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A demonstration of equivalence principle?

Introduction

An important theoretical problem of the contemporary physics is the question of equivalence principle. Indeed, this principle, which assume that the ratio of gravitational and inertial mass is always equal, is the base of the classical theories of gravitation, and in particular of the General Relativity. Therefore by definition this principle can't be proved and consequently can be considered as a weak point of these theories. This point takes all his acuity when we know that classical forces of gravitation seems fail to explain several astronomical observations ( [1,[START_REF]Patantonopoulos The Invisible Universe, Dark Matter and Dark Energy Springer[END_REF]). It is the reason for what a part of alternative theories provide that this principle could be false (see for example reference [START_REF] Licata | [END_REF]). It is also one of the reason for what this principle regularly attracts attention of experimentalists. Indeed despite the extraordinary precision of the validation of it (at the part in 13 10 level [4]) regularly other important experiments are a work in progress (for example actually with the spacecraft "Microscope" [5]). This explain why we have studied this principle. Question of the paper is simple: is it possible to demonstrate the equivalence principle? We present here our result and in particular a possible proof of its validity in the case of Newton's force.

Properties of Newton's force

To begin our demonstration we list briefly a part of these properties we need to do our demonstration. Indeed it is well known that:

-This force is central -This force leads to conic trajectories -Center of this force is located at one of the foci of the conic Moreover this force is the only force which has these properties (see Bertrand theorem [6,7]). At end, naturally magnitude of force of Newton is given by
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Where G is the constant of gravity, G M the gravitational mass of the center of force and G m the gravitational mass of body which orbits around it.

Determination of the acceleration: generalization of the Binet's equation

To do our demonstration we determine now the accelerations which allow to obtain conic trajectories.

Our method is to generalize the Binet's equation by introducing the tangential component inside the relationships. It seems that this method has been published for the first time in reference [8]. We use the polar system of coordinate
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where F (foci of the conic) is the origin of this system, r is the radial distance to the origin and  the angle measured from the periapsis. In this system of coordinate the acceleration is given by the classical relation
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But the orbital shape is more concisely described by the reciprocal r u 1  as a function of  .

And by using the relations
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And we obtain a generalization of the Binet's equation.
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By noticing that this equation can be written
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We introduce two functions given by
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And the acceleration becomes
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We can now write the system of equation
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Where A is constant. To obtain ) ( r as a conic, we have to solve a differential equation as
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Where B is a second constant. Consequently we have now to introduce a relation between ) (u Y and   . This relation is
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Where C is a constant of the motion. Indeed with this relation we obtain
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This differential equation leads now to the classical solution
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The parameter p of the conic is
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We have now to determine the tangential component of the acceleration and by using We obtain
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Where

A and C are two constants. Their physical dimensions depend on the choice of ) (r f . It is important to notice that this acceleration isn't necessary central.

Relation between force and acceleration: the second law of motion of Newton

This force is linked to acceleration by the well-known Newton's second law of motion given by
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Where I m is the inertial mass and V  the speed. If we consider the general case this relation becomes
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We obtain a system of two equations in our system of coordinate
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By noting that
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Where inertial mass is a function of r
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. The force we investigate is central and directed toward the foci of the conic. Indeed we saw that the only central force which is directed toward this point is the Newton's. We write thus the vector product
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( M is the point-particle which orbits around the foci F of the conic). Consequently 
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We can thus determine a relationship between ) (r f and
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. Corresponding force is given by introducing this relationship in equation ( 1) and ( 2). We obtain
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We can now finish our demonstration. Indeed we know that this force can't be another force that the Newton's. Consequently we can write the equality between magnitudes 
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Thus a first interesting result is that inertial mass is well constant on all the trajectory. We can try to describe it with more precision. Indeed physical dimension of constant A is Note that this demonstration can be extended to the totality of Darboux's forces, not only the Newton's, as it was done in the first version of this paper. Moreover, if this demonstration is correct, equivalence principle becomes a simple property of Newton's law of Gravitation.
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  Equivalence principle is respected. By using correct choice of unities we can obtain1 1  CAnd the expression ship of equivalence principle becomes as usual