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Wideband multiple diversity tensor array processing
Francesca Raimondi, Rodrigo Cabral Farias, Olivier Michel, Pierre Comon

Abstract—This paper establishes the general tensor model
for wideband array processing including multiple physical di-
versities. A separable coherent focusing operation is proposed
as a pre-processing step in order to ensure the multi-linearity
of the interpolated data. We propose an ALS algorithm to
process tensor data, taking into account the noise correlation
structure introduced by the focusing operation. We show through
computer simulations that the estimation of DoA and polarization
parameters improves existing narrowband tensor processing and
wideband MUSIC. Performance is also compared to Cramér-Rao
bounds of the wideband tensor model.

Index Terms—localization, DoA estimation, interpolation,
wideband, antenna array processing, tensor, MUSIC, High Res-
olution, polarization, CP decomposition

I. INTRODUCTION

Direction of Arrival (DoA) estimation is a central problem
in array signal processing, and in particular in telecommu-
nications, seismology, speech, biomedical engineering, and
astronomy. We are interested in acquisition systems composed
of multiple sensors that receive source signals from differ-
ent directions [1], [2]. In order to estimate DoA, existent
techniques such as beamforming, MUSIC (MUltiple SIgnal
Classification) [3], root-MUSIC [4] and ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques)
[5], take advantage of the space diversity embedded in the
acquisition system. In particular, the time delay of a narrow-
band wave received at a given sensor can be expressed by a
simple multiplication by a complex exponential carrying the
information on the DoA. In addition to the space diversity,
ESPRIT assumes the presence of two identical subarrays,
displaced from each other by a space shift.

The space shift diversity was extended to more than one
displacement through tensor decomposition of narrow-band
waves, through a deterministic approach that allows to separate
and estimate more sources than sensors in each subarray [6].
Tensor analysis requires at least three diversities to allow
a multilinear decomposition1 [7], that guarantees uniqueness
under mild conditions.

Another element of diversity is given by wave polarization,
whenever each sensor has multiple components [8], [9], [10],
[11]. The above mentioned tensor approach was extended to
include polarization diversity in [12], [13], [14], and prop-
agation speed diversity of seismic waves in [15]. A major
advantage of deterministic tensor analysis involving time or
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1This decomposition is often referred to as Canonical Polyadic (CP), and
sometimes as CanDecomp or PARAFAC.

frequency as diversities, lies in its ability to estimate source
waveforms together with DoAs.

MUSIC, ESPRIT and tensor decomposition for array pro-
cessing originally addressed the narrow-band case. In fact, in
wideband, signal subspace and steering matrices vary with
frequency, thus requiring a focusing operation onto the same
reference subspace. This approach, named Coherent Signal
Subspace (CSS), may require an approximate prior estimate
of DoA to form focusing matrices [16], [17], [18], or virtual
arrays obtained by spatial interpolation [19], [20]. The latter
extend MUSIC algorithm to wideband processing for Uniform
Linear Arrays (ULA). To our knowledge, only recently tensor
analysis was extended to process wideband waves for ULAs
in [21], where a spatial interpolation technique was adopted.
For sake of clarity, Table I illustrates the state of the art and
our contributions: rows refer to theoretical approaches, and
columns to physical diversities taken into account.

This paper aims at establishing the general model for high
resolution wideband tensor array processing with multiple
antenna diversities (space, space shift, polarization and spatial
gain patterns), under the assumption of plane waves in the
far field. The multilinear coherent subspace preprocessing,
required in the wideband case, introduces a correlation in
the noise structure. An algorithm for tensor decomposition
taking into account the noise covariance is proposed, and
performance are evaluated via Cramér-Rao Bounds (CRB).

This paper is organized as follows: Section II introduces the
physical model and main issues of wideband array processing;
Section III illustrates the main antenna diversities that can be
exploited in tensor processing; tensor notations and multilinear
decompositions are introduced in Section IV; Section V illus-
trates the effect of wideband coherent processing on tensor
formulation; CRB are computed in Section VI; Section VII
addresses algorithmic issues; Section VIII reports computer
results for the particular case of space shift and polarization
diversities, in comparison with wideband MUSIC and with the
multilinear CRB.

II. FROM NARROW-BAND TO WIDE-BAND

A. Observation model

We consider R radiating sources in the far-field2, sr, 1 ≤
r ≤ R, arriving from directions defined by unit vectors d(θr),
θr being a pair of angles in 3D, or a single angle in 2D. These
sources impinge on an arbitrary array of L sensors located at
positions p` in space, 1 ≤ ` ≤ L. The signal received at the

2This means that the wavefront curvature and dissipation are neglected.
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Time Space Freq. Space
Shift

Gain
Pattern Polar

Vector Sensor MUSIC [3], [22] s, × ×
Vector Sensor MUSIC [3], [9], [10] s, × × ×
WB MUSIC [23], [17], [24], [19], [20], [25] s × ×
WB Vector Sensor MUSIC [26] s × × ×
ESPRIT (M = 2) [5] s, × × ×
WB ESPRIT [18], [27] s × × ×
Tensor ESPRIT [6], [28], [29] × × ×
Vector Sensor CP [12], [13], [14] × × ×
WB Tensor CP [21] ⊗ ⊗ ⊗
Gain Pattern CP ⊗ ⊗ ⊗ ⊗
WB Vector Sensor CP ⊗ ⊗ ⊗

TABLE I
MULTIPLE DIVERSITY IN ARRAY PROCESSING: s = AVERAGE OF THE COVARIANCE MATRIX THROUGH MULTIPLE SNAPSHOTS; WB = WIDEBAND; × =

WHAT EXISTS IN LITERATURE, ⊗ = OUR CONTRIBUTION

v vector: in bold lower case
vi i-th element of v
A matrix: in bold upper case
IL identity matrix of size L× L
ai i-th column of A
ḡ vector g without its first entry
x̃ vector related to a virtual array
Aij {i, j} element of A
AT transpose of A
A∗ complex conjugate of A
AH conjugate transpose of A
A† Moore-Penrose pseudoinverse of A
vTu scalar product between real vectors v and u
v ⊗ u outer (tensor) product between two vectors
A�B Kronecker product between A and B
A�B Hadamard (element-wise) product
‖ · ‖F Frobenius norm
T tensor: in bold calligraphic font
Tijk {i, j, k} element of T

vec{T } vectorization of T
ḋ(θ) derivative ∂d/∂θ

TABLE II
NOTATIONS

`-th sensor at time t can be modeled as:

x`[t] =

R∑
r=1

g`(θr)sr[t− τ`(θr)] + n`[t] (1)

where sr[t] is the signal transmitted by the r-th source,
t ∈ {1, 2, . . . T}, g`(θr) is the sensor gain of the `-th sensor,
assumed to be independent of frequency, and n`[t] is an
additive noise. The delay of arrival τ`(θ) is directly related
to sensor locations and DoA’s via the expression

τ`(θ) = pT` d(θ)/c (2)

c being the wave propagation speed and (T) transposition.
At this stage, it is important to fix a scaling indeterminacy,

present in all blind approaches. Observe that changing the

pair (g`(θr), sr) into (ρg`(θr), sr/ρ), ∀ρ 6= 0, leads to the
same model. So we may fix g1(θ) = 1, ∀θ, without restricting
the generality, which means that the first sensor is treated as
omnidirectional.

Denote by ω the radial frequency, and by x(ω) the Fourier
Transform (FT) of x[t]. In this framework, model (1) can be
equivalently rewritten in the frequency domain:

x`(ω) =

R∑
r=1

g`(θr) e
−ωτ`(θr)sr(ω) + n`(ω) (3)

where  =
√
−1, x`(ω) = F{x`[t]} is the Fourier transform

of x`[t] and g` are a priori unknown real functions unless
otherwise specified, and n`(ω) refers to a circular Gaussian
white noise process at the `-th sensor. The noise processes at
different sensors are considered to be identically distributed
and uncorrelated from one another. Alternatively, in vector
form, (3) becomes

x(ω) = A(ω,θ) s(ω) + n(ω) (4)

where the L × R matrix A(ω,θ) depends on the vector3

of directions of arrival (DoA’s), θ = [θ1, .., θR]T. The r-th
column of A(ω,θ), denoted a(ω, θr) in the remainder, is the
value of the array manifold taken at θ = θr.

To summarize, we assume the following hypotheses:
• the first sensor (` = 1) is taken as origin, so that p1 = 0,

and has a unit gain in all directions, i.e. g1(θ) = 1, ∀θ;
• the sensor gains g`(θ) are real (which is actually

equivalent to assuming that their phase is known) and
frequency-flat;

• sources sr[t] are deterministic;
• the wave propagation speed c does not depend on fre-

quency (i.e. the medium is not dispersive)4.
• noise is circular complex white Gaussian.

B. Virtual arrays

High Resolution (HR) methods are based on a partition of
the observation space into signal and noise subspaces, usually

3In 3D, θ is a R× 2 matrix of angles; it is a R× 1 vector in 2D.
4The principles would actually remain valid for dispersive media provided

the function c(ω) is known.
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via low-rank approximations. The advantage of transforming
the dynamical model (1) into model (3) is that the latter
is formally static for every fixed radial frequency ω, which
makes it easier to define and compute the above-mentioned
subspaces. The drawback is that these subspaces change with
frequency, which raises difficulties in the frame of a wideband
coherent processing. As a consequence, in order to estimate
coherently the DoA’s, it is necessary to first steer them towards
a subspace defined at a reference radial frequency ω0 [17],
[19], [20], [23].

For this purpose, the complex exponential in (3) needs to
become constant, in order to constitute a coherent contribution.
Since sensor gains do not depend on frequency, this steering
operation leads to defining a virtual array for each radial
frequency ω defined by sensor positions p̃`(ω), related to
actual sensor positions p` by:

[ωp̃`(ω)− ω0p`]
Td(θ) ≡ 0, mod 2πc, (5)

where ω0 is fixed. This equation is satisfied if the term within
brackets is orthogonal to d(θr) for every DoA, 1 ≤ r ≤ R;
but this requires a prior knowledge of DoA’s [17]. On the
other hand, a sufficient condition is clearly that p̃`(ω) = ω0

ω p`,
which this time does not depend on θ; this corresponds to the
stretched arrays proposed in [19], [20], [23].

Remark: More generally, if gains depended on frequency,
equation (5) would become

exp{[ωp̃`(ω)− ω0p`]
Td(θ)} =

g`(ω, θ)

g`(ω0, θ)
. (6)

Satisfying this equation would then require prior knowledge
of DoAs. As pointed out in Section II, this case is beyond the
scope of the present paper.

C. Interpolation

Equation (5) defines virtual arrays with identical array
manifolds, but does not provide the signals that would be
measured by the latter. It is hence necessary to devise an
interpolator to compute synthetic measurements. However, to
preserve the separation between noise and signal subspaces, it
is suitable to map a(ω, θ) to the same manifold a(ω0, θ) via
a multiplication by some L×L matrix U(ω, ω0, θ), which we
call focusing matrix. It turns out that this is possible exactly
only for at most L distinct values of θ. There are thus two
possibilities.
• Either the DoA’s are unknown, and a focusing matrix
U(ω, ω0, θ) can be computed so as to satisfy the follow-
ing relationship only approximately [23]:

U(ω, ω0,Θk)a(ω, θ) ≈ a(ω0, θ) (7)

in an angular sector θ ∈ Θk of limited extent, where
ω0 is a fixed reference frequency. They can be obtained
by solving in the Least Squares (LS) sense the linear
system U(ω, ω0,Θk)A(ω,Θk) ≈ A(ωo,Θk), where Θk

contains I discrete angular values θi, 1 ≤ i ≤ I , and
matrix A(ω,Θk) is built with the corresponding columns
a(ω, θi); see [30] for further details on how to assess the
accuracy of an array interpolator.

• Or the R DoA’s are approximately known in advance,
R ≤ L, and it is possible to satisfy (7) exactly for these
approximate DoA’s; see [17] for more details.

D. Example: the covariance matrix approach

For the sake of completeness, we shall now describe the
model described in [23], [17], even if it is not used in subse-
quent sections. In the state of the art [23], [17], the previously
explained interpolation method is used as a preprocessing
for subspace methods (such as MUSIC), in order to solve
the problem of coherently averaging the estimated covariance
matrices. In fact, this model is based on second order moments
whereas a deterministic approach will be described along with
a multi-linear interpolation procedure in Section IV. This is
illustrated below, as the covariance matrix R = E[xxH]
depends on the frequency:

R(ω) = A(ω,θ)Rs(ω)A(ω,θ)H +Rn(ω) (8)

As a consequence, in order to estimate the DoA’s by a coherent
average over different values of ω, it is necessary to first steer
all estimated R̂(ω) towards a subspace defined at a reference
radial frequency ω0 [17], [19], [20], [23]. By doing so, in every
angular sector Θk we can use contributions of all frequencies
to build an averaged estimate of the covariance matrix:

R̄(Θk) =
∑
ω

U(ω, ω0,Θk)x(ω)x(ω)HU(ω, ω0,Θk)H (9)

From (4) and (7) we obtain

R̄(Θk) ≈
∑
ω

A(ω0,θ)Rs(ω)A(ω0,θ)H + R̄n(ω)

where Rs(ω) denotes the covariance of the sources about
radial frequency ω and R̄n(ω) the noise covariance trans-
formed by matrix U(ω, ω0,Θk) in the considered sector, i.e.
θ ∈ Θk. This summation corresponds to averaging observa-
tions received on virtual arrays, each being a stretched or
shrunk version of a reference array at radial frequency ω0.

III. MULTIPLE DIVERSITIES

Direction of arrival estimation can be significantly improved
if other modalities are taken into account into the model. In
array processing, space shift and polarization are the most
widely studied diversities (in addition to time, frequency and
space). In this section we establish all relevant relations for
these diversities in a narrowband around a radial frequency ω.

A. Space shift and gain pattern diversity

Space shift diversity was initially exploited by ESPRIT
algorithm for two subarrays deduced from each other by a
translation [5]. It has been extended to more than two subar-
rays in [6] giving rise to a third order tensor decomposition for
array processing. The diversities involved are space, time, and
space shift. It is also possible to consider diversities induced
by polarized sensors, and by anisotropic sensor gains. We refer
to the latter as gain pattern diversity.

Denote δm the location of the m-th subarray. We may take
the first subarray as origin, so that δ1 = 0. In addition, the
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gain of sensor ` is assumed to be the same for any subarray
m, and is given by g`(θ).

Let ζm(θ) = δTmd(θ)/c be the delay of arrival on subarray
m, and denote by F{·} the Fourier Transform operator applied
to received signals in the time window t ∈ [0, T ]. Then, in
presence of additive noise N :

X`m(ω) =M`m(ω) +N`m(ω)

M`m(ω) =

R∑
r=1

A`r(ω)Bmr(ω)Sr(ω)

with


X`m(ω) = F{x`m[t]}
A`r(ω) = g`(θr) e

−ωτ`(θr)

Bmr(ω) = e−ωζm(θr)

Sr(ω) = F{sr[t]}
(10)

In the remainder, since received signals are assumed real,
we consider only positive frequencies (without any loss of
information). After discretization, we have:

X`m(ωq) =

R∑
r=1

A`r(ωq)Bmr(ωq)Sr(ωq) +N`m(ωq) (11)

where frequency 0 < ωmin ≤ ωq ≤ ωmax < π, and 1 ≤ q ≤
Q. Let’s look at two relevant particular cases.

1) Diversity of space shift only: In that case, g`(θ) = 1 ∀θ,
and we end up with the model described in [6].

2) Diversity of gain pattern only: This is the particular case
where sensors in each sub-array are located at the same place,
and differ only through their gain pattern, i.e. τ`(θ) = 0 and
A`r(ω) = g`(θr). In Appendix A-C, we shall briefly go back
to this rarely addressed case.

B. Polarization diversity

If we have at our disposal a single antenna (m = 1) array
of polarized elements, each capable to record 3 orthogonal
components, the observation model is similar to (10), if we
omit measurement noise:

M`p(ωq) =

R∑
r=1

A`r(ωq)Kpr Sr(ωq), 1 ≤ p ≤ P = 3 (12)

where the R columns of the 3×R factor matrix K are detailed
in [31], [7]:

kr = H(θr)W (αr)w(βr)

where the two angles αr ∈ (−π/2, π/2] and βr ∈
[−π/4, π/4] characterize the polarization of the r-th source
transverse wave, and

H(θr) =

 − sinφr − cosφr sinψr
cosφr − sinφr sinψr

0 cosψr


W (αr) =

[
cosαr sinαr
− sinαr cosαr

]
(13)

w(βr) =

[
cosβr
 sinβr

]
where it is reminded that θr = (φr, ψr). Without restricting
too much the generality, we assume that polarization does not

depend on ω over the bandwidth of interest. Furthermore, for
the sake of clarity, only transverse waves are considered. The
main difference between (11) and (12) is that the second factor
matrix, K, now depends on extraneous unknown angular
parameters (αr, βr), instead of the subarray space shifts δm.

C. All together

It is clear that the afore mentioned diversities can be
modeled all together, at the price of an increased notational
complexity. If frequency, space, space shift and pattern, and
polarization diversities are simultaneously considered, the data
measurements depend on 4 variables, the data array is of size
L×M×P×Q, with P = 3, and involves 4 unknown matrices
to identify. Therefore, discretizing and merging models (11)
and (12) yield

X`mpq =

R∑
r=1

A`r(ωq)Bmr(ωq)Kpr Sqr +N`mpq (14)

Traditional subspace processing usually breaks the multi-
dimensionality of the multiple diversity model through a
vectorization of the entire array manifold (including space,
polarization and/or space shift) [3].

The tensor approach through CP decomposition fully takes
advantage of the multilinearity of a model with at least three
diversities [7]. However, in order to have a totally multilinear
model in (14), we need to remove the dependency on ωq from
factor matrices A and B, e.g. through a bilinear interpolation.
This matter will be addressed in Section V, while tensor model
and notations will be discussed in Section IV.

IV. TENSOR DECOMPOSITION

A. Canonical Polyadic decomposition

The tensor model allows to express a structured phe-
nomenon, through a multidimensional array of order D, by
finite sums and products of simpler constituents [7]. A decom-
posable D-way tensor D can be defined as the outer product
of D vectors: D = a ⊗ b ⊗ . . . ⊗ s, where a ∈ CL, b ∈
CM , . . . , s ∈ CQ. Any order-D tensor admits a decomposition
into a sum of decomposable tensors

M =

R∑
r=1

λr Dr (15)

where coefficients λr can always be chosen to be real positive,
and decomposable tensors Dr to have unit norm, i.e. the
product ‖a‖ ‖b‖ . . . ‖s‖ = 1, but other choices are possible
(cf. Section IV-B). The minimal value of R such that this
decomposition holds is called the tensor rank. When R is the
rank, decomposition (15) is called Canonical-Polyadic (CP);
if R is not too large, this decomposition is unique; see [32],
[33] and references therein. This is the main motivation in
resorting to tensors.

In practice, we admit that observations X , related to the
model M, are corrupted by an additive noise N . In other
words, the observation model becomes X = M + N , and
the goal is to fit (15) with the data. The fact that the set of
rank-R tensors is not closed when R > 1 may raise difficulties,
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which are out of the scope of the present paper; we refer to
[7], [29] for further details.

B. CP factors, normalisation and scaling

Consider the case of a tensor of order D = 4 to fix the
ideas, which is sufficient for our purposes. Once the bases of
the linear spaces involved are fixed, a fourth order tensor M is
defined by its coordinates, denoted M`mpq . If its dimensions
are L×M ×P ×Q, then the CP decomposition (15) becomes

M =

R∑
r=1

λr ar ⊗ br ⊗ kr ⊗ sr (16)

and can be rewritten in terms of array of coordinates:

M`mpq =

R∑
r=1

λr A`rBmrKprSqr

where matrices A, B, K and S, are of dimension L × R,
M×R, P ×R and Q×R, respectively. For practical purposes
and without restricting the generality, we have preferred to
impose the first row of matrices A and B to be formed of
ones (in fact, as justified in sections II-A and III-A, p1 = 0,
δ1 = 0 and g1(θ) = 1), unit norm columns in matrix K, and
to pull the remaining R×R scaling matrix, Diag{λrA1rB1r},
into matrix S. This choice permits to compute performance
bounds on the retrieval of CP factors more easily. To conclude,
in the rest of the paper, we shall use a CP decomposition model
of the form:

X`mpq =

R∑
r=1

A`rBmrKprSqr +N`mpq (17)

with the normalizations mentioned above.

V. TENSOR WIDEBAND PROCESSING

In this section, we aim at exploiting model (11) for sev-
eral angular frequencies. As mentioned in Section III-C, the
difficulty comes from the fact that model (11) is obviously
not multi-linear w.r.t. ωq , because exponentials in A(ωq) and
B(ωq) are a function of frequency.

A. Virtual arrays

To face this problem, the idea is to build virtual arrays,
as described in (7); but we have now a second condition to
satisfy, in addition to (5):

[ωqδ̃m(ωq)− ω0δm]Td(θ) ≡ 0, mod 2πc (18)

It is clear that it is sufficient to define the location of virtual
sensors by:

p̃`(ωq) =
ω0

ωq
p`, δ̃m(ωq) =

ω0

ωq
δm (19)

to satisfy both (5) and (18). With these virtual arrays, one
can associate time delays τ̃`(θ) = p̃T` d(θ) and ζ̃m(θ) =

δ̃
T

md(θ), and corresponding steering vectors ã(ωq, θ) =
exp{−ωqτ̃ (θ)} and b̃(ωq, θ) = exp{−ωqζ̃(θ)}. Once vir-
tual arrays are defined, it is necessary to compute the virtual
data these array would receive, and this is done by interpola-
tion as explained in the two next sections.

B. Bilinear transform

The space is first partitioned in K angular sectors of limited
extent, Θk, 1 ≤ k ≤ K. Then each sector is discretized in I
angular values: Θk = {θk1, . . . , θkI}. In each sector Θk and
for every discretized frequency ωq , we define matrices A and
B of size L× I and M × I , respectively:

A(ωq,Θk) = [a(ωq, θk1), . . . ,a(ωq, θkI)]

B(ωq,Θk) = [b(ωq, θk1), . . . , b(ωq, θkI)]

We also build Ã and B̃ in the same manner with vectors
ã(ωq, θki) and b̃(ωq, θki) respectively. For a fixed reference
frequency ω0 (generally chosen to be inside of the band [20]),
two focusing matrix families can then be defined by solving
for square matrices U and V , of respective dimensions L×L
and M ×M , the linear systems below in the Least Squares
(LS) sense:

U(ωq, ω0,Θk)A(ωq,Θk) ≈ Ã(ω0,Θk) (20)

V (ωq, ω0,Θk)B(ωq,Θk) ≈ B̃(ω0,Θk) (21)

for every angular sector Θk and every frequency ωq . In what
follows we only consider one angular sector Θ, and we hence
refer to U(ωq, ω0,Θ) and V (ωq, ω0,Θ) with U q and V q

respectively.

C. Bilinear interpolation

Measurements recorded on actual arrays with sensors lo-
cated at p` + δm at frequency ωq are interpolated to yield
virtual measurements recorded by sensors located at p̃` + δ̃m
as defined in (19). More precisely, applying the bilinear
interpolation (20-21) to model (11) leads to

M̃`mq ≈
R∑
r=1

Ã`r(ω0)B̃mr(ω0)Sqr (22)

where the slice M̃ q of tensor M̃ is obtained through the
bilinear transformation of slice M q: M̃ q = U qM qV

T
q . Now,

M̃ may be seen as a tensor of order 3, since frequency ωq
affects only the third mode, and Equation (22) is actually a
CP decomposition model.

In the remainder of this Section, only space, space-shift
and polarization will be addressed (this means that sensors
are assumed omnidirectional: gl(θ) = 1,∀l,∀θ).

However, a new difficulty appears, due to the fact that the
bilinear transformation affects the color of the noise. This must
be taken into account into the CP identification algorithm (cf.
Section VII) and the computation of the performance bounds
(cf. Section VI).

D. Noise correlation induced by interpolation

The observation model (22) can be expressed through Q
tensor slices, 1 ≤ q ≤ Q:

X̃q = M̃ q + Ñ q

where Ñ q is colored by the transform:

Ñ q = U qN qV
T
q (23)
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Yet from [34], we have vec{UNV T} = (V � U) vecN .
This leads to the following noise vectorization:

vec Ñq =
(
V q �U q

)
vecNq

Hence, for every frequency ωq , the noise vector vec Ñq is
complex Gaussian circular with covariance Σq = σ2V qV

H
q �

U qU
H
q . If we stack all vectors vec Ñq in a single vector ñ,

then the latter has a covariance Σ(1) that is block-diagonal5

with diagonal blocks Σq:

Σ(1) =

Σ1 0 0

0
. . . 0

0 0 ΣQ

 (24)

This change in covariance structure will be taken into account
for calculating the Fisher Information matrix (FIM) in Section
VI, and into the CP identification algorithm in Section VII.

E. Interpolation in the presence of polarization

If we consider as second diversity the polarization K,
since it does not depend on frequency anymore, the bilinear
transformation becomes M̃ q = U qM qI

T
P , yielding

M̃`pq ≈
R∑
r=1

Ã`r(ω0)KprSqr (25)

Moreover, the diagonal blocks of vectorized noise covariance
are simplified to Σq = σ2 IP �U qU

H
q .

If we include all the diversities as in model (14), then inter-
polation is given by the following multi-linear transformation:

M̃q = (U q ⊗ V q ⊗ IP )Mq

where index q may be seen as denoting the q-th slice of the
fourth order tensor:

M̃`mpq ≈
R∑
r=1

Ã`r(ω0)B̃mr(ω0)KprSqr (26)

Thus, the noise covariance of the q-th vectorized slice becomes
Σq = σ2 IP � V qV

H
q �U qU

H
q .

VI. IDENTIFIABILITY AND CRAMÉR-RAO BOUNDS

In order to assess the performance of the proposed approach,
we can compare obtained parameter errors with the CRB, e.g.
for DoA and polarization parameters. The CRB, which is the
lower bound on the covariance R of any unbiased estimator,
is given by the inverse of the FIM; in other words6, R �
CRB = F−1. The evaluation of the FIM requires the partial
derivatives of the log-likelihood w.r.t. unknown parameters,
given the tensor model previously described. In what follows
we compute these derivatives and the general expression of
the FIM.

For simplicity, we assume from now on that sources and
antennas are coplanar, which permits to parameterize Direc-
tions of Arrival (DoA’s) by a single angle, θr = φr. Vectors

5Notice that Σ(1) also corresponds to the covariance matrix of the
vectorization of the 1-mode tensor unfolding of N , vec{N (1)}.

6This inequality means that matrix R− F−1 is semi-definite positive.

p` and d(θ) are thus in R2, and we shall use the notation
p` = [p`1, p`2]T and d(θ) = [sin θ, cos θ]T. The reasoning
would be the same in 3D but with an increased notation
complexity.

A. Likelihood

First, the multi-dimensional L×M×P×Q array X is stored
in a vector x of dimension LMPQ, following a bijective map:
x = vecX . We adopt the usual definition [34] where the vec
operation takes indices in lexicographical order. Then we have
the identity [34], [35]: vec{abT} = b � a, for any pair of
vectors (a, b). More generally:

vec{a⊗ b⊗ c} = c� b� a. (27)

Thus, applying the vec operator to equation (16) leads to:

x =

R∑
r=1

sr � kr � br � ar + n (28)

with x = vecX and n = vecN . Now since the noise vector
n is circular Gaussian, with zero mean and covariance Σ, the
log-likelihood then takes the form, up to a constant additive
term:

Υ(θ,α,β, s) = −(x− µ)H Σ−1 (z − µ) (29)

where µ =
∑R
r=1 sr � kr � br � ar. We shall assume

an isotropic measurement noise, i.e. Σ = σ2I , but as we
explained in Section V, this covariance will be affected by
wideband interpolation.

B. Fisher Information matrix (FIM)

When computing the Fisher information matrix (FIM) with
respect to complex parameters, it is also necessary to include
the complex conjugate parameter, in order to avoid a loss in
information [36]. This means just appending ∂f/∂z∗, which
is nothing else but (∂f/∂z)∗. Consequently, for each source,
there are three real parameters, θr, αr and βr, and two complex
parameters, sr and s∗r . In addition to these, the (L − 1)R
entries g`r = g`(θr), 2 ≤ ` ≤ L, are real nuisance parameters
requiring to be estimated. For every r, we store them in a
vector ḡr of size L−1 (obtained by just deleting7 the first entry
of gr). In turn, we stack all these vectors ḡr in a (L− 1)R-
dimensional vector denoted by γ.

Now real and complex parameters must be treated differ-
ently [36]. With this goal, define v = [θT,αT,βT,γT]T,
a real parameter vector of dimension (L + 2)R, and ξ =
[sT1 , . . . , s

T
R]T, a complex parameter vector of size RT . Then,

from (29), the FIM contains nine blocks [37]:

F =
1

σ2

 2<{G11} G12 G∗12

GH
12 G22 0

GT
12 0 G∗22

 (30)

7As stated in Section II-A, the first entry of gr is equal to 1, ∀r, and is
hence not unknown.
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where G11 is related to real parameters, and G22 is related to
complex ones. More precisely, blocks Gij are defined by:

G11 =

(
∂µ

∂v

)H

Σ−1

(
∂µ

∂v

)
G22 =

(
∂µ

∂ξ

)H

Σ−1

(
∂µ

∂ξ

)
G12 =

(
∂µ

∂v

)H

Σ−1

(
∂µ

∂ξ

)
where Σ is the covariance of noise n. The total dimension
of the FIM F is hence R(L + 2 + 2T ) if all diversities are
present. With these definitions, the covariance matrix R of any
unbiased estimator of [vT, ξT, ξH] satisfies R � F−1.

Note that in G11, we obtain the derivative w.r.t. DoA using
the chain rule below:

∂µ

∂θr
=

∂µ

∂ār

∂ār
∂θr

+
∂µ

∂b̄r

∂b̄r
∂θr

+
∂µ

∂kr

∂kr
∂θr

. (31)

Scalar factor 2 in (30) is justified by (40), because chain
rules used to calculate G11 involve complex variables when
computing real derivatives. The derivatives required to evaluate
(30) and (31) are given in Appendix A.

VII. ALGORITHMS

The goal of the two remaining sections is to illustrate the
performance of tensor wideband processing and to compare it
to CRB. The ALSCOLOR algorithm described in this section
is not meant to be a major contribution, even if its originality is
to take into account the noise covariance structure. The design
of efficient algorithms is indeed out of the scope of the present
paper.

Tensor wideband processing will be executed in two stages:
we first recover factor matrices through CP model fitting
(assuming they are uncoupled), and then estimate DoA’s,
pattern diversities or polarization parameters from estimated
factor matrices. A refinement could also be executed as a
post-processing, e.g. by a local descent maximizing the log-
likelihood in (29), but it generally brings negligible improve-
ment. Hence it will not be reported in this paper. We first
describe both steps of this procedure, in their respective
orders: retrieval of the CP factors taking into account the
noise correlation structure, and the estimation of DoA’s and
polarization parameters.

A. Estimation of factor matrices

CP fitting corresponds to minimizing the tensor approxima-
tion error for model (22). Notice that similar considerations
can be made for models (25) and (26). Supposing that the
interpolation error is negligible compared to the error intro-
duced by measurement noise, we are interested in minimizing

the following cost function with respect to ãr, b̃r and sr:

Υ =
1

σ2

∥∥∥∥∥vec{X̃(1)} −
R∑
r=1

sr � b̃r � ãr

∥∥∥∥∥
2

Σ(1)

=

=
1

σ2

∥∥∥∥∥vec{X̃(2)} −
R∑
r=1

sr � ãr � b̃r

∥∥∥∥∥
2

P 12Σ(1)P
T
12

=

=
1

σ2

∥∥∥∥∥vec{X̃(3)} −
R∑
r=1

b̃r � ãr � sr

∥∥∥∥∥
2

P 13Σ(1)P
T
13

(32)
where we define the weighted matrix norm ‖X‖Σ =√

trace{XHΣ−1X}. Expression X(i) refers to the i-mode
unfolding of tensor X . Notice that Σ(1) is the covariance
matrix of x̃, the vectorization of the first unfolding X̃(1), and
permutation matrix P ij denotes the transfer matrix from the
covariance of unfolding i to that of unfolding j.

The above mentioned minimization corresponds to maxi-
mum likelihood estimation and can be performed in several
ways: gradient descent, conjugate gradient, Newton methods
and coordinate descent methods [38]. For ease of implemen-
tation, we choose to minimize (32) using block coordinate de-
scent, with blocks corresponding to factor matrices themselves.
This is commonly known as Alternating Least Squares (ALS)
[38], since each block coordinate update corresponds to the
solution of a least squares problem. The proposed algorithm
is detailed in Alg. 1, that we name ALSCOLOR.

B. Estimation of parameters

Once column vectors âr and/or b̂r are recovered from
the tensor approximation algorithm, we can estimate DoA θr
through an exhaustive search within the considered angular
sector Θ and/or polarization parameters βr and/or αr.

1) Space shift diversity: if there are only space, space shift
and frequency diversities (cf VIII-A), DoA’s are estimated as
follows:

θ̂r = arg min
θ∈Θi

[
(âr − ãr(θ))H(âr − ãr(θ))

]
+
[
(b̂r − b̃r(θ))H(b̂r − b̃r(θ))

] (33)

Furthermore, we can integrate the approximate knowledge
on the covariance of estimators âr and b̂r into the cost func-
tion. This knowledge can be provided, at least asymptotically
at high Signal to Noise Ratio (SNR), by the CRB, thus giving
the following estimators for the DoA:

θ̂OWr = arg min
θ∈Θi

[
(âr − ãr(θ))H Σ−1

âr
(âr − ãr(θ))

]
+
[
(b̂r − b̃r(θ))H Σ−1

b̂r
(b̂r − b̃r(θ))

] (34)

where Σâr
= CRB(âr) and Σb̂r

= CRB(b̂r), and OW stands
for optimal weighting. See [29], [28] for further details on the
computation of CRB for factor matrices.
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Algorithm 1. ALSCOLOR : ALS for correlated noise

1: Inputs:

• Â
0
, B̂

0
, Ŝ

0

• Covariance matrix of the vectorized tensor Σ(1), given
by (24).

• Interpolated data tensor X̃
2: Initialize with Â

0
, B̂

0
, Ŝ

0

3: While convergence criterion not met, do k := k + 1

M
k
SB = (Ŝ

k
� B̂

k
) � IL

âk =
(
Mk

SB

H
Σ(1)M

k
SB

)−1

Mk
SB

H
Σ(1)X̃(1)

Similar for b̂
k

and ŝk, with Σ(2) = P 12Σ(1)P
T
12 and

Σ(3) = P 13Σ(1)P
T
13.

Notice that 
âk = vec{Â

k
}

b̂
k

= vec{B̂
k
}

ŝk = vec{Ŝ
k
}

4: Unvectorize estimates: Â = unvec{âk}, B̂ = unvec{b̂
k
}

and Ŝ = unvec{ŝk}; normalize columns of Â and B̂ by
their first element: {

âr := âr/Â1r

b̂r := b̂r/B̂1r

and normalize Ŝ accordingly: ŝr := Â1rB̂1r ŝr.
NB: When dealing with model (25), where the third

diversity is given by polarization instead of space-shift,
B is replaced by K is the steps above, and normalization
is executed as: 

âr := âr/Â1r

k̂r := k̂r/ ‖ k̂r ‖
ŝr := Â1r ‖ k̂r ‖ ŝr

5: End

2) Polarization diversity: If there are only space, polariza-
tion and frequency diversities (cf VIII-A), we can also estimate
polarization parameters. For one single polarization parameter
βr, we perform an exhaustive search over a 2D grid of DoA
θ ∈ Θ and polarization angles β ∈ [−π/4, π/4]:

(θ̂r, β̂r) = arg min
θ∈Θi,β∈[−π/4,π/4]

[
(âr − ãr(θ))H(âr − ãr(θ))

]
+
[
(k̂r − k̃r(θ, β))H(k̂r − k̃r(θ, β))

]
(35)

Analogously, we can also integrate weighting matrices into
the cost function:

(θ̂OWr , β̂OWr ) =

= arg min
θ∈Θi,β∈[−π/4,π/4]

[
(âr − ãr(θ))H Σ−1

âr
(âr − ãr(θ))

]
+
[
(k̂r − k̃r(θ, β))H Σ−1

k̂r
(k̂r − k̃r(θ, β))

]
(36)

where Σâr
= CRB(âr) and Σk̂r

= CRB(k̂r).
Remark: the above mentioned minimization procedures are

performed in a limited domain: θ ∈ Θ, β ∈ [−π/4, π/4]. In
order to prevent this search from becoming too costly, we
apply an iterative progressive refinement of the grid, where
each iteration is a zoomed version of the previous one.

VIII. COMPUTER RESULTS

This Section is meant to illustrate the advantage of wide-
band tensor processing for the problem of DoA and/or polar-
ization estimation.

Monte Carlo simulations make use of multiple diversities,
throughout the Section (in addition to space and frequency):

1) VIII-A: space shifts of the same subarray described in
Subsection III-A.

2) VIII-B: polarization diversity described in subsection
III-B.

Impinging sources are coplanar with respect to the array:
only azimuth is to be estimated, and not elevation, without
any loss of generality. We simulated R = 2 sources, at
sampling frequency fs = 1kHz, for an observation time
of 64ms and propagating at c = 1800m/s, which is the
propagation speed of seismic S-waves through ice [15]. Hence,
T = 64 time samples are available. Sources in time domain
are white Gaussian processes with unit variance. The number
of working frequency bins is Q = 14 (within the selected
frequency range from fmin = 0.25 fs to fmax = 0.45 fs).
As for the distance dij between two neighboring sensors
(` = i and ` = j) of the same subarray, we set dij ≤ λ0/2
where λ0 is the reference wavelength, λ0 = 2πc/ω0. The
reference frequency f0 = ω0/2π is chosen to be the central bin
f0 = (fmin+fmax)/2 = 0.35fs. Correlation between sources,
when present, is ρ = 0.9. Wideband processing is performed
in a single sector Θ, assuming interesting sectors (i.e. sectors
containing most of the signal power) have been previously
detected through a former low resolution beamforming tech-
nique. Former detection of relevant sectors is beyond the
scope of this paper and can be found in the literature [1],
[2]. Interpolation is then performed within the angular sector
Θ = [0, 25◦], with a discretization of 0.1◦.

In order to understand the relevance of tensor wideband
processing, we also present a narrowband alternative for
comparison (referred to as NB Tensor CP): received signals are
filtered around central frequency f0 = ω0/2π with narrowband
filter bandwidth BW = 0.015fs, and then directly processed
through tensor CP approximation [6], [29]. Estimation ef-
ficiency is also evaluated in comparison to the wideband
MUSIC approach [17], and to wideband multilinear CRB
computed in Section VI. The performance criterion is the
relative total Mean Square Error (MSE) on the DoA’s and,
whenever present, polarization ellipticity angles:{

MSE(θ) = 1
π2

1
NR

∑N
n=1

∑R
r=1(θ̂rn − θr)2

MSE(β) = 1
π2

1
NR

∑N
n=1

∑R
r=1(β̂rn − βr)2

(37)

where θ̂rn and β̂rn are the estimated DoA and ellipticity angle
respectively of source r in the n-th Monte-Carlo trial, N =
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Fig. 1. Sensor position matrix

1000 being the number of trials. As in [29], [28], the SNR
definition below is assumed:

SNR = 10 log10

E
[
xHx

]
E [nHn]

= 10 log10

‖ x ‖22
LMPQσ2

n

(38)

Estimation algorithms evaluated herein are the following:
1) NB-ALS: standard narrowband ALS in time domain as in

[6], [29], after narrowband filtering around f0, and simple
parameter estimation, in that parameters are estimated
through (33) and (35).

2) WB-ALS: WB preprocessing and standard ALS in fre-
quency domain not taking into account the correlation
structure of noise, and simple DoA estimation through
(33) and (35).

3) WB-ALSCOLOR: WB preprocessing and ALS Alg. 1 for
correlated noise, and simple DoA estimation through (33)
and (35).

4) WB-OW-ALSCOLOR: WB preprocessing and ALS Alg. 1
for correlated noise and Optimally Weighed (OW) DoA
estimation, in that parameters are estimated through (34)
and (36).

5) WB-MUSIC with covariance matrix expressed in (9) and,
for polarized sensors, WB vector MUSIC, where the array
manifold takes into account wave polarization parameters.

Notice that WB preprocessing refers to the multilinear inter-
polation described in Section V.

A. Wideband and space shift

As described in Section III-A, the same sub-array is re-
peated in space through M translations (cf. Fig. 1):

1) M = 5 sub-arrays;
2) each sub-array is a square 2D array of L = 4 sensors;
3) the distance between two neighboring sensors is λ0/2;
4) the distance between two neighboring sub-arrays is ≈

4 ∗ λ0/2.
Interpolation of the data tensor is bilinear, which means

it is performed for matrices A and B separately, as de-
scribed in subsection V-B. Therefore, both sensor positions
in P = [p1, . . . ,pL] and space shifts in ∆ = [δ1, . . . , δM ]

64 128 256 512 1024 204810−8

10−7

10−6

10−5

10−4

Sample size (number of time samples)

M
SE

[r
ad

2 ]

10 dB
20 dB
40 dB

Fig. 2. MSE vs T - Narrowband tensor ESPRIT

need to be known, and DoA can be estimated both from
A and B. On the other hand, the linear interpolation of
wideband MUSIC is performed on the global 2×LM matrix
P tot = [P + δ1, . . . ,P + δM ] of the whole acquisition
system (cf. Fig. 1), without taking into account the bilinearity
of the tensor model.

Fig. 2 shows the dependence of the narrowband tensor CP
method on the number of available time samples T : the MSE
drastically drops for increasing data samples, because a larger
data window allows a narrowband filtering of higher quality. In
what follows, we fix the number of time sample to T = 64: we
expect then that narrowband tensor CP will show a saturation
starting from a certain SNR.

Fig. 3a shows the MSE on DoA estimation with respect
to the SNR when R = 2 uncorrelated sources arrive from
angles θ1 = 5◦ and θ1 = 20◦ respectively; Fig. 3b refers to
ρ = 0.9 correlation between sources. ALSCOLOR (i.e. Alg.
1) significantly improves the standard ALS, since it takes into
account the noise correlation structure introduced by interpola-
tion. The reliability information contained in the CRB optimal
weight (OW) on factor vectors also helps the estimation
performance. In the present experimental conditions, tensor
methods outperform both MUSIC and narrowband CP. If the
sources are correlated, the performance of all the algorithms
slightly deteriorates correspondingly, and and the gap w.r.t. the
CRB increases (cf. Fig. 3b).

B. Wideband and polarization

Impinging signals are then supposed to be elliptically polar-
ized seismic sources, recorded by one three-component (3C)
sensor array, or vector-sensor array as defined in [9] (cf. Fig.
4). We assume:

1) an array of L = 5 sensors;
2) the distance between two sensors is ≈ λ/2;
3) Rayleigh waves (coplanar with the array), α = 0, β 6=

0. In particular, β1 = −20◦, β2 = 10◦. Therefore, only
P = 2 polarization components out of three are active.

Interpolation is linear, only for matrix A, since polarization
factor matrix K is independent from frequency. We compare
tensor methods with wideband scalar MUSIC (an incoherent
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Fig. 4. 3C sensor position matrix (polarization diversity)

average of P covariances), and wideband vector MUSIC,
through a coherently averaged covariance matrix of size
PL×PL. The overall performance of the compared algorithms
are similar to the space-shift case of Section VIII-A (cf. Fig.
5a for DoA and Fig. 5b for polarization estimation). However,
the gain granted by CRB optimal weight information (OW) is
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Fig. 5. MSE vs SNR - polarization diversity - seismic Rayleigh waves

less significant, especially for β.

IX. CONCLUSION

The crucial difficulty of the tensor wideband approach stems
from the need to focus every frequency contribution onto the
same subspace. We show that multi-linear interpolation can
solve this issue: it allows to have a multi-linear model and thus
to apply tensor decomposition techniques to wideband data. In
simulations, both with space shift diversity and polarization
diversity, the proposed approach improves narrowband tensor
processing and outperforms traditional subspace methods such
as wideband MUSIC. We also show that, in addition to space
and frequency, gain pattern or polarization can be used instead
of space shift diversity.
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APPENDIX A
DERIVATIVES REQUIRED FOR THE FIM

In order to evaluate the derivatives required for the compu-
tation of the FIM, and consequently for the CRB, we have to
introduce the concept of complex derivatives.

A. Complex derivatives

A real function of a complex variable is never holomorphic,
unless it is constant [39]. It is hence necessary to specify which
convention is assumed. Even if a convention has been proposed
much earlier in [39], we assume the definition proposed in [36]
since it is now more widely used. Let f(z) be a real function
from CP to RN . Its complex derivative with respect to z ∈ CP
is defined by:

∂f

∂z
=

1

2

∂f

∂x
− 

2

∂f

∂y
(39)

where x and y denote the real and imaginary parts of z,
respectively. This definition is consistent with [36], [29], [28].
This derivative is stored in a complex N×P matrix, regardless
of the fact that f and z are row or column vectors, which
allows easy-writing chain rules of the form: ∂f∂z = ∂f

∂a
∂a
∂z with

compatible matrix sizes.
Next, it is often convenient to compute some derivatives

by the chain rule, which means that derivatives of a complex
quantity w.r.t. a complex variable are needed. It turns out that
quantities involved are holomorphic, so that this differential is
meant in the usual sense of complex analysis.

If a real function f is to be derived w.r.t. a real variable θ,
but using a chain rule involving a complex variable z, then for
consistency with (39) the following relation must apply [36],
[29], [14]:

∂f

∂θ
= 2<

{
∂f

∂z

∂z

∂θ

}
(40)

In what follows, we calculate the derivatives required for
the evaluation of the FIM in (30).

B. Derivative w.r.t. S

Matrices A and B depend on angles of arrival θr, whereas
K depends on angles8 (θr, αr, βr), 1 ≤ r ≤ R. Let’s start
with matrix S, which is unconstrained. The source signals are
indeed treated as deterministic parameters, which allows to
extract them. The derivative w.r.t sr is [29]:

∂µ

∂sr
= IQ � kr � br � ar ∈ CLMKQ×Q (41)

C. Derivative w.r.t. A and B, and their parameters

Since the first row of A and B contains only ones, only the
remaining rows need to be estimated. The submatrices formed
of remaining rows are denoted by A and B, and their columns
by ār and b̄r, respectively. In other words, A = JLA where
JL is the L−1×L line-selection matrix JL = [0, IL−1]. This

8In a 3D space, θr = (φr, ψr) since two angles are necessary. In a 2D
space, we shall just use notation θr .

is necessary to reduce the size of the FIM (otherwise it would
be always rank deficient). We have:

∂µ

∂ār
= sr � kr � br � J

T
L ∈ CLMKQ×L−1

Now, since functions g`(θ) are unknown, but needed only at
R points θr, g`r = g`(θr) are treated as extraneous fixed
nuisance (unknown) parameters; this approach avoids the need
for derivatives ∂g`(θ)/∂θ. For convenience, we denote by gr
the L-dimensional vector with entries g`(θr), 1 ≤ ` ≤ L, and
ḡr the vector obtained by removing the first entry of gr (which
is equal to 1 by definition). The following derivatives can be
readily obtained:

∂ār
∂θr

= − ω
c
JL

(
gr � P ḋ(θr) � exp{−ωτ (θr)}

)
∂ār
∂ḡr

= JL exp{−ωτ (θr)}JT
L ∈ CL−1×L−1

where τ (θr) is the L-dimensional vector containing entries
τ`(θr), and P is the 2 × L matrix with columns p`, in
accordance with notations summarized in Table II.

Similarly, we have:

∂µ

∂b̄r
= sr � kr � J

T
M � ar ∈ CLMKQ×M−1

Denote by ∆ the matrix with M columns defined by ∆ =
[δ1, . . . , δM ]. The following derivative is a column vector with
M− 1 entries:

∂b̄r
∂θr

= − ω
c
JM

(
∆ḋ(θr) � exp{−ωζ(θr)}

)
where the exponential is taken entry-wise.

The case of pattern diversity: if time, space shift and gain
pattern diversities are available, but not space and polarization,
then expressions are simpler. It is worth detailing this scenario
because it has not been reported in the literature. In this case,
matrix A contains only gains gmr and matrix B only delays,
and one can prove that:(

∂µ

∂sr

)H(
∂µ

∂sk

)
= (bHr bk)(aH

r ak) (42)(
∂µ

∂gr

)H(
∂µ

∂gk

)
= (sHr sk)(bHr bk) (43)(

∂µ

∂θr

)H(
∂µ

∂θk

)
= ω2ζ̇(θr)

Tζ̇(θk) (44)

D. Derivative w.r.t. K and its parameters

From (28) and (13), we have [14]:

∂µ

∂kr
= sr � I3 � br � ar

∂µ

∂αr
= sr �

∂kr
∂αr

� br � ar (45)

∂µ

∂βr
= sr �

∂kr
∂βr

� br � ar
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with

∂kr
∂θr

=

[
− cos θr sin θr
− sin θr − cos θr

]
W (αr)w(βr)

∂kr
∂αr

= H(θr)

[
− sinαr cosαr
− cosαr − sinαr

]
w(βr)

∂kr
∂βr

= H(θr)W (αr)

[
− sinβr
 cosβr

]
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