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Retina-inspired Filter
Effrosyni Doutsi, Member, IEEE, Lionel Fillatre, Marc Antonini, Member, IEEE, and Julien Gaulmin

Abstract—This paper introduces a novel filter which is inspired
by the human retina. The human retina consists of three
different layers: the Outer Plexiform Layer (OPL), the inner
plexiform layer and the ganglionic layer. Our inspiration is the
linear transform which takes place in the OPL and has been
mathematically described by the neuroscientific model “virtual
retina”. This model is the cornerstone to derive the non-separable
spatiotemporal OPL retina-inspired filter, briefly renamed retina-
inspired filter, studied in this paper. This filter is connected to
the dynamic behavior of the retina, which enables the retina
to increase the sharpness of the visual stimulus during filtering
before its transmission to the brain. We establish that this retina-
inspired transform forms a group of spatiotemporal Weighted
Difference of Gaussian (WDoG) filters when it is applied to a still
image visible for a given time. We analyze the spatial frequency
bandwidth of the retina-inspired filter with respect to time. It
is shown that the WDoG spectrum varies from a lowpass filter
to a bandpass filter. Therefore, while time increases, the retina-
inspired filter enables to extract different kind of information
from the input image. Finally, we discuss the benefits of using
the retina-inspired filter in image processing.

Index Terms—Human retina, OPL layer, Spatiotemporal fil-
tering, Weighted difference of gaussian.

I. INTRODUCTION

THE decryption of the Human Visual System (HVS) is of

a great interest. Studying its physiological and functional

properties is helpful to many scientific fields, including signal

and image processing. There are several bio-inspired filters

for image analysis which have been built in order to mimic

the HVS and the visual perception. Many filters are used

as an approximation of the early vision system like static

Difference of Gaussian (DoG), Gabor or foveating filters. This

paper is focused on DoG filters which have been extensively

studied in the past [1]–[4]. Most of the DoGs are static spatial

filters which have been proposed for instance for perceptual

visual quality metrics like the image quality assessment [5], for

edge detection [6]–[8], and for object recognition [9]. Some

works have studied multiscale DoG filters, introducing time

as the scale level, in order to approximate the spatiotemporal

behavior of the visual system. Laplacian pyramid [10], [11],

visual saliency [12], [13], speed and direction estimation [14],

E. Doutsi is with Université Côte d’Azur, CNRS, I3S, MediaCoding Team,
UMR 7271, 06900 Sophia Antipolis, France and 4G-TECHNOLOGY, 460
avenue de la Quiera 06370 Mouans Sartoux - France.
E-mail: see http://doutsiefrosini.wix.com/effrosynidoutsi
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image stylization [4] and bio-inspired codecs [3], [15] are

some of these attempts. However, the spatiotemporal receptive

fields of the early HVS are more complex and above all

dynamic. Wohrer et al [16] have proposed a more realistic

model of the retina based on neuroscientific experiments. This

paper proposes and studies a dynamic spatiotemporal DoG

filter which is derived from [16] and adapted to the image

processing field.

Our filter, which is inspired from a realistic model of the

Outer Plexiform Layer (OPL), is named the non-separable

spatiotemporal OPL retina-inspired filter but it is briefly called

the retina-inspired filter. We have already briefly discussed

about it in our previous works [17], [18]. The contributions

of this paper are the followings. We first review the main

neuroscientific models which have been proposed in order to

mimic the linear transform which takes place in the OPL

layer and the first group of cells of the retinal tissue [2],

[16], [19]–[21]. This review underlines the importance of time

for describing the way the retina cells are structured and

work. Then, we derive from these previous works a realistic

but simple retina-inspired filter. We show that this can be

written as a Weighted DoG (WDoG) filter whose weights

evolve in time when it is applied to a still image. Finally,

we propose a full analysis of the WDoG filter in space and

in frequency domains. We prove that its spatial frequency

bandwidth depends on time, which means that while time

increases the retina-inspired filter extracts different kind of

information. More precisely, in the beginning, our filter is

lowpass and it turns into bandpass while time increases. We

also show that the filter stops to evolve asymptotically. As a

result, there exists a certain time when the filter has already

extracted all the necessary data.

In section II, we introduce the structure of the retina and

we focus on the OPL on which the retina-inspired transform

is based. In section III, we build the retina-inspired filtering

model and study how it is applied to a still image. In section

IV, we study the spatial and frequential behaviors of the

retina-inspired filter considered as a group of WDoG filters.

In section V, we illustrate the behavior of the filter with some

numerical results. Last but not least, in section VI, we discuss

the applications of this paper and some possible extensions of

this work.

II. NEUROSCIENTIFIC BACKGROUND: OPL MODEL

The visual system [22] is part of the Central Nervous

System (CNS) and consists of many different areas which par-

ticipate to the coding of a visual stimulus. The most important

and better studied areas are the retina, the optic nerve, the

Lateral Geniculate Nucleus (LGN) and the visual cortex as

depicted in Fig. 1. The retina is a layer of tissue, lining the
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inner surface of the eye, which is responsible to capture the

visual stimuli and transform it into a sequence of electrical

impulses (spike trains). This code of spikes is transmitted

through the optic nerve to the LGN cells and finally to the

primary visual cortex. The cells in visual cortex are more

complex [23], [24] and their functions are related to edge and

orientation detection, motion estimation, discrimination of the

shape or the color, etc.

I(X, t)

Fig. 1: The visual system pathway: the retina captures the

visual stimuli I(X, t) and transmits it to the visual cortex via

the optic nerve and the LGN.

The input of the HVS is the luminance of light which is

modeled as a 3D spatiotemporally varying visual stimulus

I(X, t) with X ∈ R
3 and t ∈ R. The luminance is

transformed inside the retina [25]–[28] to fit the human brain.

This transformation is serial due to the retina’s structure. The

retinal neurons can be separated into three groups: the Outer

Plexiform Layer (OPL), the Inner Plexiform Layer (IPL) and

the Ganglionic Layer (GL) as depicted in Fig. 2. The OPL

layer is structured by photo-receptors, horizontal and bipolar

cells. Bipolar and amacrine cells build the IPL layer. The

GL layer is constructed by the amacrine and the ganglion

cells [29], [30]. The overlapping of the layers is due to the

feedforward and feedback network of the retinal cells. The

OPL layer captures the incoming light (photons) and linearly

transforms it into an electrical current. The IPL layer is

responsible for a nonlinear rectification of the electrical signal.

The GL produces the spike trains which is a kind of code based

on electrical impulses [16].

This paper is dedicated to the study and analysis of the OPL

layer in order to build a novel retina-inspired filter. According

to the law of optics, the 3D visual stimuli I(X, t) is projected

onto the retina via the lens (the optics of the eye is detailled

in [31]). Hence, the 3D luminance I(X, t) is simplified into

a 2D luminance f(x, t) where x ∈ R
2. We assume that the

visual stimulus is flashed for a given time T > 0 and it is

constant during this time interval. This involves that the 2D

visual stimulus is written as f(x, t) = f(x)1[0,T ](t) where

f(x) ∈ L1(R2) is a still image and 1 is the indicator function

such that 1[0,T ](t) = 1 if 0 ≤ t ≤ T , otherwise 0. The space

L1(R2) is the set of the Lebesgue integrable functions from

R
2 to R.

Fig. 2: The retinal layers according to [16]. This figure shows

the connectivity and hierarchical structure of the retinal cells.

It is important to note that cells of the same kind lie within a

common layer.

A. OPL Layer

The OPL cells receive as an input the visual stimulus f(x, t)
which is spatiotemporally transformed into an electrical signal.

This transformation takes place inside the receptive field (RF)

of each cell. Kuffler [19] proposed to shape the RF by two

concentric nested circles or ellipses, which are termed center-

surround. The smaller circle (or ellipse) corresponds to the

center and the larger one is the surround. Let Ωi ⊆ R
2 be the

RF of a bipolar cell centered in xi ∈ Ωi. Let A(xi, t) be the

electrical signal produced by the RF Ωi when the input signal

is f(x, t). Considering the bipolar cell is a time invariant linear

system, the following linear approximation of the OPL retinal-

transform has been introduced in [29]:

A(xi, t) =

∫ +∞

t′=0

∫

x
′∈Ωi

K(xi−x
′, t−t′)f(x′, t′)dx′dt′ (1)

where K(x, t) is the spatiotemporal transform of a single

bipolar cell, also known as the Point Spread Function (PSF)

at time t. The above equation indicates that the electrical

signal A(xi, t) depends linearly on the spatial neighborhood

and the past values of the input stimuli located in the RF Ωi

of the single bipolar cell centered in xi. Assuming that i) the

number of cells is very large, ii) all the cells obey to the same

spatiotemporal model (spatial invariance) and iii) the temporal

point spread function K(x, t) is not restricted to the domain

Ωi, the spatiotemporal transform (1) is approximated by the

following spatiotemporal convolution denoted
x,t
∗ :

A(x, t) =

∫

t′∈R

∫

x
′∈R2

K(x− x
′, t− t′)f(x′, t′)dx′dt′

= (K
x,t
∗ f)(x, t), (2)

where x ∈ R
2 is located on the retina. Many models of the

temporal point spread function K(x, t) have been proposed.

B. Approximations of K(x, t)
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1) Spatial Receptive Field: The first mathematical ap-

proximation of the OPL was proposed by Kuffler [19]. A

bipolar cell receives its input signal directly from a group

of photoreceptors and/or a group of horizontal cells (Fig. 3).

On the one hand, the output of two or more photoreceptors is

averaged and transmitted to the center of the RF of the bipolar

cell in order to excite it. This is approximated by a Gaussian

filter Gσc
(x) given by:

Gσc
(x) =

1

2πσ2
c

exp

(

−
‖x‖2

2σ2
c

)

= Gσc
(‖x‖), (3)

where x ∈ R
2, ‖x‖ is the Euclidean norm of x and σc is

the standard deviation which tunes the spread of the Gaussian

filter. On the other hand, the same or higher number of

photoreceptors is linked to horizontal cells. An horizontal cell

is strongly connected to neighbor horizontal cells averaging

twice the initial input stimulus. The output of one or more

horizontal cells is then propagated to the surround of the RF

of the bipolar cell in order to inhibit it [32]. This signal is

modeled by the Gaussian filter Gσs
(x) with σc < σs. As a

result, the bipolar cell receives two signals of opposite signs.

Finally, the center-surround activity K(x, t) of the RF of a

bipolar cell is modeled as a DoG filter:

DoG(x) = Gσc
(x)−Gσs

(x).

Kuffler assumed that all these processes happen instanta-

neously. Hence, the PSF K(x, t) is constant for all time t.

Fig. 3: Propagation of the electrical signal to the receptive

field of a bipolar cell according to [19]. The left figure is part

of the retinal structure which corresponds to the OPL layer.

The right figure is focused on a single bipolar cell and how

the RF of this cell works.

2) Separable Spatiotemporal Receptive Field: The first

attempt to improve the static DoG filter was done by Marr

[20]. Marr’s theory contains an assumption of spatiotemporal

separability adapting a temporal impulse response for each

one of the decomposition layers which are formed by a static

DoG:

K(x, t) = H(t)DoG(x), (4)

where H(t) is usually low-pass for ”sustained” units, and

band-pass for ”transient” units.

3) Non-Separable Spatiotemporal Receptive Field: The

models above were not accurate with time-varying stimuli

f(x, t). Hence, Fleet [21] proposed a non-separable spatiotem-

poral center-surround model as an extension of the DoG.

Electrophysiological studies have shown that the center and the

surround have different time courses of response. In addition,

the temporal delay between the response of the center and

surround areas of the cells receptive field should also be

considered. This model was interpreted by Fleet as a precursor

to the extraction of velocity specific information [21].

Fig. 4: Propagation of the electrical signal to the receptive field

of a bipolar cell according to Fleet [21].

The inseparability of space and time was highlighted and

confirmed while studying the spectrum of the center-surround

model. The dynamics of the model are due to the sensitivity

changes of the response of the cells and the different phases

of the center-surround areas [21]. Similar models have been

proposed in order to describe how does the receptive field

of neurons work in areas which come after the retina like

the Lateral Geniculate Nucleus (LGN) or cortical neurons

[2], [29], [33]. The common point of all these models is the

spatiotemporal inseparability, which confirms its importance.

A non-separable spatiotemporal retinal filtering as part of

the visual system coding process has been mathematically

introduced in virtual retina [29]. This filter K(x, t), given

in (5), is built by the combination of Gaussian spatial filters

and Difference of Exponential (DoE) temporal filters, where

the center C(x, t) and surround S(x, t) areas are structured

according to (6) and (7) respectively:

K(x, t) = C(x, t)− S(x, t), (5)

C(x, t) = wcGσc
(x)V (t), (6)

S(x, t) = wsGσs
(x)

(

V
t
∗ EτS

)

(t), (7)

where wc and ws are constant parameters, Gσc
(x) and Gσs

(x)
are spatial Gaussian filters standing for the center and surround

areas respectively, V (t) is a low-pass filter and EτS (t) is an

exponential temporal filter. The temporal filter V (t) is given

by (8) and describes the DoE which stands for the spatial
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variation with respect to time. It is modeled with temporal

low-pass filters [16]:

V (t) =

{

EτG,n
t
∗ (δ0 − wcEτC ) (t) if t ≥ 0,

0 otherwise,
(8)

where the gamma temporal filter EτG,n(t) is defined by:

Eτ,n(t) =

{

tn exp(−t/τ)
τn+1 if t ≥ 0,

0 otherwise,
(9)

with n ∈ N, τ > 0, δ0(t) is the dirac function, EτC (t) is

an exponential temporal filter, and
t
∗ stands for the temporal

convolution. The exponential temporal filter is given by (25)

for n = 0.

The mathematical model of C(x, t) and S(x, t) is totally

linked to the way the retinal cells are connected and propa-

gate the stimuli. To explain the non-separable spatiotemporal

retina-inspired filter, we need to focus again on bipolar cells.

We have already mentioned how they receive two opposite

signals in their RF. In this model the key is the hierarchy of

the retinal cells and their connectivity. The temporal behavior

of the retina cells is described in Fig. 4. The horizontal cells

are the first ones which receive an average signal by a group of

photoreceptors at time t1. A smaller group of photoreceptors

propagates an excitatory signal to the center of bipolar cells

C(x, t) at time t2 while horizontal cells receive this signal

and they communicate and exchange information with adjacent

horizontal cells. This causes a small delay Eτs(t) until time

t3 in the propagation of the inhibitory signal S(x, t) coming

from horizontal cells to bipolar cells.

III. RETINA-INSPIRED FILTERING OF A STILL IMAGE

The goal of this section is to simplify the retinal spatiotem-

poral filtering (2), based on the model (5), when it is applied

to a still image. We show that the retina-inspired filter could

be interpreted as a group of time varying WDoG filters. That

means that, at each time, a new and different spatial WDoG

filter arises. Consequently, while time increases, the retina-

inspired filter is able to extract different kinds of information

from its input signal.

A. Equivalence with a Group of Time-varying WDoG Filters

A still image does not vary in time when it is flashed.

This time invariance enables us to simplify the spatiotemporal

convolution (2) as established in Proposition 1.

Proposition 1. Assume f(x, t) = f(x)1[0,T ](t) for all x ∈
R

2 and all t ∈ R. Then, the spatiotemporal convolution (2)

turns into the spatial convolution:

A(x, t) = φ(x, t)
x
∗ f(x), (10)

where φ(x, t) is a spatiotemporal WDoG filter weighted by

two temporal filters Rc(t) and Rs(t):

φ(x, t) =

{

wcRc(t)Gσc
(x)− wsRs(t)Gσs

(x) if t ≥ 0,
0 otherwise,

(11)

Rc(t) = 1[0,+∞)(t)

∫ t

max{0,t−T}

V (u)du, (12)

Rs(t) = 1[0,+∞)(t)

∫ t

max{0,t−T}

(V
t
∗ EτS )(u)du, (13)

for all x ∈ R
2 and for all t ∈ R.

Proof. The proof consists in calculating the convolution:

A(x, t) = K(x, t)
x,t
∗ f(x, t)

= (C(x, t)− S(x, t))
x,t
∗ f(x)1[0,T ](t)

= wcGσc
(x)

x
∗ f(x)

(

V
t
∗ 1[0,T ](t)

)

−wsGσs
(x)

x
∗ f(x)

((

V
t
∗ EτS

)

t
∗ 1[0,T ](t)

)

.

For an integrable function U(t), a short calculation shows that

U
t
∗ 1[0,T ](t) =







0 if t < 0,
∫ t

max{0,t−T}

U(u)du otherwise.
(14)

Then, it is straighforward to derive (10) with φ(x, t) defined

in (11).

This proposition is fundamental because it turns spatio-

temporal filtering of the still image f(x) with the retinal

filter K(x, t) into a simpler spatial convolution with the

retina-inspired filter φ(x, t) which is a group of time-varying

WDoGs. The temporal functions Rc(t) and Rs(t) act like

weights and modify the WDoG spatial spectrum with respect

to time (see Section IV). Since a DoG filter is a 2D spatially

symmetric real function, the filter φ(x, t) can be simplified

into φ(r, t) where the radius r is the norm of x. Fig. 5 plots

the retinal filter φ(r, t) as a function of r = ‖x‖2 for two

different cases related to the temporal filters Rc(t) and Rs(t)
which are studied in the following subsection. For simplicity,

it is assumed that r ∈ R and φ(r, t) is symmetric around

r = 0 for all t. The parameters have been tuned according

to neuroscientific results [3] which approximate the retinal

spectrum and the speed of the retinal processing. Since the

retina-inspired filter is a 2D spatially symmetric function, its

spectrum is also symmetric. This spectrum, denoted φ̂(ω, t)
where ω is the spatial angular frequency related to r, is shown

in Fig. 5.

B. Spatiotemporal Behavior and Convergence

We are interested in studying the two temporal filters

Rc(t) and Rs(t) which are responsible for the spatiotemporal

behavior of the retina-inspired filter. First of all, we calculate

their closed-form model in Proposition 2. This proposition is

based on the following lemma.

Lemma 1. Assume t ≥ 0, then

Jc(t) =

∫ t

0

V (u)du

= Pn(t) exp

(

−t

τG

)

+ αc exp

(

−t

τC

)

+ γc, (15)
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(a)

(b)

Fig. 5: (Left to right) The retina-inspired filter φ(r, t) as a function of r ∈ R and t ∈ R. The top view of φ(r, t). The

retina-inspired filter spectrum φ̂(ω, t). The top-view of |φ̂(ω, t)|. (a) The top line corresponds to the case T = +∞. (b) The

bottom line stands for the case T < +∞ (Parameters: T = 150 ms, τC = 20 ms, τS = 4 ms, τG = 5 ms, n = 5, wS = 1,

wC = 1, σc = 0.5 and σs = 3σc).

where Pn(t) is a polynomial function in t of order n and αc

and γc are two reals, and

Js(t) =

∫ t

0

(V
t
∗ EτS )(u)du

= Qn(t) exp

(

−t

τG

)

+ αs exp

(

−t

τS

)

+βs exp

(

−t

τC

)

+ γs, (16)

where Qn(t) is a polynomial function in t of order n and αs,

βs and γs are some reals.

Proof. See the Appendix.

Proposition 2. The temporal weights Rc(t) in (12) and Rs(t)
in (13) satisfy:

Rc(t) =

{

Jc(t) if 0 ≤ t ≤ T,

Jc(t)− Jc(t− T ) if T < t,
(17)

Rs(t) =

{

Js(t) if 0 ≤ t ≤ T,

Js(t)− Js(t− T ) if T < t,
(18)

where Jc(t) is given in (15) and Js(t) is given in (16).

Proof. The proof is based on the fact that Rc(t) = Jc(t) for

0 ≤ t ≤ T and

Rc(t) =

∫ t

t−T

V (u)du =

∫ t

0

V (u)du−

∫ t−T

0

V (u)du

for t > T . Lemma 1 is used to deduce (17). The same

equalities hold for Rs(t).

The temporal weights Rc(t) and Rs(t) are illustrated in Fig.

6. The parameters in (a) and (b) have been tuned according

to the parameters of Fig. 5 for T = +∞ and T < +∞
respectively. We should note that their shapes are very similar

except that the surround temporal filter Rs(t) appears with a

small delay EτS (t) with respect to the center one. There is a

high impact of the above characteristic on the spatiotemporal

evolution of the filter. The delay EτS (t) is crucially important

because for the very first few milliseconds, while Rs(t) does

not yet exist, the second term of the WDoG is zero. As a

result, at the very beginning, the retina-inspired filter is a pure

Gaussian with a very low amplitude since it is weighted by
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Fig. 6: Temporal filters Rc(t) and Rs(t). The convergence of the filters depends on the value of time T . Subplot (a) corresponds

to the case T = +∞, while subplot (b) corresponds to the case T < +∞.

Rc(t). Finally, we can note that Rc(t) and Rs(t) converge to

a constant value. Hence, φ(x, t) also converges as t → +∞.

This convergence is established in the following proposition.

Proposition 3. The filter φ(x, t) is a continuous and infinitely

differential function over R2×R such that φ(x, 0) = 0 for all

x ∈ R
2. If T = +∞, then φ(x, t) converges uniformly toward

φ(x) where φ(x) is the WDoG filter:

φ(x) = wcγcGσc
(x)− wsγsGσs

(x), (19)

with γc and γs defined in (15)-(16). If T < +∞, the filter

vanishes uniformly as t → +∞:

lim
t→+∞

sup
x∈R2

| φ(x, t) |= 0. (20)

Proof. The uniform convergence (20) results from the defini-

tion of φ(x, t) in (11) since Gσc
(x) and Gσs

(x) are bounded

and Rc(t) and Rs(t) converges to 0 according to Proposition

2 and Lemma 1. When T = +∞, Rc(t) and Rs(t) converge,

respectively, to γc and γs as t → +∞. Hence, φ(x, t)
converges uniformly toward φ(x).

Figure 5 depicts the two different cases of Proposition 3. A

brief discussion about this proposition is that, while time T

increases to infinity, the retina-inspired filter turns into a static

WDoG. This is totally concurrent with the neuroscientific

assumptions about the time limits of the visual system. Neu-

roscientists have proposed that the objects categorization of a

single image which is propagated from the retina to the brain

needs approximately 100 ms [34] before the next image is

processed. Recent studies prove that a simple comprehension

lasts approximately 13 ms [35]. In any case, there exists a time

tc when, even if the photoreceptors will continue capturing the

same signal, all the necessary information which need to be

processed has already been transmitted to the brain. From a

theoretical point of view, the existence of tc is deduced from

the uniform convergence established in Proposition 3. In fact,

given ε > 0, the time tc = tc(ε) can be defined when the

uniform convergence is achieved up to ε.

IV. WEIGHTED DOG ANALYSIS

This section aims to study the WDoG filter, i.e., to approx-

imate its spatial response and its frequency response. Without

any loss of generality, a WDoG is defined by:

ϕ(x) = aGσa
(x)− bGσb

(x) (21)

where a, b > 0 and σ2
b > σ2

a. The retina-inspired filter φ(x, t)
consists of a group of WDoG with the coefficients

a = wcRc(t) = a(t), b = wsRs(t) = b(t), (22)

that are time dependent, σa = σc and σb = σs. Since the

WDoG is symmetric, we define the WDoG according to the

radial coordinate r = ‖x‖2:

ϕ(r) = aGσa
(r) − bGσb

(r). (23)

Since ϕ(r) is symmetric around 0, we assume that r ∈ R (and

not only to R
+) to ensure a better legibility of the results and

to study more easily the spectrum of the WDoG. According

to the couple (a, b), the WDoG has eigth shapes which are

depicted in Fig. 7. The parameter b = 1 is fixed. According to

the value of a ∈ {0.1, 0.3, 0.4, 0.7, 0.9, 1.1, 2, 4}, the WDoG

is either a lowpass filter (cases L1, L2 or L3) or a bandpass

filter (case BP) or a mixed lowpass/bandpass filter (case LB).

The conventional DoG filter (a = b = 1) is a special case

of BP. When a is changing, the bandwidth is also changing

but the WDoG is always constrained to one of these eight

shapes, corresponding to five behaviors. This section studies

these behaviors in the space domain and in the frequency

domain.

A. WDoG in Space Domain

Let us study the variations of ϕ(r). The first derivative of

the WDoG, which is differentiable for all r ∈ R, is given by

ϕ′(r) = r

(

−
a

σ2
a

Gσa
(r) +

b

σ2
b

Gσb
(r)

)

. (24)

Let

γ = γ(a, b) =
bσ4

a

aσ4
b

. (25)
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Fig. 7: Eight typical shapes of the WDoG ϕ(r) (first row) and the WDoG spectrum modulus |ϕ̂(ω)| (second row) w.r.t.

some values of the couple (a, b). The dotted line represents the half of the maximum value of the spectrum modulus. The

rectangles in dashed line represent the approximated bandwidth of the spectrum. There are five specific cases: 1) lowpass L1,

2) lowpass/bandpass LB, 3) bandpass BP, 4) lowpass L2 and 5) lowpass L3.

A short analysis of the roots of ϕ′(r) shows that two cases

occur: i) if γ ≥ 1, there is only one root r = 0 , ii) if γ < 1,

there are three roots r = 0, r1 > 0 and −r1 with

r1 = σaσb

√

2 ln(γ)

σ2
b − σ2

a

. (26)

As an illustration, case i) corresponds to the first left curve in

Fig. 7 and case ii) corresponds to all the other curves. It is then

easy to determine the positive intervals and negative intervals

of ϕ′(r) and, hence, to determine when ϕ(r) is increasing or

decreasing.

Proposition 4. If γ ≥ 1, ϕ(r) is negative for all r ∈ R and

its minimum is

ϕ0 = min
r∈R

ϕ(r) = ϕ(0) =
aσ2

b − bσ2
a

2πσ2
cσ

2
s

< 0. (27)

Otherwise, if γ < 1, then ϕ(r) is negative and decreasing over

[−∞,−r1], increasing over [−r1, 0], decreasing over [0, r1]
and finally increasing and negative over [r1,+∞]. The global

minima are −r1 and r1.

Proof. The proof is straightforward by studying the sign of

ϕ′(r) over the intervals given in the proposition.

The Full Width Half Maximum (FWHM) response of the

symmetric WDoG is given by the interval [−rC , rC ] where

rC satisfies:

ϕ(rC) =
maxr∈R ϕ(r)

2
. (28)

The FWHM is not relavant for case L1 (see Fig. 7) because the

shape of the WDoG is significantly different from a peak. The

FWHM is relevant for the other cases when the peak at r = 0
is sufficiently large, i.e., when ϕ(0) > −2ϕ(r1). The exact

calculation of FWHM is difficult. Hence, we approximate rC
in (28) using the following method which is proposed in [36].

We first calculate the maximum response. Then, we compute a

straight line from each maximum response to the first intercept

0
−2

0

2

4

6

8

10x 10
−3

FWHM

−r
1
−r

0
−r

c
r
c

r
0

r
1

Fig. 8: Approximate FWHM interval of a WDoG based on a

triangle approximation.

with the r-axis (see Fig. 8 red solid line). We compute half

of this line and we approximate its correspondent value. The

resulting FWHM is illustrated in Fig. 8. A straightforward

calculation shows that the first intercept of ϕ(r) with the r-

axis is

r0 = σaσb

√

√

√

√

2 ln(
aσ2

b

bσ2
a

)

σ2
b − σ2

a

. (29)

where bσ2
a > aσ2

b since ϕ(0) > 0. It follows that rC ≈
r0

2
by

using the triangle approximation.

B. WDoG in Frequency Domain

The Fourier transform of the WDoG in (23) is

ϕ̂(ω) = aĜσa
(ω)− bĜσb

(ω) (30)

where

Ĝσ(ω) =
1

2π
exp

(

−
ω2σ2

2

)

, (31)

and ω ∈ R denotes the spatial angular frequency associated to

r. The WDoG bandwidth B = B(a, b) refers to the frequency

range in which the spectrum ϕ̂(ω) is above a threshold value.

The threshold value is defined relative to the maximum value
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and the points where the spectrum is half its maximum value,

i.e., we need to find all the solutions ω̄ of

ϕ̂(ω̄) =
maxω∈R ϕ̂(ω)

2
. (32)

For each case identified in Fig. 7, the derivation of a closed

form expression of the bandwidth is very tricky. Hence, we

propose some simple approximations. For cases L1, LB, BP,

each part of the bandwidth is approximated by a triangle. A

triangle is formed by taking the zero position, the maximum

position and double the turning point as already illustrated

in Fig. 8. For cases L2 and L3, a better approximation is

obtained by considering that the WDoG is almost equivalent

to a Gaussian function.

Let us determine the zero position and the maximum

position of the WDoG. The solutions of ϕ̂(ω) = 0 are the

two opposite roots ω0 and −ω0 with

ω0 =

√

2

σ2
b − σ2

a

ln

(

b

a

)

(33)

when b > a. Otherwise, when b ≤ a, the WDoG is always

positive with the single root ω = 0 in the special case a = b.

Since the WDoG is differentiable, the extrema are the solutions

of ϕ̂′(ω) = 0 where ϕ̂′(ω) is the first derivative of ϕ̂(ω). A

short calculation shows that

ϕ̂′(ω) =
ω

2π

(

−aσ2
a exp

(

−
ω2σ2

a

2

)

+ bσ2
b exp

(

−
ω2σ2

b

2

))

.

A first extrema is ω = 0. The other extrema are the solutions

of

exp

(

ω2(σ2
b − σ2

a)

2

)

=
bσ2

b

aσ2
a

= ̺(a, b). (34)

If ̺(a, b) ≤ 1, there is no other extrema. Otherwise, there are

two opposite extrema ω1 > 0 and −ω1 where

ω1 =

√

2

σ2
b − σ2

a

ln(̺(a, b)). (35)

From (34), it is clear that ϕ̂′(ω) > 0 for 0 < ω < ω1 and

ϕ̂′(ω) > 0 for ω1 < ω. Since limω→±∞ ϕ̂(ω) = 0, the

frequency ω1, if it exists, is a global maximum. We can also

show that −ω1 is a global maximum. We obtain the following

proposition.

Proposition 5. If ̺(a, b) > 1, then the maximum is given by

max
ω∈R

ϕ̂(ω) = ϕ̂1 = ϕ̂(ω1) = ϕ̂(−ω1)

=
a(σ2

b − σ2
a)

2π

(

1

̺(a, b)

)

σ
2
a

σ2
b
−σ2

a

(36)

with ω1 given in (35). Otherwise, if ̺(a, b) ≤ 1, then

max
ω∈R

ϕ̂(ω) = ϕ̂0 = ϕ̂(0) =
a− b

2π
> 0.

Proof. If ̺(a, b) ≤ 1, there is only one extrema ω = 0. Since

ϕ̂′(ω) has the sign of −ω, ϕ̂ is increasing when ω < 0
and decreasing when ω > 0. Hence, 0 is a positive global

maximum. If ̺(a, b) > 1, it has been already shown that the

maximum are located at ω1 and −ω1.

The maximum value in (36) is obtained by inserting ω1,

given in (35), in (30).

According to the couple (a, b), the WDoG has three possible

behaviors: lowpass, bandpass or lowpass/bandpass. Hence, the

total bandwidth B = B(a, b), including negative and positive

frequencies, can have one of the three following forms:

• Lowpass: B = [−ωH , ωH ] with ωH > 0,

• Bandpass: B = [−ωH ,−ωL] ∪ [ωL, ωH ] with 0 < ωL <

ωH ,

• Lowpass/bandpass: B = [−ωC , ωC ] ∪ [−ωH ,−ωL] ∪
[ωL, ωH ] with 0 < ωC < ωL < ωH .

The following proposition gives the bandwidth B(a, b) with

respect to the couple (a, b).

Proposition 6. According to the value of (a, b), the WDoG

ϕ̂(ω) satisfies one of the following cases:

1) If ̺ > 1 and |ϕ̂0| ≥ ϕ̂1

a) Case L1: if |ϕ̂0| ≥ 2ϕ̂1, then ϕ̂(ω) is lowpass with

ωH ≃
ω0

2
,

b) Case LB: if |ϕ̂0| < 2ϕ̂1, then ϕ̂(ω) is low-

pass/bandpass with

ωC ≃
ω0

2
, ωL ≃

ω0 + ω1

2
, ωH ≃

ω0 + 3ω1

2
,

2) If ̺ > 1 and |ϕ̂0| < ϕ̂1

a) Case BP: if |ϕ̂0| ≤
ϕ̂1

2
, then ϕ̂(ω) is bandpass

with

ωL ≃
ω0 + ω1

2
, ωH ≃

ω0 + 3ω1

2
,

b) Case L2: if |ϕ̂0| >
ϕ̂1

2
, then ϕ̂(ω) is lowpass with

ωH ≃ ω1 +

√

2 ln(2)

σa
,

3) If ̺ ≤ 1, which corresponds to Case L3, then ϕ̂(ω) is

lowpass with

ωH ≃

√

2 ln(2)

σa
.

Proof. The behavior of the filter depends on the maximum

values ϕ̂0 or ϕ̂1, the maximum position and the zero position.

In case of L1, LB and BP, each part of the bandwidth is

approximated by a triangle. A short calculation gives the

bounds of the triangle. In case of L2, we use two Gaussians to

approximate the central part of the spectrum. The bandwidth

of a Gaussian function with zero mean and standard deviation

σ is given by

Bσ =
[

−σ
√

2 ln(2), σ
√

2 ln(2)
]

.

In case of L3, we use a single Gaussian approximation.

The retina-inspired filter is filtering the input image f(x) by

using a WDoG varying in time. By controling the trajectory

(a(t), b(t)), this filter is able to explore the frequency spectrum

of the input image.
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Fig. 9: For bio-plausible parameters described in Fig. 5 we compute in (a) the approximation of the evolution of the bandwidth

with respect to time which is computed according to Proposition 6 and in (b) the exact evolution of the bandwidth with

respect to time which is numerically computed. (c). The exact solution of the bandwidth which behaves as lowpass for longer

time (τC = 30 ms, τS = 20 ms, τG = 15 ms, n = 5). (b) The exact solution of the bandwidth which behaves as bandpass

(τC = 40 ms, τS = 0.5 ms, τG = 9 ms).

V. NUMERICAL RESULTS

This section aims to compute the retina-inspired decompo-

sition tuned with respect to bio-plausible parameters given in

[16] and described in Fig. 5. One could adjust these parameters

and achieve non bio-plausible WDoG filters which are maybe

more adaptable for different research topics. The tuning of

these parameters is out of the scope of this work but we are

going to test some non bio-plausible parameters and discuss

the results. In addition, concerning the two different case when

T = +∞ and T < +∞, one could notice according to Fig. 6

that the second one is separated into three groups for t ∈ [0, T ],
t ∈ (T, 2T ] and t > 2T . Concerning the first group, the retina-

inspired filter would evolve exactly in the case was as in case

T = +∞. The second group is the inverse of the first group

and the third group corresponds to the zero value because of

the zero convergence. According to Fig. 5 it is obvious that

at least for bio-plausible parameters, the two first groups have

exactly the same spectrum. As a result, we concentrate the

analysis on the first group which is identical to T = +∞.

We are able now to compute the bandwidth B = B(a, b)
of the filter as a function of time using Proposition 6 which

is illustrated in Fig. 9 (a). The approximation consists of 3

different case which appear progressively in time: for 1 ≤ t ≤
5 ms the bandwidth is approximated according to L3, for 5 <

t ≤ 23 ms it follows L2 and finally, for t > 23 ms it belongs to

BP. The exact bandwidth is computed by solving the equation

(32) using the MatlabTM fsolve function and it is depicted in

Fig. 9 (b). Concerning the exact solution one should notice that

the bandwidth evolves in time in a very similar way depicted

that the filter behaves as a lowpass for 1 ≤ t ≤ 23 ms while

it becomes bandpass for t > 23 ms. Comparing these two

plots, we confirm the accuracy of Proposition 6 is not perfect

because of the triangle approximation. This approximation of

the DoG filter has already been used in previous works getting

similar accuracy results [36]. It would be also important to be

mentioned that the approximation is not continuous but it has

been proposed for each case separately. This is the reason

why some discontinuities appear. The second row of Fig. 9

comes to remind the reader that if one chooses different set

of parameters, not only the behavior of the filter but also the

evolution of the bandwidth with respect to time will change.

In Fig. 10, we represent the filtering results while the retina-

inspired filter is applied to an image for different parameters of

wc and ws. We used a gray-scale image of size n = 512×512
pixels. We have decided to illustrate only 5 decomposition

layers for each experiment. The evolution of the retina-inspired

filter is according to the bandwidth of Fig. 9 (b). The first

column of Fig. 10 corresponds to the bio-plausible parameters

where wc = ws = 1. The middle and the left columns

correspond to non bio-plausible parameters but very close to

the ones of the left column. It is interesting that while wc

decreases there is a stronger categorization of the L2, L3, LB

and BP cases. Another important remark is related to the scale

of the top pictures which correspond to the first decomposition

layer. Apparently, this layer seems to be identical to the

original. However, its scale is very low (i.e. 10−13) which

means that in the presence of noise or after quantization all

this information will be completely lost.

VI. CONCLUSION

This paper has introduced a non-separable spatiotemporal

retina-inspired filter based on a realistic model of the OPL.

This filter is a groundbreaking analysis of neuroscience for

image processing. It has been established that this filter is
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Fig. 10: Decomposition of an image using the retina-inspired non-separable spatiotemporal filter. Left: wc = ws = 1. Middle:

wc = 0.9 and ws = 1. Right: wc = 0.7 and ws = 1.
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a group of time-varying WDoGs when it is applied to a still

image flashed for a given time. Hence, it enables the extraction

of different kind of data while time increases. As underlined

in the introduction, the retina-inspired filter is a great im-

provement of other bio-inspired filters which are simpler and

not much as accurate neuroscientific approximation of the

retina. Hence, this is certainly of a great interest for the image

processing field.

There are numerous applications for our retinal-inspired

filter, the most important of which is image compression.

We believe that the retina-inspired transform is the first step

to build novel retina-inspired codecs. It seems that even if

image and video codecs are still two of the most attractive

research topics, they have reached their limits: even if the bi-

trate efficiently decreases, the computational cost dramatically

increases [37]. The HVS has low power consumption while at

the same time its visual perception is very high. Some models

have been already proposed to mimic the retinal coding like

the Rank Order Coding (ROC) [3], [38], [39]. However, the

filtering bank used by ROC was very simple. As a result, it

would be interesting to extend these works by using our retina-

inspired model. In addition, it would be also relevant to study

a full bio-plausible neural coding architecture like [15], [40]

based on our model.

APPENDIX

This appendix proves Lemma 1. It is shown that both Jc(t)
and Js(t) can be defined in a closed form as polynomial

functions which are attenuated by exponential ones. These

functions will be essential to calculate Rc(t) and Rs(t). The

calculation of Jc(t) and Js(t) are based on the following

lemma whose proof is straightforward.

Lemma 2. Let ω a real value, t ≥ 0 and n a positive

integer. Using an integration by parts, we obtain the following

equality:
∫ t

0

un exp (−ωu)du = Pn(t) exp (−ωt) + c,

where

Pn(t) =

n
∑

k=0

−
n!

(n− k)!ωk+1
tn−k

is a polynomial function in t of order n whose coefficients

depend on ω and c is a constant value.

A. Closed-form of Jc(t)

Assume that 0 ≤ t ≤ T . It follows that:

Jc(t) =

∫ t

u=0

V (u)du,

which yields

Jc(t) =

∫ t

u=0

EτG,n
t
∗ (δ0 − wCEτC ) (u)du

=

∫ t

u=0

EτG,n(u)du − wC

∫ t

u=0

EτG,n
t
∗ EτC (u)du.

The definition of the gamma and exponential filters yields:

Jc(t) =
1

τn+1
G

∫ t

u=0

un exp (−au)du

−
wC

τn+1
G τC

(
∫ t

u=0

exp

(

−u

τC

)
∫ u

v=0

vn exp (−bv) dvdu

)

.

where a =
1

τG
, b =

τC − τG

τGτC
. Using Lemma 2, we get

Jc(t) =

n
∑

k=0

−
(n!)

(n− k)!ak+1τn+1
G

tn−k exp (−at)

−

n
∑

k=0

m
∑

l=0

n!wc

(m− l)!bk+1al+1τn+1
G τC

tm−l exp (−at)

+
n!wc

bn+1τn+1
G

exp

(

−t

τC

)

+

n
∑

k=0

n!wc

bk+1am+1τn+1
G τC

−
n!wc

bn+1τn+1
G

+ n!

where m = n− k. Finally,

Jc(t) = Pn(t) exp

(

−t

τG

)

+ αc exp

(

−t

τC

)

+ γc

where Pn(t) is a polynomial function in t of order n and αc

and γc are two reals.

B. Closed-form of Js(t)

The method used to calculate Jc(t) can be applied to Js(t).
This leads to:

Js(t) =

∫ t

u=0

(V
t
∗ EτS )(u)du

=

∫ t

u=0

EτG,n ∗ (δ0 − wCEτC ) ∗EτS (u)du

=

∫ t

u=0

EτG,n ∗ EτS (u)du

−wc

∫ t

u=0

EτG,n ∗ EτC ∗ EτS (u)du.

Using Lemma 2, we get

Js(t) =
1

τn+1
G τS

(

n
∑

k=0

m
∑

l=0

n!tm−l exp (−at)

gk+1al+1(m− l)!

−

n
∑

k=0

n!

gk+1am+1
+

n!τS
gn+1

(

1− exp

(

−t

τS

))

)

−
wc

τn+1
G τCτS

(

n
∑

k=0

m
∑

l=0

p
∑

r=0

−
n!tp−r exp (−at)

(p− r)!bk+1gl+1ar+1

+

n
∑

k=0

m
∑

l=0

n!

bk+1gl+1ap+1

−
n
∑

k=0

n!τS
bk+1gm+1

(

1− exp

(

−t

τS

))
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+
n!τS
bn+1φ

(

1− exp

(

−t

τS

))

−
n!τC
bn+1φ

(

1− exp

(

−t

τC

))

)

,

with the variables

g =
τS − τG

τGτS
, φ =

τS − τC

τCτS
,

p = m− l and m = n− k. It follows that:

Js(t) = Qn(t) exp

(

−t

τG

)

+ αs exp

(

−t

τS

)

+βs exp

(

−t

τC

)

+ γs

where Qn(t) is a polynomial function in t of order n and αs,

βs and γs are some reals. This ends the proof.
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[31] H. Ögmen and M. H. Herzog, “The geometry of visual perception:
Retinotopic and nonretinotopic representations in the human visual
system,” Proceedings of the IEEE, vol. 98, no. 3, pp. 479–492, 2010.
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