Fixed sequence integrated production and routing problems
Azeddine Cheref, Alessandro Agnetis, Christian Artigues, Jean-Charles Billaut

To cite this version:
Azeddine Cheref, Alessandro Agnetis, Christian Artigues, Jean-Charles Billaut. Fixed sequence integrated production and routing problems. 12th Workshop on Models and Algorithms for Planning and Scheduling., Jun 2015, La Roche-en-Ardenne, Belgium. hal-01350748

HAL Id: hal-01350748
https://hal.science/hal-01350748
Submitted on 1 Aug 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1 Introduction

The problem considered in this paper can be described as follows. A set of n jobs must be produced by a single machine and then delivered by a single vehicle. Each job j requires a certain processing time p_j on the machine, and must be delivered after its completion to the location j. We denote by t_{ij} the transportation time from destination i to destination j. We use M to denote the depot (manufacturer) and we assume that transportation times are symmetric and satisfy the triangle inequality. The set of jobs delivered during a single round trip constitutes a batch. The vehicle has a capacity c which is the maximum number of jobs it can load and hence deliver in a round trip. These models for coordinating production and delivery schedules have been largely analyzed and reviewed by Chen [2], who proposed a detailed classification scheme. In this paper the production sequence is fixed and the jobs must be delivered in the order in which they are released, hence a production sequence also specifies the sequence in which the customers have to be reached. Since the production sequence is given, the problem consists in determining a partition of all jobs into batches, and each batch will then be routed according to the manufacturing sequence.

The performance measures we consider in this paper (denoted f) is the total delivery time, i.e., $f = \sum_{j=1}^{n} D_j$, where D_j is the time at which the job $j = 1, \ldots, n$ is delivered at its destination.

Li et al [1] proved the NP-hardness of the general problem in which the sequence is not fixed and has to be decided. In this paper we show that the problem (denoted P) is already NP-hard when the sequence is fixed and we deal with the special case in which all distances t_{ij} are identical. For this special case, we show that the problem can be efficiently solved. Finally, we briefly enounce additional results. Detailed proofs are given in [4].
2 Complexity

For our purposes, we introduce the Even-Odd Partition (EOP) problem. Given a set of \(n \) pairs of positive integers \((a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)\), in which, for each \(i \), \(a_i > b_i \). Letting \(K = \sum_{i=1}^{n} (a_i + b_i) \), is there a partition \((S, \bar{S})\) of the index set \(I = \{1, 2, \ldots, n\} \) such that \(\sum_{i \in S} (a_i + b_i) = K/2 \)? EOP is proved NP-hard in the ordinary sense by Garey et al [3]. We will actually use a slightly modified version of the problem which remains equivalent to (EOP).

Modified Even-Odd Partition (MEOP). A set of \(n \) pairs of positive integers \((a_1, b_1), \ldots, (a_n, b_n)\) is given, in which, for each \(i \), \(a_i > b_i \). Letting \(Q = \sum_{i=1}^{n} (a_i - b_i) \), is there a partition \((S, \bar{S})\) of the index set \(I = \{1, 2, \ldots, n\} \) such that \(\sum_{i \in S} (a_i - b_i) = Q/2 \)?

Theorem 1. \(P(\sum_{j=1}^{n} D_j) \) is NP-hard.

Proof (Sketch). Given an instance of MEOP, we build an instance of \(P \) as follows. There are \(3n + 3 \) jobs. The processing times of the jobs are defined as follows: \(p_1 = p_2 = p_3 = p_{3n+2} = p_{3n+3} = 0 \), \(p_{3n+1} = 4x_n + b_n + Q/2 \) and for all \(i = 1, \ldots, n-1 \), \(p_{3i+1} = 4x_i + b_i - 2 \), \(p_{3i+2} = 1 \) and \(p_{3i+3} = 1 \). Where the \(x_i \) are defined as \(x_i = (3a_i - 2b_i + 3(n-i)(a_i - b_i))/2 \) for all \(i = 1, \ldots, n \) and \(x_{n+1} = 0 \).

In the following, we refer to the set of jobs \((3(i-1) + 1, 3(i-1) + 2, 3i), i = 1, \ldots, n\), as the triple \(T_i \). For what concerns the travel times, we let:

\[
t_{M,3(i-1)+1} = t_{3(i-1)+1,M} = t_{M,3(i-1)+2} = t_{3(i-1)+2,M} = t_{M,3i} = t_{3i,M} = x_i \quad \forall i = 1, \ldots, n
\]

\[
t_{3(i-1)+1,3(i-1)+2} = a_i, t_{3(i-1)+2,3i} = b_i, t_{3i,3i-1} = x_i + x_{i+1} \quad \forall i = 1, \ldots, n
\]

\[
t_{M,3n+1} = t_{3n+1,M} = t_{M,3n+2} = t_{3n+2,M} = t_{M,3n+3} = t_{3n+3,3n+2} = t_{3n+2,3n+3} = 0
\]

Finally, vehicle capacity is \(c = 2 \). The problem consists in determining whether a solution exists such that the total delivery time does not exceed \(f^* \).

\[
f^* = \sum_{i=1}^{n} (3C_{3i} + 7x_i + b_i) + C_{3n+1} + C_{3n+2} + C_{3n+3} - Q/2. \tag{1}
\]

Then we use the following Lemma.

Lemma 2. If a schedule satisfying (1) exists, then there exists one satisfying the following property: for all \(i = 1, \ldots, n+1 \), jobs \(3i \) and \(3i+1 \) are NOT in the same batch.

Proof (omitted)

Since the schedule satisfies Lemma 2 and \(c = 2 \), for each triple \(T_i \), \(i = 1, \ldots, n \), there are exactly two batches, and only two possibilities (see Figure 1), namely:

- **option A:** the first batch is \(\{3(i-1) + 1, 3(i-1) + 2\} \) and the second is \(\{3i\} \).
- **option B:** the first batch is \(\{3(i-1) + 1\} \) and the second is \(\{3(i-1) + 2, 3i\} \)

\[T_2 \quad \ldots \quad T_{i+1} \quad \ldots \quad 3n+1, 3n+2, 3n+3\]

\[a_1 - b_1 \quad \sum_{j=1}^{i} a_j - b_j \]

\[Q/2\]

\[T_2 \quad \ldots \quad T_{i+1} \quad \ldots \quad 3n+1, 3n+2, 3n+3\]

\[a_1 \quad a_2 \quad 3 \quad 3(i-1)+1 \quad 3(i-1)+2 \quad 3i \quad a_3 \quad a_{n} \quad 3(n-1)+1 \quad 3(n-1)+2 \quad 3n\]

\[b_1 \quad 3 \quad 3(i-1)+1 \quad b_i \quad 3(i-1)+2 \quad 3i \quad b_{i+1} \quad b_{n} \quad 3(n-1)+1 \quad 3(n-1)+2 \quad 3n\]

\[Q/2\]

Figure 1: Round trips with options A or B.

From there, one can see that a schedule of value \(f^* \) exists if and only if EOP is a yes-instance.
3 A special case: constant travel times

In this section we address the special case in which all travel times are identical. We start by analyzing some properties of the optimal solution then we give polynomial solution algorithm.

Clearly, every time the vehicle is back at the depot, it can either (i) restart immediately with a new batch consisting of jobs already completed, or (ii) it can wait for the completion of some jobs to be delivered. Suppose that a vehicle that departed at time t returns at the depot, and starts again at a certain time t'. Let J be the set of jobs released between t and t' (extremes included). The round trip starting at time t' is called maximal if either (i) the batch contains c jobs of J, or (ii) it contains all jobs of J. The next proposition gives a key feature of the optimal solutions.

Proposition 3. There exists an optimal solution in which all round trips are maximal.

Proof (omitted)

Theorem 4. Problem P with constant travel times can be solved in polynomial time.

Proof (Sketch). Following Li et al [1], we call NSS (non stop shipment) a sequence of consecutive round trips during which the vehicle is never waiting at the depot, followed by a waiting time. We denote by $[i, j]$ an NSS starting at time C_i (hence, i is the last job of the first round trip of the NSS) and ending before C_j (when another NSS will start).

Starting from the proposition 3, we can construct in polynomial time our $[i, j]$ for all $i < j$. Note that, the last trip of $[i, j]$ contains a maximum number of jobs in order to finish the trip before C_j. We denote by $f(j)$ the following value of the optimal solution of the problem restricted to the first j jobs. Then, we have that recursive formula: $f(j) = \min_{i < j} \{ f(i) + F_{ij} \}$, where $F_{ij} = \sum_{k=i+1}^{j} D_k$ and $[i, j]$ an NSS.

We also prove that the preemptive case in NP-hard. We study also the case where there is a fixed number of different locations. We propose pseudo-polynomial algorithms for the general case.

Acknowledgment

This work was supported by the ANR project no. ANR-13-BS02-0006-01 named Athena.

References

3