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The Borsuk-Ulam property for homotopy classes of

selfmaps of surfaces of Euler characteristic zero

DACIBERG LIMA GONÇALVES ∗ JOHN GUASCHI †

VINICIUS CASTELUBER LAASS ‡

29th July 2016

Abstract

LetM andN be topological spaces such thatM admits a free involution τ . A homotopy class
β ∈ [M,N ] is said to have the Borsuk-Ulam property with respect to τ if for every representative
map f : M → N of β, there exists a point x ∈ M such that f(τ(x)) = f(x). In the case where
M is a compact, connected manifold without boundary and N is a compact, connected surface
without boundary different from the 2-sphere and the real projective plane, we formulate this
property in terms of the pure and full 2-string braid groups of N , and of the fundamental
groups of M and the orbit space of M with respect to the action of τ . If M = N is either
the 2-torus T

2 or the Klein bottle K
2, we then solve the problem of deciding which homotopy

classes of [M,M ] have the Borsuk-Ulam property. First, if τ : T2 → T
2 is a free involution that

preserves orientation, we show that no homotopy class of [T2,T2] has the Borsuk-Ulam property
with respect to τ . Secondly, we prove that up to a certain equivalence relation, there is only
one class of free involutions τ : T2 → T

2 that reverse orientation, and for such involutions, we
classify the homotopy classes in [T2,T2] that have the Borsuk-Ulam property with respect to
τ in terms of the induced homomorphism on the fundamental group. Finally, we show that
if τ : K2 → K

2 is a free involution, then a homotopy class of [K2,K2] has the Borsuk-Ulam
property with respect to τ if and only if the given homotopy class lifts to the torus.

1 Introduction

In the early twentieth century, St. Ulam conjectured that if f : Sn → R
n is a continuous map, there

exists x ∈ S
n such that f(A(x)) = f(x), where A : Sn → S

n is the antipodal map. The confirmation
of this result by K. Borsuk in 1933 [4], known as the Borsuk-Ulam theorem, was the beginning of
what we now refer to as Borsuk-Ulam type theorems or the Borsuk-Ulam property. More information
about the history and some applications of the Borsuk-Ulam theorem may be found in [13], for
example.

One possible generalisation of the classical Borsuk-Ulam theorem is to substitute S
n and R

n

by other spaces and to replace the antipodal map by a free involution. A natural question is the
following: does every continuous map collapse an orbit of the involution? More precisely, given
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1 INTRODUCTION 2

topological spaces M and N such thatM admits a free involution τ , we say that the triple (M, τ ;N)
has the Borsuk-Ulam property if for every continuous map f : M → N , there exists a point x ∈ M
such that f(τ(x)) = f(x). Note that in the whole of this paper, we suppose without further comment
that our topological spaces are connected.

In [7], ifM is a compact surface without boundary, D. Gonçalves presented a complete description
of the triples (M, τ ;R2) that have the Borsuk-Ulam property. In [8], ifM and N are compact surfaces
without boundary, D. Gonçalves and J. Guaschi described the triples (M, τ ;N) that have the Borsuk-
Ulam property. If the triple (M, τ ;R2) does not have the Borsuk-Ulam property, by definition, there
exists a continuous map f :M → R

2 such that f(τ(x)) 6= f(x) for all x ∈M . The fact that there is
a single homotopy class of maps from M to R

2 implies that if g :M → R
2 is a continuous map such

that g(τ(x)) = g(x) for some x ∈ M , then g is homotopic to f . In other words, g is homotopic to a
continuous map that does not collapse the orbits of the involution τ .

The situation is different if the triple (M, τ ;N) does not have the Borsuk-Ulam property and the
set [M,N ] has cardinality greater than one. Once more, there exists a map f : M → N such that
f(τ(x)) 6= f(x) for all x ∈ M . But if g : M → N is a continuous map such that g(τ(x)) = g(x) for
some x ∈ M , we do not know whether g is homotopic to a map that is injective on each orbit of
the involution, unless g is homotopic to f . From these observations, we have a natural refinement of
the Borsuk-Ulam property, in the following way: we say that a homotopy class β ∈ [M,N ] satisfies
the Borsuk-Ulam property with respect to τ if for every map f : M → N , where f ∈ β, there
exists x ∈ M such that f(τ(x)) = f(x). In conjunction with [8], these observations give rise to
the following Borsuk-Ulam problem: given compact surfaces M and N without boundary and a free
involution τ : M → M , classify the elements of the set of homotopy classes [M,N ] that have the
Borsuk-Ulam property. Before Proposition 9, we recall the definition of an equivalence relation on
free involutions. This relation is suitable for the study of this problem.

In this paper, we solve this problem for the cases where M and N coincide and are compact
surfaces without boundary of Euler characteristic zero, namely the 2-torus T

2 or the Klein bottle
K

2. We have three main results. First, suppose that M = T
2.

Theorem 1. Let τ : T2 → T
2 be a free involution that preserves orientation. If β ∈ [T2,T2] is a

homotopy class then β does not have the Borsuk-Ulam property with respect to τ .

Let us consider free involutions of the torus that reverse orientation. We will show that there
is only one equivalence class of such involutions. Let τ2 : T

2 → T
2 be the orientation-reversing

involution that admits the lifting to the plane given by τ̂2(x, y) = (x + 1
2
, 1 − y) for all (x, y) ∈ R

2

(see Section 5).

Theorem 2. Let β ∈ [T2,T2] be a homotopy class and let

(
β1,1 β1,2
β2,1 β2,2

)
be the integral matrix of the

homomorphism induced by β on the fundamental group. Then β has the Borsuk-Ulam property with
respect to τ2 if and only if (β1,1, β2,1) 6= (0, 0), and β1,2 and β2,2 are both even.

If τ ′2 is a free involution that reverses orientation it follows from Proposition 25 that τ2 and τ ′2
are equivalent. In conjunction with Proposition 9 and Theorem 2 this enables us to classify the
homotopy classes β that satisfy the Borsuk-Ulam property with respect to any such free involution
τ ′2.

Now suppose that the surface under consideration is the Klein bottle K
2.

Theorem 3. Let τ : K2 → K
2 be a free involution. A homotopy class β ∈ [K2,K2] has the Borsuk-

Ulam property with respect to τ if and only if β lifts to the torus.

This papers contains five sections besides the introduction. In Section 2, we first provide an
algebraic description of the sets [M,N ] and [M,m1;N, n1] (the set of pointed homotopy classes) in
the case where M and N are manifolds without boundary such that N is a K(π, 1) (see Theorem 4).
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In Lemma 5, we determine an algebraic criterion to decide whether a given homotopy class contains a
representative that is an equivariant map. If N is a compact surface without boundary different from
S
2 and RP

2, in Propositions 6 and 7 we give an algebraic condition to decide whether a homotopy
class of maps between M and N has the Borsuk-Ulam property, and in Proposition 10 we show that
the set of equivalence classes of free involutions of a compact surface without boundary different
from S

2 and RP
2 is in one-to-one correspondence with the equivalence classes of certain short exact

sequences. In Section 3 (resp. Section 4), we study the 2-string braid groups of M , where M = T
2

(resp. M = K
2). In Theorem 11 (resp. Theorem 16), we give a presentation of P2(M), from which

we deduce in Theorem 14 (resp. Theorem 23) that P2(M) is isomorphic to F (x, y)⊕ Z ⊕ Z (cf. [2,
Lemma 17]), where F (x, y) is the free group on the set {x, y} (resp. to a semi-direct product of the
form F (u, v)⋊θ (Z⋊Z)). In Theorem 14 (resp. Theorem 24), we describe the action by conjugation
of the element σ ∈ B2(M)\P2(M) on P2(M). In Section 5, in Theorem 25, we show that up to the
above-mentioned equivalence relation, there are precisely two classes of free involutions of the torus
that correspond to the orientation-preserving and orientation-reversing involutions respectively, and
we develop some results and arguments necessary to prove Theorem 1 and 2. Finally, in Section 6,
we show in Theorem 33 that up to the above-mentioned equivalence relation, there is just one class
of free involutions of the Klein bottle, and we prove Theorem 3.

2 Preliminaries and Generalities

Let (M,m1) and (N, n1) be pointed manifolds, and suppose that πi(N, n1) is trivial for all i ≥ 2.
Let [M,N ] (resp. [M,m1;N, n1]) denote the set of free (resp. pointed) homotopy class of maps
from M to N (resp. from (M,m1) to (N, n1)), and let Hom(π1(M,m1), π1(N, n1)) denote the set
of homomorphisms between the fundamental groups of M and N . If f, g : (M,m1) → (N, n1) are
homotopic pointed maps, denoted by f ≃ g (rel. m1), then the induced homomorphisms f#, g# :
π1(M,m1) → π1(N, n1) on the level of fundamental groups are equal. Given a pointed homotopy class
α ∈ [M,m1;N, n1], we may thus associate a homomorphism α# ∈ Hom(π1(M,m1), π1(N, n1)) by
choosing a representative map f : (M,m1) → (N, n1) of α, and by taking the induced homomorphism.
This gives rise to the following well-defined map:

ΓM,N : [M,m1;N, n1] −→ Hom(π1(M,m1), π1(N, n1))
α = [f ] 7−→ α# := f#.

(1)

It is well known that the map ΓM,N is a bijection [17, Chapter V, Theorem 4.3]. If f, g : (M,m1) →
(N, n1) are pointed maps such that f ≃ g (rel. m1), then omitting the base points, the maps
f, g : M → N are homotopic. Given a pointed homotopy class α ∈ [M,m1;N, n1], we may thus
associate a free homotopy class αF ∈ [M,N ] by choosing a representative map f : (M,m1) → (N, n1)
of α, and by taking the free homotopy class αF that represents the map f :M → N , from which we
obtain the following well-defined map:

ΛM,N : [M,m1;N, n1] −→ [M,N ]
α = [f ] 7−→ αF := [f ],

(2)

that is surjective by [16, Lemma 6.4].
Two homomorphisms h1, h2 ∈ Hom(π1(M,m1), π1(N, n1)) are said to be equivalent, written

h1 ∼ h2, if there exists ω ∈ π1(N, n1) such that h1(υ) = ωh2(υ)ω
−1 for all υ ∈ π1(M,m1). It is

straightforward to see that ∼ is an equivalence relation. The associated canonical projection shall
be denoted as follows:

ΥM,N : Hom(π1(M,m1), π1(N, n1)) −→
Hom(π1(M,m1), π1(N, n1))

∼
. (3)
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By [17, Chapter V, Corollary 4.4], there exists a bijective map:

∆M,N : [M,N ] −→
Hom(π1(M,m1), π1(Y, n1))

∼

such that ∆M,N ◦ ΛM,N = ΥM,N ◦ ΓM,N . Given an element β ∈ [M,N ], we denote the equivalence
class ∆M,N(β) by β#. We sum up these observations in the following theorem, that we shall often
use in this paper.

Theorem 4. If (M,m1) and (N, n1) are pointed manifolds such that πi(N, n1) is trivial for all i ≥ 2,
then the following diagram is commutative:

[M,m1;N, n1]
ΓM,N //

ΛM,N

��

Hom(π1(M,m1), π1(N, n1))

ΥM,N

��

[M,N ]
∆M,N //

Hom(π1(M,m1), π1(N, n1))

∼
,

(4)

where the horizontal arrows are bijections, and the vertical arrows are surjective.

Let M be a manifold, and let τ :M →M be a free involution. Let Mτ denote the corresponding
orbit space, which is also a manifold, and let pτ : M → Mτ denote the associated double covering.
This gives rise to the following short exact sequence:

1 // π1(M,m1)
(pτ )# // π1(Mτ , pτ (m1))

θτ // Z2
// 1, (5)

that we call the short exact sequence induced by τ , and that we denote by Sτ , where we identify
π1(Mτ , pτ (m1))

(pτ )#(π1(M,m1))
with Z2 = {0, 1}, and θτ is the natural projection onto the quotient.

We now prove an algebraic criterion to decide whether a pointed homotopy class has an equivariant
representative map, which will help in simplifying the proofs of Propositions 6 and 10.

Lemma 5. Let (M,m1) and (N, n1) be pointed manifolds (resp. compact surfaces without boundary)
such that πi(N, n1) is trivial for all i ≥ 2, let τ :M → M and τ1 : N → N be free involutions. Given
a pointed homotopy class α ∈ [M,m1;N, n1], the following conditions are equivalent:

1. there exists a representative map (resp. homeomorphism) f : (M,m1) → (N, n1) of α that is
(τ, τ1)-equivariant, i.e. f(τ(x)) = τ1(f(x)) for all x ∈M .

2. there exists a homomorphism (resp. isomorphism) ψ : π1(Mτ , pτ (m1)) → π1(Nτ1 , pτ1(n1)) such
that the following diagram is commutative:

π1(M,m1)
α# //

(pτ )#
��

π1(N, n1)

(pτ1 )#
��

π1(Mτ , pτ (m1))
ψ

//

θτ &&N
NN

NN
NN

NN
NN

N
π1(Nτ1 , pτ1(n1))

θτ1wwppp
pp
pp
pp
pp
p

Z2.

(6)

Proof. (1 ⇒ 2) Suppose first that f : (M,m1) → (N, n1) is a representative map of α that is (τ, τ1)-
equivariant. Then f{x, τ(x)} = {f(x), τ1(f(x))} for all x ∈M , and hence the map f induces a map of
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the corresponding orbit spaces, in other words, there exists a map f : (Mτ , pτ(m1)) → (Nτ1 , pτ1(n1))
such that the following diagram is commutative:

(M,m1)
f

//

pτ

��

(N, n1)

pτ1
��

(Mτ , pτ (m1))
f

// (Nτ1 , pτ1(n1)).

(7)

Diagram (7) implies that (pτ1)# ◦ α# = ψ ◦ (pτ )#, and also implies that θτ1 ◦ ψ = θτ using standard
covering space arguments and the fact that the map f is equivariant. We thus obtain the commutative
diagram (6). Further, if f is a homeomorphism, then f is too, and so the induced homomorphism
ψ = f# : π1(Mτ , pτ (m1)) → π1(Nτ1 , pτ1(n1)) is an isomorphism.
(2 ⇒ 1) Suppose that there exists a homomorphism ψ : π1(Mτ , pτ (m1)) → π1(Nτ1 , pτ1(n1)) for which
diagram (6) is commutative. Since pτ1 : N → Nτ1 is a covering map, the triviality of πi(N, n1)
implies that of πi(Nτ1 , pτ1(n1)) for all i ≥ 2. It follows from Theorem 4 that there exists a map
f : (Mτ , pτ (m1)) → (Nτ1 , pτ1(n1)) such that f# = ψ, and so by (6), there exists a map f : (M,m1) →

(N, n1) that is a lift of the map f ◦ pτ for the covering pτ1 , so that we have the commutative
diagram (7). Using the short exact sequences induced by τ and τ1 in the sense of (5), one sees that
α# = f# and so by Theorem 4, f is a representative map of α. We claim that f is (τ, τ1)-equivariant.
To do so, note that for all x ∈M , we have:

(pτ1 ◦ f ◦ τ)(x) = (f ◦ pτ ◦ τ)(x) = (f ◦ pτ )(x) = (pτ1 ◦ f)(x).

Hence either f(τ(x)) = f(x), or f(τ(x)) = τ1(f(x)). Let ξ : [0, 1] →M be an arc from m1 to τ(m1).
Then the loop γ = pτ ◦ ξ satisfies θτ ([γ]) = 1. By (6) we have:

θτ1(
[
f ◦ γ

]
) = θτ1 ◦ f#([γ]) = θτ ([γ]) = 1,

and since f ◦ ξ is a lift of the loop f ◦ γ by the covering pτ1 , it is an arc that is not a loop. Therefore
f(m1) = (f ◦ ξ)(0) 6= (f ◦ ξ)(1) = f(τ(m1)), and so f(τ(m1)) = τ1(f(m1)). Using standard covering
space arguments and the hypothesis that N is connected, it follows in a straightforward manner that
the equality f(τ(x)) = τ1(f(x)) holds for all x ∈ M . This proves the claim. Finally, if M and N
are compact surfaces without boundary and ψ is an isomorphism, it follows from the classification
theorem for surfaces and [18, Theorem 5.6.2] that ψ is induced by a homeomorphism. So without
loss of generality, we may take f to be a homeomorphism, and thus f is also a homeomorphism.

Let N be a compact surface without boundary with base point n1 ∈ N . Recall that F2(N) =
{(y1, y2) ∈ N × N | y1 6= y2} is the 2nd configuration space of N , and if τ1 : F2(N) → F2(N)
is the involution defined by τ1(x1, x2) = (x2, x1), then D2(N) is the associated orbit space. Let
n2 ∈ N − {n1}, and let n = (n1, n2) ∈ F2(N). By [6, Corollary 2.2], if N is different from S

2 and
RP

2, F2(N) and D2(N) are manifolds for which πi(F2(N), n) and πi(D2(N), pτ1(n)) are trivial for
all i ≥ 2. The groups P2(N) = π1(F2(N), n) and B2(N) = π1(D2(N), pτ1(n1)) are the pure and full
2-string braid groups of N respectively, related by the following short exact sequence:

1 // P2(N) ι // B2(N) π // Z2
// 1, (8)

where ι = (pτ1)# and π = θτ1 .
The following result generalises [8, Proposition 13] and gives an algebraic criterion in terms of

braid groups to decide whether a pointed homotopy class has the Borsuk-Ulam property.

Proposition 6. Let (M,m1) be a pointed manifold, let τ : M → M be a free involution, and let
(N, n1) be a compact surface without boundary different from S

2 and RP
2. For a pointed homotopy

class α ∈ [M,m1;N, n1], the following conditions are equivalent:
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1. α does not have the Borsuk-Ulam property with respect to τ .

2. there exist homomorphisms ϕ : π1(M,m1) → P2(N) and ψ : π1(Mτ , pτ (m1)) → B2(N) for
which the following diagram is commutative:

π1(M,m1)
ϕ

//

(pτ )#
��

α#

))

P2(N)

ι

��

(p1)# // π1(N, n1)

π1(Mτ , pτ (m1))
ψ

//

θτ
&&NN

NN
NN

NN
NN

NN
B2(N)

π
{{ww
w
w
w
w
w
w

Z2,

(9)

where p1 : F2(N) → N is projection onto the first coordinate.

Proof. (1 ⇒ 2) If α does not have the Borsuk-Ulam property, there exists a map f : (M,m1) →
(N, n1) such that α = [f ] and f(τ(x)) 6= f(x) for all x ∈ M . Hence the map F : M → F2(N)
given by F (x) = (f(x), f(τ(x))) is well defined, (τ, τ1)-equivariant and satisfies p1 ◦ F = f . Let
ϕ : π1(M,m1) → P2(N) be the homomorphism induced by F . So, we have (p1)# ◦ ϕ = (p1)# ◦
F# = (p1 ◦ F )# = f# = α#. By Theorem 4 and Lemma 5, there exists a homomorphism ψ :
π1(Mτ , pτ(m1)) → B2(N) such that ψ ◦ (pτ )# = ι ◦ ϕ and π ◦ ψ = θτ . This completes the first part
of the proof.
(2 ⇒ 1) Suppose that diagram (9) is commutative. Recall that F2(N) is a manifold which is a
K(π, 1). So, Theorem 4 and Lemma 5 imply that the homomorphism ϕ is induced by a (τ, τ1)-
equivariant map F : M → F2(N). Let f, g : M → N be maps such that F (x) = (f(x), g(x)) for all
x ∈ M . Since F is equivariant, we have f(τ(x)) = g(x) 6= f(x) for all x ∈ M . Again, by (9) and
Theorem 4 we have α = [f ], and thus α does not have the Borsuk-Ulam property.

The following result shows that to solve the Borsuk-Ulam problem for free homotopy classes, it
suffices to solve it for pointed homotopy classes.

Proposition 7. Suppose that the hypotheses of Proposition 6 hold.

1. Let α, α′ ∈ [M,m1;N, n1] and suppose that the homomorphisms α#, α
′
# : π1(M,m1) → π1(N, n1)

are equivalent. Then α does not have the Borsuk-Ulam property with respect to τ if and only if
α′ does not have the Borsuk-Ulam property with respect to τ .

2. Let β ∈ [M,N ]. Then there exists α ∈ [M,m1;N, n1] such that β = αF . Further, β does not
have the Borsuk-Ulam property with respect to τ if and only if α does not have the Borsuk-Ulam
property with respect to τ .

Proof. To prove part 1, first note that by the symmetry of the statement with respect to α and
α′, it suffices to prove one of the implications of the conclusion. So suppose that α does not have
the Borsuk-Ulam property with respect to τ . By Proposition 6, there exist homomorphisms ϕ :
π1(M,m1) → P2(N) and ψ : π1(Mτ , pτ (m1)) → B2(N) such that diagram (9) is commutative.
Since the homomorphism (p1)# : P2(N) → π1(N, n1) is surjective by [3, Theorem 1.4], and the
homomorphisms α# and α′

# are equivalent via an element of π1(N, n1), γ say, there exists b ∈ P2(N)
such that (p1)#(b) = γ. If ϕ′ : π1(M,m1) → P2(N) (resp. ψ′ : π1(Mτ , pτ (m1)) → B2(N)) is the
homomorphism given by ϕ′(v) = bϕ(v)b−1 for all v ∈ π1(M,m1) (resp. ψ′(w) = ι(b)ψ(w)ι(b)−1 for
all w ∈ π1(Mτ , pτ (m1))) where ι is as in (8), then diagram (9) remains commutative if we replace
α#, ϕ and ψ by α′

#, ϕ
′ and ψ′. It follows from Proposition 6 that α′ does not have the Borsuk-Ulam

property with respect to τ .
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To prove part 2, if β ∈ [M,N ], by Theorem 4 there exists α ∈ [M,m1;N, n1] such that β = αF .
Suppose that β does not have the Borsuk-Ulam property with respect to τ . So there exists a map
f :M → N such that β = [f ] and f(τ(x)) 6= f(x) for all x ∈M . By [16, Lemma 6.4], there exists a
homeomorphism H : N → N that is homotopic to the identity such that H(f(m1)) = n1. Thus the
pointed homotopy class α′ = [H ◦ f ] ∈ [M,m1;N, n1] does not have the Borsuk-Ulam property with
respect to τ . By equations (1) and (2) and Theorem 4 it follows that:

ΥM,N(α#) = (ΥM,N ◦ ΓM,N)(α) = (∆M,N ◦ ΛM,N)(α) = ∆M,N(αF)

= ∆M,N (β) = ∆M,N([f ]) = ∆M,N([H ◦ f ]) = ∆M,N((α
′)F)

= (∆M,N ◦ ΛM,N)(α
′) = (ΥM,N ◦ ΓM,N)(α

′) = ΥM,N(α
′

#).

Hence the homomorphisms α# and α′
# are equivalent by (3). We conclude from part 1 that α does

not have the Borsuk-Ulam property with respect to τ . The converse is obvious.

Remark 8. Taken together, Theorem 4 and Propositions 6 and 7 provide an algebraic criterion to
solve the Borsuk-Ulam problem for free homotopy classes.

To end this section, we discuss briefly which involutions of compact surfaces we should consider
in order to solve the Borsuk-Ulam problem for homotopy classes. As in [9, Corollary 2.3] if τ1, τ2 :
M → M are free involutions, we say that τ1 and τ2 are equivalent, written τ1 ∼ τ2, if there exists a
(τ1, τ2)-equivariant homeomorphism H :M → M .

Proposition 9. Let M and N be topological spaces, and let τ1, τ2 : M → M be equivalent free
involutions. Let H :M →M be a (τ1, τ2)-equivariant homeomorphism. Then the map H : [M,N ] →
[M,N ] defined by H([f ]) = [f ◦H−1] is a bijection. Further, a homotopy class β ∈ [M,N ] does not
have the Borsuk-Ulam property with respect to τ1 if and only if H(β) does not have the Borsuk-Ulam
property with respect to τ2.

Proof. Let τ1, τ2 :M →M be free involutions, and suppose that H :M →M is a (τ1, τ2)-equivariant
homeomorphism and that β ∈ [M,N ]. If β does not have the Borsuk-Ulam property with respect
to τ1, there exists a map f1 : M → N such that [f1] = β and f1(τ1(x)) 6= f1(x) for all x ∈ M . So
the map f2 = f1 ◦H

−1 : M → N satisfies [f2] = H(β) and f2(τ2(x)) 6= f2(x) for all x ∈ M , in other
words H(β) does not have the Borsuk-Ulam property with respect to τ2. The converse follows in a
similar manner.

Now let:

I = {τ :M → M | τ is a free involution, M is a compact surface without boundary, M 6= S
2,RP2},

and let I = I/∼ be the corresponding quotient set. We give an algebraic interpretation of this

definition. Let E denote the set of all short exact sequences of the form 1 → A
i
→ B

j
→ Z2 → 1,

where A and B are fundamental groups of compact surfaces without boundary different from S
2 and

RP
2. If k ∈ {1, 2}, and Sk is an element of E of the form 1 → Ak

ik→ Bk
jk→ Z2 → 1, we say that S1

and S2 are equivalent, written S1 ≈ S2, if there exist isomorphisms ϕ : A1 → A2 and ψ : B1 → B2

such that the following diagram is commutative:

1 // A1
i1 //

ϕ

��

B1
j1 //

ψ

��

Z2
//

Id
��

1

1 // A2
i2 // B2

j2 // Z2
// 1,

where Id denotes the identity. It is easy to see that ≈ is a equivalence relation on E. Let E = E/≈
be the corresponding quotient set. Then we have the following proposition.
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Proposition 10. The map I −→ E given by (5) that to a free involution τ associates the short exact
sequence Sτ gives rise to a bijection Σ : I → E .

Proof. By Lemma 5, Σ is well defined and injective. It remains to show that Σ is surjective. Let

S ∈ E be a short exact sequence of the form 1 → A
i
→ B

j
→ Z2 → 1, let M and N be compact

surfaces without boundary such that A = π1(M) and B = π1(N), and let N̂ be the double covering of
N determined by the subgroup A ⊂ B. Since M and N̂ have isomorphic fundamental groups, there
exists a homeomorphism h : M → N̂ that realises a given isomorphism between the fundamental
groups ofM and N̂ . Then the composition of h with the double covering N̂ → N is a double covering
of N that determines a free involution τ on M , and Σ[τ ] = [S] as required.

3 The braid groups of the torus

The aim of this section is to prove Theorem 14 that provides an explicit isomorphism between P2(T
2)

and F (x, y)⊕ Z⊕ Z and describes the action of σ on P2(T
2).

If G is a group and a, b ∈ G, let [a, b] = aba−1b−1 denote their commutator. The following
presentation of P2(T

2) may be found in [5, Section 4].

Theorem 11. The following is a presentation of P2(T
2):

generators: ρ1,1, ρ1,2, ρ2,1, ρ2,2, B.
relations:

(i) [ρ1,1, ρ
−1
1,2] = [ρ2,1, ρ

−1
2,2] = B.

(ii) ρ2,kρ1,kρ
−1
2,k = Bρ1,kB

−1 and ρ−1
2,kρ1,kρ2,k = ρ1,k[B

−1, ρ1,k] for all k ∈ {1, 2}.

(iii) ρ2,1ρ1,2ρ
−1
2,1 = Bρ1,2[ρ

−1
1,1, B] and ρ−1

2,1ρ1,2ρ2,1 = B−1[B, ρ1,1]ρ1,2[B
−1, ρ1,1].

(iv) ρ2,2ρ1,1ρ
−1
2,2 = ρ1,1B

−1 and ρ−1
2,2ρ1,1ρ2,2 = ρ1,1B[B−1, ρ1,2].

Note that B may be removed from the list of generators using relation (i). In order to obtain a
presentation of P2(T

2) that is more suitable for our purposes, we shall use the following lemma.

Lemma 12. With respect to the presentation of P2(T
2) given in Theorem 11, the following relations

hold:

(v) ρ2,kBρ
−1
2,k = Bρ−1

1,kBρ1,kB
−1 for all k ∈ {1, 2}.

(vi) ρ1,kB
−1ρ2,kρi,jρ

−1
2,kBρ

−1
1,k = ρi,j for all i, j, k ∈ {1, 2}.

Observe that relation (vi) implies that for k ∈ {1, 2}, ρ1,kB
−1ρ2,k belongs to the centre of P2(T

2).

Proof of Lemma 12. We have:

ρ2,1Bρ
−1
2,1

(i)
= [ρ2,1ρ1,1ρ

−1
2,1, ρ2,1ρ

−1
1,2ρ

−1
2,1]

(ii),(iii)
= ρ1,1ρ

−1
1,2ρ

−1
1,1ρ1,2ρ

−1
1,1Bρ1,1B

−1 (i)
= Bρ−1

1,1Bρ1,1B
−1, and

ρ2,2Bρ
−1
2,2

(i)
= [ρ2,2ρ1,1ρ

−1
2,2, ρ2,2ρ

−1
1,2ρ

−1
2,2]

(ii),(iv)
= ρ1,1ρ

−1
1,2ρ

−1
1,1Bρ1,2B

−1 (i)
= Bρ−1

1,2Bρ1,2B
−1,

which proves (v). To prove (vi), first let i = 1. If j = k, the relation follows directly from (ii). If
j 6= k, we have:

ρ1,2B
−1ρ2,2ρ1,1ρ

−1
2,2Bρ

−1
1,2

(iv)
= ρ1,2B

−1ρ1,1ρ
−1
1,2

(i)
= ρ1,1 and

ρ1,1B
−1ρ2,1ρ1,2ρ

−1
2,1Bρ

−1
1,1

(iii)
= ρ1,1ρ1,2ρ

−1
1,1B

(i)
= ρ1,2.



3 THE BRAID GROUPS OF THE TORUS 9

Suppose that i = 2. If j = k then:

ρ1,kB
−1ρ2,kρ2,kρ

−1
2,kBρ

−1
1,k = ρ1,kB

−1ρ2,kBρ
−1
1,kρ

−1
2,kρ2,k

(ii),(v)
= ρ2,k.

Now suppose that j = 1 and k = 2. By (iii) and (v), we have ρ2,1Bρ
−1
1,2ρ

−1
2,1 = Bρ−1

1,2B
−1, and thus

ρ1,2B
−1ρ2,2ρ2,1ρ

−1
2,2Bρ

−1
1,2 = ρ1,2B

−1ρ2,2ρ2,1ρ
−1
2,2ρ

−1
2,1Bρ

−1
1,2B

−1ρ2,1
(i)
= ρ1,2B

−1ρ2,2Bρ
−1
2,2Bρ

−1
1,2B

−1ρ2,1
(v)
= ρ2,1.

Finally, for j = 2 and k = 1, we have:

ρ1,1B
−1ρ2,1ρ2,2ρ

−1
2,1Bρ

−1
1,1

(i)
=ρ1,1B

−1ρ2,2ρ
−1
1,1

(iv)
= ρ2,2.

By [6, Theorem 1], the projection p1 : F2(T
2) → T

2 onto the first coordinate is a locally-trivial
fibre space whose fibre may be identified with T

2 − {∗}. This gives rise to the following short exact
sequence:

1 // π1(T
2 − {∗}) // P2(T

2)
(p1)# // π1(T

2) // 1. (10)

Remark 13. By [5, Figure 4.1], π1(T
2 − {∗}) is a free group generated by ρ2,1 and ρ2,2, which we

denote by F (ρ2,1, ρ2,2). The elements (p1)#(ρ1,1) and (p1)#(ρ1,2) generate the free Abelian group
π1(T

2) that we shall identify with Z⊕ Z under the correspondence of (p1)#(ρ1,1) (resp. (p1)#(ρ1,2))
with (1, 0) (resp. (0, 1)).

By Lemma 12(vi), the map ϕ : π1(T
2) → P2(T

2) defined on the generators of π1(T
2) by ϕ(1, 0) =

ρ1,1B
−1ρ2,1 and ϕ(0, 1) = ρ1,2B

−1ρ2,2 is a homomorphism that may be seen to be a section for (p1)#
using Remark 13. By the short exact sequence (10), we conclude that:

P2(T
2) ∼= F (ρ2,1, ρ2,2)⊕ Z[ρ1,1B

−1ρ2,1]⊕ Z[ρ1,2B
−1ρ2,2]. (11)

In particular, the centre of P2(T
2) is generated by ρ1,1B

−1ρ2,1 and ρ1,2B
−1ρ2,2. Let σ be the standard

generator of B2(T
2) that swaps the two base points, so B = σ2. By [8, Section 5], the automorphism

lσ : P2(T
2) → P2(T

2) given by conjugation by σ satisfies lσ(ρ1,k) = ρ2,k and lσ(ρ2,k) = Bρ1,kB
−1

for all k ∈ {1, 2}. Using the decomposition given in (11), for all k ∈ {1, 2}, we have lσ(ρ2,k) =
Bρ−1

2,k(ρ1,kB
−1ρ2,k) and lσ(ρ1,kB

−1ρ2,k) = ρ1,kB
−1ρ2,k. By (11) and the fact that B2(T

2) is generated
by {σ, ρ1,1, ρ1,2, ρ2,1, ρ2,2}, this implies that the centre of B2(T

2) is generated by ρ1,1B
−1ρ2,1 and

ρ1,2B
−1ρ2,2. Writing x = ρ2,1 and y = ρ2,2 and identifying Z[ρ1,1B

−1ρ2,1]⊕Z[ρ1,2B
−1ρ2,2] with Z⊕Z,

we may summarise the main algebraic properties of P2(T
2) as follows.

Theorem 14. Up to isomorphism, P2(T
2) may be written in the form F (x, y)⊕Z⊕Z, and relative

to this identification:

(a) the homomorphism (p1)# : P2(T
2) → π1(T

2) is projection onto the group Z⊕ Z, in other words,
(p1)#(w,m, n) = (m,n) for all x ∈ F (x, y) and m,n ∈ Z.

(b) the element σ belongs to B2(T
2)\P2(T

2) and satisfies σ2 = (B, 0, 0), where B = [x, y−1].

(c) the images of the generators of P2(T
2) under the homomorphism lσ : P2(T

2) → P2(T
2) given by

conjugating by σ are as follows:

lσ(x, 0, 0) = (Bx−1, 1, 0), lσ(y, 0, 0) = (By−1, 0, 1), lσ(1, 1, 0) = (1, 1, 0) and lσ(1, 0, 1) = (1, 0, 1),
where 1 denotes the trivial element of F (x, y).

The following equation will be used for various computations and arguments in Section 5. Let
| · |x, | · |y : F (x, y) → Z be the exponent sum homomorphisms that are defined on the generat-
ors of F (x, y) by |x|x = |y|y = 1 and |x|y = |y|x = 0. By Theorem 14, we have lσ(x, 0, 0) =
((x−1y)x−1(x−1y)−1, 1, 0) and lσ(y, 0, 0) = ((x−1y)y−1(x−1y)−1, 0, 1). From these, if w = w(x, y) ∈
F (x, y), we obtain the following equality:

lσ(w(x, y), 0, 0) =
(
xy−1w(x−1, y−1)yx−1, |w|x, |w|y

)
. (12)
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4 The braid groups of the Klein bottle

In this section, we give a presentation of P2(K
2) in Theorem 16, and we give an explicit description

of the semi-direct product structure of this group in Theorem 23. We then determine the action by
conjugation of σ on the elements of P2(K

2) in Theorem 24 that will be used in later sections.
If G is a group and a, b ∈ G, we define their anti-commutator by [a, b]′ = abab−1. By [1, Theorem

A.3], B2(K
2) has the following presentation.

Theorem 15. The following is a presentation of B2(K
2):

generators: a1, a2, σ.
relations:

(R2) σ−1arσ
−1ar = arσ

−1arσ, for all r ∈ {1, 2}.

(R3) σ−1a1σa2 = a2σ
−1a1σ.

(TR) a21a
2
2 = σ2.

In order to exhibit a presentation of P2(K
2), we apply the Reidemeister-Schreier rewriting process

that is described in detail in [12, Chapter 2, Theorem 2.8] and briefly in [14, Appendix I, Theorem
6.3]. We use the notation of [14].

Theorem 16. The following is a presentation of P2(K
2):

generators: a1, a2, b1, b2, B.
relations:

(i) brar = BarB
−1brB, for all r ∈ {1, 2}.

(ii) [ar, br] = arBa
−1
r , for all r ∈ {1, 2}.

(iii) b1Ba2B
−1 = Ba2B

−1b1.

(iv) [a1, b2] = 1.

(v) a21a
2
2 = b21b

2
2 = B.

The inclusion ι : P2(K
2) → B2(K

2) is defined on the generators of P2(K
2) by ι(ar) = ar, ι(br) =

σarσ
−1, r ∈ {1, 2}, and ι(B) = σ2.

Proof. First note that {1, σ} is a Schreier system of P2(K
2). Let us compute the generators of P2(K

2).
For r ∈ {1, 2}, we have:

̺(1, ar ) = 1ar1ar −1
= ar.

̺(1, σ) = 1σ1σ −1
= 1. ̺(σ, ar) = σarσar

−1 = σarσ
−1 = br.

̺(σ, σ) = σσσσ−1 = σ2 = B.

To determine the relations, we apply the Reidemeister-Schreier rewriting process. We leave the
straightforward calculations to the reader.

Recall that the projection p1 : F2(K
2) → K

2 onto the first coordinate is a locally-trivial fibre space
whose fibre may be identified with K

2−{∗} [6, Theorem 1], from which we obtain the following short
exact sequence:

1 // π1(K
2 − {∗}) // P2(K

2)
(p1)# // π1(K

2) // 1. (13)

Using [1, Figure 10] and the presentation of P2(K
2) given by Theorem 16, we conclude that π1(K

2 −
{∗}) is the free group generated by {b1, b2}, which we denote by F (b1, b2). For k ∈ {1, 2}, let ãk =
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(p1)#(ak). By Theorem 16 and the short exact sequence (13), we have π1(K
2) = 〈ã1, ã2 | ã21ã

2
2 = 1〉 .

Let u1 = ã1ã2 and v1 = ã−1
2 . Then ã1 = u1v1 and ã2 = v−1

1 . This choice of elements yields
another classical presentation of the fundamental group of the Klein bottle of the form π1(K

2) =
〈u1, v1 | [u1, v1]

′ = 1〉 = Z[u1]⋊ Z[v1].

Remark 17. As a set, the group Z⋊Z is the Cartesian product of Z with itself. The group operation
is given by (r1, s1)(r2, s2) = (r1 + (−1)s1r2, s1 + s2), the identity element is (0, 0), the inverse of an
element (r, s) is ((−1)s+1r,−s), and there is a canonical isomorphism between Z[u1] ⋊ Z[v1] and
Z ⋊ Z. In the rest of this paper, we identify π1(K

2) with Z ⋊ Z in this way.

Since K
2 admits a non-vanishing vector field, the projection p1 admits a geometric section [6],

and this implies that the short exact sequence (13) splits. In the following proposition, we give an
explicit algebraic section.

Proposition 18. The correspondences ϕ(1, 0) = b1a1b2a2 and ϕ(0, 1) = a−1
2 b−1

2 define a homomorph-
ism ϕ : π1(K

2) → P2(K
2) that is a section for the homomorphism (p1)# : P2(K

2) → π1(K
2).

Proof. We have that:

[ϕ(1, 0), ϕ(0, 1)]′ = b1a1b1a1b2a2b2a2 = [b1, a1]a1b
2
1a1b2a2[b2, a2]a2b2

(ii)
= a1B

−1b21a1b2a
2
2B

−1b2
(v)
= a1b

−2
2 a1b2a

−2
1 b2

(iv)
= 1.

where we make use of the relations given in Theorem 16. So by Remark 17, ϕ is a well-defined
homomorphism. Using the relations ã1 = u1v1 and ã2 = v−1

1 , it follows that ϕ is a section for
(p1)#.

Remark 19. Given a split short exact sequence 1 // A // G
π // B //

ϕ

gg 1, recall that there

exists a homomorphism θ : B → Aut(A), defined by θ(b)(a) = ϕ(b)aϕ(b)−1, and isomorphisms

A⋊θ B
λ // G
γ

oo , defined by λ(a, b) = aϕ(b) and γ(g) = (gϕ(π(g))−1, π(g)).

Proposition 18 and Remark 19 imply that P2(K
2) ∼= F (b1, b2)⋊θ (Z⋊Z). In the following result,

we describe the action by conjugation of ar on the elements bk and B for all r, k ∈ {1, 2}.

Lemma 20. In P2(K
2), the following relations hold:

(1) a1b1a
−1
1 = b−1

1 b−2
2 .

(2) a1b2a
−1
1 = b2.

(3) a1Ba
−1
1 = b−1

1 B−1b1.

(4) a2b1a
−1
2 = b−1

2 B−1b−1
2 b1b2Bb2.

(5) a2b2a
−1
2 = b−1

2 B−1b22.

(6) a2Ba
−1
2 = b−1

2 B−1b2.

Proof. First, we have:

(a1b1a1)
2 (v)
= a1Bb

−2
2 a−1

1

(iv)
= a1Ba

−1
1 b−2

2

(ii)
= (a1b1a

−1
1 )b−1

1 b−2
2 .

This equality implies relation (1). Relation (2) follows directly from (iv). Further:

a1Ba
−1
1

(v)
= a1b

2
1b

2
2a

−1
1

(iv)
= (a1b1a

−1
1 )2b22

(1)
= b−1

1 b−2
2 b−1

1

(v)
= b−1

1 B−1b1,

which proves relation (3). It remains to prove relations (4), (5) and (6). We have:

b1Ba2B
−1a−1

2

(iii)
= Ba2B

−1b1a
−1
2 = B(a2B

−1a−1
2 )(a2b1a

−1
2 ), which implies that

a2b1a
−1
2 = a2Ba

−1
2 B−1a2B

−1a−1
2 , (14)
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and

a2b2a
−1
2 = [a2, b2]b2

(ii)
= a2Ba

−1
2 b2. (15)

Using (14) and (15), we obtain:

a2Ba
−1
2

(v)
= (a2b1a2)

2(a2b2a2)
2 = a2Ba

−1
2 B−1b21Bb2a2Ba

−1
2 b2

(v)
= (a2Ba

−1
2 )b−2

2 Bb2(a2Ba
−1
2 )b2,

which implies relation (6). Using relation (6), relations (4) and (5) then follow from (14) and (15)
respectively.

To simplify various computations, it will be convenient to carry out the change of basis given by
u = b1b2, v = b−1

2 , so b1 = uv and b2 = v−1. Note that in the new basis, B = [u, v]′. In order to
determine the automorphism θ(m,n) : F (u, v) → F (u, v) for each (m,n) ∈ Z ⋊ Z, we require the
following two lemmas.

Lemma 21. For all m ∈ Z, we have:

θ(m, 0) :





u 7−→ BmuB−m

v 7−→ Bmvu−2mB−m

B 7−→ B.

Proof. The result is clear if m = 0. If m = 1 then Proposition 18 and Lemma 20 imply that:

θ(1, 0)(u) = ϕ(1, 0)b1b2ϕ(1, 0)
−1 = b1a1b2a2b1b2a

−1
2 b−1

2 a−1
1 b−1

1 = b1a1B
−1b−1

2 b1a
−1
1 b−1

1

= Bb1b
−1
2 b−1

1 b−2
2 b−1

1 = Buvu−1v−1u−1 = BuB−1,

θ(1, 0)(v) = ϕ(1, 0)b−1
2 ϕ(1, 0)−1 = b1a1b2a2b

−1
2 a−1

2 b−1
2 a−1

1 b−1
1 = b1a1b

−1
2 Ba−1

1 b−1
1

= b1b
−1
2 b−1

1 B−1 = uvu−1B−1 = Bvu−2B−1, and

θ(1, 0)(B) = ϕ(1, 0)Bϕ(1, 0)−1 = b1a1b2a2Ba
−1
2 b−1

2 a−1
1 b−1

1 = b1a1B
−1a−1

1 b−1
1 = B.

Suppose that the result holds for all integers belonging to {1, . . . , m}, and let us show by induction
that it holds for m+ 1. We have:

θ(m+ 1, 0)(u) = θ(m, 0)(θ(1, 0)(u)) = θ(m, 0)(BuB−1) = Bm+1uB−(m+1),

θ(m+ 1, 0)(v) = θ(m, 0)(θ(1, 0)(v)) = θ(m, 0)(Bvu−2B−1) = Bm+1vu−2(m+1)B−(m+1), and

θ(m+ 1, 0)(B) = θ(m, 0)(θ(1, 0)(B)) = θ(m, 0)(B) = B,

as required, and so the result holds for all m ≥ 0. Now suppose that m < 0. Then −m > 0, and so:

B = θ(0, 0)(B) = θ(m, 0)(θ(−m, 0)(B)) = θ(m, 0)(B).

We also have:

u = θ(m, 0)(θ(−m, 0)(u)) = θ(m, 0)(B−muBm) = B−mθ(m, 0)(u)Bm,

thus θ(m, 0) = BmuB−m, and:

v = θ(m, 0)(θ(−m, 0)(v)) = θ(m, 0)(B−mvu2mBm) = B−mθ(m, 0)(v)Bmu2m,

hence θ(m, 0)(v) = Bmvu−2mB−m as required.

Lemma 22. For all n ∈ Z, we have:
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θ(0, n) :





u 7−→ B−δnu(−1)nBδn

v 7−→ vBδn

B 7−→ B(−1)n

where
δn =

{
0 if n is even

1 if n is odd.

Proof. By relation (v) of Theorem 16, we have ϕ(0, 1) = B−1a21a2b
−1
2 . Using this equality, the idea

of the proof is similar to that of Lemma 21, and we leave the calculations to the reader.

We are now able to describe the homomorphism θ.

Theorem 23. The homomorphism θ : Z ⋊ Z → Aut(F (u, v)) is defined by:

θ(m,n) :





u 7−→ Bm−δnu(−1)nB−m+δn

v 7−→ Bmvu−2mB−m+δn

B 7−→ B(−1)n ,

where B = [u, v]′ and δn =

{
0 if n is even

1 if n is odd.

With the notation of Remark 19, the isomorphisms F (u, v)⋊θ (Z ⋊ Z)
λ //P2(K

2)
γ

oo are given by:

λ :





(u; 0, 0) 7−→ b1b2

(v; 0, 0) 7−→ b−1
2

(B; 0, 0) 7−→ B

(1; 1, 0) 7−→ b1a1b2a2

(1; 0, 1) 7−→ b2a2

γ :





a1 7−→ (v−1u−1; 1, 1)

a2 7−→ (v; 0,−1)

b1 7−→ (uv; 0, 0)

b2 7−→ (v−1; 0, 0)

B 7−→ (B; 0, 0).

Up these isomorphisms and the identification given by Remark 17, the homomorphism (p1)# :
P2(K

2) → π1(K
2) is the projection onto the second coordinate, in other words, (p1)#(w;m,n) =

(m,n).

Proof. For all (m,n) ∈ Z ⋊ Z, we have θ(m,n) = θ(m, 0) ◦ θ(0, n). The first part of the statement
follows by combining Lemmas 21 and 22. Let us prove the second part. First, λ(u; 0, 0) = u = b1b2,
λ(v; 0, 0) = v = b−1

2 , λ(B; 0, 0) = B, λ(1; 1, 0) = 1ϕ(1, 0) = b1a1b2a2 and λ(1; 0, 1) = 1ϕ(0, 1) =
a−1
2 b−1

2 . On the other hand:

γ(a1) = (a1ϕ(ã1)
−1; ã1) = (a1 (ϕ(1, 0)ϕ(0, 1))

−1 ; 1, 1) = (b−1
1 ; 1, 1) = (v−1u−1; 1, 1),

γ(a2) = (a2ϕ(ã2)
−1; ã2) = (a2ϕ(0, 1); 0,−1) = (b−1

2 ; 0,−1) = (v; 0,−1),

γ(b1) = (uv; 0, 0) and γ(b2) = (v−1; 0, 0). From the isomorphism λ and Remark 17, we see that
(p1)#(u; 0, 0) = (p1)#(v; 0, 0) = (0, 0), (p1)#(1; 1, 0) = (1, 0) and (p1)#(1; 0, 1) = (0, 1) as required.

Let cσ : P2(K
2) → P2(K

2) be the automorphism of P2(T ) given by conjugation by σ. By
Theorem 16, we have cσ(B) = B, cσ(ai) = bi and cσ(bj) = BajB

−1 for all i, j ∈ {1, 2}. Let
lσ : F (u, v)⋊θ (Z ⋊ Z) → F (u, v)⋊θ (Z ⋊ Z) be defined by the composition lσ = γ ◦ cσ ◦ λ. To end
this section, we give an explicit description of lσ on a set of generators.

Theorem 24. For all r, s,m, n ∈ Z, we have:

(1) lσ(u
r; 0, 0) = ((Bu−1)−rB−r; r, 0).

(2) lσ(v
s; 0, 0) = ((uv)−s(uB)δs; 0, s).

(3) lσ(B; 0, 0) = (B; 0, 0).

(4) lσ(1;m, 0) = (1;m, 0).
(5) lσ(1; 0, n) = (Bδn ; 0, n).
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Proof. Equation (3) follows easily from Theorem 23. Let us prove equation (1). For r = 0, the result
is clear. If r = 1, we have:

lσ(u; 0, 0) = (γ ◦ cσ)(b1b2) = γ(Ba1a2B
−1) = (B; 0, 0)(v−1u−1; 1, 1)(v; 0,−1)(B−1, 0, 0)

= (Bv−1u−1θ(1, 1)(v)θ(1, 0)(B)−1; 1, 0) = (Bv−1u−1Bvu−2B−1; 1, 0) = (Bu−1B−1; 1, 0).

Now suppose that the result holds for all integers belonging to {1, . . . , r}, and let us show by induction
that it is true for r + 1. We have:

lσ(u
r+1; 0, 0) = lσ(u; 0, 0)lσ(u

r; 0, 0) = (Bu−1B−1; 1, 0)((Bu−1)rB−r; r, 0)

= (Bu−1B−1
(
θ(1, 0)(B)θ(1, 0)(u)−1

)r
θ(1, 0)(B)−r; r + 1, 0)

= (Bu−1B−1
(
B(BuB−1)−1

)r
B−r; r + 1, 0) = ((Bu−1)r+1B−(r+1); r, 0).

and hence equation (1) holds for all r ≥ 0. Now assume that r < 0. Then −r > 0, and since
lσ(u; 0, 0) = lσ(u

−r; 0, 0)−1, it follows that:

lσ(u
r; 0, 0) = lσ(u

−r; 0, 0)−1 = ((Bu−1)−rBr;−r, 0)−1 = ((θ(r, 0)((Bu−1)−rBr))−1; r, 0)

= (((θ(r, 0)(B)θ(r, 0)(u)−1)−rθ(r, 0)(B)r)−1; r, 0)

= (((B(BruB−r)−1)−rBr)−1; r, 0) = ((Bu−1)rB−r; r, 0).

This proves equation (1). Let us show that equation (2) holds. If s = 0, the result is immediate. For
s = 1, 2, we have:

lσ(v; 0, 0) = (γ ◦ cσ)(b
−1
2 ) = γ(Ba−1

2 B−1) = (B; 0, 0)(v; 0,−1)−1(B; 0, 0)−1

= (B; 0, 0)(θ(0, 1)(v)−1; 0, 1)(B−1; 0, 0) = (B(vB)−1θ(0, 1)(B)−1; 0, 1)

= (v−1B; 0, 1) = ((uv)−1(uB)δ1; 0, 1), and (16)

lσ(v
2; 0, 0) = lσ(v; 0, 0)lσ(v; 0, 0) = (v−1B; 0, 1)(v−1B; 0, 1) = (v−1Bθ(0, 1)(v)−1θ(0, 1)(B); 0, 2)

= ((v−1B(vB)−1B−1; 0, 2) = (v−2B−1; 0, 2) = ((uv)−2(uB)δ2; 0, 2), (17)

and so equation (2) holds in these two cases. Now suppose that s is even. Then s = 2k for some
k ∈ Z. We wish to show that lσ(v

2k; 0, 0) = ((uv)−2k; 0, 2k). If k = 1, the result holds by (17).
Suppose that k ≥ 1 and that the result is true for all integers belonging to {1, . . . , k}. Then:

lσ(v
2(k+1); 0, 0) = lσ(v

2k; 0, 0)lσ(v
2; 0, 0) = ((uv)−2k; 0, 2k)((uv)−2; 0, 2)

= ((uv)−2k(θ(0, 2k)(u)θ(0, 2k)(v))−2; 0, 2k + 2)

= ((uv)−2k(uv)−2; 0, 2(k + 1)) = ((uv)−2(k+1); 0, 2(k + 1)).

and so by induction, equation (2) holds for all k ≥ 1. Now suppose that k < 0. Then −k > 0, and
since lσ(v

2k, 0, 0) = lσ(v
−2k; 0, 0)−1, we see that:

lσ(v
2k; 0, 0) = lσ(v

−2k; 0, 0)−1 = ((uv)2k; 0,−2k)−1 = ((θ(0, 2k)((uv)2k))−1; 0, 2k)

= (((θ(0, 2k)(u)θ(0, 2k)(v))2k)−1; 0, 2k) = ((uv)−2k; 0, 2k),

and hence equation (2) holds for all s even. Now assume that s is odd, and let k ∈ Z be such that
s = 2k + 1. Using (16) and the result for s even, we obtain:

lσ(v
2k+1; 0, 0) = lσ(v

2k; 0, 0)lσ(v; 0, 0) = ((uv)−2k; 0, 2k)(v−1B; 0, 1)

= ((uv)−2kθ(0, 2k)(v)−1θ(0, 2k)(B); 0, 2k + 1)

= ((uv)−2kv−1B; 0, s) = ((uv)−s(uB)δs , 0, s).
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This completes the proof of equation (2). To obtain equation (4), it suffices to prove the result for
m = 1. We have:

lσ(1; 1, 0) = (γ ◦ cσ)(b1a1b2a2) = γ(Ba1B
−1b1Ba2B

−1b2)

= (B; 0, 0)(v−1u−1; 1, 1)(B; 0, 0)−1(uv; 0, 0)(B; 0, 0)(v; 0,−1)(B; 0, 0)−1(v−1; 0, 0)

= (Bv−1u−1θ(1, 1)(B)−1θ(1, 1)(u)θ(1, 1)(v)θ(1, 1)(B)θ(1, 1)(v)θ(1, 0)(B)−1θ(1, 0)(v)−1; 1, 0)

= (Bv−1u−1Bu−1Bvu−2B−1Bvu−2B−1(Bvu−2B−1)−1; 1, 0) = (1; 1, 0),
as required. Finally, to prove equation (5), if n ∈ Z, let k ∈ Z be such that n = 2k + δn. Then:

lσ(1; 0, n) = lσ(1; 0, 1)n = (B; 0, 1)n = (B; 0, 1)2k(B; 0, 1)δn

= ((B; 0, 1)(B; 0, 1))k(Bδn ; 0, δn) = (Bθ(0, 1)(B); 0, 2)k(Bδn , 0, δn)

= (1; 0, 2k)(Bδn ; 0, δn) = (θ(0, 2n)(B)δn; 0, 2k + δn) = (Bδn ; 0, n),

and thus equation (5) holds.

5 Proof of Theorems 1 and 2

The purpose of this section is to prove Theorems 1 and 2. We identify π1(T
2) with Z⊕Z and π1(K

2)
with Z ⋊ Z as in Sections 3 and 4 respectively. Consider the following short exact sequences:

1 // π1(T
2)

i1 // π1(T
2)

θ1 // Z2
// 1, where: (18)

i1 :

{
(1, 0) 7−→ (2, 0)

(0, 1) 7−→ (0, 1)
θ1 :

{
(1, 0) 7−→ 1

(0, 1) 7−→ 0

and

1 // π1(T
2)

i2 // π1(K
2)

θ2 // Z2
// 1, where: (19)

i2 :

{
(1, 0) 7−→ (1, 0)

(0, 1) 7−→ (0, 2)
θ2 :

{
(1, 0) 7−→ 0

(0, 1) 7−→ 1.

By covering space theory, there exist double coverings c1 : T2 → T
2 and c2 : T2 → K

2 such that
the induced homomorphisms on the fundamental group are i1 and i2 respectively. If k ∈ {1, 2} and
τk : T

2 → T
2 is the non-identity deck transformation associated with ck, then τk is a free involution,

and the short exact sequence induced by τk is (18) if k = 1 and is (19) if k = 2. Further, τk lifts
to a homeomorphism τ̂k : R2 → R

2, where τ̂1(x, y) = (x + 1
2
, y) and τ̂2(x, y) = (x + 1

2
, 1 − y) for all

(x, y) ∈ R
2. As we shall now see, up to the equivalence relation defined just after Proposition 9,

these are the only free involutions of the torus.

Proposition 25. The free involutions τ1 and τ2 are not equivalent. Further, let τ : T2 → T
2 be a

free involution. If τ preserves (resp. reverses) orientation, then τ is equivalent to τ1 (resp. to τ2).

Proof. The short exact sequences (18) and (19) are not equivalent (in the sense described at the
end of Section 2), since the middle groups are not isomorphic, and so τ1 and τ2 are not equivalent
by Proposition 10. Now let τ : T2 → T

2 be a free involution. Recall that T
2
τ is the corresponding

orbit space, and that the natural projection pτ : T
2 → T

2
τ is a double covering. Suppose first that τ

preserves orientation. Then T
2
τ is homeomorphic to the torus, and the short exact sequence induced

by τ is of the following form:

1 // π1(T
2)

(pτ )# // π1(T
2
τ )︸ ︷︷ ︸

∼=Z⊕Z

θτ // Z2
// 1. (20)
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By [8, Proposition 30], there exists an isomorphism ψ : π1(T
2) → π1(T

2
τ ) such that θτ ◦ ψ = θ1.

Comparing diagrams (18) and (20) and using exactness and the 5-Lemma, it follows that ψ induces
an isomorphism ϕ : π1(T

2) → π1(T
2) such that (pτ )# ◦ ϕ = ψ ◦ i1. So the exact sequences (18)

and (20) are equivalent, and we conclude that τ and τ1 are equivalent by Proposition 10. Now
suppose that τ reverses orientation. Then T

2
τ is homeomorphic to the Klein bottle, and the short

exact sequence induced by τ is of the following form:

1 // π1(T
2)

(pτ )# // π1(T
2
τ )︸ ︷︷ ︸

∼=Z⋊Z

θτ // Z2
// 1. (21)

Using the identification described in Remark 17, we have an isomorphism γ : Z ⋊ Z → π1(T
2
τ ).

The elements γ(0, 1) = v1 and γ(1, 1) = u1v1 represent loops in T
2
τ that reverse orientation. Since

pτ : T
2 → T

2
τ is a covering, we have θτ ◦γ(1, 0) = θτ ◦γ(1, 1) = 1, so the element (1, 0) = (1, 1)(0, 1)−1

satisfies θτ◦γ(1, 0) = 0, and thus θτ◦γ = θ2. Let ψ : π1(K
2) → π1(T

2
τ ) be an isomorphism. Comparing

diagrams (19) and (21) and using exactness and the 5-Lemma once more, it follows that ψ induces
an isomorphism ϕ : π1(T

2) → π1(T
2) such that (pτ )# ◦ ϕ = ψ ◦ i2. So the exact sequences (19)

and (21) are equivalent, and we conclude that τ and τ2 are equivalent by Proposition 10.

Theorem 4 gives rise to the following commutative diagram, where the maps are bijections (we
simplify the notation):

[T2, ∗;T2, ∗]

Λ

**
Γ // Hom(Z⊕ Z,Z⊕ Z) [T2,T2].∆oo

(22)

We shall now solve the Borsuk-Ulam problem for homotopy classes with respect to the involution τ1.
We first state and prove the following lemma.

Lemma 26. A free homotopy class β ∈ [T2,T2] does not have the Borsuk-Ulam property with respect
to τ1 if and only if there exist pure braids a, b ∈ P2(T

2) such that:

(i) alσ(b) = ba.

(ii) β#(1, 0) = (p1)#(alσ(a)).

(iii) β#(0, 1) = (p1)#(b).

Proof. Suppose that β does not have the Borsuk-Ulam property with respect to τ1. By (22) and
Proposition 7, there exists a pointed homotopy class α that does not have the Borsuk-Ulam property
and for which αF = Λ(α) = β. Using Proposition 6, there exist homomorphisms ϕ : π1(T

2) → P2(T
2)

and ψ : π1(T
2) → B2(T

2) that make diagram (9) commute. By (18), ψ(1, 0) ∈ B2(T
2)\P2(T

2) and
ψ(0, 1) ∈ P2(T

2). From the short exact sequence (8) and Theorem 14, there exist a, b ∈ P2(T
2) such

that:

(1) ψ(1, 0) = aσ.

(2) ψ(0, 1) = b.

Since π1(T
2) is an Abelian group, we have [ψ(1, 0), ψ(0, 1)] = aσbσa−1a−1b−1 = 1, which is equivalent

to alσ(b) = ba, from which we obtain (i). The commutativity of (9) implies that:

(3) ϕ(1, 0) = ψ((pτ1)#(1, 0)) = ψ(2, 0) = (aσ)2 = alσ(a)σ
2, and

(4) ϕ(0, 1) = ψ((pτ1)#(0, 1)) = ψ(0, 1) = b.
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Finally, using (22), we have:

β#(1, 0) = (p1)#(ϕ(1, 0)) = (p1)#(alσ(a)) + (p1)#(B, 0, 0) = (p1)#(alσ(a)), and

β#(0, 1) = (p1)#(ϕ(0, 1)) = (p1)#(b),

from which we obtain (ii) and (iii). Conversely, suppose that there exist a, b ∈ P2(T
2) such that (i), (ii)

and (iii) are satisfied. We define ψ : π1(T
2) → P2(T

2) (resp. ϕ : π1(T
2) → B2(T

2)) on the generators
of π1(T

2) by the correspondences (1) and (2) (resp. (3) and (4)). Since:

[ϕ(1, 0), ϕ(0, 1)] =
[
alσ(a)σ

2, b
]
= aσaσ−1σ2bσ−2σa−1σ−1a−1b−1

= alσ(alσ(b)a
−1)a−1b−1 (i)

= alσ(baa
−1)a−1b−1 (i)

= baa−1b−1 = 1, and
[ψ(1, 0), ψ(0, 1)] = [aσ, b] = aσbσ−1a−1b−1 = alσ(b)a

−1b−1 (i)
= baa−1b−1 = 1.

these correspondences extend to homomorphisms. As in the first part of the proof, ψ and ϕ make
the diagram (9) commute, so by Theorem 6 and (22), β does not have the Borsuk-Ulam property
with respect to τ1.

For each β ∈ [T2,T2], let β1,1, β2,1, β1,2, β2,2 ∈ Z be such that:

β#(1, 0) = ∆(β)(1, 0) = (β1,1, β2,1) and β#(0, 1) = ∆(β)(0, 1) = (β1,2, β2,2).

Proposition 27. If β ∈ [T2,T2] is a homotopy class then β does not have the Borsuk-Ulam property
with respect to τ1.

Proof. Let r, s ∈ Z and i, j ∈ {0, 1} be such that β1,1 = 2r + i and β2,1 = 2s + j. With the
identification of Theorem 14, let a = (xiyj, r, s) and b = (1, β1,2 , β2,2) of P2(T

2). Let us show that
these elements satisfy (i), (ii) and (iii) of Lemma 26, from which it will follow that β does not have
the Borsuk-Ulam property with respect to τ1. First:

alσ(b) = (xiyj, r, s)(1, β1,2 , β2,2) = (1, β1,2 , β2,2)(xiyj, r, s) = ba,

which yields (i). Using (12), we obtain:

(p1)#(alσ(a)) = (r, s) + (i, j) + (r, s) = (β1,1, β2,1) = β#(1, 0),

which proves (ii). Finally, we have:

(p1)#(b) = (β1,2, β2,2) = β#(0, 1),

whence (iii).

Proof of Theorem 1. The result is a consequence of Propositions 9, 25 and 27.

We now solve the Borsuk-Ulam problem with respect to the involution τ2. This case is more
delicate than the previous one. We first prove some preliminary results.

Lemma 28. A free homotopy class β ∈ [T2,T2] does not have the Borsuk-Ulam property with respect
to τ2 if and only if there exist a, b ∈ P2(T

2) such that:

(i) ablσ(a) = b.

(ii) β#(1, 0) = (p1)#(a).

(iii) β#(0, 1) = (p1)#(blσ(b)).
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Proof. We follow the proof of Lemma 26, replacing the homomorphism ψ (resp. ϕ) by the homo-
morphism ψ : π1(K

2) → B2(T
2) (resp. ϕ : π1(T

2) → P2(T
2)) defined on the generators of π1(K

2)
(resp. of π1(T

2)) by ψ(1, 0) = a and ψ(0, 1) = bσ (resp. ϕ(1, 0) = a and ϕ(0, 1) = blσ(b)σ
2). The

details are left as an exercise.

Proposition 29. Suppose that β ∈ [T2,T2] satisfies one of the following conditions:

1. at least one of β1,2 and β2,2 is odd.

2. (β1,1, β2,1) = (0, 0) and β1,2 and β2,2 are both even.

Then β does not have the Borsuk-Ulam property with respect to τ2.

Proof. Assume that condition 1 of the statement is satisfied. Suppose first that β1,2 and β2,2 are odd.
Let r, s ∈ Z be such that β1,2 = 2r + 1 and β2,2 = 2s + 1. With the identification of Theorem 14,
consider the elements a = (x−2β1,1y−2β2,1, β1,1, β1,2) and b = (y1+2β2,1x−1, r+1, s−β2,1) of P2(T

2). We
will show that a and b satisfy (i), (ii) and (iii) of Lemma 28, from which it will follow that β does
not have the Borsuk-Ulam property with respect to τ2. Using (12) we obtain:

ablσ(a) =(x−2β1,1y−2β2,1, β1,1, β1,2)(y
1+2β2,1x−1, r + 1, s− β2,1)lσ(x

−2β1,1y−2β2,1, β1,1, β1,2)

=(x−2β1,1yx−1, β1,1 + r + 1, s)(xy−1x2β1,1y2β1,2yx−1,−β1,1,−β1,2)

=(y1+2β2,1x−1, r + 1, s− β2,1) = b,

and hence condition (i) is satisfied. Further:

(p1)#(a) = (β1,1, β1,2) and

(p1)#(blσ(b)) = (r + 1, s− β2,1) + (−1, 1 + 2β2,1) + (r + 1, s− β2,1) = (β1,2, β2,2),

from which it follows that conditions (ii) and (iii) are satisfied, and hence β does not have the
Borsuk-Ulam property with respect to τ2. The remaining cases are analogous, and we just provide
the elements a and b of P2(T

2) in each case that satisfy (i), (ii) and (iii) of Lemma 28, the details
being left as an exercise. If β1,2 is odd and β2,2 is even, we take β1,2 = 2r + 1 and β2,2 = 2s, where
r, s ∈ Z, and a = (x−β1,1y−2β2,1−1x−β1,1y, β1,1, β2,1) and b = (x−1, r + 1, s). If β1,2 is even and β2,2 is
odd, we set β1,2 = 2r and β2,2 = 2s + 1, where r, s ∈ Z, and a = (x−2β1,1+1y−β2,1x−1y−β2,1, β1,1, β2,1)
and b = (x−2β1,1+1yx−1, β1,1 + r, s). Finally, if β satisfies condition 2 of the statement, we take
β1,2 = 2r and β2,2 = 2s, where r, s ∈ Z, and a = (1, 0, 0) and b = (1, r, s).

Note that the case where (β1,1, β2,1) 6= (0, 0) and β1,2 and β2,2 are even is not addressed by
Proposition 29. Before analysing this situation, let z = z(x, y) be a reduced word in F (x, y). Then
z is called a palindrome if z(x, y) = z(x−1, y−1)−1. This means that z reads the same backwards as
forwards. If z = wǫ11 · · ·wǫmm , where for all i = 1, . . . , m, wi ∈ {x, y} and ǫi ∈ Z, the length ℓ(z) of z
is defined to be equal to

∑m

i=1|ǫi|. We now prove two technical lemmas.

Lemma 30. If z = z(x, y) ∈ F (x, y) is a palindrome, then |z|x or |z|y is even.

Proof. Let z = z(x, y) be a reduced word in F (x, y). If ℓ(z) = 0 or ℓ(z) = 1 then z is trivial
or z ∈ {x, x−1, y, y−1} respectively, and at least one of |z|x and |z|y is zero. If ℓ(z) = 2 then
z ∈ {x2a, y2a, xayb, ybxa | a, b ∈ {−1, 1}}. Since z is a palindrome, z = x2a or z = y2b and the result
follows. So suppose by induction that the result holds for palindromes of length less than or equal to
r, where r ≥ 2, and let z be a palindrome such that ℓ(z) = r+1. By definition of palindrome, we have
z = kz′k, where k ∈ {x, x−1, y, y−1}, z′ ∈ F (x, y) and kz′k is in reduced form. Then ℓ(z′) = r − 2
and

kz′k = z = z(x−1, y−1)−1 = (k−1z′(x−1, y−1)k−1)−1 = kz′(x−1, y−1)−1k.

Thus z′ is a palindrome, and |z′|x or |z′|y is even by induction. The result follows using the fact that
|z|g ≡ |z′|g mod 2 for all g ∈ {x, y}.
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Lemma 31. Let z, w ∈ F (x, y) be such that w is non trivial, |w|x and |w|y are even and

zwz−1 = w(x−1, y−1)−1. (23)

Then |z|x or |z|y is even.

Proof. The result is immediate if z is trivial. So assume that z is non trivial. Without loss of gener-
ality, we may suppose that z and w are each written in reduced form. Since ℓ(w) = ℓ(w(x−1, y−1)−1),
there must be cancellation on the left-hand side of equation (23). We are interested in the parity of
|z|x and |z|y. The following operations show that, while respecting the hypotheses of the statement
of the lemma, we may modify z and w so as to control better the possible cancellations in (23). In
what follows, let g ∈ {x, y}.

Step 1: We may assume that cancellation occurs at zw or at wz−1, but not at both. For suppose that
cancellation occurs at zw and at wz−1. Then z = z1k and w = k−1w1k in reduced form for some
k ∈ {x, x−1, y, y−1} and some z1, w1 ∈ F (x, y). Now w1 is non trivial and |w1|x and |w1|y are even.
Also, (k−1z1)w1(k

−1z1)
−1 = w1(x

−1, y−1)−1 by (23). This equation is of the same nature as that of
(23), and it is easy to see that |k−1z1|g ≡ |z|g mod 2. If cancellation occurs at (k−1z1)w1 and at
w1(k

−1z1)
−1, we repeat the argument. After a finite number of operations (possibly zero, and at most

ℓ(z) times), we obtain elements z′, w′ ∈ F (x, y) in reduced form for which |z′|g ≡ |z|g mod 2, that
continue to satisfy the hypotheses of the lemma, and such that any cancellation in z′w′z′−1 occurs
either at zw′ or at zw′−1, but not at both.

Step 2: We may assume that cancellation occurs at zw. For if cancellation occurs at wz−1, by setting
w′ = w−1, the elements z, w′ ∈ F (x, y) satisfy the hypotheses of the lemma, and cancellation occurs
at zw′.

Step 3: We may assume that z cannot be written in reduced form z′wε, where ε ∈ {−1, 1}. For if
z = z1w

ε1 in reduced form for some z1 ∈ F (x, y) and some ε1 ∈ {−1, 1}, then z1wz
−1
1 = w(x−1, y−1)−1

by (23). Hence the elements z1, w ∈ F (x, y) satisfy the hypotheses of the lemma, and |z|g =
|z1|g + ε1|w|g ≡ |z1|g mod 2. If z1 may be writen in reduced form z2w

ε2, for some z2 ∈ F (x, y)
and some ε2 ∈ {−1, 1}, we repeat the argument. After a finite number of operations, we obtain an
element z′ ∈ F (x, y) such that z′ and w satisfy the hypotheses of the lemma, z′ cannot be written in
reduced form z̃wε for some z̃ ∈ F (x, y) and some ε ∈ {−1, 1}, and |z|g ≡ |z′|g mod 2.

After applying steps 1, 2 and 3 as many times as necessary, we may suppose without loss of
generality that there exist elements z1, z2, w1, w2 ∈ F (x, y) such that z = z1z2 and w = w1w2 in
reduced form, w1 and w2 are non trivial, w1 = z−1

2 , and there is no cancellation either at z1w2 or at
w2z

−1
2 . By (23), we have:

z1w2w1z
−1
1 = w2(x

−1, y−1)−1w1(x
−1, y−1)−1. (24)

By hypothesis, there is no cancellation in z1w2w1z
−1
1 . But ℓ(w2w1) = ℓ(w1w2), which in turn is equal

to ℓ(w2(x
−1, y−1)−1w1(x

−1, y−1)−1). So by (24), z1 is trivial and wi = wi(x
−1, y−1)−1, for all i ∈ {1, 2}.

Thus z = w−1
1 , and therefore it is a palindrome. The result then follows from Lemma 30.

Proposition 32. Suppose that β ∈ [T2,T2] satisfies (β1,1, β2,1) 6= (0, 0), and β1,2 and β2,2 are even.
Then β has the Borsuk-Ulam property with respect to τ2.

Proof. We argue by contradiction. Suppose that β does not have the Borsuk-Ulam property with
respect to τ2. By Lemma 28, there exist a = (w(x, y), ra, sa) and b = (z(x, y), rb, sb) such that a, b
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and β# satisfy items (i), (ii) and (iii). By (ii), we have (ra, sa) = (β1,1, β2,1). Using (iii), (12) implies
that:

(β1,2, β2,2) = (p1)#(blσ(b)) = (|z|x + 2rb, |z|y + 2sb),

and we see that |z|x and |z|y are even. Further:

ablσ(a) = (w, β1,1, β2,1)(z, rb, sb)(xy
−1w(x−1, y−1)yx−1, |w|x + β1,1, |w|y + β2,1)

= (wzxy−1w(x−1, y−1)yx−1, 2β1,1 + |w|x + rb, 2β2,1 + |w|y + sb).

By condition (i), it follows that |w|x = −2β1,1 and |w|y = −2β2,1, and thus w is non trivial. Further-
more, wzxy−1w(x−1, y−1)yx−1 = z by (i), and so:

(yx−1z−1)w(yx−1z−1)−1 = w(x−1, y−1)−1.

By Lemma 31, we see that |yx−1z−1|x = −1 − |z|x or |yx−1z−1|y = 1 − |z|y is even, or equivalently,
that |z|x or |z|y is odd. But this contradicts the fact that |z|x and |z|y are even. Thus β has the
Borsuk-Ulam property with respect to τ2 as required.

Proof of Theorem 2. The result follows directly from Propositions 29 and 32.

6 Proof of Theorem 3

The purpose of this section is to prove Theorem 3. We identify π1(K
2) with Z ⋊ Z as in Section 4.

Consider the following short exact sequence:

1 // π1(K
2)

i3 // π1(K
2)

θ3 // Z2
// 1 (25)

i3 :

{
(1, 0) 7−→ (2, 0)

(0, 1) 7−→ (0, 1)
θ3 :

{
(1, 0) 7−→ 1

(0, 1) 7−→ 0.

By covering space theory, there exists a double covering c3 : K
2 → K

2 such that the induced homo-
morphism on the fundamental group is i3. Let τ3 : K

2 → K
2 be the non-identity deck transformation

associated with c3. Then τ3 is a free involution, and (25) is the short exact sequence induced by τ3.
Further, τ3 lifts to a homeomorphism τ̂3 : R2 → R

2, where τ̂3(x, y) = (x, y + 1
2
) for all (x, y) ∈ R

2.
As the following result shows, up to the equivalence relation defined just after Proposition 9, this is
the only free involution on the Klein bottle.

Proposition 33. Let τ : K2 → K
2 be a free involution. Then τ is equivalent to τ3.

Proof. Since the natural projection pτ : K2 → K
2
τ is a covering, K2

τ is homeomorphic to the Klein
bottle, and the short exact sequence induced by τ is of the following form:

1 // π1(K
2) = Z ⋊ Z

(pτ )# // π1(K
2
τ )

θτ // Z2
// 1. (26)

By Remark 17 we have an isomorphism γ : Z ⋊ Z → π1(K
2
τ ). The composition θτ ◦ γ is different

from the homomorphism θ2 defined in (19). Indeed, if θτ ◦ γ = θ2, then π1(K
2) ∼= ker θτ ◦ γ =

ker θ2 ∼= π1(T
2), which is absurd. By [8, Proposition 32], there exists an isomorphism ψ : π1(K

2) →
π1(K

2
τ ) such that θ3 = θτ ◦ ψ. Comparing (25) and (26) and using exactness and the 5-Lemma,

it follows that ψ induces an isomorphism ϕ : π1(K
2) → π1(K

2) such that (pτ )# ◦ ϕ = ψ ◦ i3. So
the exact sequences (25) and (26) are equivalent, and we conclude that τ and τ1 are equivalent by
Proposition 10.
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By Theorem 4, the following diagram (we simplify the notation):

[K2, ∗;K2, ∗]
Γ //

Λ

��

Hom(Z ⋊ Z,Z ⋊ Z)

Υ
��

[K2,K2]
∆ //

Hom(Z ⋊ Z,Z ⋊ Z)

∼

(27)

is commutative, where the maps Γ and ∆ are bijections and the maps Λ and Υ are surjective. So,
in order to determine the sets [K2, ∗;K2, ∗] and [K2,K2], we will describe the elements of the sets

Hom(Z ⋊ Z,Z ⋊ Z) and
Hom(Z ⋊ Z,Z ⋊ Z)

∼
.

Remark 34. By [10, Lemma 3.1], for each h ∈ Hom(Z ⋊ Z,Z ⋊ Z), we have the following two
possibilities for the images of the generators of Z ⋊ Z:

• h(1, 0) = (r1, 0) and h(0, 1) = (r2, 2s + 1) for some r1, r2, s ∈ Z. In this case, we say that h is of
type A.

• h(1, 0) = (0, 0) and h(0, 1) = (r, 2s) for some r, s ∈ Z. In this case, we say that h is of type B.

Proposition 35. Let h ∈ Hom(Z ⋊ Z,Z ⋊ Z).

(a) If h is of type A then there exist unique integers i ∈ {0, 1}, r, s ∈ Z, where r ≥ 0, such that h is

conjugate to the homomorphism given by

{
(1, 0) 7−→ (r, 0)

(0, 1) 7−→ (i, 2s+ 1).

(b) If h is of type B then there exist unique integers r, s ∈ Z, where r ≥ 0, such that h is conjugate

to the homomorphism given by

{
(1, 0) 7−→ (0, 0)

(0, 1) 7−→ (r, 2s).

Proof. If h : Z ⋊ Z → Z ⋊ Z is of Type A, then conjugating h by the element (a, b) ∈ Z ⋊ Z, we
obtain a homomorphism h′ : Z ⋊ Z → Z ⋊ Z that depends on r1 and r2 as follows:

• if r1 ≥ 0 (resp. r1 < 0) and r2 is even, let a = − r2
2

and b = 0 (resp. a = r2
2
and b = 1). Then

h′ :

{
(1, 0) 7−→ (|r1|, 0)

(0, 1) 7−→ (0, 2s+ 1).

• if r1 ≥ 0 (resp. r1 < 0) and r2 is odd, let a = −r2+1
2

and b = 0 (resp. a = r2+1
2

and b = 1). Then

h′ :

{
(1, 0) 7−→ (|r1|, 0)

(0, 1) 7−→ (1, 2s+ 1).

If h : Z⋊Z → Z⋊Z is of Type B, then conjugating h by (0, 1), we obtain a homomorphism h′ : Z⋊Z →

Z⋊Z defined by: h′ :

{
(1, 0) 7−→ (0, 0)

(0, 1) 7−→ (−r, 2s).
We conclude that each element h ∈ Hom(Z⋊Z,Z⋊Z)

is conjugate to one of the homomorphisms given in the statement of the proposition. Further, if
h1, h2 : Z⋊Z → Z⋊Z are two such homomorphisms, then we leave it as an exercise to show that if
they are distinct, then they are non conjugate, and the result follows.

Remark 36. By diagram (27) and Proposition 35, there exists a bijection between the set [K2,K2]
and the subset of Hom(Z ⋊ Z,Z ⋊ Z) whose elements are described in parts (a) and (b) of Proposi-
tion 35. By abuse of notation, for each β ∈ [K2,K2], the image of β under the above bijection shall
be denoted by β#.
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We now solve the Borsuk-Ulam problem for homotopy classes with respect to involution τ3. As
in Lemmas 26 and 28, we have the following result:

Lemma 37. A free homotopy class β ∈ [K2,K2] does not have the Borsuk-Ulam property with respect
to τ3 if and only if there exist pure braids a, b ∈ P2(K

2) such that:

(i) lσ(a)lσ(b)σ
2a = b.

(ii) β#(1, 0) = (p1)#(lσ(a)a).

(iii) β#(0, 1) = (p1)#(b).

Proof. First, suppose that β does not have the Borsuk-Ulam property with respect to τ3. By (27) and
Proposition 7, there exists a pointed homotopy class α that does not have the Borsuk-Ulam property
such that αF = Λ(α) = β. By Proposition 6, there exist homomorphisms ϕ : π1(K

2) → P2(K
2)

and ψ : π1(K
2) → B2(K

2) that makes diagram (9) commute. By (25), ψ(1, 0) ∈ B2(K
2)\P2(K

2) and
ψ(0, 1) ∈ P2(K

2). From the short exact sequence (8) and Theorem 15, there exist a, b ∈ P2(T
2) such

that:

(1) ψ(1, 0) = σa.

(2) ψ(0, 1) = b.

By Remark 17, we have 1 = [ψ(1, 0), ψ(0, 1)]′ = σabσab−1, which is equivalent to (σaσ−1)(σbσ−1)σ2a =
b, and which yields (i). The commutativity of (9) gives rise to the following relations:

(3) ϕ(1, 0) = ψ((pτ1)#(1, 0)) = ψ(2, 0) = (σa)2 = lσ(a)σ
2a.

(4) ϕ(0, 1) = ψ((pτ1)#(0, 1)) = ψ(0, 1) = b.

Finally, β#(1, 0) = (p1)#(ϕ(1, 0)) = (p1)#(lσ(a)σ
2a) = (p1)#(lσ(a)a) and β#(0, 1) = (p1)#(ϕ(0, 1)) =

(p1)#(b) by (27), from which we obtain (ii) and (iii). Conversely, suppose that there exist a, b ∈
P2(K

2) such that conditions (i), (ii) and (iii) are satisfied. We define ψ : π1(K
2) → P2(K

2) (resp.
ϕ : π1(K

2) → B2(K
2)) on the generators of π1(K

2) by equations (1) and (2) (resp. (3) and (4)).
These maps extend to homomorphisms because:

[ϕ(1, 0), ϕ(0, 1)]′ = lσ(a)σ
2ablσ(a)σ

2ab−1 = lσ(alσ(a)lσ(b)σ
2a)σ2ab−1 (i)

= lσ(ab)σ
2ab−1

= lσ(a)lσ(b)σ
2ab−1 (i)

= 1 and

[ψ(1, 0), ψ(0, 1)]′ = σabσab−1 = lσ(a)lσ(b)σ
2ab−1 (i)

= 1.
By a calculation similar to that given in the first part of the proof, we see that diagram (9) is
commutative. So by Proposition 6 and (27), β does not have the Borsuk-Ulam property with respect
to τ3.

Proposition 38. With the notation of Proposition 35 and Remark 36, let β ∈ [K2,K2] be such that
the homomorphism β# : Z⋊Z → Z⋊Z is of Type A. Then β does not have the Borsuk-Ulam property
with respect to τ3.

Proof. First, suppose that r is even. Let m ∈ Z be such that r = 2m. With the notation of
Theorem 23, consider the elements a = (1;m, 0) and b = (B; i, 2s + 1) of P2(K

2). Let us show that
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these elements satisfy the hypotheses (i), (ii) and (iii) of Lemma 37, from which it will follow that β
does not have the Borsuk-Ulam property with respect to τ3. Using Theorem 24, we have:

lσ(a)lσ(b)σ
2a = lσ(1;m, 0)lσ (B; i, 2s+ 1)(B; 0, 0)(1;m, 0)

= (1;m, 0)lσ (B; 0, 0)lσ(1; i, 0)lσ (1; 0, 2s + 1)(B;m, 0)

= (1;m, 0)(B; 0, 0)(1; i, 0)(B; 0, 2s + 1)(B;m, 0)

= (θ(m, 0)(B);m+ i, 0)(Bθ(0, 2s+ 1)(B);−m, 2s+ 1)

= (B;m+ i, 0)(1;−m, 2s + 1) = (B; i, 2s+ 1) = b,

and hence condition (i) is satisfied. Further,

(p1)#(lσ(a)a) = (p1)#(lσ(1;m, 0)(1;m, 0)) = (p1)#((1;m, 0)(1;m, 0)) = (2m, 0)

= (r, 0) = β#(1, 0), and

(p1)#(b) = (p1)#(B; i, 2s+ 1) = (i, 2s+ 1) = β#(0, 1),

and thus conditions (ii) and (iii) are also satisfied.
Now suppose that r is odd, and let m ∈ Z be such that r = 2m + 1. Consider the elements

a = (uB−m;m, 0) and b = (u−1Bδ(i+1) ; i, 2s + 1) of P2(K
2). The conclusion follows in a manner

similar to that of the previous case, and the details are left as an exercise.

Proposition 39. With the notation of Proposition 35 and Remark 36, let β ∈ [K2,K2] be such that
the homomorphism β# : Z ⋊ Z → Z ⋊ Z is of Type B. Then β has the Borsuk-Ulam property with
respect to τ3.

Proof. We argue by contradiction. Suppose that β does not have the Borsuk-Ulam property with
respect to τ3. By Proposition 7 and diagram (27), there exists a pointed map f : (K2, ∗) → (K2, ∗)
such that f# = β# and f(τ3(x)) 6= f(x) for all x ∈ K

2. Notice that the image of f# is contained in the
image of the homomorphism i2 : π1(T

2) → π1(K
2) that is defined in (19). Recall that c2 : T

2 → K
2

is the double covering such that (c2)# = i2. So, by covering space theory, there exists a pointed map

f̃ : (K2, ∗) → (T2, ∗) such that c2 ◦ f̃ = f . Therefore, the map f̃ satisfies f̃(τ3(x)) 6= f̃(x) for all
x ∈ K

2, which implies that the triple (K2, τ3;T
2) does not have the Borsuk-Ulam property. But this

yields a contradiction using Remark 17, the short exact sequence (25) and [8, Proposition 10]. The
result then follows.

We are now able to prove the final main result of this paper.

Proof of Theorem 3. Using arguments similar to those of Proposition 39 and the notation of Re-
mark 36, a homotopy class β ∈ [K2,K2] lifts to the torus if and only if the homomorphism β# :
Z ⋊ Z → Z ⋊ Z is of Type B. Further, if H : K2 → K

2 is a homeomorphism and there exist maps
f1, f2 : K

2 → K
2 such that f2 = f1 ◦H

−1, then f1 lifts to the torus if and only if f2 lifts to the torus.
The result then follows easily from Propositions 9, 33, 38 and 39.
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[9] D. L. Gonçalves, C. Hayat, P. Zvengrowski, The Borsuk-Ulam theorem for manifolds, with applica-

tions to dimensions two and three, Proceedings of the International Conference, Bratislava Topology
Symposium, Group Actions and Homogeneous Spaces , (2010), 1–12.
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