF non-linear system withM modes in-
volved in an internal resonance (or, more generally,
with M modes to be retained for any reason), the
multi-mode invariant manifold can be defined and ob-
tained numerically in terms of 2Mmaster coordinates
(M displacement–velocity pairs orM amplitudes and
phases). The procedure is outlined as follows. First, a
transformation to polar coordinates is applied, as in the
single-mode expansion case proposed by Pesheck et
al. [15], to each pair of master coordinates. Then, the
constraint functions for the slave coordinates are ex-
pressed in terms of thesemaster coordinates, which are
M amplitudesā andM phases̄�. Since the master co-
ordinates are represented by more than one amplitude-
phase pair, the computation of the manifolds is much
more complicated than in the single-mode case. To ad-
dress this problem, a computational approach is pro-
posed, which combines Galerkin projections in the
phase coordinates and finite difference discretizations
in the amplitude coordinates. Using this methodology,
a 2M-dimensional invariant manifold can, in princi-
ple, be constructed for the system, and motions on this
manifold are governed by a set of 2Mfirst-order dif-
ferential equations in the master coordinates.
It shall be noted that the procedure presented in

this paper is utilized to examine the non-linear modal
dynamics for theM modes involved in the internal
resonance. In order to obtain a complete description of
the system’s non-linear modal structure, the remaining
n − M NNMs will have to be constructed.
Themulti-NNMapproach is applied herein to a sim-

ple three-DOF system, as well as to a rotating blade
model in which transverse motions are non-linearly
coupled with axial extensions of the blade. For the lat-
ter system, an 18-DOF discretized model derived from
linear modal analysis is examined, which features an
internal resonance between the first and second flap-
ping modes. Using the multi-NNM procedure, the in-
ternally resonant four-dimensional invariant manifold
is constructed and the resonant dynamics are shown
to be accurately captured by the two-DOF (four state)
reduced-order model.
The paper is organized as follows. The class of non-

linear systems under consideration and the formula-
tion of the multi-mode invariant manifold equations
are described in Section 2. In Section 3, the solution
procedure for the invariant manifold is demonstrated
on a 3-DOF example system. In Section 4, themethod-
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ology is applied to an 18-DOF rotating beam system
featuring an internal resonance between the first two
flapping modes. Finally, some conclusions are drawn
in Section 5.

2. Multi-mode invariant manifolds

The vibratory system considered is ann-DOF au-
tonomous non-linear system, which can be obtained
directly from Newton’s laws, Lagrange’s equations, fi-
nite element methods (FEM), or through any assumed-
mode method. In order to simplify the construction
procedure for the invariant manifolds, systems with-
out damping or gyroscopic terms are considered (the
method can be generalized to include these effects,
but it is much more computationally intensive). For
these systems, one can transform to linear modal co-
ordinates, and the original non-linear system can be
expressed in the following standard form:

�̈i + �2
i �i = fi(�j ), i, j = 1.n, (1)

where the�is are the linear modal coordinates, the�is
are the corresponding linear modal frequencies, and
fi(�j ) is theith non-linear force, which generally de-
pends on all the linear modal coordinates, expressed
in terms of the linear modal coordinates. It should be
noted that the non-linear forces, thefi(�j )s, are as-
sumed to be independent of the linear modal veloci-
ties, �̇j . With this assumption, the computational cost
for the construction of the invariant manifolds can be
significantly reduced.
In order to obtain accurate reduced-order models

for non-linear systems with internal resonances, multi-
mode invariant manifolds must be constructed[18].
Here, an invariant manifold is defined as a multi-
dimensional surface spanned by all the linear modal
displacements and velocities involved in the internal
resonance, such that any motion initiated on the man-
ifold will remain on it for all times. Following this
definition, the invariant manifold can be constructed
in the following manner.
Let us assume that there are a total ofM modes in-

volved in an internal resonance for the non-linear sys-
tem defined in Eq. (1). These modes are described by
a set of indices, denoted asSM . According to the def-
inition of invariant manifolds, each pair of state vari-
ables involved in the internal resonance,(�k, �̇k) k ∈

SM , are chosen asmastercoordinates. Then all the
remaining DOFs, namely theslave coordinates, are
constrained such that they are dependent on the 2M
mastercoordinates. A straightforward expression for
the slave constraint functions is

�i = Xi(�k, �̇k)
�̇i = Yi(�k, �̇k)

, for i /∈ SM, k ∈ SM. (2)

This form has been utilized by Pesheck et al.[18] to
carry out an asymptotic procedure for the construc-
tion of the invariant manifolds. In this approach, the
constraint relationships, Eq. (2), are approximated by
polynomial expansions in the master coordinates. Us-
ing this method, the domain of validity of the resulting
solution is limited to some neighborhood of the sys-
tem’s equilibrium position. In addition, this approach
does not allow one to systematically control the accu-
racy of the approximate solution. Hence, a new form
for the master coordinates and the slave constraints is
used here in order to overcome some of the inherent
deficiencies of the polynomial expansion method.
For each pair of master coordinates,(�k, �̇k) k ∈

SM , a polar coordinate transformation is applied,

�k = ak cos(�k)

�̇k = −ak�k sin(�k)
, for k ∈ SM, (3)

where �k is the kth linear modal frequency, and
(ak,�k) are the master coordinates in amplitude-
phase form. Then, all the slave coordinates are ex-
pressed as functions of these amplitude-phase master
coordinates,

�i = Pi(ak,�k)

�̇i = Qi(ak,�k)
, for i /∈ SM, k ∈ SM, (4)

where the slave coordinates are restricted to the do-
main defined by theM pairs of amplitude–phase vari-
ables. This domain is easily bounded, since the phase
coordinate is periodic and the positive amplitude re-
gion can be dictated to a range of interest during the
construction of the invariant manifold, as described
below.
With the above polar form for the master coordi-

nates and the slave constraint relationships, the partial
differential equations governing the invariant mani-
fold can be obtained as follows. For each pair of slave
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coordinates,(�i , �̇i ), we have

Qi = Ṗi

= ∑
k∈SM

(
�Pi
�ak

ȧk + �Pi
��k

�̇k

)

Q̇i = ∑
k∈SM

(
�Qi

�ak
ȧk + �Qi

��k

�̇k

)
= − �2

i Pi + fi

, for i /∈ SM, (5)

where�i andfi are theith linear modal frequency and
the non-linear force defined in Eq. (1), respectively.
In order to eliminate the explicit time dependence,ȧk
and �̇k in Eq. (5) are replaced using the governing
equation of motion for each pair of master coordinates,
which are

ȧk = −fk(�j )

�k

sin�k

�̇k = �k − fk(�j )

�kak
cos�k

,

for k ∈ SM, j = 1.n. (6)

Substituting Eq. (6) into Eq. (5), the governing PDEs
for the invariant manifold are found to be

Qi = ∑
k∈SM

[
�Pi
�ak

(−fk

�k

sin�k

)

+ �Pi
��k

(
�k − fk

�kak
cos�k

)]
∑

k∈SM

[
�Qi

�ak

(−fk

�k

sin�k

)

+�Qi

��k

(
�k − fk

�kak
cos�k

)]
= −�2

i Pi + fi

,

for i /∈ SM. (7)

In Eq. (7), there are a total (n− M) pairs of equa-
tions governing the invariant manifold, in terms of the
constraint equations. These equations are non-linear
and have to be solved in some approximate manner;
here this is done numerically. Once they are solved,
the results for all of the slave constraints,Pi andQi

for i /∈ SM , can be substituted into theM pairs of or-
dinary differential equations governing the dynamics
of the master coordinates, Eq. (6). As a result, the re-
sponse of the original system restricted to the invariant
manifold is captured by this 2M-DOF reduced-order
model. The procedure for obtaining the numerical so-
lution for the invariant manifolds is described in the
context of a simple example, and then applied to a
more substantial problem.

3. A three-DOF example system

Fig. 1depicts a three-DOFmass-spring system with
two cubic non-linear springs of coefficients�1 and
�2, attached to massesM1 andM3, respectively. The
system parameters are tuned so that the second linear
modal frequency is approximately three times the first
one, i.e.�2 ≈ 3�1. Consequently, a three-to-one in-
ternal resonance occurs between the first and second
linear modes.
Using linear modal coordinates, the system can be

transformed to the standard form shown in Eq. (1)

�̈i + �2
i �i = fi(�j ) for i, j = 1,2, 3, (8)

where the modal coordinates�i are defined by the
linear modal transformation:{
x1
x2
x3

}
=

[0.5870 −0.5147 0.6249
0.6039 −0.2357 −0.7614
0.5392 0.8243 0.1725

] {�1
�2
�3

}
.

The linear modal frequencies are�1 = 0.5972 rad/s,
�2 = 1.792 rad/s, and�3 = 3.405 rad/s, and the non-
linear forces are

f1 = 0.587(−0.587�1 + 0.5147�2 − 0.6249�3)
3

− 0.8088(0.5392�1 + 0.8243�2 + 0.1725�3)
3,

f2 = − 0.5147(−0.587�1 + 0.5147�2 − 0.6249�3)
3

− 1.2365(0.5392�1 + 0.8243�2 + 0.1725�3)
3,

f3 = 0.6249(−0.587�1 + 0.5147�2 − 0.6249�3)
3

− 0.2588(0.5392�1 + 0.8243�2
+ 0.1725�3)

3. (9)

In the presence of an internal resonance between the
first two modes, the master coordinates are chosen as
the state variable pairs(�1, �̇1) and(�2, �̇2). The cor-
responding master coordinate index set isSM ={1,2}.
The polar coordinate transformation is applied to these
state variable pairs according to the definition in Eq.
(3). As a result, the transformed master coordinates
are expressed in terms of the amplitude–phase pairs,
(a1,�1) and(a2,�2).
As defined in Eq. (4), the constraint relationships

for the slave coordinates are

�3 = P3(a1, a2,�1,�2),

�̇3 = Q3(a1, a2,�1,�2).
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M1 M2

K2

x1 x2

M3

K3

K1 K4

γ1 γ2

x3

Fig. 1. Schematic diagram of the mass–spring system: massesM1 = M2 = M3 = 1 kg; spring stiffnessesK1 = 0.5N/m, K2 = 5N/m,
K3=2.03N/m,K4=0.6N/m; non-linear spring forces�1=1.0×X1(t)

3N, �2=1.5×X3(t)
3N. X1, X2, andX3 denote the displacements

of massesM1, M2, andM3, respectively.

The governing PDEs for the invariant manifold are
given in Eq. (7) and are rewritten here as

Q3 = �P3

�a1

(−f1 sin�1

�1

)

+ �P3

��1

(
�1 − f1 cos�1

�1a1

)

+ �P3

�a2

(−f2 sin�2

�2

)

+ �P3

��2

(
�2 − f2 cos�2

�2a2

)
, (10)

�Q3

�a1

(−f1 sin�1

�1

)
+ �Q3

��1

(
�1 − f1 cos�1

�1a1

)

+ �Q3

�a2

(−f2 sin�2

�2

)
+ �Q3

��2

(
�2 − f2 cos�2

�2a2

)
= −�2

3P3 + f3. (11)

A numerical solution scheme is given here to ap-
proximate the unknown constraint relationships,
P3(a1, a2,�1,�2) and Q3(a1, a2,�1,�2), which
define the geometry of the four-dimensional invari-
ant manifold. In the two-dimensional phase region,
defined by

{(�1,�2) |�1 ∈ [0, 2�], �2 ∈ [0, 2�]},
the constraint relationshipsP3 andQ3, are periodic
in both�1 and�2. Hence, they can be efficiently ap-
proximated by two-dimensional Fourier series. In the
two-dimensional amplitude domain, defined by

{(a1, a2) |0<a1<a1max, 0<a2<a2max},

where the upper limitsa1maxanda1maxare set during
the numerical construction procedure, finite difference
discretization methods can be used to approximate the
unknown constraint equations by a sequence of over-
lapping polynomials that interpolateP3 andQ3 at a
set of grid points. It should be noted that the region of
the two lines,{(a1, a2) | a1=0 or a2=0}, is excluded
from the two-dimensional amplitude domain in the fi-
nite difference scheme, since this region is not defined
in the governing partial differential equations for the
invariant manifold. With the combination of finite dif-
ference methods and two-dimensional Fourier series
expansions, the unknown constraint equationsP3 and
Q3, can be approximated at each grid point as

P3(a
i
1, a

j
2,�1,�2)

≈
N�1∑
l=1

N�2∑
m=1

C
(i,j)
lm Fl(�1)Fm(�2), (12)

Q3(a
i
1, a

j
2,�1,�2)

≈
N�1∑
l=1

N�2∑
m=1

D
(i,j)
lm Fl(�1)Fm(�2), (13)

where(ai1, a
j
2) is the grid point determined by the finite

difference scheme in the amplitude region; indicesi
and j denote the location of the grid point along the
a1 anda2 directions, respectively; the Fourier terms,
Fl(�1) andFm(�2), are defined as

Fl(�) =
{
cos

(
l−1
2 �

)
, l is odd,

sin
(
l
2�

)
, l is even

(14)
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and N�1
and N�2

are the number of terms of the
Fourier expansions in�1 and�2, respectively. As can
be seen in Eqs. (12)–(14), the total number of the un-
known quantities are determined byN�1

andN�2
, as

well as the number of grid points. Once the unknown
coefficients, theCs andDs in expressions (12) and
(13), have been obtained at all grid points, the invari-
ant manifold is completely determined in this approx-
imate manner.
Given the expression ofP3 andQ3 at each grid

point, the derivatives of the local interpolant are used
to approximate the derivatives ofP3 andQ3 with re-
spect toa1 or a2. Simple two-point backward interpo-
lation gives

�P3

�a1
(ai1, a

j
2,�1,�2)

≈ 1

h1
[P3(a

i
1, a

j
2,�1,�2)

− P3(a
i−1
1 , a

j
2,�1,�2)] + O(h1),

�P3

�a2
(ai1, a

j
2,�1,�2)

≈ 1

h2
[P3(a

i
1, a

j
2,�1,�2)

− P3(a
i
1, a

j−1
2 ,�1,�2)]

+ O(h2), (15)

whereh1 = ai1 − ai−1
1 , h2 = a

j
2 − a

j−1
2 are the dis-

tances between adjacent grid points along thea1 and
a2 directions, respectively. The functionO(·) denotes
that the errors in these approximations are orders-
of-magnitudeh1 and h2, respectively. If more grid
points are used in the approximation for a given ampli-
tude range, higher accuracy is obtained. The approx-
imation of the derivatives,�Q3/�a1 and �Q3/�a2,
is determined using a similar scheme. Along the�1
and �2 directions, the derivatives of the unknown
functionsP3 andQ3 can be easily obtained using the
two-dimensional Fourier series expansions given in
expressions (12) and (13).
The computational time associated with the con-

struction of the invariant manifold depends on the
number of unknown coefficients, which depends on
the number of grid points selected for the amplitude
variables and the number of harmonics employed in
the Fourier series. For this example system, the total
number of unknown coefficients,Cs andDs, can be re-

duced to one-fourth its original number by exploiting
the inherent relationship betweenQ3 andP3, along
with the symmetric nature of the non-linear forces,
which are cubic and depend only on the displacement
variables. The details of these simplifications are now
described.
For a given set of values for theCs, the expression

of the velocity constraintQ3, can be explicitly deter-
mined from the following relationship:

Q3(a
i
1, a

j
2,�1,�2;C)

≈ �P3

�a1
(ai1, a

j
2,�1,�2;C)

×
[
−f1(a

i
1, a

j
2,�1,�2;C)

sin�1

�1

]

+ �P3

��1
(ai1, a

j
2,�1,�2;C)

×
[
�1 − f1(a

i
1, a

j
2,�1,�2;C)

cos�1

�1a1

]

+ �P3

�a2
(ai1, a

j
2,�1,�2;C)

×
[
−f2(a

i
1, a

j
2,�1,�2;C)

sin�2

�2

]

+ �P3

��2
(ai1, a

j
2,�1,�2;C)

×
[
�2 − f2(a

i
1, a

j
2,�1,�2;C)

cos�2

�2a2

]
, (16)

which is the algebraic form of Eq. (10). Note that the
non-linear forcesf1 andf2, in Eq. (16) are only de-
pendent on theCs, since all the non-linear forces are
defined in terms of the displacement field only, Eq.
(9). Otherwise, the relationship forQ3 would be im-
plicit. The velocity constraintQ3, would then have
to be expanded as given in expression (13). The un-
known coefficients,Ds, would need to be solved for
simultaneously with theCs, in an iterative manner.
From expression (16), the velocity constraintQ3 at

each grid point(ai1, a
j
2) is evaluated numerically at the

following set of phase angles:

Q3(a
i
1, a

j
2, �̄

I

1, �̄
J

2 ) where

{
�̄
I

1 = I�/N�1
,

�̄
J

2 = J�/N�2
,

for I = 1 . . .2N�1
, J = 1 . . .2N�2

.
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Then, a two-dimensional fast Fourier transform (FFT)
can be applied to these 2N�1

× 2N�2
discrete grid

point values in order to obtain the two-dimensional
Fourier coefficients corresponding to functionQ3

Q3(a
i
1, a

j
2,�1,�2)

=
N�1
2∑

m= −N�1
2

N�2
2∑

n= −N�2
2

× D̃
(i,j)
mn e

√−1m�1e
√−1n�2, (17)

where the D̃s are the complex version of theD
coefficients, as defined in Eq. (13), andN�1

, N�2
are set to be even. Note that 2N�1

× 2N�2
grid

points in the phase domain are used to evaluate the
N�1

× N�2
complex Fourier coefficients in Eq. (17),

in order to reduce aliasing errors in the Fourier trans-
form. Once the Fourier coefficients are obtained, the
first-order derivatives,�Q3/��1 and �Q3/��2, in
Eq. (11) can be efficiently calculated by the two-
dimensional Inverse FFT (IFFT). The derivatives of
Q3 with respect toa1 and a2 can also be obtained
by the backward finite difference scheme defined in
Eq. (15). By this method, the total number of un-
known coefficients in Eqs. (12) and (13) can be cut in
half. Specifically, only theC coefficients need to be
obtained.
For this example system, the non-linear forces in

Eq. (9) are only cubic. As a result, half of the Fourier
series terms in Eq. (12) can be eliminated. In particu-
lar, in the two-dimensional Fourier series expansion of
the constraint functionP3, only the trigonometric ba-
sis functions whose combination orders are odd need
to be included. With respect to each individual basis
function, Fl(�1)Fm(�2), in Eq. (12), the subscripts
of the correspondingC coefficient can be used as a
guide to determine whether or not the associated ba-
sis function shall be retained. If int[l/2] + int[m/2] is
odd, the corresponding basis function is retained in the
expansion, otherwise it is removed (where the opera-
tor int[a] denotes the maximum integer which is not
larger thana). As a result, the total number unknown
coefficients in Eq. (12) is halved again.
At this stage, the constraint functionP3 at a grid

point is approximated by the reduced two-dimensional

Fourier series and can be expressed in the following
simplified form:

P3(a
i
1, a

j
2,�1,�2) ≈

N�∑
�=1

C
(i,j)
� T�(�1,�2), (18)

where(ai1, a
j
2) is a grid point in the amplitude domain

of interest,N� is the total number of expansion func-
tions, T�(�1,�2) is a simplified notation for the in-
dividual basis functions defined in Eq. (12), with odd
harmonic combination order, andC(i,j)

� is the corre-
sponding unknown coefficient. Given an initial guess
for the C�s at all grid points in the amplitude do-
main, the complex Fourier coefficients,̃Ds, for the
velocity constraintQ3 are obtained from Eqs. (16)
and (17). Then, the value ofQ3 and the correspond-
ing partial derivatives are substituted into Eq. (11)
along with the value ofP3. The corresponding residual
functionR3, is defined at each grid point(ai1, a

j
2) as

follows:

R3(a
i
1, a

j
2,�1,�2;C�)

= �Q3

�a1
(ai1, a

j
2,�1,�2;C�)

×
[
−f1(a

i
1, a

j
2,�1,�2;C�)

sin�1

�1

]

+ �Q3

��1
(ai1, a

j
2,�1,�2;C�)

×
[
�1 − f1(a

i
1, a

j
2,�1,�2;C�)

cos�1

�1a1

]

+ �Q3

�a2
(ai1, a

j
2,�1,�2;C�)

×
[
−f2(a

i
1, a

j
2,�1,�2;C�)

sin�2

�2

]

+ �Q3

��2
(ai1, a

j
2,�1,�2;C�)

×
[
�2 − f2(a

i
1, a

j
2,�1,�2;C�)

cos�2

�2a2

]

+ �2
3P3(a

i
1, a

j
2,�1,�2;C�)

− f3(a
i
1, a

j
2,�1,�2;C�). (19)

In order to minimize the residual functionR3, a
“weighted residuals” Galerkin method is used, in
which the projection of the residual function onto the
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Fig. 2. A section of one component of the invariant manifold for
the system shown inFig. 1. The modal displacement�3 is shown
at phase angles(�1,�2) = (0, 0).

basis function is required to vanish

∫ 2�

0

∫ 2�

0
[T�(�1,�2)

× R3(a
i
1, a

j
2,�1,�2;C�)]d�1 d�2 = 0,

for � = 1 . . . N�, at ∀ (ai1, a
j
2), (20)

whereT� is the basis function in Eq. (18). Eq. (20)
yields a set of non-linear algebraic equations in the un-
known coefficientsC�. These are solved using a non-
linear solver found in the subroutine package NAG,
which is based on Powell’s hybrid method[20]. The
user must, (i) provide an initial guess for the unknown
coefficients in Eq. (18), and (ii) evaluate the “weighted
residuals”, the left-hand side of Eq. (20), by numerical
integration.
The resulting four-dimensional invariant manifold

cannot be visualized in three-dimensional space. How-
ever, we can show specific cross-sections of the man-
ifold. In Fig. 2, the slave constraint relationshipP3 is
depicted at the phase angles(�1,�2)=(0, 0). The two-
dimensional amplitude domain(a1, a2) over which the
invariant manifold is numerically constructed is taken
to bea1 ∈ [0.01,0.35]anda2 ∈ [0.01,0.35]. Using a
convergence study, an 11-by-11 grid finite difference
scheme is chosen to discretize this domain. The mesh
sizes forh1 andh2 are 0.034 in thea1 anda2 direc-
tions. InFig. 2, the invariant manifold looks smooth
with this mesh scheme, which indicates that the

r0

z

r

φ1

O

r

ρ

O’

φ2

(a)

(b)

Fig. 3. Diagram of another section of a component of the invariant
manifold for the system shown inFig. 1. The modal displace-
ment �3 is shown at amplitude(a1, a2) = (0.35,0.35). (a) An
illustration for the invariant manifold defined in the torus domain
{(�1,�2) |�1 ∈ [0, 2�], �2 ∈ [0, 2�]}; (b) A cross-sectional view
of the invariant manifold at phase angle�1 = 2/3�.

chosen discretization is sufficient to capture the man-
ifold geometry.
The domain defined by(�1,�2), where �1 ∈

[0, 2�] and�2 ∈ [0, 2�], is a two-dimensional torus.
The invariant manifold at any grid point(ai1, a

j
2) can

be visualized in this torus domain. InFig. 3(a), the
phase angle�1 is defined by the angle from vector−−→
Or0 to vector

−→
Or. At phase angle�1, a cross-section

of the invariant manifold along the planerOz is shown
in Fig. 3(b). In this cross-section, the shape of the
invariant manifold is shown by the vector−→� , which
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Fig. 4. Comparison of the time responses of the master coordinates for the system shown inFig. 1, for initial conditionsa1(0) = 0.28,
�1(0) = 0.0, a2(0) = 0.28, �2(0) = 0.0: (—) time simulation of the original system model; (- - -) simulation of the reduced-order model.
Plot (a) shows the time response of�1 versust; (b) �̇1(t); (c) �2(t); (d) �̇2(t).

indicates the magnitude of the manifold at phase angle
�2. For comparison, the nominal torus domain is also
shown here as a circle with a dashed line, on which
the magnitude of the invariant manifold is zero. For
the solution shown inFig. 2, the number of terms for
the two-dimensional Fourier series in expression (12)
is taken to beN�1

= N�2
= 12 for each grid point.

Since the non-linear forces are cubic for this example
system, the total number of basis functions in the
two-dimensional phase space is reduced toN� =72 in
expression (18). As a result, the total number of coef-
ficients required for the construction of the constraint
relationshipP3, i.e. theC�s in expression (18) for all
of the 11×11 grid points in the two-dimensional am-

plitude domain, is equal to 8712. For each unknown
coefficientC�, zero is used as the initial guess value
to start Powell’s hybrid solution method.
Once the constraint relationshipP3 is obtained for

this internal resonance case, system motions on the
invariant manifold can be captured by the reduced-
order model, which involves the master coordinates
only. As shown in Eq. (6), numerical time simula-
tions can be carried out for these four first-order dif-
ferential equations for given initial conditions,a1(0),
�1(0), a2(0), and�2(0). In Fig. 4, time simulations for
the master coordinates are shown using the reduced-
order model with two DOFs and the original three-
DOF model restricted to the invariant manifold. Based
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Fig. 5. Comparison of the time responses of the slave coordinates and massM3 for the system shown inFig. 1, for initial conditions
deduced from the initial values of the master coordinates:a1(0) = 0.28, �1(0) = 0.0, a2(0) = 0.28, �2(0) = 0.0: (—) time simulation of
the original system model; (- - -) simulation based on the reduced-order model. Plot (a) shows the time response of�3 versust; (b) �̇3(t);
(c) X3(t); (d) Ẋ3(t).

on the reduced-order model, Eq. (6), the responses of
the amplitude–phase pairs are simulated. Then, the re-
sponses of the modal coordinates are obtained using
the definition of the polar coordinate transformation.
For comparison, the time responses for the master co-
ordinates can also be acquired by the direct time sim-
ulation of the original system, Eq. (8), since the initial
conditions for the slave coordinates�3(0) and �̇3(0)
can be obtained using the slave constraint functionP3
andQ3. According to the definition of the invariant
manifold, any motion initiated on the manifold will
remain on it for all the time, indicating that the simula-

tion obtained from the original model shouldmatch the
response from the reduced-order model if the invari-
ant manifold has been constructed accurately enough
to capture the actual geometry. InFig. 4, the two cat-
egories of time responses are undistinguishable, indi-
cating that the manifold geometry is accurate.
With the reduced-order model, time responses for

the slave coordinates(�3, �̇3) can be obtained from the
constraint relationshipsP3 andQ3. In Figs. 5(a) and
(b), these responses are compared to simulations based
on the original system model. An excellent match be-
tween these two results is observed, which is further

10



evidence to the accuracy of the invariant manifold.
The time response of any physical coordinate, i.e. the
displacement or velocity of any mass inFig. 1, can be
determined from the simulation of the reduced-order
model, since the responses of all modal coordinates,
both masters and slaves, are calculated. The displace-
ment and velocity of massM3, X3(t) andẊ3(t), are
shown inFigs. 5(c) and (d). Again, excellent agree-
ment is found between the results for the reduced-
order and original system models.
This example was used to demonstrate the details

of the process. A more substantial example is now
considered.

4. The rotating beam system

Here the methodology is applied to a vibratory sys-
tem of more practical interest, and with more degrees
of freedom.A uniform rotating Euler–Bernoulli beam,
shown inFig. 6, is considered. This system has been
studied by Pesheck et al.[18], who approximated the
invariant manifold in the case of an internal reso-
nance using asymptotic methods. Apiwattanalunggarn
et al. [21] also studied this system and obtained the
single-mode non-linear invariant manifold for large
amplitude motions using a non-linear finite element
approach.
This rotating beam system can be considered as a

highly simplified model of a helicopter rotor blade, in
which the following effects are neglected: lead-lagmo-
tion, torsional motion, aerodynamic loading, and the
weight of the blade. Even with this simplified model, it
has been shown that typical discretization procedures
for this system suffer from very slow modal conver-
gence, since a comparatively large number of axial
modesmust be included in order to accurately describe
the transverse bending motion of the beam[18,21].
Due to the non-linear axial/bending coupling effects,
the resulting discretemodels are computationally cum-
bersome, even for direct time simulations. Hence, a
practical model order reduction technique would be
very useful for the analysis of this system.
A detailed derivation of the PDE’s governing the

transverse bending,w(x, t), and the axial elongation,
u(x, t), of this beam can be found in Ref.[18]. The
derivation procedure is briefly described here. The
potential energy,U, and kinetic energy,T, may be

expressed as follows:

T = 1

2

∫ L

0
m(u̇2 + ẇ2) + m�2(h + x + u)2 dx,

(21)

U = 1

2

∫ L

0
EI(w,xx)

2

+ EA

(
u,x + 1

2
(w,x)

2
)2

dx, (22)

wherew(x, t) andu(x, t) are the transverse and ax-
ial displacements, respectively,(),x denotes a partial
derivative with respect to the spatial variablex, and(̇)
represents a time derivative. It should be noted that the
standard linear curvature assumption is made in the
energy expressions; this is done since the model still
provides the non-linear coupling of interest, resulting
in the slow modal convergence described above[18].
Hamilton’s principle is used to develop the weak for-
mulation for the equation of motion.∫ t2

t1

∫ L

0

{[−mẅ − EIw,xxxx]	w

−
[
EA

(
u,x + 1

2
(w,x)

2
)
w,x

]
	w,x

+ [−mü + m�2(x + h + u) + EAu,xx]	u
−

[
EA

1

2
(w,x)

2
]

	u,x

}
dx dt = 0, (23)

where	() denotes the variation of a quantity.
In order to obtain the discretized version of the

equations of motion in the standard form (1), the lin-
earized partial differential equations off the non-linear
rotating beam system are given here

müd − m�2ud − EAud,xx = 0, (24)

mẅ + EIw,xxxx − EA(us,xw,xx + us,xxw,x)

= 0, (25)

whereud is the dynamic component of the axial elon-
gation,u(x, t), defined as

ud(x, t) = u(x, t) − us(x). (26)

The static part,us(x), is the static elongation of the
beam due to rotation when the transverse deflection is
zero. Linear mode shapes corresponding to Eqs. (24)
and (25) can be obtained using a Rayleigh–Ritz proce-
dure. Once these modes are determined, the solutions
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x u (x, t)

w (x, t)

h
E, A, I, L, m

Fig. 6. Schematic diagram of the rotating beam system. Rotating speed� is constant. The uniform beam has the following material and
geometrical parameters: Young’s modulusE, cross-sectional areaA, second moment of cross-sectional areaI, length L, and mass per unit
lengthm. The hub radius ish. (Abridged from Ref.[18].)

to the non-linear system (23) are sought in the form
of an expansion as

ud(x, t) =
N�∑
i=1

�i (t)Ūi(x),

w(x, t) =
N
∑
i=1


i (t)W̄i(x), (27)

whereŪi andW̄i are the linearmodes corresponding to
Eqs. (24) and (25), and the integersN� andN
 denote
the number of axial and transverse linear modes used,
respectively.
These expansions are substituted into the weak

formulation, Eq. (23), and the discretized non-linear
equations of motion are obtained as follows:

�̈i + �2
�,i�i = f�,i (
j )

for i = 1.N�, j = 1.N
, (28)


̈i + �2

,i
i = f
,i (
j , �k)

for i, j = 1.N
, k = 1.N�, (29)

where��,i and�
,i are the linear modal frequencies
associated with theith modes in the axial and trans-
verse directions, respectively. These equations of mo-
tion are non-linearly coupled because the quadratic
non-linear forces corresponding to the axial motion
f�,i , depend on the transverse motion
j , while the
quadratic and cubic non-linear forces in the transverse
directionf
,i , are dependent on both axial and trans-
verse motions,
j and�k.
The convergence of this model has been thoroughly

investigated in Ref.[18]. It has been found that at
least an 18-DOF model, withN� = N
 = 9, must be
used to accurately capture the periodic response in the
vicinity of the first non-linear mode for an energy level

corresponding to a transverse deflection amplitude of
about 0.1m at the beam tip, for a 9.0m beam. This 18-
DOF discretized model is used here as thereference
model. Based on this model, the invariant manifold is
constructed. Consequently, a reduced-order model can
be obtained for the representation of the dynamics on
the invariant manifold.
As in the case studied in Ref.[18], the parameters of

the uniform rotating beam are set as follows:L=9m,
m=10 kg/m,EI=3.99×105Nm2,EA=2.23×108N,
� = 23.85 rad/s, andh = 0.5m. Under these con-
ditions, a three-to-one internal resonance occurs be-
tween the first two transverse modes,�
,2 ≈ 3�
,1.
The master coordinates are chosen as the state variable
pairs,(
1, 
̇1) and(
2, 
̇2). Polar coordinate transfor-
mations, defined in Eq. (3), are applied to these two
pairs of state variables, resulting in two amplitude-
phase pairs as the transformed master coordinates,
(a1,�1) and(a2,�2).All the remaining DOFs, includ-
ing 7 transverse deflection modes and 9 axial modes,
form the slave coordinates, which are constrained as
follows:


i = Pi(a1, a2,�1,�2),


̇i = Qi(a1, a2,�1,�2), i = 3 . . .9,

�i = Pi+9(a1, a2,�1,�2),

�̇i = Qi+9(a1, a2,�1,�2), i = 1 . . .9. (30)

Thus, there are a total of 16 pairs of constraint rela-
tionships, Eq. (30), that need to be solved. The gov-
erning PDEs for these constraint functions are given
in Eq. (7).
The invariant manifold is solved for numerically in

the following four-dimensional domain:

{(a1, a2,�1,�2) | a1 ∈ [0.01,0.75], a2 ∈ [0.01,0.4],
�1 ∈ [0, 2�], �2 ∈ [0, 2�]},
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Fig. 7. A section of one component of the invariant manifold for the system shown inFig. 6. The displacement constraint relationship for
the third transverse deflection mode
3, is shown at phase angle(�1,�2) = (0, 0).

where the amplitude range is carefully chosen so that
the non-linear effect in the system is sufficiently strong
and the invariant manifold obtained from the asymp-
totic expansion method in Ref.[18] becomes inaccu-
rate over this domain.
In the solution procedure, the constraint relation-

ships for the velocitiesQis, in Eq. (30) are not solved
for, due to the fact that the velocity constraint is the
time derivative of the corresponding displacement con-
straint. The details of the reduction have been given in
Section 3, Eqs. (16) and (17), for the construction of
the invariant manifold of the 3-DOF example system.
Hence, only the displacement constraint relationships,
Pis, need to be solved.
For the two-dimensional phase domain,(�1,�2),

the two-dimensional Fourier series, defined in Eq.
(12), is utilized for the expansion functions for the
displacement constraints. Because both quadratic
and cubic non-linear terms exist in this system, the
expansion cannot be further simplified. For the two-
dimensional amplitude domain,(a1, a2), the finite
difference discretization scheme, which was used in
the 3-DOF example system, cannot be utilized here
due to limitations in computational capacity. The nu-
merical difficulty is clearly shown by the following

case: Let us divide the two-dimensional amplitude
domain into 8/8 grid points, and set the number of
terms in the Fourier expansion asN�1

= N�2
= 8 at

each grid point. Then, the total number of unknown
coefficients is 4096 for each displacement constraint
relationshipPi . With 16 slave constraints in Eq. (30),
the final number of unknowns is 65,536. It is ineffi-
cient to solve for the invariant manifold with such a
large number of unknowns.
A strategy to overcome this numerical difficulty

is to discretize the two-dimensional amplitude do-
main into small elements, and then utilize low-order
polynomials as expansion functions in the discretized
elements. For this example system, the amplitude do-
main, {(a1, a2) | a1 ∈ [0.01,0.75], a2 ∈ [0.01,0.4]},
is evenly divided into 7/7 equal-sized patches. The
width of each patch is 0.1057 along thea1 direction,
and 0.05571 along thea2 direction. The displacement
constraint relationships, thePis in Eq. (30), are then
expanded in each discretized four-dimensional ele-
ment

{(a1, a2,�1,�2) | a1 ∈ [alow1 , a
up
1 ], a2 ∈ [alow2 , a

up
2 ],

�1 ∈ [0, 2�], �2 ∈ [0, 2�]}
(31)
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as

Pi(a1, a2,�1,�2)

≈
2∑

j=1

2∑
k=1

N�1∑
l=1

N�2∑
m=1

Ci,jklmTj (a1)Tk(a2)

× Fl(�1)Fm(�2), for i = 3 . . .18, (32)

whereTj (a1) are piecewise linear functions defined in
the amplitude segments,a1 ∈ [alow1 , a

up
1 ], as follows:

T1(a1) = a1 − alow1

a
up
1 − alow1

, T2(a1) = a
up
1 − a1

a
up
1 − alow1

. (33)

The definition of the piecewise linear functions,
Tk(a2), is the same as forTj (a1), where the lower
and upper limits of the amplitude segments are set
as a2 ∈ [alow2 , a

up
2 ]. The Fourier terms,Fl(�1) and

Fm(�2), are defined in Eq. (14).
In each element, given by Eq. (31), the deduction

of the velocity constraint (Qi) from the correspond-
ing displacement constraint (Pi), and the evaluation
of the residue function,Ri , are again given by Eqs.
(16), (17), and (19). It should be noted that in the
present example, the numerical values of the veloc-
ity constraints (Qi) and the residue functions (Ri) are
now evaluated at the Gaussian quadrature points for
polynomials in the discretized two-dimensional ampli-
tude domain. A three-by-three-point Gaussian quadra-
ture formula is sufficient in the region,{(a1, a2) | a1 ∈
[alow1 , a

up
1 ], a2 ∈ [alow2 , a

up
2 ]}, using the inner prod-

uct between the residue functions (Ris) and the basis
functions defined in Eq. (32). This yields

∫ a
up
1

alow1

∫ a
up
2

alow2

∫ 2�

0

∫ 2�

0
[Tj (a1)Tk(a2)Fl(�1)Fm(�2)

× Ri(a1, a2,�1,�2;C)]d�1 d�2 da2 da1
= 0,

for j, k = 1,2; l = 1 . . . N�1
; m = 1 . . . N�2

;
i = 3 . . .18. (34)

We set the number of the Fourier terms in expansion
(32) to beN�1

=N�2
= 8. As a result, the total num-

ber of the unknown coefficients, theCs in expansion
(32), is equal to 4096 for each element, for each of
the 16 slave constraint relationships. Note that the to-
tal number of unknown quantities resulting from the
finite difference discretization scheme in the whole
amplitude domain is equal to 65,536. Thus, it is seen

that the computational cost is tremendously reduced
for the non-linear solver, since the invariant manifold,
defined by Eq. (30), is now solved for independently
in each four-dimensional discretized element.
The initial values used in the numerical solution of

the Cs for each discretized element are determined
as follows. For the first element, which has a two-
dimensional amplitude domain given by

{(a1, a2) | a1 ∈ [0.01,0.1157], a2 ∈ [0.01,0.06571]},
zeros are good initial values, due to the fact that the
non-linearities are weak near the origin. Then, for sub-
sequent elements, which have incremental values in
thea1 or a2 directions, the expansion coefficients ob-
tained from the preceding element are used as the ini-
tial values. Once the results for all discretized elements
are obtained, the expansion coefficients from contigu-
ous elements are averaged at their interface. The re-
sulting solution for the invariant manifold is stitched
together to cover the entire domain of interest. With
the obtained invariant manifold, the reference model
with 36 states can be reduced to a 4-state model for
this internally resonant case.
A cross-section of the invariant manifold is shown

in Fig. 7. The slave constraint relationship for the third
transverse deflection mode,P3 in Eq. (30), is depicted
at the phase angles(�1,�2) = (0, 0). The amplitude
domain,a1 ∈ [0.01,0.75] and a2 ∈ [0.01,0.4], is
evenly divided into 7/7 patches, and the invariant man-
ifold appears smooth with this mesh. Note that the in-
variant manifold defined in Eq. (30) is the ensemble of
the displacement and velocity constraint relationships
for all 16 slave coordinates, andFig. 7represents sim-
ply the cross-section of one slave coordinate among
the 16.
Time responses for the displacements of the mas-

ter and slave coordinates are shown and compared
in Figs. 8and9 using three different simulation ap-
proaches: (i) direct time simulations based on the
36-state reference model, with initial conditions that
satisfy the constraint relationships; (ii) time simu-
lations for the master coordinates using the 4-state
reduced-order model, along with the reconstruction
of the slave coordinate responses using the constraint
functions; and (iii) simulations based on the reduced-
order model obtained by the asymptotic expansion
method described in Pesheck et al.[18], wherein the
invariant manifold and the corresponding reduced-
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Fig. 8. Comparison of the time histories of the master coordinates

1(t) and
2(t) for the system shown inFig. 6, with initial con-
ditions a1(0)=0.63,�1(0)=0.0, a2(0)=0.38,�2(0)=0.0. (—)
time simulation of the full reference model; (- - -) simulation of
the reduced-order model; (− · − · −) results from the asymptotic
expansion method. Plot (a) shows the first transverse modal dis-
placement,
1(t); (b) second transverse modal displacement
2(t).

order model were generated using asymptotic series
expansions. It is seen that simulations obtained from
the reduced-order model match the reference model
results precisely, while the results from the asymp-
totic method depart from the reference response rather
quickly as time progresses. This is not surprising, be-
cause the combination orders of the multi-dimensional
polynomials used in the asymptotic expansion method
are limited to three[18]. Here, the combination or-
der of the trigonometric functions in Eq. (32) can be
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Fig. 9. Time histories of the slave coordinates
9(t) and �3(t)
for the system shown inFig. 6, for initial conditions deduced
from the initial values of the master coordinates:a1(0) = 0.63,
�1(0) = 0.0, a2(0) = 0.38, �2(0) = 0.0. (—) time simulation of
the full reference model; (- - -) simulation of the reduced-order
model; (− · − · −) results from the asymptotic expansion method.
Plot (a) shows the ninth transverse modal displacement,
9(t); (b)
first axial modal displacement�1(t).

as large as eight. Consequently, the invariant man-
ifolds constructed here are more accurate than the
manifolds obtained in[18], and the simulations will
match more closely over a longer period of time,
especially at larger amplitudes. The better accuracy
of the reduced-order model can also be verified by
observing simulations of the transverse displacement
of the tip of the beam, as shown inFig. 10.
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Fig. 10. Time history of the transverse displacement at the tip of the
beam for the system shown inFig. 6, for initial conditions deduced
from the initial values of the master coordinates:a1(0) = 0.63,
�1(0) = 0.0, a2(0) = 0.38, �2(0) = 0.0. (—) time simulation of
the reference model; (- - -) simulation of the reduced-order model;
(− · − · −) results from the asymptotic expansion method.

In Figs. 8–10, the accuracy of the reduced-order
model has been verified by comparisons of the simu-
lated time responses. The 4-state reduced-order model
can then be utilized to investigate the dynamic behav-
ior of this system, which arises from the existence of
the internal resonance. Amplitude modulation of the
responses for the two master coordinates,a1(t) and
a2(t), is demonstrated inFig. 11. Note that there ex-
ists a continuous exchange of energy between the two
modes. Within the first second, the time period of the
energy exchange can be approximately determined as
0.12 s. Similar properties can also be found inFig. 12,
where motions are simulated over a long time period.
The energy exchange shown inFig. 12 occurs at a
much slower time scale, with a period of about 9 s.

5. Conclusions

The following conclusions can be drawn from this
study: (i) Multi-NNMs can be effectively generated by
the invariant manifold approach. A systematic solu-
tion methodology for the invariant manifold has been
proposed, which uses the polar form of the master co-
ordinates. Four-dimensional invariant manifolds have
been successfully constructed for the 3-DOF exam-
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Fig. 11. Time histories of the master coordinatesa1(t) anda2(t) for
system shown inFig. 6for 1 s, under initial conditionsa1(0)=0.63,
�1(0)=0.0, a2(0)=0.38,�2(0)=0.0. Plot (a) shows the amplitude
of the first transverse modal displacement,a1(t); (b) amplitude of
the second transverse modal displacementa2(t).

ple system and for the rotating beam system, using a
combination of finite difference or finite element dis-
cretization schemes in the amplitude domain and two-
dimensional Fourier series expansions in the phase
domain. (ii) A reduced-order model can be generated
once the multi-NNM is obtained, and motions on the
invariant manifold can be accurately captured by this
model. The precision of the reduced-order model is
controlled by the numerical parameters used in the
solution procedure. (iii) Although only quadratic and
cubic order non-linear forces were considered in the
systems considered, the construction method can be
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Fig. 12. Time histories of the master coordinatesa1(t) anda2(t)
for the system shown inFig. 6 for 12 s, under initial conditions
a1(0)=0.63,�1(0)=0.0, a2(0)=0.38,�2(0)=0.0. Plot (a) shows
the amplitude of the first transverse modal displacement,a1(t);
(b) amplitude of the second transverse modal displacementa2(t).

extended to systems with more complicated non-linear
forces, and this is relatively straightforward if the non-
linear forces do not depend on velocities. Otherwise,
the numerical solution algorithm will need to simulta-
neously solve for the displacement (Pi) and velocity
(Qi) constraint functions, and will involve many more
unknown coefficients. (iv) For complicated dynamic
systems, such as more realistic rotating blade mod-
els that include lead-lag and torsional motions, gyro-
scopic effects and damping forces must be considered
in the linear order model. The multi-mode invariant
manifold approach can be extended to such systems.
However, complex linear modal analysis must be used

to obtain a revised form of the master and slave coor-
dinates[17].
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