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Wideband multiple diversity tensor array processing
Francesca E. D. Raimondi, Rodrigo Cabral Farias, Olivier J. Michel, Pierre Comon

Abstract—This paper establishes a tensor model for wideband
coherent array processing including multiple physical diversities.
A separable coherent focusing operation is proposed as a pre-
processing step in order to ensure the multilinearity of the
interpolated data. We propose an ALS algorithm to process
tensor data, taking into account the noise correlation structure
introduced by the focusing operation. We show through computer
simulations that the estimation of DoA and polarization parame-
ters improves compared to existing narrowband tensor processing
and wideband MUSIC. The performance is also compared to the
Cramér-Rao bounds of the wideband tensor model.

Index Terms—localization, DoA estimation, interpolation, co-
herent, wideband, antenna array processing, tensor, MUSIC, high
resolution, polarization, CP decomposition

I. INTRODUCTION

D IRECTION of Arrival (DoA) estimation is a central
problem in array signal processing, and in particular

in telecommunications, seismology, speech, biomedical en-
gineering, and astronomy. We are interested in acquisition
systems composed of multiple sensors that receive source
signals from different directions [1], [2]. In order to estimate
DoAs, existing techniques such as beamforming [3], [4],
MUSIC (MUltiple SIgnal Classification) [5], root-MUSIC [6]
and ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) [7], take advantage of the space diver-
sity embedded in the acquisition system. In particular, the time
delay of a narrowband wave received at a given sensor can be
expressed in baseband as a simple multiplication by a complex
exponential carrying the information on the DoA. In addition
to the space diversity, ESPRIT assumes the presence of two
identical subarrays, displaced from each other by a space shift.

Space shift diversity was extended to more than one
displacement through tensor decomposition of narrowband
waves, through a deterministic approach that allows to separate
and estimate more sources than sensors in each subarray [8].
Tensor analysis requires at least three diversities to allow a
multilinear decomposition1[9], which guarantees uniqueness
under mild conditions.

Another element of diversity is given by wave polarization,
whenever each sensor has multiple components, i.e. it records
particle displacement along three perpendicular directions
[10], [11], [12], [13]. The above mentioned tensor approach
of [8] was extended to include polarization diversity in [14],
[15], [16], and propagation speed diversity of seismic waves
in [17]. A major advantage of deterministic tensor analysis
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1This decomposition is often referred to as Canonical Polyadic (CP), and
sometimes as CanDecomp or PARAFAC.

involving time or frequency as diversities, lies in its ability to
estimate source waveforms together with DoAs, with no need
to estimate second or high order statistics from the data. Thus,
tensors can deal with very short data samples.

MUSIC, ESPRIT and tensor decompositions for array pro-
cessing originally addressed the narrowband case. In fact, in
wideband, signal subspace and steering matrices vary with
frequency, thus requiring a focusing operation on the same
reference subspace. This approach, named Coherent Signal
Subspace (CSS), may require an approximate prior estimate
of DoAs to form focusing matrices [18], [19], or virtual arrays
obtained by spatial interpolation [20], [21]. The latter extend
the MUSIC algorithm to wideband processing for Uniform
Linear Arrays (ULAs). To our knowledge, only recently coher-
ent tensor analysis was extended to process wideband waves
for ULAs in [22], where a spatial interpolation technique was
adopted.

This paper aims at establishing a tensor model for high
resolution wideband array processing with multiple antenna
diversities (space, space shift and polarization), under the
assumption of plane waves in the far field. The multilinear
coherent subspace preprocessing, required in the wideband
case, introduces a correlation into the noise structure. An
algorithm for tensor decomposition taking into account the
noise covariance is proposed, and the performance is evaluated
via the Cramér-Rao Bound (CRB).

For the sake of clarity, Table I illustrates the state of the
art and our contributions: its rows refer to different theoretical
approaches along with their corresponding references, whereas
its columns indicate the physical diversities jointly taken into
account in each approach. Approaches related to wideband
(frequency diversity) are indicated by WB, whereas contri-
butions using statistics by averaging the covariance matrix
through multiple snapshots are indicated by s.

This paper is organized as follows: Section II introduces
the physical model and the main issues of wideband array
processing; Section III illustrates the main antenna diversities
that can be exploited in tensor processing; Section IV illus-
trates the effect of wideband coherent processing on the tensor
formulation; tensor notations and multilinear decompositions
are introduced in Section V; the CRB is derived in Section VI;
Section VII addresses algorithmic issues; Section VIII reports
computer results for the particular case of space shift and
polarization diversities, in comparison with wideband MUSIC
and with the multilinear CRB.

II. FROM NARROWBAND TO WIDEBAND

The present section illustrates the wideband physical model
of multiple sources recorded by multiple sensors, which is the
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Diversity Time Space Freq. Space
Shift Polar.

MUSIC [5], [23] s, × ×
Vector Sensor MUSIC [5], [11], [12] s, × × ×
WB MUSIC [24], [18], [25], [20], [21], [26] s × ×
WB Vector Sensor MUSIC [27] s × × ×
ESPRIT (M = 2) [7] s, × × ×
WB ESPRIT [19], [28] s × × ×
Tensor ESPRIT [8], [29], [30] × × ×
Vector Sensor CP [14], [15], [16] × × ×
WB Tensor CP [22] ⊗ ⊗ ⊗
Gain Pattern CP ⊗ ⊗ ⊗
WB Vector Sensor CP ⊗ ⊗ ⊗

TABLE I
DIVERSITIES THAT CAN BE TAKEN INTO ACCOUNT IN ARRAY PROCESSING; × = WHAT EXISTS IN LITERATURE, ⊗ = OUR CONTRIBUTION

v vector: in bold lower case
vi ith element of v
A matrix: in bold upper case
IL identity matrix of size L× L
ai ith column of A
ḡ vector g without its first entry
x̃ vector related to a virtual array
Aij {i, j} element of A
AT transpose of A
A∗ complex conjugate of A
AH conjugate transpose of A
A† Moore-Penrose pseudoinverse of A
vTu scalar product between real vectors v and u
v ⊗ u outer (tensor) product between two vectors
A�B Kronecker product between A and B
A�B Hadamard (element-wise) product
‖v‖D

√
vHD−1v, weighted Euclidean norm

T tensor: in bold calligraphic font
Tijk {i, j, k} element of T
T(d) mode-d unfolding of T

vec{T } vectorization of T
T •d A mode-d product
ḋ(θ) derivative ∂d/∂θ

TABLE II
NOTATIONS

basis of traditional array processing (Section II-A). The prob-
lem of coherently combining all the frequency contributions is
treated in Sections II-B and II-C, through the definition of vir-
tual sensors and array interpolation respectively. Section II-D
describes the construction of a wideband coherent covariance
matrix.

A. Observation model

We consider R radiating sources in the far-field2, sr, 1 ≤
r ≤ R, arriving from directions defined by unit vectors d(θr),

2By “far-field assumption”, it is meant that the wavefront curvature and
dissipation are neglected.

θr being a pair of angles in 3D, or a single angle in 2D. These
sources impinge on an arbitrary array of L sensors located at
positions p`, 1 ≤ ` ≤ L. The real signal received at the `th
sensor at time t can be modeled as

x`[t] =

R∑
r=1

g`(θr)sr[t− τ`(θr)] + n`[t], (1)

where sr[t] is the signal transmitted by the rth source, t ∈
{1, 2, . . . T}, g`(θr) is the gain of the `th sensor, assumed to
be real and independent of frequency, and n`[t] is an additive
noise. The delay of arrival τ`(θ) is directly related to sensor
locations and DoAs via the expression

τ`(θ) = pT` d(θ)/c,

c being the wave propagation speed and (T) transposition.
At this stage, it is important to fix a scaling indeterminacy,

present in all blind approaches. Observe that changing the pair
(g`(θr), sr) into (ρg`(θr), sr/ρ), ∀ρ 6= 0, leads to the same
model. Thus we may fix g1(θ) = 1, ∀θ, without restricting
the generality, which means that the first sensor is treated as
omnidirectional.

Denote by ω the radial frequency, and by x(ω) the Fourier
Transform (FT) of x[t]. In this framework, model (1) can be
equivalently rewritten in the frequency domain:

x`(ω) =

R∑
r=1

g`(θr) e
−ωτ`(θr)sr(ω) + n`(ω), (2)

where  =
√
−1, x`(ω) = F{x`[t]} is the Fourier transform of

x`[t]; g` are a priori unknown real functions unless otherwise
specified; n`(ω) refers to a circular Gaussian white noise pro-
cess at the `th sensor. The noise processes at different sensors
are considered to be identically distributed and uncorrelated
from one another. Alternatively, in vector form, (2) becomes

x(ω) = A(ω,θ) s(ω) + n(ω), (3)

where matrix A(ω,θ) ∈ CL×R depends on the vector3 of
DoAs, θ = [θ1, .., θR]T. The rth column of A(ω,θ), denoted
a(ω, θr) in the remainder, is the value of the array manifold
taken at θ = θr.

3In 3D, θ is a R× 2 matrix of angles; it is a R× 1 vector in 2D.
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To summarize, we assume the following hypotheses:
• the first sensor (` = 1) is taken as origin, so that p1 = 0,

and has a unit gain in all directions, i.e. g1(θ) = 1, ∀θ;
• the sensor gains g`(θ) are real (which is actually equiva-

lent to assuming that their phase is known) and frequency-
flat;

• sources sr are considered as deterministic;
• the wave propagation speed c does not depend on fre-

quency (i.e. the medium is not dispersive)4;
• noise n(ω) is circular complex white Gaussian, with

covariance σ2I .

B. Virtual arrays

High resolution methods are based on a partition of the
observation space into signal and noise subspaces, usually via
low-rank approximations. The advantage of transforming the
dynamical model (1) into model (2) is that the latter is formally
static for every fixed radial frequency ω, which makes it easier
to define and compute the above-mentioned subspaces. The
drawback is that these subspaces change with frequency, which
raises difficulties in the framework of a wideband coherent
processing. As a consequence, in order to estimate coherently
the DoAs, it is necessary to first steer these subspaces towards
a common subspace defined at a reference radial frequency ω0

[18], [20], [21], [24].
For this purpose, the complex exponential in (2) needs to

become constant, in order to constitute a coherent contribution.
Since sensor gains do not depend on frequency, this steering
operation leads to defining a virtual array for each radial
frequency ω, defined by sensor positions p̃`(ω), related to
actual sensor positions p` by

[ωp̃`(ω)− ω0p`]
Td(θ) ≡ 0, mod 2πc, (4)

where ω0 is fixed. This equation is satisfied if the term within
brackets is orthogonal to d(θr) for every DoA θr, 1 ≤ r ≤ R;
but this requires a prior knowledge of DoAs [18]. On the
other hand, a sufficient condition is clearly that p̃`(ω) = ω0

ω p`,
which this time does not depend on θ; this corresponds to the
stretched arrays proposed in [20], [21], [24].

Remark: More generally, if gains depended on frequency,
Equation (4) would become

exp
{ 
c
[ωp̃`(ω)− ω0p`]

Td(θ)
}

=
g`(ω, θ)

g`(ω0, θ)
. (5)

Satisfying (5) would then require prior knowledge of DoAs.

C. Interpolation

Equation (4) defines virtual arrays with identical array
manifolds, but does not provide the signals that would be
measured by the latter. It is hence necessary to devise an
interpolator to compute the corresponding synthetic measure-
ments. Moreover, to preserve the separation between noise
and signal subspaces, it is suitable to map a(ω, θ) to the
same manifold a(ω0, θ) via a multiplication by some matrix

4The principles would actually remain valid for dispersive media provided
that the function c(ω) is known.

U(ω, ω0, θ) ∈ CL×L, which we call focusing matrix. It turns
out that this is possible exactly only for at most L distinct
values of θ. There are thus two possibilities.

• Either the DoAs are unknown, and a focusing matrix
U(ω, ω0, θ) can be computed so as to satisfy the fol-
lowing relationship only approximately [24]:

U(ω, ω0,Θk)a(ω, θ) ≈ a(ω0, θ) (6)

in an angular sector θ ∈ Θk of limited extent, where ω0 is
a fixed reference frequency. These focusing matrices can
be obtained by solving in the Least Squares (LS) sense
the linear system U(ω, ω0,Θk)A(ω,Θk) ≈ A(ωo,Θk),
where Θk contains I discrete angular values θi, 1 ≤ i ≤
I , and matrix A(ω,Θk) is built with the corresponding
columns a(ω, θi); see [31] for further details on how to
assess the accuracy of an array interpolator.

• Or the R DoAs are approximately known in advance,
R ≤ L, and it is possible to satisfy (6) exactly for these
approximate DoAs; see [18] for more details.

D. Example: the covariance matrix approach

For the sake of completeness, we shall now describe the
model in [24], [18], as it is used in the Wideband MUSIC
algorithm in Section VIII for the sake of comparison. In
the state of the art [24], [18], the previously explained in-
terpolation method is used as a preprocessing for subspace
methods (such as MUSIC), in order to solve the problem
of coherently averaging the estimated covariance matrices. In
fact, this model is based on second order moments, whereas
a deterministic tensor approach will be described along with
a multilinear interpolation procedure in Section V. This is
illustrated below, as the covariance matrix R = E[xxH]
depends on radial frequency ω:

R(ω) = A(ω,θ)Rs(ω)A(ω,θ)H +Rn(ω). (7)

As a consequence, in order to estimate the DoAs by a coherent
average over different values of ω, it is necessary to first
steer all estimated R̂(ω) towards a subspace defined at a
reference radial frequency ω0 [18], [20], [21], [24]. After this
focusing operation, in every angular sector Θk we can use
contributions of all frequencies to build an averaged estimate
of the covariance matrix:

R̄(Θk) =
∑
ω

U(ω, ω0,Θk)x(ω)x(ω)HU(ω, ω0,Θk)H. (8)

From (3) and (6) we obtain

R̄(Θk) ≈
∑
ω

A(ω0,θ)Rs(ω)A(ω0,θ)H + R̄n(ω),

where Rs(ω) denotes the covariance of the sources at radial
frequency ω and R̄n(ω) the noise covariance transformed by
matrixU(ω, ω0,Θk) in the considered sector, i.e. θ ∈ Θk. This
summation corresponds to averaging observations received on
virtual arrays, each being a stretched or shrunk version of a
reference array at radial frequency ω0.
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III. MULTIPLE DIVERSITIES

In the previous section, space and time/frequency diversities
were taken into account. Yet, DoA estimation can be sig-
nificantly improved if other modalities are considered, such
as space shift and polarization. In this section, a multi-way
formulation including multiple diversities is presented: Section
III-A introduces space shift diversity, Section III-B polariza-
tion diversity, and Section III-C combines them together.

A. Space shift and gain pattern diversity
Space shift diversity was initially exploited by the ESPRIT

algorithm for two subarrays deduced from each other by a
translation [7]. It has been extended to more than two subar-
rays in [8] giving rise to a third order tensor decomposition for
array processing. The diversities involved are space, time, and
space shift. It is also possible to consider diversity induced
by anisotropic sensor gains. We refer to our article [32] for
further details about gain pattern diversity.

Denote δm the location of the mth subarray. We may take
the first subarray as origin, so that δ1 = 0. In addition, the
gain of sensor ` is assumed to be the same for any subarray
m, and is given by g`(θ).

Let ζm(θ) = δTmd(θ)/c be the delay of arrival on subarray
m, and denote by F{·} the Fourier Transform operator applied
to received signals x`m[t] in the time window t ∈ [0, T ]. Then,
in the presence of additive noise N :

X`m(ω) =M`m(ω) +N`m(ω)

M`m(ω) =

R∑
r=1

A`r(ω)Bmr(ω)Sr(ω)
(9)

with


X`m(ω) = F{x`m[t]}
A`r(ω) = g`(θr) e

−ωτ`(θr)

Bmr(ω) = e−ωζm(θr)

Sr(ω) = F{sr[t]}.
In the remainder, since received signals x`m[t] are real,

we consider only positive frequencies (without any loss of
information). After discretization, we have

X`m(ωq) =

R∑
r=1

A`r(ωq)Bmr(ωq)Sr(ωq) +N`m(ωq), (10)

where frequency 0 < ωmin ≤ ωq ≤ ωmax < π, and 1 ≤ q ≤
Q. In what follows, (except in Section VI and in Appendix
A-C) we will assume omnidirectional sensors, i.e. gain patterns
are known with g`(θ) = 1,∀θ,∀`.

B. Polarization diversity
If we have at our disposal a single antenna (M = 1)

array of polarized elements or 3-components (3C) sensors,
each capable of recording 3 orthogonal components5, the
observation model is similar to (9). If we omit measurement
noise, it takes the form:

M`p(ωq) =

R∑
r=1

A`r(ωq)Kpr Sr(ωq), 1 ≤ p ≤ P = 3, (11)

5For electromagnetic waves, two 3-component sensors can be used, leading
to an observation of dimension 6 [14].

where the R columns of the 3×R factor matrix K are detailed
in [33], [9]:

kr = H(θr)W (αr)w(βr).

Both angles αr ∈ (−π/2, π/2] and βr ∈ [−π/4, π/4] char-
acterize the polarization of the rth source; see [33], [12] for
general expressions of H(θ), W (α) and w(β). For instance,
Rayleigh waves considered in Section VIII belong to the model
characterized by

H(θr) =

 cosφr cosψr − cosφr sinψr
sinφr cosψr − sinφr sinψr

sinψr cosψr


W (αr) =

[
cosαr sinαr
− sinαr cosαr

]
(12)

w(βr) =

[
cosβr
 sinβr

]
,

where it is reminded that in 3D the DoA θr = (φr, ψr) is
formed by a couple of angles: azimuth φr ∈ (−π, π] and
elevation ψr ∈ [−π/2, π/2]. Without restricting too much the
generality, we assume that polarization does not depend on ω
over the bandwidth of interest. The main difference between
(10) and (11) is that the second factor matrix, K, now depends
on extraneous unknown angular parameters (αr, βr), instead
of the subarray space shifts δm.

C. Space shift and polarization together

It is clear that the aforementioned diversities (space shift
in Section III-A and polarization in Section III-B) can be
modeled all together, at the price of an increased notational
complexity. If frequency, space, space shift, and polariza-
tion diversities are considered simultaneously, the data mea-
surements depend on 4 variables, the data array is of size
L×M×P×Q, with P = 3, and involves 4 unknown matrices
to identify. Therefore, discretizing and merging models (10)
and (11) yields

X`mpq =

R∑
r=1

A`r(ωq)Bmr(ωq)Kpr Sqr +N`mpq. (13)

Traditional subspace processing usually breaks the multi-
dimensionality of the multiple diversity model through a
vectorization of the entire array manifold (including space,
polarization and/or space shift) [5].

The tensor approach through CP decomposition fully takes
advantage of the multilinearity of a model with at least three
diversities [9]. However, in order to have a totally multilinear
model in (13), we need to remove the dependency on ωq from
factor matrices A and B, e.g. through a bilinear interpolation.
This matter will be addressed in Section IV, whereas tensor
model and notations will be discussed in Section V.

IV. TENSOR WIDEBAND PROCESSING

Equation (10), as a matrix equation for a given frequency,
cannot yield a unique factorization if A(ωq) and B(ωq) have
not a particular structure that can be taken into account.
Hence, such equations need to be treated simultaneously for
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all frequencies, through the tensor formalism. The bilinear
interpolation we propose is precisely a means to coherently
combine them in a manner that has a physical meaning. In
this section, we aim at jointly exploiting models (10), (11) and
(13) for several angular frequencies. As mentioned in Section
III-C, the difficulty comes from the fact that these models
are obviously not multilinear w.r.t. ωq , because exponentials
in A(ωq) and B(ωq) are a function of frequency. This
section extends the definition of virtual arrays to the rotational
invariant structure of space shift diversity (Section IV-A), and
proposes a bilinear interpolation to be applied to two tensor
modes separately (Sections IV-B and IV-C). The effect of this
preprocessing on the noise structure is studied in Section IV-D,
whereas bilinear interpolation in the presence of polarization
diversity is addressed in Section IV-E.

A. Virtual arrays

The idea is to build virtual arrays, as described in (6); but
we have now a second condition to satisfy, in addition to (4):

[ωqδ̃m(ωq)− ω0δm]Td(θ) ≡ 0, mod 2πc. (14)

It is clear that it is sufficient to define the locations of virtual
sensors and virtual subarrays by:

p̃`(ωq) =
ω0

ωq
p`, δ̃m(ωq) =

ω0

ωq
δm (15)

to satisfy both (4) and (14). With these virtual arrays,
one can associate time delays τ̃`(ωq, θ) = p̃`(ωq)

Td(θ)
and ζ̃m(ωq, θ) = δ̃m(ωq)

Td(θ), and corresponding steering
vectors ã(ωq, θ) = exp{−ωqτ̃ (ωq, θ)} and b̃(ωq, θ) =
exp{−ωqζ̃(ωq, θ)}. Once virtual arrays are defined, it is
necessary to compute the virtual data these array would
receive, and this is done by interpolation as explained in the
next two sections.

B. Bilinear transform

Space is first partitioned into K angular sectors of limited
extent, Θk, 1 ≤ k ≤ K. Then each sector is discretized into I
angular values: Θk = {θk1, . . . , θkI}. In each sector Θk and
for every discretized frequency ωq , we define matrices A and
B of size L× I and M × I , respectively:

A(ωq,Θk) = [a(ωq, θk1), . . . ,a(ωq, θkI)]

B(ωq,Θk) = [b(ωq, θk1), . . . , b(ωq, θkI)] .

We also build Ã and B̃ in the same manner with vectors
ã(ωq, θki) and b̃(ωq, θki) respectively. For a fixed reference
frequency ω0 (generally chosen to be inside of the band
of interest [21]), two focusing matrix families can then be
defined, by solving for square matrices U ∈ CL×L and
V ∈ CM×M the linear systems below in the LS sense:

U(ωq, ω0,Θk)A(ωq,Θk) ≈ Ã(ω0,Θk) (16)

V (ωq, ω0,Θk)B(ωq,Θk) ≈ B̃(ω0,Θk) (17)

for every angular sector Θk and every frequency ωq . In what
follows we only consider one angular sector Θ, and we hence
refer to U(ωq, ω0,Θ) and V (ωq, ω0,Θ) with U q and V q

respectively. Note that other interpolation techniques exist,
such as in [34].

As for the detection of the most relevant sectors Θk, the
angular field of view of the array can be scanned and sectors
of largest power can be detected through a simple optimum
beamforming technique [3], [4].

C. Bilinear interpolation

Measurements recorded on actual arrays with sensors lo-
cated at p` + δm at frequency ωq are interpolated to yield
virtual measurements recorded by sensors located at p̃`(ωq)+
δ̃m(ωq) as defined in (15). More precisely, applying the
bilinear interpolation (16-17) to model (10) leads to

M̃`mq ≈
R∑
r=1

Ã`r(ω0) B̃mr(ω0)Sqr, (18)

where the slice M̃ q of tensor M̃ is obtained through the
bilinear transformation of slice M q:

M̃ q = U qM qV
T
q . (19)

Now, M̃ may be seen as a tensor of order 3, since frequency
ωq only affects the third mode, and (18) is actually a CP
decomposition model (cf. Section V).

In the remainder of this section, only space, space-shift and
polarization will be addressed (this means that sensors are
assumed omnidirectional: gl(θ) = 1,∀l,∀θ, as stated in III-A).

However, a new difficulty appears, due to the fact that the
bilinear transformation affects the color of the noise. This must
be taken into account into the CP identification algorithm (cf.
Section VII) and the computation of the performance bounds
(cf. Section VI).

D. Noise correlation induced by interpolation

The observation model (18) can be expressed through Q
matrix slices, 1 ≤ q ≤ Q:

X̃q = M̃ q + Ñ q,

where Ñ q is colored by the transform:

Ñ q = U qN qV
T
q .

Yet from [35], we have vec{UNV T} = (V � U) vecN .
This leads to the following noise vectorization:

vec Ñq =
(
V q �U q

)
vecNq.

Hence, for every frequency ωq , the noise vector vec Ñq is
circular complex Gaussian with covariance Σq = σ2V qV

H
q �

U qU
H
q . If we stack all vectors vec Ñq in a single vector ñ,

then the latter has a covariance Σ(1) that is block-diagonal6

with diagonal blocks Σq:

Σ(1) =

Σ1 0 0

0
. . . 0

0 0 ΣQ

 . (20)

6Notice that Σ(1) also corresponds to the covariance matrix of the
vectorization of the mode-1 tensor unfolding of N , vec{N (1)}.
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This change in covariance structure will be taken into account
for calculating the Fisher Information matrix (FIM) in Section
VI, and into the CP identification algorithm in Section VII.

E. Interpolation in the presence of polarization

Instead of space shift, if we consider polarization as the
second diversity as in (11), the bilinear transformation (19)
becomes

M̃ q = U qM qI
T
P ,

as polarization matrix K does not depend on frequency by
assumption:

M̃`pq ≈
R∑
r=1

Ã`r(ω0)Kpr Sqr. (21)

Moreover, the diagonal blocks of the vectorized noise covari-
ance Σ(1) are simplified to Σq = σ2 IP �U qU

H
q .

If we now include all the diversities as in model (13), then
interpolation is given by the following multilinear transforma-
tion:

M̃q = Mq •1 U q •2 V q •3 IP ,
where index q may be seen as denoting the qth slice of a fourth
order tensor. The mode-d product indicated as •d refers to the
multiplication of a tensor and a matrix along its dth mode (see
[36], [37] for details on this contraction product)7. This yields
to interpolated elements

M̃`mpq ≈
R∑
r=1

Ã`r(ω0) B̃mr(ω0)Kpr Sqr. (22)

Similarly, the noise covariance of the qth vectorized slice
becomes Σq = σ2 IP � V qV

H
q �U qU

H
q .

V. TENSOR DECOMPOSITION

A. Canonical Polyadic decomposition

The tensor model allows to express a structured phe-
nomenon through a multidimensional array of order D, by
finite sums and products of simpler constituents [9]. A decom-
posable D-way tensor D can be defined as the outer product
of D vectors: D = a ⊗ b ⊗ . . . ⊗ s, where a ∈ CL, b ∈
CM , . . . , s ∈ CQ. Any order-D tensor admits a decomposition
into a sum of decomposable tensors

M =

R∑
r=1

λr Dr, (23)

where coefficients λr can always be chosen to be real positive,
and decomposable tensors Dr to have unit norm, i.e. the
product ‖a‖ ‖b‖ . . . ‖s‖ = 1, but other choices are possible
(cf. Section V-B). The minimal value of R such that this
decomposition holds is called the tensor rank. When R is the
rank, decomposition (23) is called Canonical-Polyadic (CP);
if R is not too large, this decomposition is unique; see [38],
[29] and references therein. This is the main motivation in
resorting to tensors.

7Notice that for matrices X •1 A •2 B = AXBT.

In practice, we admit that observations X , related to model
M, are corrupted by an additive noise N . In other words, the
observation model becomes X = M+N , and the goal is to
fit (23) with the data. The fact that the set of rank-R tensors
is not closed when R > 1 may raise difficulties, which are out
of the scope of the present paper; we refer to [9] for further
details. In what follows tensor rank R, corresponding to the
number of sources, is assumed to be known. See [24], [39]
for details on model order estimation).

B. CP factors, normalisation and scaling

Consider the case of a tensor of order D = 4, which is
sufficient for our purposes. Once the bases of the linear spaces
involved are fixed, a fourth order tensor M is defined by its
coordinates, denoted M`mpq . If its dimensions are L×M ×
P ×Q, then the CP decomposition (23) becomes

M =

R∑
r=1

λr ar ⊗ br ⊗ kr ⊗ sr (24)

and can be rewritten in terms of array of coordinates:

M`mpq =

R∑
r=1

λr A`r BmrKpr Sqr,

where matricesA,B,K and S, are of dimensions L×R, M×
R, P ×R and Q×R, respectively. For practical purposes and
without restricting the generality, we have preferred to impose
the first row of matricesA andB to be formed of ones (in fact,
as justified in sections II-A and III-A, p1 = 0, δ1 = 0 and
g1(θ) = 1,∀θ), unit norm columns in matrix K, and to pull
the remaining R × R scaling matrix, Diag{λrA1rB1r‖kr‖},
into matrix S. This choice permits to compute performance
bounds on the retrieval of CP factors more easily. To conclude,
in the rest of the paper, we shall use a CP decomposition model
of the form:

X`mpq =

R∑
r=1

A`r BmrKpr Sqr +N`mpq, (25)

with the normalizations mentioned above.

There exist sufficient conditions ensuring uniqueness of the
exact CP [8], establishing the maximum number of sources
that can be estimated. Less stringent conditions guaranteeing
almost surely a unique solution can be found in [9], [40]:

R(L+M + P +Q− 3) < LMPQ. (26)

This holds true when data are not corrupted by noise. In
the presence of noise, the existence of a best approximant
to the low-rank problem can be inferred through physical
quantities named coherences, related to the maximum degree
of correlation between any two sources along each mode [9].

VI. CRAMÉR-RAO BOUNDS

In order to assess the performance of the proposed approach,
we can compare obtained parameter errors with the CRB, e.g.
for DoA and polarization parameters. The CRB, which is the
lower bound on the covariance Γ of any unbiased estimator, is
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given by the inverse of the Fisher Information Matrix (FIM);
in other words8, Γ � F−1.

The evaluation of the FIM requires the partial derivatives
of the log-likelihood w.r.t. the unknown parameters, ϑ, given
the tensor model previously described (see Section VI-A). In
Section VI-B we compute these derivatives and the general
expression of the FIM.

For simplicity, we assume from now on that sources and
antennas are coplanar, which permits to parameterize DoAs
by a single angle, θr = φr. Vectors p`, δm, and d(θ) are
thus in R2, and we shall use the notation p` = [p`1, p`2]T,
δm = [δm1, δm2]T, and d(θ) = [cos θ, sin θ]T. The reasoning
would be the same in 3D but with an increased notational
complexity.

Even though we only consider omnidirectional and known
sensor responses in the remainder of the paper, the derivation
of the CRB in this section and in Appendix A-C addresses
both cases of unknown and known gain patterns. The presence
of unknown anisotropic gain patterns is herein treated as a
nuisance, but could be exploited as a plain diversity as shown
in a companion paper [32]. Alternatively, if gain patterns
are known, they are no longer nuisance parameters. Up to
a calibration operation, this case is equivalent to assuming
g`(θ) = 1,∀θ,∀`.

A. Likelihood

First, the multi-dimensional L×M×P×Q array X is stored
in a vector x of dimension LMPQ, following a bijective map:
x = vecX . We adopt the usual definition [35] where the vec
operation takes indices in lexicographical order. Then we have
the identity [35], [36]: vec{abT} = b � a, for any pair of
vectors (a, b). More generally:

vec{a⊗ b⊗ · · · ⊗ s} = s� · · ·� b� a.
Thus, applying the vec operator to Equation (24) leads to

x =

R∑
r=1

sr � kr � br � ar + n, (27)

with x = vecX and n = vecN . Now since the noise vector
n is circular Gaussian, with zero mean and covariance Σ, the
log-likelihood then takes the form, up to a constant additive
term:

Υ(ϑ) = −(x− µ)H Σ−1 (x− µ), (28)

where µ =
∑R
r=1 sr � kr � br � ar. We shall assume an

isotropic measurement noise, but as we explained in Section
IV, the noise covariance will be affected by wideband inter-
polation so that Σ 6= σ2I .

B. Fisher Information matrix (FIM)

Two cases need to be distinguished, namely known and
unknown gain patterns:

1) If gains g`(θr) are unknown, the (L− 1)R entries g`r =
g`(θr), 2 ≤ ` ≤ L, are real nuisance parameters. For
every r, we store them in a vector ḡr of size L − 1 (as

8This inequality means that matrix Γ− F−1 is semi-definite positive.

stated in Section II-A, g1(θr) = 1, ∀r). In turn, we stack
all these vectors ḡr in a (L − 1)R-dimensional vector
denoted by γ.
Define then v = [θT,αT,βT,γT]T, a real parameter
vector of dimension R(L+ 2).

2) If gains g`(θr) are known, define v = [θT,αT,βT]T, a
real parameter vector of dimension 3R.

Next, define ξ = [sT1 , . . . , s
T
R]T, a complex parameter vector

of size RQ. Consequently, for each source, there are three real
parameters, θr, αr and βr, and two complex parameters, sr
and s∗r ; if gain patterns are unknown, there are L−1 additional
real parameters ḡ`r.

When computing the FIM with respect to complex param-
eters, it is also necessary to include the complex conjugate
parameter, in order to avoid a loss in information [41]. This
means just appending ∂f/∂z∗, which is nothing else but
(∂f/∂z)∗. Now, following [41], real and complex parameters
must be treated differently. From (28), the FIM contains nine
blocks [30]:

F =

 2<{G11} G12 G∗12

GH
12 G22 0

GT
12 0 G∗22

 , (29)

where G11 is related to the real parameters, and G22 is related
to the complex ones. More precisely, blocks Gij are defined
by:

G11 =

(
∂µ

∂v

)H

Σ−1

(
∂µ

∂v

)
G22 =

(
∂µ

∂ξ

)H

Σ−1

(
∂µ

∂ξ

)
G12 =

(
∂µ

∂v

)H

Σ−1

(
∂µ

∂ξ

)
,

where Σ is the covariance of noise n. If all diversities are
present, the total dimension of the FIM F is hence R(L+2+
2Q) if gain patterns are treated as nuisances, and R(3+2Q) if
gain patterns are known. With these definitions, the covariance
matrix Γ of any unbiased estimator of [vT, ξT, ξH] satisfies
Γ � F−1.

Note that in G11, we obtain the derivative w.r.t. the DoAs
using the chain rule below:

∂µ

∂θr
=

∂µ

∂ār

∂ār
∂θr

+
∂µ

∂b̄r

∂b̄r
∂θr

+
∂µ

∂kr

∂kr
∂θr

. (30)

Scalar factor 2 in (29) is justified by (35), because chain
rules used to calculate G11 involve complex variables when
computing real derivatives. The derivatives required to evaluate
(29) and (30) are given in Appendix A.

VII. ALGORITHMS

The goal of the two remaining sections is to illustrate the
performance of tensor wideband processing and to compare
it to the CRB. The ALSCOLOR algorithm described in this
section is not meant to be a major contribution, even if
its originality is to take into account the noise covariance
structure. The design of efficient algorithms is indeed out of
the scope of the present paper.
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Tensor wideband processing will be executed in two stages:
we first recover factor matrices through CP model fitting
(assuming they are uncoupled), and then estimate the DoAs
or polarization parameters from the estimated factor matrices.
A refinement could also be executed as a post-processing, e.g.
by a local ascent maximizing the log-likelihood in (28), but
it generally brings negligible improvement. Hence it will not
be reported in this paper. We first describe both steps of this
procedure, in their respective orders: retrieval of the CP factors
taking into account the noise correlation structure in Section
VII-A, and the estimation of DoAs and polarization parameters
in Section VII-B.

A. Estimation of factor matrices

CP fitting corresponds to minimizing the tensor approxima-
tion error for model (18). Notice that similar considerations
can be made for models (21) and (22). Supposing that the
interpolation error is negligible compared to the error intro-
duced by measurement noise, we are interested in minimizing
the following cost function with respect to ãr, b̃r and sr:

Υ =

∥∥∥∥∥vec{X̃(1)} −
R∑
r=1

sr � b̃r � ãr

∥∥∥∥∥
2

Σ(1)

=

=

∥∥∥∥∥vec{X̃(2)} −
R∑
r=1

sr � ãr � b̃r

∥∥∥∥∥
2

P 12Σ(1)P
T
12

=

=

∥∥∥∥∥vec{X̃(3)} −
R∑
r=1

b̃r � ãr � sr

∥∥∥∥∥
2

P 13Σ(1)P
T
13

(31)

where we define the weighted matrix norm ‖X‖2Σ =
trace{XHΣ−1X}. Expression X(d) refers to the mode-d
unfolding of tensor X . Notice that Σ(1) is the covariance
matrix of x̃, the vectorization of the first unfolding X̃(1),
and permutation matrix P ij denotes the transfer matrix from
the covariance of the mode-i unfolding to that of the mode-j
unfolding.

The above mentioned minimization corresponds to maxi-
mum likelihood estimation and can be performed in several
ways: gradient descent, conjugate gradient, Newton methods
and coordinate descent methods [42]. For ease of implemen-
tation, we choose to minimize (31) using block coordinate
descent, with blocks corresponding to factor matrices them-
selves. This is commonly known as Alternating Least Squares
(ALS) [42], as each block coordinate update corresponds to
the solution of a LS problem. The proposed algorithm, which
we name ALSCOLOR, is detailed in Alg. 1.

B. Estimation of signal parameters

Once column vectors âr, b̂r and/or k̂r are recovered from
the tensor approximation algorithm, we can estimate DoAs θr
through an exhaustive search within the considered angular
sector Θ and/or polarization parameters βr and/or αr.

Algorithm 1. ALSCOLOR : ALS for correlated noise

1: Inputs: Â
0
, B̂

0
, Ŝ

0
, the covariance matrix Σ(1) given by

(20), the interpolated data tensor X̃ .
2: Initialize with Â

0
, B̂

0
, Ŝ

0
. Denote for all k:

âk = vec{Âk}, b̂k = vec{B̂k}, ŝk = vec{Ŝk}.
3: While convergence criterion not met, do k := k + 1Z = (Ŝ

k � B̂k
) � IL

âk =
(
ZHΣ−1

(1)Z
)−1

ZHΣ−1
(1) vec{X̃(1)}

Proceed similarly for b̂
k

and ŝk, with Σ(2) =

P 12Σ(1)P
T
12 and Σ(3) = P 13Σ(1)P

T
13, respectively.

4: Unvectorize estimates: Â = unvec{âk}, B̂ = unvec{b̂k}
and Ŝ = unvec{ŝk}; normalize columns of Â and B̂ by
their first element: {

âr := âr/Â1r

b̂r := b̂r/B̂1r

and normalize Ŝ accordingly: ŝr := Â1rB̂1r ŝr.
NB: When dealing with model (21), where the third

diversity is given by polarization instead of space-shift,
B is replaced by K is the steps above, and normalization
is achieved as: 

âr := âr/Â1r

k̂r := k̂r/‖k̂r‖
ŝr := Â1r‖k̂r‖ ŝr

5: End

1) Space shift diversity: if there are space, space shift
and frequency diversities (cf VIII-A), DoAs are estimated by
minimizing a weighted LS criterion of the form:

θ̂Dr = arg min
θ∈Θi

∥∥∥( âr − ãr(θ)
b̂r − b̃r(θ)

)∥∥∥2

D
, (32)

where D is a positive definite matrix and ‖u‖2D = uHD−1u.
We have experimented several choices for D−1: (i) the Fisher
information matrix9 Fr related to vector [aT

r , b
T
r ]T computed

at [âr, b̂r, ŝr], (ii) its approximation by its two main diagonal
blocks, (iii) D = I . The two diagonal blocks are not
diagonal, so that the parameter estimation θ̂Ir assuming that
all components of âr and b̂r have the same variance is less
accurate. On the other hand, the correlation between âr and
b̂r has revealed to be small, so that estimates obtained with
(i) and (ii) were very similar, and will be both denoted by θ̂Fr .

Objective (32) is arbitrary and suboptimal, but permits to
find an acceptable solution, as will be demonstrated in Section
VIII. In fact, a refinement by gradient ascent does not bring
any significant improvement.

2) Polarization diversity: If there are space, polarization
and frequency diversities (cf VIII-B), we can also estimate
polarization parameters. For one single polarization parameter
βr, we perform an exhaustive search over a 2D grid of DoA

9See [30], [29] for further details on the computation of CRB for factor
matrices.
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θ ∈ Θ and polarization angle β ∈ [−π/4, π/4]. We proceed
analogously, by searching Θ ∪ [−π/4, π/4] for:

(θ̂Dr , β̂
D
r ) = arg min

θ,β

∥∥∥( âr − ãr(θ)
k̂r − k̃r(θ, β)

)∥∥∥2

D
. (33)

The same choices of matrix D have been experimented (see
Section VIII).

Remark: the above mentioned minimization procedures are
performed in a limited domain: θ ∈ Θ, β ∈ [−π/4, π/4]. In
order to prevent this search from becoming too costly, we
apply an iterative progressive refinement of the grid, where
each iteration is a zoomed version of the previous one.

VIII. COMPUTER RESULTS

This Section is meant to illustrate the advantage of wide-
band tensor processing for the problem of DoA and/or polar-
ization estimation.

Monte Carlo simulations make use of multiple diversities,
throughout the section (in addition to space and frequency):

1) Section VIII-A: space shifts of a reference subarray, as
described in Section III-A.

2) Section VIII-B: polarization diversity, as described in
Section III-B.

Impinging sources are coplanar with respect to the array:
only azimuth is to be estimated, and not elevation, without any
loss of generality. Sensors are supposed omnidirectional, i.e.
g`(θ) = 1,∀θ,∀`. We simulated R = 2 sources, at sampling
frequency fs = 1 kHz, for an observation time of 64 ms and
propagating at c = 1800 m/s, which is approximately the
propagation speed of seismic S-waves through ice [17]. Hence,
T = 64 time samples are available. Sources in time domain
are white Gaussian processes with unit variance. The number
of working frequency bins is Q = 14 (within the selected
frequency range from fmin = 0.25 fs to fmax = 0.45 fs).
As for the distance dij between two neighboring sensors
(` = i and ` = j) of the same subarray, we set dij ≤ λ0/2
where λ0 is the reference wavelength, λ0 = 2πc/ω0. The
reference frequency f0 = ω0/2π is chosen to be the central bin
f0 = (fmin+fmax)/2 = 0.35fs. Correlation between sources,
when present, is ρ = 0.9. Wideband processing is performed
in a single sector Θ, assuming interesting sectors (i.e. sectors
containing most of the signal power) have been previously
detected through a former low resolution beamforming tech-
nique. Former detection of relevant sectors is beyond the
scope of this paper and can be found in the literature [4],
[3]. Interpolation is then performed within the angular sector
Θ = [0, 25◦], with a discretization of 0.1◦.

In order to understand the relevance of tensor wideband
processing, we also present a narrowband alternative for
comparison (referred to as NB-ALS): received signals are
filtered around central frequency f0 = ω0/2π with narrowband
filter bandwidth BW = 0.015fs, and then directly processed
through tensor CP approximation [8], [30]. Estimation ef-
ficiency is also evaluated in comparison to the wideband
MUSIC approach [18], and to the wideband multilinear CRB
computed in Section VI. The performance criterion is the
relative total Mean Square Error (MSE) of the DoA estimates
and, whenever present, of the polarization ellipticity estimates:

{
MSE(θ) = 1

π2
1
NR

∑N
n=1

∑R
r=1(θ̂rn − θr)2

MSE(β) = 1
π2

1
NR

∑N
n=1

∑R
r=1(β̂rn − βr)2

where θ̂rn and β̂rn are the estimated DoA and ellipticity angle
respectively of source r in the nth Monte-Carlo trial, N =
2500 being the number of trials. As in [29], [30], the SNR
definition below is assumed:

SNR = 10 log10

E
[
µHµ

]
E [nHn]

= 10 log10

‖µ‖2
LMPQσ2

.

Estimation algorithms evaluated herein are the following:
1) NB-ALS: standard narrowband ALS in time domain as in

[8], [30], after narrowband filtering around f0, and simple
parameter estimation: parameters are estimated by taking
the identity matrix for D in (32) and (33).

2) WB-ALS: WB preprocessing and standard ALS in fre-
quency domain not taking into account the correlation
structure of noise, and simple DoA estimation taking
D = I in (32) and (33).

3) WB-ALSCOLOR: WB preprocessing and ALS Alg. 1 for
correlated noise, and simple DoA estimation taking D =
I in (32) and (33).

4) WB-W-ALSCOLOR: WB preprocessing and ALS Alg.
1 for correlated noise and weighted DoA estimation:
parameters are estimated through (32) and (33) with FIM
weighting D = F r.

5) WB-MUSIC with covariance matrix expressed in (8) and,
for polarized sensors, WB vector MUSIC, where the array
manifold takes into account wave polarization parameters.

Notice that WB preprocessing refers to the multilinear inter-
polation described in Section IV.

A. Wideband and space shift

As described in Section III-A, the same subarray is repeated
in space through M translations (cf. Fig. 1):

1) M = 5 subarrays;
2) each subarray is a square 2D array of L = 4 sensors;
3) the distance between two neighboring sensors is λ0/2;
4) the distance between two neighboring subarrays is ≈ 4 ∗

λ0/2.
Interpolation of the data tensor is bilinear, which means it

is performed for matrices A and B separately, as described
in subsection IV-B. Therefore, both sensor positions in P =
[p1, . . . ,pL]

T and space shifts in ∆ = [δ1, . . . , δM ]
T need

to be known, and DoA can be estimated from both A and
B. On the other hand, the linear interpolation of wideband
MUSIC is performed on the global LM × 2 matrix P tot =
[p1 + δ1, . . . ,pL + δ1, . . . ,p1 + δM , . . . ,pL + δM ]

T of the
whole acquisition system (cf. Fig. 1), without taking into
account the bilinearity of the tensor model.

Fig. 2 shows the dependence of the narrowband tensor CP
method on the number of available time samples, T : the MSE
drastically drops for increasing data samples, because a larger
data window allows a narrowband filtering of higher quality.
In what follows, we fix the number of time samples to T =
64: we expect then that narrowband tensor CP will show a
saturation starting from a certain SNR.
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Fig. 1. Sensor position matrix - space shift diversity
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Fig. 2. MSE vs T - NB ALS - Narrowband Tensor CP

Fig. 3a shows the MSE on DoA estimation with respect
to the SNR when R = 2 uncorrelated sources arrive from
angles θ1 = 5◦ and θ2 = 20◦ respectively; Fig. 3b refers to
a correlation coefficient of ρ = 0.9 between sources. Notice
that values of correlation coefficient ρ around 0.9 are very
high for wideband sources, because dissipation is different
at various frequencies. In addition, this decorrelation effect
is even accentuated in actual propagation media because of
dispersion. ALSCOLOR (i.e. Alg. 1) significantly improves
the standard ALS, since it takes into account the noise cor-
relation structure introduced by interpolation. The reliability
information contained in the FIM weighting D = F r on
factor vectors in (32) also helps the estimation performance. In
the present experimental conditions, wideband tensor methods
outperform both MUSIC and narrowband CP. If the sources
are correlated, the performance of all the algorithms slightly
deteriorates correspondingly, and the gap w.r.t. the CRB in-
creases (cf. Fig. 3b). Further simulations showed this gap to be
a monotonically increasing function of the source correlation
coefficient ρ.
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(a) DoA estimation - uncorrelated sources
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(b) DoA estimation - correlated sources: ρ = 0.9

Fig. 3. MSE vs SNR - space shift diversity

B. Wideband and polarization

Impinging signals are supposed to be elliptically polarized
seismic sources, recorded by one 3-component (3C) sensor
array, or vector-sensor array as defined in [11] (cf. Fig. 4).
We assume:

1) an array of L = 5 sensors;
2) the distance between two sensors is ≈ λ0/2;
3) R = 2 uncorrelated polarized sources arrive from angles

θ1 = 5◦ and θ2 = 20◦ respectively.
4) Rayleigh waves, i.e. α = 0, ψ = 0 (coplanar with the

array), β 6= 0. In particular, β1 = −20◦, β2 = 10◦.
Interpolation is linear, i.e. only for matrix A, since po-

larization factor matrix K is independent of frequency, as
described in subsection IV-E. We compare tensor methods
with wideband scalar MUSIC, i.e. an incoherent average of
P covariances, and wideband vector MUSIC, i.e. a coherently
averaged covariance matrix of size PL × PL. Fig. 5a and
Fig. 5b show the MSE with respect to the SNR for DoA
estimation and for polarization estimation, respectively. The
overall performance of the compared algorithms is similar
to the space-shift case of Section VIII-A. However, the gain
granted by FIM weighting D = F r is less significant,
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Fig. 4. 3C sensor position matrix - polarization diversity
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(a) DoA estimation
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(b) Polarization estimation

Fig. 5. MSE vs SNR - polarization diversity - seismic Rayleigh waves

especially for β.

IX. CONCLUSION

The crucial difficulty of the tensor wideband approach stems
from the need to focus every frequency contribution on the
same subspace. We show that multilinear interpolation can

solve this issue: it allows to have a multilinear model and
thus to apply tensor decomposition techniques to wideband
data. An important side effect is that the latter interpolation
correlates the noise, which needs to be taken into account in
the optimization process. In simulations, both with space shift
diversity and polarization diversity, the proposed approach
improves narrowband tensor processing and outperforms tra-
ditional subspace methods such as wideband MUSIC. We also
show that, in addition to space and frequency, polarization can
be used instead of space shift diversity, even in the wideband
case.

APPENDIX A
DERIVATIVES REQUIRED FOR THE FIM

In order to evaluate the derivatives required for the compu-
tation of the FIM, and consequently of the CRB, we have to
introduce the concept of complex derivatives.

A. Complex derivatives

A real function of a complex variable is never holomorphic,
unless it is constant [43]. It is hence necessary to specify which
convention is assumed. Even if a convention has been proposed
much earlier in [43], we assume the definition proposed in [41]
since it is now more widely used. Let f(z) be a real function
from CP to RN . Its complex derivative with respect to z ∈ CP
is defined by:

∂f

∂z
=

1

2

∂f

∂x
− 

2

∂f

∂y
, (34)

where x and y denote the real and imaginary parts of z,
respectively. This definition is consistent with [41], [29], [30].
This derivative is stored in a complex N×P matrix, regardless
of the fact that f and z are row or column vectors, which
allows easy-writing chain rules of the form: ∂f∂z = ∂f

∂a
∂a
∂z with

compatible matrix sizes.
Next, it is often convenient to compute some derivatives

by the chain rule, which means that derivatives of a complex
quantity w.r.t. a complex variable are needed. It turns out that
quantities involved are holomorphic, so that this differential is
meant in the usual sense of complex analysis.

If a real function f is to be derived w.r.t. a real variable θ,
but using a chain rule involving a complex variable z, then for
consistency with (34) the following relation must apply [41],
[30], [16]:

∂f

∂θ
= 2<

{
∂f

∂z

∂z

∂θ

}
. (35)

In what follows, we calculate the derivatives required for
the evaluation of the FIM in (29) and (30).

B. Derivatives w.r.t. S

MatricesA andB depend on DoAs θr, whereasK depends
on angles10 (θr, αr, βr), 1 ≤ r ≤ R. Let us start with matrix
S, which is unconstrained. The source signals are indeed

10We remind that in a 3D space, θr = (φr, ψr) since two angles are
necessary. In a 2D space, we shall just use notation θr .
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treated as deterministic parameters, which allows to extract
them. The derivative w.r.t sr is given by

∂µ

∂sr
= IQ � kr � br � ar ∈ CLMPQ×Q.

C. Derivatives w.r.t. A and B, and their parameters

Since the first row of A and B contains only ones, only the
remaining rows need to be estimated. The submatrices formed
of the remaining rows are denoted by A and B, and their
columns by ār and b̄r, respectively. In other words,A = JLA
where JL is the L−1×L line-selection matrix JL = [0, IL−1].
This is necessary to reduce the size of the FIM (otherwise it
would be always rank deficient).

For space steering vectors, we have

∂µ

∂ār
= sr � kr � br � J

T
L ∈ CLMPQ×L−1.

As in Section VI-B, we distinguish between two cases: un-
known and known gain patterns.

1) Unknown gain patterns: since functions g`(θ) are un-
known, but needed only at R points θr, g`r = g`(θr) are
treated as extraneous fixed nuisance (unknown) parameters;
this approach avoids the need for derivatives ∂g`(θ)/∂θ. For
convenience, we denote by gr the L-dimensional vector with
entries g`(θr), 1 ≤ ` ≤ L, and ḡr the vector obtained
by removing the first entry of gr (which is equal to 1 by
definition). The following derivative can be readily obtained:

∂ār
∂ḡr

= JL exp{−ωτ r}JT
L ∈ CL−1×L−1, (36)

where τ r ∈ CL is the vector containing entries τ`(θr).
2) Known gain patterns: in this case (36) is not used, as

gain patterns are not nuisance parameters anymore.

In both cases, the derivative of the steering vectors with
respect to DoAs is readily obtained:

∂ār
∂θr

= − ω
c
JL

(
gr � P ḋ(θr) � exp{−ωτ r}

)
∈ CL−1,

where the exponential is taken entry-wise, and P is the L× 2
matrix with rows p`. The case of known omnidirectional gain
patterns is equivalent to assuming g`(θ) = 1,∀θ,∀`.

Similarly, for space shift steering vectors we have

∂µ

∂b̄r
= sr � kr � J

T
M � ar ∈ CLMPQ×M−1.

The following derivative is readily obtained:

∂b̄r
∂θr

= − ω
c
JM

(
∆ḋ(θr) � exp{−ωζr}

)
∈ CM−1,

where ζr ∈ CM is the vector containing entries ζm(θr), and
∆ is the M × 2 matrix with rows δm.

The case of gain pattern diversity: if time, space shift
and gain pattern diversities are available, but not space and
polarization, then expressions are simpler. It is worth detailing
this scenario because it has not been reported in the literature.
In this case, matrix A only contains gains g`r and matrix B
only contains delays δm(θr), and one can prove that(
∂µ

∂sr

)H(
∂µ

∂sk

)
= (bHr bk)(aH

r ak) IQ(
∂µ

∂ar

)H(
∂µ

∂ak

)
= (sHr sk)(bHr bk) IL(

∂µ

∂θr

)H(
∂µ

∂θk

)
= ω2(sHr sk)(aH

r ak)(b∗r � bk)T(ζ̇r� ζ̇k)

The effects of anisotropic gain patterns was addressed in more
detail in a companion paper [32].

D. Derivatives w.r.t. K and its parameters

From (27) and (12), we have [16]

∂µ

∂kr
= sr � I3 � br � ar

∂µ

∂αr
= sr �

∂kr
∂αr

� br � ar

∂µ

∂βr
= sr �

∂kr
∂βr

� br � ar

In the 2D case when elevation ψ = 0, we have

∂kr
∂θr

=

 − sin θr 0
cos θr 0

0 0

 W (αr)w(βr)

∂kr
∂αr

= H(θr)

[
− sinαr cosαr
− cosαr − sinαr

]
w(βr)

∂kr
∂βr

= H(θr)W (αr)

[
− sinβr
 cosβr

]
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