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Regularized friction and continuation: Comparison with Coulomb’s law

Pierre Vigué, Christophe Vergez, Sami Karkar, Bruno Cochelin

Abstract
Periodic solutions of systems with friction are difficult to investigate because of the irregular nature of

friction laws. This paper examines periodic solutions and most notably stick-slip, on a simple one-degre-of-
freedom system (mass, spring, damper, belt), with Coulomb’s friction law, and with a regularized friction
law (i.e. the friction coefficient becomes a function of relative speed, with a stiffness parameter). With
Coulomb’s law, the stick-slip solution is constructed step by step, which gives a usable existence condition.
With the regularized law, the Asymptotic Numerical Method and the Harmonic Balance Method provide
bifurcation diagrams with respect to the belt speed or normal force, and for several values of the regularization
parameter. Formulations from the Coulomb case give the means of a comparison between regularized solutions
and a standard reference. With an appropriate definition, regularized stick-slip motion exists, its amplitude
increases with respect to the belt speed and its pulsation decreases with respect to the normal force.

1. Introduction

In scientific and engineering research, friction is a topic that dates back to da Vinci [1], and the stick-
slip oscillations it can engender are either undesirable (causing wear, losses and noise), or crucial, for bowed
string instruments for example. The seminal works of Helmholtz (1877) and Raman (1918) describe several
regimes of the bowed string, respectively Helmholtz’s corner, and Raman’s higher types. Several works have
since attempted to describe the multitude of possible regimes. In addition to experimental observations with
various artificial bowing apparatus (for example, a rosined perspex rod [2]), the main theoretical results [3] are
established through graphic constructions (for instance, Friedlander’s rule), numerical time simulation (time
integration, digital waveguides...), or modal analysis [4].

However, to the authors’ knowledge, there isn’t a numerical investigation of periodic solutions of the
bowed string, which might be due to the irregular nature of friction laws. Yet as a highly nonlinear system,
the bowed string may exhibit several solutions for the same set of bowing parameters, depending on initial
conditions. For example, a string lightly touched by a finger at its middle emits a sound known as flageolet
tone or harmonic sound that is the second register. Using appropriate bowing parameters, musicians can
maintain this second register solution in the same bow stroke when the finger is raised, although these bowing
parameters are compatible with a normal, first register sound. The authors’ ultimate aim is the continuation
of periodic solutions of a bowed string, showing the evolution of solutions with respect to a given parameter,
along with their stability. A string toy model, based on a truncated modal projection retaining only two
modes, was studied with the regularized law presented here [5].

The numerical framework presented in [6] will be used hereafter. It operates on first-order, parametric
differential system X ′ = F (X,λ). A discretization method, namely, the Harmonic Balance Method or the
Orthogonal Collocation at Gauss points, transforms this differential system into a polynomial one (also called
algebraic system). Then, a continuation method, the Asymptotic Numerical Method (ANM), is used to
study the evolution of periodic solutions. It relies on truncated power series expansion, provided that in the
parametric differential system X ′ = F (X,λ), F is an analytic function, and thus, so is the solution branch.
In its implementation, the ANM operates with quadratic nonlinearities, with an extension to usual functions
[7], but keeping in mind that only smooth nonlinearities are admissible. That is why a regularized friction
law is proposed that will be reviewed in this paper. It is not designed to fit experimental data, but rather,
to present some similarities to Coulomb’s two-parameters law (recalled in Eq. 7) for a great regularization
parameter. This regularized law engenders periodic solutions that can be compared with Coulomb’s solution
on a string toy model. Unlike Pennestri et al. [8], who compare through time integration many models for a
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given set of parameters values, the present study aims at presenting the global behaviour of one model family
through continuation, with different values of the regularization parameter.

The regularized law is given in Section 2.1, with a brief discussion about the regularization. As a first step
before a realistic string model, the present paper examines the periodic solutions of a mass-spring-damper
resting on a conveyor belt. The model is presented is Section 2.2. This mass-spring-damper-belt device, also
known as the Rayleigh string model, corresponds to the projection on the first mode of the string equation.

Explicit formulations of the periodic solution for this system with Coulomb’s law are well-known in the
undamped case. In the damped case however, there is a lack of such formulations, and instead of using ad hoc
numerical integration techniques (for example, [9, 10]), the authors describe explicitly the stick-slip solution,
with Coulomb’s law and damping, in Section 3. It is then sufficient to solve numerically only one equation
(the cycle condition), and in return, it provides insight into the existence domain of this solution. In Section
4 we present the continuation of periodic solutions with the regularized law. The continuation is carried out
with respect to the belt speed, then to the normal force. Periodic solutions obtained with the regularized law
are compared with Coulomb’s stick-slip solution.

2. Friction laws and model equations

2.1. Regularized friction law
We now present the regularized friction law µn(Vr) used in this paper. It is based on an analytical mother

function g and a regularization parameter n. This parameter n acts as a scaling factor that modifies the
stiffness of the regularization : large values of n mean a highly nonlinear friction law. g is defined as

g(Vr) :=
−µdVr

√
V 2
r + ε− 2αVr

V 2
r + 1 , α =

√
µs(µs − µd) (1)

It is designed to verify the following properties :

• the function g is odd ;

• g(Vr)→ µd when Vr → −∞ ;

• max g → µs when ε→ 0

Then, µn is defined as

µn(Vr) := g(nVr) =
−µdVr

√
V 2
r + ε

n2 − 2αnVr
V 2
r + 1

n2

(2)

A plot of Coulomb’s law and the regularized law for several values of n, in Figure 1, show that µn(Vr) resem-
bles Coulomb’s law when n is high. Additional details on the regularization process are given in AppendixA.

We highlight two main differences with Coulomb’s friction law. The first one is a velocity-dependent
dynamic coefficient. But as noted by Oden and Martins ([11], p. 548) the assumption of velocity independence
is “now known to be invalid. A large volume of experimental data and empirical formulas for the variation of
the friction coefficient with sliding velocity can be found”. Yet Coulomb’s law leads to more explicit expressions
of the stick-slip solution, and for non-zero relative speed, it is the limit function of the sequence (µn)n>0.

The second difference is that µn is locally a decreasing function of Vr around Vr = 0, instead of a
multivalued coefficient during adherence. This kind of smooth, velocity-dependent friction law, is a model
commonly used to study the bowed string, from McIntyre and coll. [12] to recent sound synthesis [13]. The
present study aims at investigating such a regularized law. More complex models have been designed1, to
take into account effects due to rosin [15], string torsion [10], etc.

A smooth friction law around 0 allows “no true sticking” (an expression found for example in [16]), a
drawback in a purely static context, however the present paper focuses on dynamic phenomena. Friction
regularization has been used to find approximate solutions of variational formulations (for example [17, 11]),
but the authors found a small number of papers that use it in numerical simulations expecting realistic
friction :

1Several bowed string models can be found in [14].

2



a)

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

V
r
 (m.s

−1
)

F
ri
c
ti
o
n
 c

o
e
ff
ic

ie
n
t 
 µ

C

 

 

Coulomb’s law

b)

−1 −0.5 0 0.5 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

V
r
 (m.s

−1
)

F
ri
c
ti
o
n
 c

o
e
ff
ic

ie
n
t 
 µ

n

 

 

n=10

n=25

n=100

Figure 1: a) Coulomb’s friction law, for µs = 0.4, µd = 0.2. b) Regularized friction µn for n = 10 (black), 25 (blue), 100 (red).

• Fenny and Moon [18] showed that for a harmonically forced spring-mass system, a smooth friction law
can reproduce qualitatively the chaotic behaviour observed with Coulomb’s law. The selected smooth
function reads :

µ(Vr) = (µd + (µs − µd)sech(βVr)) tanh(αVr) (3)

• Quinn [19] proposes a smoothing procedure that respects the multivaluation at null relative speed by
introducing an additional variable. However, it is presented in the case µs = µd, and its adaptation in
the case µs > µd may be delicate.

• Vrande et al. [20] use the function :

µ(Vr) = − 2
π

arctan(εVr)
1 + γ|Vr|

(4)

where ε is the regularization parameter. The maximal value of µ is not constant when ε varies, and the
range of belt speeds is restricted because this function tends to zero when Vr tends to infinity.

2.2. Model equations
The model studied in this paper is a mass-spring-damper-belt system. The mass rests on a conveyor belt

moving at velocity Vb (Figure 2), and the contact between the mass and the belt follows a friction law µ. This
law is either :

• Coulomb’s friction law, with parameters µs, µd, in Section 3.

• µn, in Section 4. n is the regularization parameter of our smooth friction law. For small values of n the
system is weakly nonlinear; for greater values of n it becomes stiff.

This mechanical device is a useful toy model of a bowed string. If y denotes the horizontal transverse
displacement of a string at the bowing point x = xb, a projection of the equation of motion on the first
bending mode leads to a mass-spring-damper equation. Namely, if Vr denotes the relative velocity between
the mass and the belt, Vb the belt velocity, FN the normal force, M1 the modal string mass, ζ1 the damping,
ω1 the natural pulsation,

y′′ + 2ζ1ω1y
′ + ω2

1y = FN
M1

µ(Vr) (5)

where Vr = y′ − Vb (6)
We underline that the normal force FN is not to be confused with gravity here : as in a musical context,

the force applied by the bow is a parameter that can vary independently from the string mass. Moreover,
gravity is negligible in comparison with the normal force.
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Figure 2: a) Mass-spring-damper system with a conveyor belt. b) One period of stick-slip motion (Vb = 0.1 m.s−1 ; arbitrary
scales), squares indicate the limits of sticking.

3. Periodic stick-slip solution using Coulomb’s friction law

3.1. Coulomb’s law
In this section we study the periodic stick-slip solution of the mass-spring-damper-belt system with

Coulomb’s friction law, defining the friction coefficient as :

µ(Vr) =
{
−µd sign(Vr) if Vr 6= 0 (slip)
µ0 with |µ0| 6 µs, if Vr = 0, (stick) (7)

with µs and µd respectively the static and dynamic friction coefficients, and µd < µs. An example of stick-slip
periodic motion is drawn in Figure 2.

We define F1 = FN
M1

, η1 = ζ1ω1, so that Eq. (5) becomes

y′′ + 2η1y
′ + ω2

1y = F1µ(Vr) (8)

This equation has one fixed-point solution, the slipping solution y = F1µd
ω2

1
. We determine the periodic

stick-slip solution in three steps : stating the initial problem and its slipping solution ; determining whether
slipping stops ; if it does, closing the cycle with a sticking phase.

3.2. Slipping
We suppose that at t = 0 the spring is stretched enough to end the sticking interval. This means µ(Vr)

reaches at t = 0− its maximum µs, and the slipping interval starts. Eq. (8) is to be solved on an interval
[0, t1], where t1, the instant when slipping stops, will be found later, and with initial conditions :

y(0) = ω−2
1 (F1µs − 2η1Vb) (9a)

y′(0) = Vb (9b)

The damped pulsation is noted ωA := ω1
√

1− ζ2
1 , there exists A > 0, ϕ ∈ [−π, π[ so that

y(t) = Ae−η1t cos(ωAt+ ϕ) + F1µd
ω2

1
(10)

and initial conditions give

A cos(ϕ) = y(0)− F1µd
ω2

1
(11a)

A sin(ϕ) = −ω−1
A

(
y′(0) + η1

(
y(0)− F1µd

ω2
1

))
(11b)

so A2 and tan(ϕ) are known. Then it can be shown that ϕ ∈
]
−π2 , 0

[
, and the unique couple (A,ϕ) ∈(

R∗+,
]
−π2 , 0

[)
is now entirely determined by Eq. 11a, 11b.
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3.3. Does slipping stop?
Now that the slipping interval has started, there is a dilemma : either there exists t1 > 0 when slipping

stops, or there is no such t1 > 0.
The first case happens if Vr, which has become strictly negative during slipping, reaches 0 once more (cycle

condition). It is also the first non-negative time t where y as given by Eq. (10) satisfies y′(t1) = y′(0). Then
a stick-slip regime exists.

We recall that this resolution is simple in the undamped case ; in this case t1 = π − 2ϕ
ω1

, stick-slip solution
exists for all belt speeds ; and periodic solutions without sticking interval exist. These pure slipping solutions
are located inside the stick-slip cycle in the phase diagram (see for example [21]). The value of t1 in the
undamped case can be used as a starting approximate value for a numerical solver in the damped case.

In the second case, there is no such t1 > 0, meaning the damped oscillation of y satisfies :

∀ t > 0, y′(t) < y′(0) (12)

The system stays in a damped oscillation and there is no periodic solution. In the phase diagram (Figure 2,
right), the left end of the horizontal segment (sticking interval) will not be reached. Inequation (12) is now
transformed into a condition checked only at a specific time tY , instead of all times t.

y′ can be rewritten as

y′(t) = −Aω1e
−η1t cos(ωAt+ ϕ− ψ) (13a)

with ψ = arccos
(
η1ω

−1
1
)

(13b)

Then

No stick-slip⇔ (12)⇔ ∀t > 0, y′(t) = −Aω1e
−η1t cos(ωAt+ ϕ− ψ) < y′(0) = Vb (14)

Since the left-hand side is a damped oscillation, its first local maximum is its global maximum, and it
occurs at t = tY :

tY =
2ψ − ϕ+ π

2
ωA

(15)

From this we conclude :

No stick-slip⇔ A exp
(
−η1

2ψ − ϕ+ π
2

ωA

)
<

Vb
ωA

(16)

The inequation (16) can be tested easily, and numerical results highlight that for a fixed normal force, a
maximal belt speed Vmax exists, beyond which stick-slip does not exist. Conversely, for a fixed belt speed,
a minimal normal force Fmin exists, below which there is no stick-slip. This does not provide an explicit
expression of Vmax or Fmin in function of the other system parameters2, since A and ϕ depend on Vb and FN .

3.4. Sticking
We conclude the study of the periodic case, when t1 exists. Sticking starts at t = t1, and stops at t2, thus

T = t2 is the period of the cycle. For all t ∈ [t1, t2], Vr(t) = 0, i.e. y′(t) = y′(0) : y is affine, increasing
from its initial value y(t1) to its final value y(t2) = y(0). We calculate A and ϕ (Eq. 11) ; t1 is found with
a numerical solver using the value in the undamped case as an initial guess ; now constants in Eq. (10) are
known and so is y(t1), from which we conclude :

t2 = t1 + y(0)− y(t1)
y′(0) (17)

Stick-slip solution y over one period, its derivative y′, and the phase diagram (y, y′) are plotted in Figure
3 for a fixed choice of parameters, and Vb is close to the maximal belt speed Vmax. Two features can be
underlined :

2We consider this is the most advanced, exact resolution to describe whether stick-slip exists or not. Wensrich [22] also points
out the difficulty to obtain an explicit boundary between the two domains.
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Figure 3: Stick-slip periodic solution of the system with Coulomb’s friction law, with Vb close to the maximal belt speed Vmax.
a) One period of y (blue) and its derivative y′ (red) (arbitrary scales), squares indicate t = t1 (when sticking starts). b) Phase
diagram (y, y′) ; dashed black line indicates adherence (y′ = Vb), squares show the limits of sticking. c) Zoom on the sticking
phase, comparison with the undamped case.

• since the belt speed is high, the sticking interval is then reduced to a short fraction of the period, unlike
in Figure 2.

• in the phase diagram, the damped solution has an almost horizontal tangent at the end of the slipping
interval, unlike the undamped solution.

We can even compute the bifurcation diagram, for instance over a belt speed interval [V1;V2] (or, similarly
a normal force interval) discretized in k + 1 values :

for Vb=
[
V1 : V2−V1

k : V2
]

y(0) = ..., y′(0) = ... (Eq. 9a, 9b)
A = ..., ϕ = ... (Eq. 11a, 11b)
ψ = ... (Eq. 13b)
if inequation (16) is true then no stick-slip

else t1,app = π − 2ϕ
ωA

(t1 in the undamped case serves as an estimate in the damped case)
t1 = fsolve(y′(t)− y′(0), start=t1,app)
t2 = ... (Eq. 17)

end if
end for

4. Periodic solutions using a regularized friction law

We now investigate the periodic solutions with a regularized friction law which resembles Coulomb’s law
when the regularization parameter is high. The numerical framework used is presented in [6] and [23] and
implemented in Manlab [24].

4.1. Quadratic recast
Periodic solutions, and their continuation with respect to parameters Vb or FN , are studied with a con-

tinuation procedure. A robust method to compute a solution branch is the Asymptotic Numerical Method
(ANM). It operates on first-order differential systems with quadratic nonlinearities. This is called a quadratic
formulation and requires auxiliary variables to lower the derivation order to 1, and to recast the nonlinearities
into quadratic ones, so that Z, the vector of all variables, is solution of

m(Z ′) = c0 + λc1 + l0(Z) + λl1(Z) + q(Z,Z) (18)
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where λ is the continuation parameter, c0 and c1 are vectors, l0, l1 andm are linear operators, and q is a bilinear
operator [6]. After this quadratic recast, periodic solutions are studied using either the Harmonic Balance
Method or the Orthogonal Collocation at Gauss points, as implemented in [23] ; unless stated otherwise below,
they provide the same results. A detailed study of their convergence should be carried out in a companion
paper [25].

A dimensionless variable Q := A0y is substituted for y (A0 is given in AppendixB), and the differential
equation (5) on y is transformed into a first-order, dimensionless system on (Q,P ) :

Q′ = ω1P (19)

P ′ = −2η1P − ω1Q+ A0FN
ω1M1

µn (Vr) where Vr = ω1

A0
P − Vb (20)

Then, seeing the definition (2) of µn(Vr), we define three auxiliary variables to obtain quadratic nonlin-
earities :

R =
√
V 2
r + ε

n2 (21)

S = V 2
r + 1

n2 (22)

µn =
−µdVrR− 2αnVr

S
(23)

The definition of R is then recast as
R2 = V 2

r + ε

n2 (24)

The latter, (24), is not equivalent to the previous definition, (21), and the positiveness of R has to be checked
(this should be studied in a companion paper [25]).

4.2. Continuation with respect to the belt speed

a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

V
b
 (m.s

−1
)

B
2

B
3B

1

A
m

p
lit

u
d
e
 (

m
)

 

 

Helmholtz

Slipping

b)

0 2 4 6 8 10
1200

1205

1210

1215

1220

1225

1230

1235

V
b
 (m.s

−1
)

B
2

B
3

P
u
ls

a
ti
o
n
 (

ra
d
.s

−
1
)

4 6 8 10
1231.59

1231.6

1231.61

1231.62

B
2

B
3

B
1

Figure 4: Bifurcation diagram with the continuation parameter λ = Vb, and n = 10, FN = 5 N. The branch is plotted in solid
line if it is stable, and dashed otherwise ; Helmholtz motion is in blue, slipping in green. a) Peak-to-peak amplitude versus the
belt velocity. b) Pulsation versus the belt velocity. Natural pulsation ω1 is plotted in purple. A zoom window shows the branch
between bifurcations B2 and B3.

A first continuation study is carried out with the belt speed Vb being the continuation parameter λ, while
the normal force is fixed (FN = 5 N). The quadratic recast, emphasizing the operators of Eq. (18), and based
on Eq. (19), (20), (22), (23) and (24), is :
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0 = −λ + ω1

A0
P − Vr + 0 (25a)

0 = ε

n2 + 0 + V 2
r −R2 (25b)

0 = 1
n2 − S + V 2

r (25c)

0 = 0 + 2α
n
Vr + µnS + µdVrR (25d)

Q′ = 0 + ω1P + 0 (25e)

P ′︸︷︷︸
m(Z′)

= ︸︷︷︸
c0+λc1

0 − 2η1P − ω1Q+ A0FN
ω1M1

µn︸ ︷︷ ︸
l0(Z)+λl1(Z)

+ ︸ ︷︷ ︸
q(Z,Z)

0 (25f)

For n = 10, the bifurcation diagram is given in Figure 4 (left) with stability analysis and movement
description. Amplitude refers to peak-to-peak amplitude of the displacement y.

The upper stable branch starts with a supercritical Hopf bifurcation (B1 on the diagram) around Vb = 0.14
m.s−1, reaching a maximal belt speed (B2) around Vb = 10.25 m.s−1. From there, the lower branch is unstable,
and ends on a subcritical Hopf bifurcation (B3) around Vb = 3.65 m.s−1. This analysis is performed with
Hill’s method [26]. This method is efficiently combined with the Harmonic Balance Method, provided that
the Jacobian matrix of the nonlinear differential system (Q,P )′ = F(Q,P ) (i.e. Eq. (19), (20)) is also
quadratically recast. In our case, this requires three additional variables, which means that the computation
of the bifurcation diagram is slightly slowed down, then the stability analysis is almost immediate. This is a
good compromise, and is preferred to the integration of the Jacobian matrix over one period.

Some authors consider that using a regularized law prevents any real stick phase (for example, [16, 27]).
We refine this by defining the movement type as follows : let Vn be such that µn(Vn) = maxv µn(v) = µs,
then

|Vr(t)| 6 |Vn| ⇒ stick, |Vr(t)| > |Vn| ⇒ slip (26)

Then, a solution is called either “slipping” if a period contains no sticking interval, or “Helmholtz motion”,
if there is exactly one sticking interval and one slipping interval. The plot in Figure (4) can be summed up
as : Helmholtz motion on the upper branch, slipping on the lower branch. There are two details : around
bifurcation B1, the mass is only slipping ; the Helmholtz motion is still present on the lower branch near B2.

We now choose greater values of n, the regularization parameter, namely 25, 50 and 100. The bifurcation
diagram is altered (Figure 5) :

• Hopf bifurcations B1 and B3 happen at lower belt speeds ;

• the maximal belt speed decreases ;

• the amplitude gap between the stable and the unstable branches decreases.

For belt speeds close to the first Hopf bifurcation, the motion amplitude is small and relative speed Vr
oscillates very slightly around Vn. In other words, µn stays close to its maximum µs. In Coulomb’s case, the
amplitude of the stick-slip solution tends to a strictly positive value when the belt speed tends to 0. There
is a discontinuity at Vb = 0, where the amplitude is zero since there is no motion. Examples of Helmholtz
motion, in the regularized case and in Coulomb’s case, are shown in Figure 6.

For Coulomb’s law the pulsation is a increasing function of the belt speed (Figure 7) that tends to 0 when
the belt speed tends to 0. For the regularized law, pulsation starts at the natural pulsation at B1, then
decreases to similar values to the unregularized case, in a steep way for great values of n. From then on, it is
also a function of Vb increasing towards its final value ω1, reached at the second Hopf bifurcation B3.

With greater values of n (highly nonlinear system), for instance for n = 150, the pulsation steep decrease
near the first bifurcation B1 ranges over a short interval, while the amplitude is a steep increasing function
of the belt speed. In this interval, it is difficult for numerical methods to find the expected periodic solution.
The Harmonic Balance Method predicts an hysteresis over a very short interval ; the size of this interval
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Figure 5: Bifurcation diagram (axes : belt speed, amplitude of displacement) with the regularized friction law and n = 25 (black),
n = 50 (blue), n = 100 (red) ; with Coulomb’s law (green).
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Figure 6: Phase diagrams, at amplitude 5.5 × 10−4 m, for the regularized law (n = 10, black ; n = 25, blue ; n = 100, red) and
for Coulomb’s law (green).

diminishes when more harmonics are used (Figure 8). The Orthogonal Collocation at Gauss points [28] does
not exhibit this behaviour and describes amplitude and pulsation as functions of the continuation parameter
Vb.

To confirm the continuation results, we can extract a periodic solution (from one of the two bifurcation
diagrams, HBM or Collocation), and start a numerical solver with initial conditions y(0), y′(0). Among the
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solvers available in Matlab ODE suite [29] designed for stiff systems, ode15s was found to be reliable and
faster than others on this system. However, the absolute error tolerance (parameter AbsTol) must be set as
low as 10−14 (this worsens as n increases since the system becomes stiffer). Otherwise, it does not converge
to the same periodic solution.
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Figure 7: Pulsation versus belt speed, with the regularized friction law and n = 25 (black), n = 50 (blue), n = 100 (red) ; with
Coulomb’s law (green). Natural pulsation ω1 is drawn in purple. The branch between B2 and B3 is not visible at this scale.
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Figure 8: For n = 150, comparison of the Harmonic Balance Method with H = 100 (black), 150 (blue), 200 harmonics (red), and
Orthogonal Collocation (OC) with Nint = 151 subintervals. a) Peak-to-peak amplitude versus the belt velocity. b) Pulsation
versus the belt velocity.

4.3. Continuation with respect to the normal force
We now choose the continuation parameter λ = FN and a fixed belt speed (Vb = 0.2 m.s−1). Changing λ

modifies the quadratic recast of the differential equations.
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For small values of n, for example n = 10, the bifurcation diagram (Figure 9, left) shows a stable branch
with a supercritical Hopf bifurcation. For higher values of n (n = 25 is enough), the Hopf bifurcation becomes
subcritical.

Comparisons with Coulomb’s law, for the amplitude (Figure 10) and the pulsation (fig. 11) show a
qualitative agreement between regularized law and Coulomb’s law. For either law, the mass can be carried
away as far as desired during the stick phase, provided that the normal force is great enough. This phase
becomes longer, and therefore the pulsation decreases. Nevertheless, the agreement is less compelling than
for the belt speed continuation. For small values of the regularization parameter n, the amplitude is close to
the amplitude occurring with Coulomb’s law. For n = 50 or n = 100 and high values of normal force FN ,
there is still an large difference between pulsation with Coulomb’s law and the one with regularized law.
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Figure 9: Bifurcation diagram with the continuation parameter λ = FN . The branch is plotted in solid line if it is stable, and
dashed otherwise ; Helmholtz motion is in blue, slipping in green. a) Weakly nonlinear system, n = 10. b) Stiff nonlinear system,
n = 100.

5. Conclusion

In this paper we investigated the periodic solutions of a mass-spring-damper-belt system, and compared
two different friction laws, Coulomb’s law and a regularized law. In the Coulomb case, the stick-slip solution
is constructed sequentially, giving access to limit values for the belt speed and the normal force. In the
regularized case, the bifurcation diagrams, obtained by numerical continuation with respect to the belt speed
or to the normal force, and for several values of the regularization parameter, fulfilled two goals. They prove
the robustness of our numerical methods with a highly nonlinear law; they give a comprehensive description
of the stick-slip branch and of the slipping branch, as well as their evolution when the system becomes highly
nonlinear. Formulations from the Coulomb case give the means of a comparison between the regularized
solutions and a standard reference.

The present study highlights that several qualitative aspects of friction are preserved when the friction law
is a smooth function of relative velocity. With an appropriate definition, stick-slip motion exists, its amplitude
increases with respect to the belt speed and its pulsation decreases with respect to the normal force. There
are limit values for the belt speed and the normal force beyond which this periodic motion ceases to exist. A
second solution branch, mainly composed of non-stationary, slipping solutions, is unstable.

Thanks to its important nonlinearity, this regularized system serves as a benchmark for our methods of
time discretization. A future companion paper [25] will compare the Harmonic Balance Method and the
Orthogonal Collocation at Gauss points, for several values of the regularization parameter n. Future works
based on this regularized system can feature more complete models, either for the string or the friction law.
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Figure 10: Amplitude versus normal force, with the regularized friction law and n = 25 (black), n = 50 (blue), n = 100 (red) ;
with Coulomb’s law (green).
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Figure 11: Pulsation versus normal force, with the regularized friction law and n = 25 (black), n = 50 (blue), n = 100 (red) ;
with Coulomb’s law (green). Natural pulsation ω1 is shown in purple.
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AppendixA. Regularization construction

The regularized law µ can be designed as follows : µ is an odd, analytical function, with a (single) maximum
value µs on R−, and its asymptotic value is µd (when Vr → −∞). The definition

∀ Vr 6 0, µ(Vr) = −µdV
2
r − 2αVr

V 2
r + 1 , (A.1)

verifies our constraints, provided that α =
√
µs(µs − µd). Since Vr 6 0 with Coulomb’s law, it may seem

sufficient to define µ with Eq. (A.1). Yet, using this definition, numerical simulation shows that Vr does not
stay negative over one period, for large intervals of belt speed and normal force. Since the expression given in
Eq. (A.1) is not odd, the friction coefficient is incorrect over a fraction of the period. A satisfying replacement
would be, for all Vr

µ(Vr) = −µdVr|Vr| − 2αVr
V 2
r + 1 T (A.2)

Unfortunately the modulus |Vr| in Eq. (A.2) is not smooth enough for the continuation study, so we
choose

√
V 2
r + ε instead. The constant α gives the correct maximum µs only for ε = 0, and small values of

ε engender slightly exaggerated values for the maximum. The difference between the definitions of µ in Eq.
(1) and (A.2) is O(

√
ε) by development. Thus, ε = 10−4 engenders an error of roughly 10−2 on the function

µ, and this is the chosen value for ε in this paper.

AppendixB. Constants table

Signification Symbol Numerical value
Damping ζ1 1.3096× 10−3

Natural pulsation ω1 1.2316× 103 rad.s−1

Normal force FN 5 N (if λ = Vb)
Belt speed Vb 0.2 m.s−1 (if λ = FN )
Modal mass M1 6.42× 10−3 kg
Static friction coefficient µs 0.4
Dynamic friction coefficient µd 0.2
Modulus smoothing parameter ε 10−4

Constant between Q and y A0 8.3452× 103 m−1
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