Matthieu Zimmer

Yann Boniface

Alain Dutech

Boniface Yann

Neural Fitted Actor-Critic

teaching and research institutions in France or abroad, or from public or private research centers.

Introduction

Reinforcement learning (RL) [START_REF] Sutton | Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning)[END_REF] is a framework for solving sequential decision problems where an agent interacts with its environment and adapts its policy based on a scalar reward signal. RL agents can autonomously learn difficult tasks, like navigating a maze or playing a video game [START_REF] Mnih | Human-level control through deep reinforcement learning[END_REF]. While the basic setting of RL is now well established, a number of researchers have been studying variants where environments with continuous spaces lead to more and more practical problems.

Thus, the purpose of this article is to present an RL algorithm respecting two main requirements : 1) dealing with continuous state and action spaces in order to address more realistic problems, 2) the knowledge added by the designer to the agent should be minimal, to allow the agent to acquire progressively its own representations in a developmental robotics perspective [START_REF] Asada | Cognitive Developmental Robotics : A Survey[END_REF].

Firstly, the common RL background of classical algorithms and their limitations are described. Secondly, the main algorithm of this paper is exposed with an experimental comparison on multiple environments.

Background

Reinforcement learning

RL is a framework that models sequential decision problems, in which an agent learns to take better decisions while interacting with its environment. Once an agent performs an action, the state changes and the agent receives a scalar value, which can be null, called reward, that encodes information about the quality of the actual transition. The goal of the agent is to maximize its long-term expected total reward. The underlying formalism of RL is that of Markov Decision Processes (MDP). An MDP is formally defined as a tuple S, A, T, R where S is a set of states, A a set of actions, T : S × A × S → [0, 1] are transition probabilities between states (T (s, a, s) = p(s |a, s) is the probability of reaching state s from state s after executing action a) and R : S × A → R is a reward signal. A policy π : S × A → [0, 1] encodes how the agent will behave (the probability to take an action in a given state). An optimal policy π * maximizes the expected discounted reward, that is :

π * = arg max π J(π) = arg max π E ∞ t=0 γ t × R(s t , π t (s t)) (1)
where t denotes a time step and 0 < γ < 1 is a discount factor. In the RL setting, one tries to learn an optimal policy when the model, T and R, is unknown. Such a setting is considered in this paper.

Dealing with continuous state space

When the space S is continuous, classical value-function based RL methods like Least-Squares Temporal Difference (LSTD) [START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF] rely on an estimation of Q : S × A → R, the (sequential) values of actions in each state, or V : S → R the value of each state.

Q π (s, a) = E π ∞ k=0 γ k r t+k+1 s t = s, a t = a (2)
This estimation is usually a linear combination of provided basis functions, that must be carefully defined by an expert. Their nature and number limits the expressivity of the learned function. It also impedes the agent's capacity to develop its own representations. In order to minimize the knowledge brought by experts (requirement 2), the use of non-linear functions (like neural networks) will be explored as they have a greater expressiveness range and avoid the a priori definition of basis functions.

Dealing with continuous action space

Critic only : Critic-only methods derive a policy directly from the value function :

π(s) = M (Q, s, A) = arg max a∈A Q(s, a) (3)
where the function M can be the arg max operator, Boltzmann soft max, etc. Several algorithms [START_REF] Sutton | Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning)[END_REF] have been designed with different update rules : Q-Learning, Sarsa, LSTD, etc. Among these, Fitted Q Iteration (FQI) [START_REF] Riedmiller | Neural fitted Q iteration -First experiences with a data efficient neural Reinforcement Learning method[END_REF] is particularly interesting as it uses non-linear neural networks, is data efficient and takes advantage of the Rprop [START_REF] Igel | Improving the Rprop learning algorithm[END_REF][START_REF] Riedmiller | RPROP -A Fast Adaptive Learning Algorithm[END_REF] backpropagation algorithm.

The main issue with critic-only methods is that they are very difficult to apply to continuous action spaces. The argmax operator cannot be used and optimizing the Q function, a linear combination of non-linear basis functions, is a complex task.

Actor-only : On the other side, it is possible to define a parametric policy π θ without value function [START_REF] Sutton | Policy Gradient Methods for Reinforcement Learning with Function Approximation[END_REF]. The goal is to find the best parameters θ according to the cost function J(π θ) from (1) by exploring the finite-dimensional parameter space Θ. Evolutionary algorithms like Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF] or gradient descent are common optimization tools. The major drawbacks of actor-only methods are the high variability of the cost J and, for gradient-based methods, the plateau effect and local minima that can lead to poor policies [START_REF] Grondman | A survey of actor-critic reinforcement learning: Standard and natural policy gradients[END_REF][START_REF] Konda | Actor-Critic Algorithms[END_REF].

Actor Critic : Actor-critic algorithms [START_REF] Konda | Actor-Critic Algorithms[END_REF] try to combine the advantage of both previous methods. The critic learns the value function to reduce the variability of the approximation of J and the actor learns the policy allowing the use of continuous actions. Continuous Actor Critic Learning Automaton (CACLA) is a successful actor-critic algorithm [START_REF] Van Hasselt | Reinforcement learning in continuous action spaces[END_REF] that uses neural networks for both the critic and the actor. However, it is an online algorithm, as such is not data efficient as every experienced interaction is only used once.

Neural Fitted Actor-Critic

Neural Fitted Actor-Critic (NFAC) is a novel actor-critic algorithm whose roots lie in both CACLA and Q-Fitted Iteration. It is an offline actor-critic algorithm that can re-use data and deal with continuous actions. It proceeds in two steps summarized in Figure 1 : 1) given the current policy π, it samples and collects interaction data into D π , 2) improves the critic approximation and actor policy with D π .

Interaction data collection D π is made of several tuple of (s t , u t , a t , r t+1 , s t+1). For a state s t , the actor provides the current best action u t , which is slightly altered in an exploration action a t (sometimes equals to u t), which leads to a new state s t+1 and reward r t+1 .

Neural network estimation

The actor and the critic are implemented using multi-layer neural networks. Their update phases which are detailed below make use of Rprop back-propagation algorithm [START_REF] Igel | Improving the Rprop learning algorithm[END_REF][START_REF] Riedmiller | RPROP -A Fast Adaptive Learning Algorithm[END_REF] which avoids the definition of learning rates.

Critic update

The critic's update relies on several supervised learning iterations as done in FQI. At each iteration k, a learning base {(s t , v k,t)} of (S × R) |Dπ| is built from D π using the current approximation of V k . Each state s t of D π is associated a target v k,t which is either r t+1 + γV k (s t+1) or r t+1 when s t+1 is a goal state or absorbing state. Thus V k+1 is computed as follows :

V k+1 = argmin V ∈Fc st∈Dπ V (s t) -v k,t 2 (4)
F c is the search space of the critic : a subset of learnable functions (for instance a multi-layer perceptrons). The learning base must be rebuilt at each iteration since the targets {v k,t } to learn V k+1 are dependent on V k . Unlike FQI which is off-policy, and because of the actor-critic setting, V is here an on-policy evaluation of the current actor. This implies that D π must be rebuilt after each modification of the actor.

Actor update

The actor update modifies the policy in order to reinforce exploratory actions a t that do better than the current policy actions u t . The actor update relies on the temporal difference error δ t = r t+1 + γV k (s t+1) -V (s t). Since δ t depends on the approximation of V , the actor update is accomplished before the critic update. Like CACLA algorithm, the update is performed towards the exploratory action a t only when δ t > 0. However, the process is not online but done according to D π . A unique database S × A is enough : there is no incremental process as was required with the critic because there isn't a selfdependency in the update formula :

π * = argmin π∈Fa (st,ut,at)∈Dπ π(s t) -a t 2 , if δ t > 0 π(s t) -u t 2 , otherwise (5)
Notice that an exploitation case, where a t is equals to u t , could also result in a policy update. Whereas CACLA is online, and can only reinforce an exploration action, here the offline setting of NFAC allows modifying more deeply the policy by trying to reproduce this exploratory action.

1) interactions

2) a. actor update

2) b. critic update Environment u Agent s, r a ∼ π D π δ V 0 {s t , a t } {s t , u t } > 0 ≤ 0 π Rprop {s t , v k,t } V k V k+1 Rprop repeat Fig. 1: Flow diagram of NFAC algorithm.

Experimental Setup

NFAC and CACLA are compared in two continuous environments : Acrobot [START_REF] Spong | Swing up control problem for the acrobot[END_REF] and Cartpole [START_REF] Riedmiller | Evaluation of policy gradient methods and variants on the cart-pole benchmark[END_REF]. Acrobot (double swing-up) is an under actuated arm of two-link. The first joint cannot exert a torque where the second can. It always begins in the same position (straight down). The reward function is defined as 1) +1 if the goal is reached, 2) normalized max height of end effector if 500 steps are reached, 3) 0 otherwise.

Cartpole or inverted pendulum is also made of two joints. The first joint is a pivot point between the cart and the pole, where torques cannot be applied. The other joint controls the horizontal movement of the cart. The reward function is defined as 1) -1 when the pole touches the ground 2) +1 otherwise.

Simulations have been done with the Open Dynamics Engine (ODE) [START_REF] Smith | Open dynamics engine[END_REF] with the following parameters (soft erp : 0.05, soft cfm : 0. As seen in the Figure 2, NFAC has better performance than CACLA. In acrobot, 75% of NFAC agents reach their goal after only 151 episodes where CACLA agents need 544 episodes. The median shows that the quality of the policies found by NFAC are better. After 1000 episodes, 75 % of NFAC agents can reach the goal after only 313 steps versus 453 steps for CACLA.

In cartpole, 25% of NFAC agents can preserve the goal during 500 steps after 623 episodes versus 1419 episodes for CACLA. The median of NFAC is better than CACLA during the first episodes then converge after 2200 episodes.

Statistics have been made over 150 different runs after meta-parameters optimization for each algorithms (the number of hidden units for the policy is the same : 5). -greedy policies are used with acrobot, and Gaussian policies with cartpole. In some environments CACLA has shown better than CMA-ES and Natural Actor-Critic [START_REF] Van Hasselt | Reinforcement Learning in Continuous State and Action Spaces[END_REF].

Conclusions and further work

NFAC is an actor-critic algorithm that considers continuous spaces, using non-linear estimators for both the actor and the critic. It is inspired by CACLA and FQI. Unlike FQI, NFAC can be used in environment with continuous actions. Additionally, conducted experiments showed that NFAC performs better than CACLA with fewer meta-parameters. To further improve NFAC, data collected in previous episodes should be re-used, for instance by using an importance sampling algorithm where the difficulty lies in identifying pertinent data. This algorithm is also a first step towards deep reinforcement learning with continuous action spaces, since it would be able to use neural networks. Additionally, it could be used in a developmental robotic perspective since it requires very little predefined knowledge.

Fig. 2 :

 2 Fig.2: Median and quartile of the best registered performance in Acrobot (lower better) and Cartpole (higher better) environment during RL learning.

* The data has been numerically analyzed with the free software package GNU Octave[START_REF] Smith | Open dynamics engine[END_REF]. Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).