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THE CONJUGATE RESIDUAL METHOD FOR CONSTRAINED MINIMIZATION PROBLEMS

Introduction. The method of conjugate gradients [ l]

-{5], a particular version of the general class of conjugate direction methods, was originally developed for solving a linear system of equations (1.1)

Ax = b,
where A is an .n x n symmetric, positive defini te matrix, x is an unknown n-vector and bis a fixed n-vector. The conjugate gradient method can be viewed as a descent procedure for the problem : Minimize

( 1.2) (x , Ax) -2(x , b);
and through this viewpoint the method can be generalized so as to apply to the solution of general unconstrained minimization problems. For these general problems conjugate gradient methods are among the most effective first order descent procedures. Minimization problems subject to constraints cannot be treated directly by the conjugate gradient methods although they have often been employed indirectly through the artifice of introducing penalty functions or of suitably projecting the descent directions onto the constraint surface. The major motivation for the research presented in this paper is to develop a conjugate direction procedure that is capable of handling constraints directly. This quickly leads one to consider equations of the form (1.1) with the matrix A symmetric and nonsingular but not necessarily positive definite. For, consider the simple problem: Minimize

(1.3) (u, Qu)-2(c, u) subject to Bu= d,
where Q is an n x n symmetric, positive definite matrix, B is an m x n matrix of rank m < n. The n-vector u is unknown and c and d are fixed nand m-vectors respectively. By introducing an m-dimensional Lagrange multiplier this problem is found to be equivalent to that of solving the linear vector equation

(1.4)
Denoting the (n + m) x (n + m) matrix in (1.4) by A we see that A is symmetric, nonsingular, but not positive definite. Of course, (1.1) can be modified to the equivalent form (1.5)

A 2 x =Ab,
where now A 2 is positive defini te, but this stratagem requires roughly twice the computational effort of methods which could be applied directly if A itself were positive defini te [START_REF] Beckman | The solution of linear equations by the conjugale gradient method, Mathematical Methods for Digital Computers[END_REF].

In this paper we discuss methods requiring essentially the same computational effort as those employed if A is positive definite. An alternative approach to this problem, which salvages the standard conjugate gradient algorithm, is considered in [START_REF]Hyperbolic pairs in the method of conjugale gradients[END_REF].

The method of conjugate residuals.

DEFINITION. Given an n x n matrix A, a pair of n-vectors x, y is said to be

A-orthogonal if (x, Ay) = O.
We now develop an iterative technique for solving

(2.1) Ax = b
which has the same important characteristics as the method of conjugate gradients but which in addition is applicable in the case where A is symmetric but not necessarily positive definite. The procedure is a descent procedure in that a sequence of approximate solutions where ak is chosen to minimize E. The novel feature of the method given below is of course the method for selecting the direction vectors Pk. ln the procedure the direction vectors are chosen to be an A 2 -orthogonalized version of the residuals rk = b -Axk. This is similar to the method of conjugate gradients but now since the gradient of the underlying functional E at xk is -2Arb and not -2rk, we refer to the scheme as conjugate residuals.

Here is the fundamental iteration scheme.

Conjugate residual scheme. Select x 1 arbitrarily. Set p 1 = r 1 = b -Ax 1 , and repeat the following steps omitting (2.3a, b) on the first step.

Ifak_ 1 =F 0, (2.3a) 
If ak_ 1 = 0, (2.3b)

Pk = Ark -'YkPk-1 -OkPk -2, (Ark, A 2 Pk -d 'Yk = (p A2 )' k-t'
Pk-1

(2.3c)

(2.3d)

We prove below that the process defined by (2.3) converges to the unique solution of (2.1) in n steps or less. Furthermore, the residuals r 1 , r 2 , • • • form an A-orthogonal sequence and the direction vectors p 1 , p 2 , • • • form an A 2 -orthogonal sequence.

If the ma tri x A is positive defini te, then for each k, ak > 0 and hence (2.3b) is never used. In this case the procedure can be regarded as one of the family of general conjugate gradient methods discussed by Hestenes [START_REF] Hestenes | The conjugale gradient method for so/ving /inear systems[END_REF]. However, even in the positive definite case this method has not been explicitly pointed out and in terms of total computation it is as efficient as ali standard procedures.

DEFINITION. Corresponding to the symmetric matrix A, a vector x is said to be singular if (x, Ax) = O.

If Ais not positive defini te, ak may be positive, negative or zero. The condition ak = 0 corresponds, as shown below, to singularity of the residual rk.

THEO REM 1. The following relations hold for the method of conjugate residuals: Proof The proof is by induction. The vectors r 1 , p 1 = r 1 and r 2 satisfy these relations since:

(a) (pi, A 2 p) = 0, i # j, (b) (ri, Ap) = 0, i > j + 1, (c) (d) (e 
(a) If r 1 is singular,

r 2 = r 1 = p 1 and (r 1 ,Ard =O. (b) If r 1 is not singular, (r 1 , Ar 1 ) = (p 1 ,Ar 2 ) = (r 1 ,Ard-a 1 (p 1 ,A 2 p 1 )
= 0 by (2.3c). Now assume that these relations are true for the first k -1 steps, i.e., through rb Pk -l , ak-l, f3k -l. There are now two distinct cases of interest: ak-l =/= 0 and ak_ 1 = O. We must show that rk+ 1 and Pk can be added to these relations in either case.

Case 1. ak -l =1= O. To prove (e) we have immediately

(rb Apk) = (rb Ark) -f3k(rb APk-d = (rb Ark)
by the induction hypothesis (b). Also,

(rb Ark) = (rb Ark _ 1 ) -ak _ 1 (rkl A 2 pk _ 1 )
whence, by (d) , which gives the formula for f3k•

To prove (a) we write

(pbA 2 pJ = (rk,A 2 pi)-f3k(Pk-t,A 2 Pi).
For i < k --1 the first term on the right vanishes because of the induction hypotheses {c) and (b) and the second term vanishes by (a). For i = k-1 the two terms cancel.

To prove (b) we write

(rk+ 1 , Api) = (rk, Api) -ak(Apb Api).
For i < k the right side vanishes by (b) and (a). For i = k the two terms on the right cancel.

To prove (c) we have obviously, for j > 1,

j-1 (2.4) rj = P1 -L aiAPi i = 1
and hence settingj = k and using (2.3a), we have k-2

Pk = Pt -L aiAPi -ak -1APk -1 -f3kPk -1• i= 1
Th us, in view of the induction hypothesis (c) and ak_ 1 '# 0 we obtain Apk -l

E [p 1 , P2, • • • , Pk]• To prove (d) we write (rk+ 1 , ArJ = (rk , Ari) -ak(Apb ArJ
For i < k the first term on the right vanishes by the induction hypothesis. The second term also vanishes for i < k by the second part of (c) and (a). For i = k the right side becomes, by (e),

(rb Ark) (rb Ark) -( 2 ) (A pb Ark). Pk, A Pk

But this vanishes because (pk, A 2 pk) = (rk -f3kPk -1, A 2 pk) = (rb A 2 pk).

To prove (g) suppose Pk = 8. Then

rk = f3kPk-1 •
But by (e) and (b) this implies {3k = 0 and hence rk = 8.

Case 2. ak _ 1 = O. To prove (f) we note that by (2.3b),

(2.5)

(rb A pk) = (rk, A 2 rk) -'Yk(rb A pk -d -bk(rb Apk _ 2 ).
The second two terms on the right are zero by the hypothesis (b), and hence if rk =1= 8 we have ak =/: O. This proves that there cannet be generated two consecutive singular points in the procedure.

To prove (a) we write To prove (c) we note that since Pk -1 = 0 we have Pk-1 = rk-t and since

(pk, A 2 pJ = (Ark , A 2 Pi)-Yk(pk -1, A 2 pi)-bk(Pk -2, A 2 PJ For i = k -1, i = k -2
ak _ 1 = 0 we have rk = rk _ 1 . Thus, by (2.3b),

Pk = Apk -1 -YkPk-t -bkPk-2
which proves (c).

To prove (d) we write

(rk + 1 , ArJ = (rb Ari) -cxk(Apb ArJ
For i < k, this vanishes by the same argument as Case 1. For i = k we note that rk = rk-t = Pk-1 and hence the first term vanishes by the induction hypothesis on (d) and the second term vanishes by (a). Part (g) follows immediately from (2.5). This completes the proof of Theo rem 1.

We now state the fundamental minimization property of the method of conjugate residuals. Proof From part (g) of Theorem 1 we see that the sequence Pt , p 2 , • • • does not termina te un til a solution is obtained. Furthermore, by the A 2 -orthogonality of the p;'s this sequence is linearly independent. The result then follows from Theorem 2.

To summarize the results derived in this section, the method of conjugate residuals progresses in a fashion entirely analogous to that of conjugate gradients by genera ting A 2 -orthogonal direction vectors and minimizing Il A x -b 11 2 over increasing subspaces. If at sorne stage the residual rk should be singular, then the next direction vector Pk is equal to rk and the functional E cannet be reduced by moving in that direction since xk is already at the minimum along that line. The next direction Pk + 1 is then generated by a special formula and this new direction will not be singular. Thus singular directions occur only as isolated members of the sequence Pt, p 2 , • • • , Pn • The process converges within n steps.

3. Computational requirements. An important feature of the method of conjugate residuals, which sets it apart from other schemes for handling the nonpositive definite case, is that only a single multiplication of a vector by a matrix is required at each step. To see this, suppose that Pk -2 , Apk_ 2 , Pk-1 , Apk -1 , rk have been stored. Th en we have the following.

Case 1. ak _ 1 :::1= O.

Step la. Calculate Ark. This requires one matrix multiplication.

Step lb. Calculate {Jk> Pk from (2.3a).

Step le. Calculate Apk from Apk = Ark -[JkAPk-1 , and then o:b x k+ 1 from (2.3c).

Step ld. Calculate rk + 1 from rk + 1 = rk -akAPk• Case 2. ak-l = O. In this case, rk_ 1 is singular and it follows from part (e) of Theorem 1 that Pk-1 = 0 and hence Pk -l = rk_ 1 . Also since ak-1 = 0 we have rk = rk -l. Thus Ark = Apk -l is on hand.

Step 2a. Calculate A 2 rk = A(APk -d. This requires one multiplication of a vector by a matrix.

Step 2b. Calculate Yb bk and Pk from (2.3b).

Step 2c. Calcula te Apk from Apk = A 2 rk -yk APk -1 -bkAPk -2 and then o:b xk + 1 from (2.3c).

Step 2d. Calculate rk+ 1 = rk -akAPk.

Note that the storage requirements are really not as large as indicated since

Pk -2 , Apk _ 2 are only needed in the singular case and then Pk-l = rk _ 1 = rk, so extra storage is available.

A triangulation method.

In this section we show that the nonsingular part of the scheme of conjugate residuals can be implemented by performing only a sequence of line searches (i.e., one-dimensional minimization problems) and residual evaluations, without explicitly computing inner products. Although this procedure is of little value for solving a linear equation, its obvious generalization to nonlinear equations is of substantial importance.

The method is more or less a straightforward extension of the method of parallel tangents (PART AN) which implements the method of conjugate gradients when A is positive defini te [START_REF] Shah | Sorne a/gorithmsfor minimizing afunction of severa/ variables[END_REF], [START_REF] Wolfe | Methods of nonlinear programming[END_REF]. The short derivation of the method given here is of sorne independent interest in view of the lengthy standard derivations. Our derivation exploits the results of Theorem 1.

Triangulation procedure. Given an arbitrary x 1 let p 1 = r 1 and determine x 2 as the point minimizing E(x ) = II A x -bll 2 along the line x 1 + ap 1 , -oo <a < oo .

After that the process is defined by induction. Having determined

x 1 , x 2 , • • • , xk> put
where flk is determined to minimize E(yk ). Then let where wk is determined to minimize E(xk+ t).

We shall show that the triangulation procedure described above is equivalent to the method of conjugate residuals in the nonsingular case. If during the process a residual rk should become singular, the process breaks down and recovery must be made in sorne other fashion.

THEOREM 4. The method of triangulation, in the nonsingular case, is equivalent to the method of conjugate residuals.

Proof The proof is by induction. The statement is obviously true for the first step. Suppose it is true for x 1 , x 2 , • • • , xk. For simplicity and without loss of generality we assume that x 1 = 8. According to the method of conjugate residuals the point xk+ 1 is chosen so as to minimize the functional E over the subspace

[p 1 , p 2 , • • • , Pk -1 , rk].
Furthermore, by the orthogonality relations of the method this is equivalent to minimizing E over the subspace determined by Pk -l and rk.

This in turn is equivalent to fin ding a point xk + 1 in that plane such that the residual there, rk+ 1 = b -Axk+ 1 , is A-orthogonal to both rk and Pk-t.

Consider the points xk -1 and Yk• The residuals at these points, rk-l, b -Ayk, are bothA-orthogonal to rb the first by the induction hypothesis and part (d) of Theorem 1, the second because Yk is the minimizing point of E in the direction rk.

Therefore, by linearity, the residual at any point along the line through xk-l and Yk is A-orthogonal to rk.

1t is therefore only necessary to find a point on this line where the residual is A-orthogonal to Pk -l. This clearly can be accomplished by minimizing E along the line.

Application to constrained minimization problems and nonlinear equations.

Consider the nonlinear equation (5.1)

F(x) = 8 ,
where Fis a mapping from En into En and 8 is the zero vector in En. We restrict attention to the case where the matrix offirst partial derivatives F '(x) is symmetric. As a primary motivating example consider the constrained minimization problem: Minimize

(5.2) f(u) subject to H(u) = 8,
where fis a nonlinear functional on Em and H is a nonlinear mapping from Em to EP, where p < m. If u 0 is the solution of (5.2) and the rank of H'(u 0 ) is equal to p, then, as is weil known, there is a 1 0 E EP such that (u 0 , 1 0 ) is a solution of the simultaneous equations

(5.3) f'(u) + l'H'(u) = 8,
H(u) = 8.

The system (5.3) is of the type (5.1) with n = m + p.

The procedures developed here also have application to minimization problems involving inequality constraints, but this topic is deferred to another paper. Solution of(5.1) is, of course, equivalent to minimizing the form tf;( x) = Il F(x) ll 2 and indeed this is the approach taken here. Standard methods of minimization, however, require the direction vectors to be selected on the basis of the gradient. In the case of problem (5.2) this in turn would require knowledge of second derivatives off and H. By employing the philosophy of the conjugate residual method, the descent directions are based on the residuals F(x ).

We shall briefiy discuss three ways in which the conjugate residual scheme can be generalized to nonlinear problems. These are identical in spirit to the standard methods for adopting the conjugate gradient procedure to nonlinear problems and hence we shall not pursue the details.

A. If one is willing to assume the availability of F'(x ) , then the local approximation A "' F'(x ) can be used in the formulas (2.3). The conjugate gradient analogue of this procedure has been developed by Daniel [START_REF] Daniel | The conjugale gradient method for linear and nonlinear operator equations[END_REF] , [START_REF]Convergence of the conjugale gradient method with computationally convenient modifications[END_REF] .

B. Multiplication of a vector by the matrix A can be approximated by the difference of two residuals by the formula

F(xk + y) -F(xk) ~ Ay
which is exact in the linear case (the step size can of course be adjusted for best results). Sin ce, in the linear case, the conjugate residual scheme can be implemented with a single A multiplication, soin the nonlinear case it can be approximated by taking a single extra step. We give here the procedure corresponding to Case 1 of § 3, the other case being a direct analogue. Assume xk, Pk -l, qk -l, rk are at hand, where Pk+ 1 is the actual direction vector used to get xk , q k _ 1 is an artificial vector used to approximate Apk-l , and rk = F(xd. Then:

Calculate an approximation sk to Ark by A more refined procedure would be to calculate Pk from (5.4a) and (5.4b) and then search along the direction Pk for a point minimizing Il F(x)ll 2 initia ting the search at the point predicted by (5.4c) . For details on such line searching techniques and the analogue of this procedure for conjugate gradients, see [START_REF] Fletcher | Functional minimization by conjugale gradients[END_REF]. C. The method of triangulation can be employed directly since it simply entails evaluation of the residual and line searching. There is a slight difficulty if a singular pointis encountered. In this case a good procedure is probably to take a gradient step and then start again. As in B above the gradient can be approximated by F(xk + rk) -F(x k).

There are a few general remarks that apply to the application of any of the above schemes when applied to nonlinear equations. The first consideration is the necessity for occasionally restarting the process. The methods of conjugate gradients and conjugate residuals that we have discussed are not self-correcting. Specifically, if the initial direction vector should for sorne reason be in error, the usual conjugate properties of the subsequently generated direction vectors will not hold and the process may not termina te in a fini te number of steps. This implies, in particular, that even if a nonlinear equation is exactly linear in a region containing the solution, any of the nonlinear versions of conjugate residuals (or conjugate gradients) may not converge in a fini te number of steps. For this reason, it is good practice to restart these procedures every n steps orso. In view of this comment, the ploy of taking a gradient step and restarting when encountering a singular point does not seem unattractive.

The second comment relates to the detection of singular points. In a nonlinear problem, a singular direction (or a nearly singular direction) is characterized by a hait or near stoppage of the descent process. In other words, if a singular pointis approached, the values of the objective functional II F(x )ll 2 will converge to sorne positive value. However, since the desired value of this objective functional is known to be zero, such a singularity is easily identified and the singularity procedure or a gradient step can be employed to move away and continue the descent.

) a;- 1 #

 1 0 implies (rb Ap;) = (r;, Ar;), {3; = -(ri,Ari)/(r; _ 1 ,Ar;-d, (f) a;-1 = 0 and ri # 0 implies ai# 0, (g) ri =/= 8 implies Pi =/= 8 (8 denotes zero vector).

  the terms on the right cancel. For i < k -2 we have by the induction hypothesis on (c) that A 2 pi E [p 1 , p 2 , • • • , Pk -1 ] and hence by (b) the first term vanishes. The ether two terms vanish by (a).The proof of (b) is the same as for Case 1.Now if ak-t = 0, then we have cxk-2 =/: 0 and also (rk-t, Apk_ 1 ) =O. Since (rk-1,APk -1) = (rk -1,Ark-d-Pk-1 (rk-1 ,APk-2 ), it follows, using (b), that (rk_ 1 , Ark _ 1 ) = 0, and by (e) , we have Pk -1 = O. (Equivalently, ak _ 1 = 0 if and only if rk _ 1 is singular.)

THEOREM 2 .

 2 For each k the point xk+ 1 minimizes thefunctional E(x) = IIAx-bll 2 over the linear variety x 1 + [pt, P2, • • • , Pk]. Proof This follows immediately from the projection theorem and the fact that rk+t is A-orthogonal to the subspace [p 1 ,p 2 , •• •, Pk]. THEOREM 3. The method of conjugate residuals converges in n steps or less to the unique solution of Ax = b.