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any

 

of

 

the

 

early

 

works

 

on

 

symplectic

 

elasticity

 

were

 

published

 

in

 

Chinese

 

and

 

as

 

a

 

result,

 

the

 

early

 

works

 

have

 

been

 

navailable

 

and

 

unknown

 

to

 

researchers

 

worldwide.

 

It

 

is

 

the

 

main

 

objective

 

of

 

this

 

paper

 

to

 

highlight

 

the

 

contributions

 

of

 

esearchers

 

from

 

this

 

part

 

of

 

the

 

world

 

and

 

to

 

disseminate

 

the

 

technical

 

knowledge

 

and

 

innovation

 

of

 

the

 

symplectic

 

approach

 

in

 

nalytic

 

elasticity

 

and

 

applied

 

engineering

 

mechanics.

 

This

 

paper

 

begins

 

with

 

the

 

history

 

and

 

background

 

of

 

the

 

symplectic

 

approach

 

n

 

theoretical

 

physics

 

and

 

classical

 

mechanics

 

and

 

subsequently

 

discusses

 

the

 

many

 

numerical

 

and

 

analytical

 

works

 

and

 

papers

 

in

 

ymplectic

 

elasticity.

 

This

 

paper

 

ends

 

with

 

a

 

brief

 

introduction

 

of

 

the

 

symplectic

 

methodology.

 

A

 

total

 

of

 

more

 

than

 

150

 

technical

 

apers

 

since

 

the

 

middle

 

of

 

1980s

 

have

 

been

 

collected

 

and

 

discussed

 

according

 

to

 

various

 

criteria.

 

In

 

general,

 

the

 

symplectic

 

lasticity

 

approach

 

is

 

a

 

new

 

concept

 

and

 

solution

 

methodology

 

in

 

elasticity

 

and

 

applied

 

mechanics

 

based

 

on

 

the

 

Hamiltonian

 

rinciple

 

with

 

Legendre’s

 

transforma-tion.

 

The

 

superiority

 

of

 

this

 

symplectic

 

approach

 

with

 

respect

 

to

 

the

 

classical

 

approach

 

is

 

at

 

east

 

threefold:

 

(i)

 

it

 

alters

 

the

 

classical

 

practice

 

and

 

solution

 

technique

 

using

 

the

 

semi-inverse

 

approach

 

with

 

trial

 

functions

 

uch

 

as

 

those

 

of

 

Navier,

 

Lévy,

 

and

 

Timosh-enko;

 

(ii)

 

it

 

consolidates

 

the

 

many

 

seemingly

 

scattered

 

and

 

unrelated

 

solutions

 

of

 

rigid

 

ody

 

movement

 

and

 

elastic

 

deformation

 

by

 

mapping

 

with

 

a

 

series

 

of

 

zero

 

and

 

nonzero

 

eigenvalues

 

and

 

their

 

associated

 

igenvectors; and (iii) the Saint–Venant problems for plane elasticity and elastic cylinders can be described in a new system of
quations and solved. A unique feature of this method is that bending of plate becomes an eigenvalue problem and vibration
ecomes a multiple eigenvalue problem.

eywords: eigenvalue, eigenvector, energy, Hamiltonian, symplectic elasticity, symplecticity

                    

                    
    

       
Introduction
Symplecticity is a mathematical concept of geometry and it is

n analog of “complex” in Greek first due to Weyl �1,2�. Sym-
lectic geometry is a branch of differential geometry and differ-
ntial topology. Hence, it is also called symplectic topology al-
hough, in reality, the latter is only an important subset of the
ormer. Symplectic geometry was first developed due to its close
elation to the Hamiltonian system in classical mechanics where
he phase space can be constructed using symplectic manifold.
he theory on symplectic geometry can be referred to Koszul and
ou �3�. The symplectic group is a mathematical group, previ-
usly known as the line complex group, and a symplectic group of
imension 2n is the group of 2n�2n matrices, which preserve a
ymplectic form where the latter can be constructed into a canoni-
al form using symplectic basis �1,2�. Besides theoretical and
lassical mechanics, symplectic group has been applied in a num-
er of fields in physics and mathematics for many years particu-
arly in relativity and gravitation �4�, quantum mechanics �5,6�,
nd the Yang–Mills field theory �7�.

Symplectic Numerical Analysis, Symplectic Elastic-
ty, and Other Cross Disciplinary Areas

2.1 Symplectic Numerical Methods. Symplectic approach in
pplied mechanics was first developed due to the quest in accurate
olutions for some nonlinear dynamical systems and stable nu-
erical algorithm in computational mechanics constructed using
amiltonian systems. The application of symplectic space and
evelopment of numerical methods for such systems was pio-
eered by Feng and his research group �8–34�. Feng first proposed
1

symplectic algorithms based on symplectic geometry for Hamil-
tonian systems with finite and infinite dimensions, and on dynami-
cal systems with Lie algebraic structures, such as contact systems
and source free systems via the corresponding geometry and Lie
group. These algorithms are superior to conventional algorithms
in many practical applications, such as celestial mechanics and
molecular dynamics. A collection of his works was published later
in recognition of this contribution in applied mathematics and
applied mechanics �32,33� in which Vol. II �33� are the papers
related to symplectic algorithm and computation of Hamiltonian
systems. The contribution of Feng in the development of symplec-
tic numerical methods was particularly significant and important
as highlighted in a memorial article dedicated to him by Lax �35�.

2.2 Symplectic Elasticity in Applied Mechanics. In elastic-
ity and applied mechanics, the development of symplectic space
for analytical, engineering mechanics, and applied elasticity was
attributed mainly to the research group led by Zhong �36–43�. A
number of research texts have been published by this group of
researchers and. In particular, Zhong et al. �36� published some
early works on structural mechanics and control optimization;
Zhong �37� introduced a new symplectic approach for systemati-
cally deriving analytical solution in engineering elasticity; Zhong
�38–40� introduced the duality system and symplectic analytical
solutions approach in applied mechanics; Zhong et al. �39,41�
applied the symplectic methodology for control systems and prob-
lems; Yao et al. �42� systematically described the principle of
symplectic elasticity and its application in applied engineering
mechanics including Timoshenko beam, plate bending, and lami-
nated plate analysis; and Zhong �43� recently published a very
concise yet simple masterpiece of symplectic elasticity by putting
forward an innovative way the seemingly mathematical and ab-
stract concept of symplecticity and relating the common analytical

engineering and/or mathematical tools such as state-space method
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nd matrix multiplication using very simple single-degree-of-
reedom and multiple-degree-of-freedom spring-mass systems.

ost of the research works of symplectic elasticity were origi-
ally pioneered by Zhong, Xu, Zhang, and Yao from Dalian Uni-
ersity of Technology, PRC, and subsequently researched by Lim
nd Leung from City University of Hong Kong in collaboration
ith the former group of researchers.
In general, the symplectic elasticity methodology aims to de-

elop a new analytical elasticity approach for deriving exact ana-
ytical and asymptotic solutions to some basic problems in solid

echanics and elasticity, as described in Yao et al. �42�. Some of
hese problems have long been bottlenecks in the development of
lasticity, e.g., bending of plates with no opposite sides simply
upported and bending of corner-supported plates. This symplec-
ic elasticity approach is based on the use of the Hamiltonian
rinciple with Legendre’s transformation and subsequently ana-
ytical solutions could be obtained by expansion of eigenfunc-
ions. It is a rational and systematic methodology with a clearly
efined, step-by-step derivation procedure in which no trial func-
ions are necessary. The advantage of this symplectic approach
ith respect to the classical approach, which relies on the semi-

nverse method, is at least threefold. First, the symplectic ap-
roach alters the classical practice and concept of solution meth-
dology and many basic problems previously unsolvable or too
omplicated to be solved can be resolved accordingly in a system-
tic and rational procedure. For instance, the conventional ap-
roach in plate and shell theories by Timoshenko �44� has been
ased on the semi-inverse method with trial 1D or 2D displace-
ent functions, such as Navier’s method �45� and Lévy’s method

46� for plates. The trial functions, however, do not always exist
xcept in some very special cases of boundary conditions such as
lates with two opposite sides simply supported �47–50�. Using
he symplectic approach, trial functions are not required. Second,
t consolidates the many seemingly scattered and unrelated solu-
ions of rigid body movement and elastic deformation by mapping
ith a series of zero and nonzero eigenvalues and their associated

igenvectors. Last but not least, the Saint–Venant problems for
lane elasticity and elastic cylinders can be described in a new
ystem of equations and solved. The difficulty of satisfying end
oundary conditions in conventional problems, which could only
e covered using the Saint–Venant principle can also be resolved.

2.3 Symplecticity for Elasticity. Many of the early works on
ymplectic elasticity were published in Chinese and as a result,
he early works have been unavailable and unknown to research-
rs worldwide. The early works on analytic symplectic elasticity
egins with Zhong and co-workers �51–57� and Yao �58� who
resented the plane elasticity problems based on Hamiltonian sys-
ems �51,53�, the reciprocal theorem, and adjoint symplectic or-
hogonality �48�; the Saint–Venant problems �54,55,58�; and sym-
lectic eigensolutions for cylinders and body of revolution
56,57�. Recently, Zhao and Chen �59� reported some numerical
tudies for elasticity problems. The symplectic method with
amiltonian state-space approach was also applied to solve ana-

ytical solutions for elastic circular solids including a circular elas-
ic cylinder with self-weight �60�, a transversely isotropic cylin-
rical body �61� and a circular cantilever �62�.

2.4 Symplectic Methodology for Beams. Based on the foun-
ations of symplectic methods for plane elasticity, duality in
amiltonian systems, symplectic orthogonality, and the solutions

o Saint–Venant problems, the approach is applied to applied me-
hanics problems for beams. The early works was reported by
eung et al. for nonlinear beam vibration and dynamics �63–65�,
alerkin method �63�, beam finite element �64� and frames �65�,
hong et al. �66� for curved beams, Xu et al. �67� and Ma et al.

68� for elastic structural vibration, Lü et al. �69� for bending of
eams resting on elastic foundation, and for nonlinear thermal
uckling of elastic beams �70,71�.
2.5 Symplectic Elasticity for Plates. Due to the practical ap-

2

plication and a quest for exact solutions, the symplectic approach
for plate analysis in applied engineering mechanics has received
very much attention �72–101�. Most of the research articles were
based on the thin plate model �72–74,77,79–82,85–93,95–101�
with a few others, which worked on thick plate problems
�75,76,78,83,84,94�. Among the papers, many investigated rectan-
gular plates �72–79,81–84,86–91,94,95,97–101�, while only a few
focused on circular or sector plates �80,85,92,93,96�, and the
majority analyzed isotropic plates �75,76,78–80,83–101�, while a
few worked on composite or laminated plates �72–74,77,81,82�.
The papers can be further classified into a few categories
according to the specific plate problems that were analyzed.
Among the specific topics, plate bending
�78–81,83–86,88,90–92,94,97–99,101� is the most popular sub-
ject of interest; others include vibration �56,76,87,89,95,100�,
buckling �93,96�, wave propagation �87�, and the Sain–Venant
problem �74,77,80�.

2.6 Symplectic Elasticity for Shells. Besides plate problems,
the symplectic methods have also been applied for shell problems
�102–108�. Due to the analytical complexity, only closed cylindri-
cal shells have been considered because for such shells the cir-
cumferential deflection can be approximated with sinusoidal
shape functions, while the other ends could be arbitrarily sup-
ported or free. Among these papers, the dynamic buckling prob-
lems for cylindrical shells subjected to axial impact were investi-
gated by Xu and co-workers �102,103,105,106�. They also studied
viscoelastic hollow circular cylinders �104�, torsional buckling
�107�, and thermal buckling �108� of cylindrical shells.

2.7 Fracture Mechanics and Stress Singularity. The sym-
plectic methodology has also been applied to solve other applied
engineering mechanics problems and the most important issue has
been in fracture mechanics for structural elements with cracks
and/or stress singularity �109–123�. In these articles, the authors
examined plane crack element �109�, bimaterial crack singularity
�110�, wedge body problems �111–114,118,119,121�, crack tip sin-
gularity �115�, multimaterial crack singularity �116�, application
of the Dugdale model �117�, and stress intensity factors �122�.
Mode III crack and stress singularity problems were also investi-
gated �120,123�.

2.8 Perturbation and Symplectic Element. The develop-
ment of numerical perturbation method using the symplectic ap-
proach was also reported mainly by Zhong and co-workers
�124–129�. In particular, Zhong and Sun examined three different
methods based on symplectic perturbation �124� and further de-
veloped symplectic conserved perturbation method �125�, finite
element models �126�, time-space harmony element �127�, and
numerical integration techniques �128�. They also researched into
dual variable symplectic principle �129�.

2.9 Viscoelasticity. Structures with viscoelasticity have re-
ceived relatively less attention. There are only three papers iden-
tified �104,130,131� where one focuses viscoelastic hollow circu-
lar cylinders �104� and the other two considered two-dimensional
viscoelasticity without �130� and with thermoviscoelasticity �131�.

2.10 Fluid Mechanics. Besides solid mechanics, the sym-
plectic methodology could also be applied to fluid mechanics
problems, due mainly to Xu and co-workers �132–136� particu-
larly for Stokes flow. In specific, the eigenvalue problem and
eigensolutions for Stokes flow were modeled �132�, while the ana-
lytical and numerical solutions in two-dimensional domain were
reported �133�. The influence of inlet radius on Stokes flow in a
circular tube �134� and viscous fluid in lid-driven cavities �135�
were further investigated. In nonlinear water waves driven by
moving plates in shallow single- or double-layer fluid layers, dual
variables associated with velocity potential and the wave elevation
in a Hamiltonian system were introduced and the traveling waves

solutions in elliptic cosine functions were presented �136�.
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2.11 Control. It is common knowledge for researcher in ap-
lied mechanics that control models bear many similarities with
espect to dynamical systems in terms of governing equation, so-
ution methodology, and numerical techniques. The very close re-
ations and analogy with respect to symplecticity were first estab-
ished by Zhong and co-workers �36,39,41� who discussed the
uality systems for optimal control problems �39� and state-space
ontrol systems �41�. Recently, the time-varying optimal control
roblem �137� and optimal control for nonlinear dynamical sys-
ems �138� were analyzed.

2.12 Thermal Effects. The thermal effects on structures
ould also be solved using the symplectic method. One early work
as the investigation of thermal stress for laminated plates �72�.
he subjected did not receive much attention subsequently. Re-
ently, the thermal effects were again reported for thermal buck-
ing of beams �70,71�, circular plates �93�, cylindrical shells �108�,
nd for analysis of thermal stress intensity factors �139,140�.

2.13 Functionally Graded Effects. Materials that exhibit
unctional graded properties could also be solved using the sym-
lectic method �141–144�. The topics of interest include statics
nd dynamics of plates �141�, plane elasticity problems without
142� and with piezoelectric effects �143�, and coupling of func-
ionally graded and magneto-electro-elastic effects �141,144�.

2.14 Piezoelectricity. The symplectic elasticity approach has
een also extended to some cross-disciplinary research areas. One
xample is research in symplectic piezoelectricity �143,145–154�
here the Hamiltonian systems are constructed to model the cou-
ling of pressure and electricity for actuation and sensing pur-
oses where driving force and/or electric power could be gener-
ted and vice versa. One early attempt was presented to develop
he algorithms for analyzing piezoelectric materials �145�. Subse-
uent research works include analysis of piezoelectric two-
imensional transversely isotropic piezoelectric structures
146,147,151�, cantilever beams �148,149�, three-dimensional pi-
zoelectric media �150,152�, boundary layer phenomena �151�,
edge body and crack singularity �121,123�, composite structures

uch as laminated and cantilever plate �153,154�, and statics and
ynamics of functionally graded piezoelectric structures
143,152�.

2.15 Electromagnetism and Waveguide. Electromagnetism
lso bears many similarities with Hamiltonian systems and hence
t can be solved using the symplectic methodology. This cross-
isciplinary subject was initiated by Zhong and co-workers who
pplied the approach and developed semi-analytical solutions to
lectromagnetic wave guides �155–158�. Zhong and Sun �159�
ater attempted to develop finite elements for electromagnetic
esonant cavity.

2.16 Magneto-Electro-Elasticity. The coupling of magne-
ism, electricity, and elasticity was also reported
141,144,160,161�. Yao established symplectic solutions with the
aint–Venant principle for antiplane �160� and plane �161�
agneto-electro-elastic solids. Lately, the statics and dynamics of

unctionally graded and layered magneto-electro-elastic plate/pipe
141� and plane problems for materials having coupled function-
lly graded and magneto-electro-elastic effects �144� were also
eported.

Symplectic Space, Its Properties, and Correlation
ith Euclidean Space
All conservative real physical processes can be described by a

uitable Hamiltonian system whose common mathematical funda-
entals are the symplectic spaces. A symplectic space is different

rom a Euclidean space, which studies the metric properties such
s length. It focuses on the study of area or the study of work and
his is a mathematical structure present throughout the application

f symplectic elasticity. The following presents a brief account of

3

the fundamentals of symplectic space and subsequently discusses
some of the special symplectic characteristics. Some proofs and
more details could be referred to “Symplectic Elasticity” by Yao
et al. �42�.

For an n-dimensional linear space V defined in a real number
field R, and a corresponding n-dimensional dual linear space V�, a
2n-dimensional phase space W in a real number field R can be
defined as

W = V � V� = ���q

p
��q � V,p � V�� �1	

which is constructed by two n-dimensional vectors, q and p, de-
fined in V and V�, respectively. Although there is no direct relation
between these vectors and they could have absolutely different
dimensions in actual problems, the product of their corresponding
elements always has a specific physical meaning. For instance,
one vector could represent displacement while the other stress and
the product become work.

Let 
x ,y� denote the symplectic inner product for any two com-
ponent vectors x= �x1 ,x2 , . . . ,x2nT and y= �y1 ,y2 , . . . ,y2nT, then
the symplectic space requires that the following four rules be sat-
isfied absolutely:

�1	 
x,y� = − 
y,x� �2a	

�2	 
kx,y� = k
x,y� k is an arbitrary real number �2b	

�3	 
x + �,y� = 
x,y� + 
�,y� � is an arbitrary vector in W

�2c	

�4	 x = 0 if 
x,y� = 0 for every vector y in W �2d	

Any phase space that satisfies the four rules above for symplectic
inner product constitutes a symplectic phase space or simply a
symplectic space.

Consider a kind of symplectic inner product 
x ,y� defined as


x,y� = �x,J2ny	 = �
i=1

n

�xiyn+i − xn+iyi	 = xTJ2ny �3	

where

J2n = � 0 In

− In 0
� �4	

is the unit symplectic matrix of dimension 2n, denoted briefly as
J, and In is the common unit matrix of dimension n. It is obvious
that a unit symplectic matrix has the following properties:

�J� = 1 �5a	

J2 = − I �5b	

JT = J−1 = − J �5c	

where �J� indicates the determinant of J. It is also obvious that the
symplectic inner self-product of every vector must vanish, i.e., for
every vector x,


x,x� = 0 �6	

It is obvious that Eq. �3	 satisfies the four rules of symplectic
inner product defined in Eqs. �2a	–�2d	, and therefore it forms a
2n-dimensional symplectic space. For example, a two-
dimensional real linear space with vectors, the symplectic inner

product defined in Eq. �3	 can be expressed as
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x,y� = x1y2 − x2y1 �7	

quation �7	 forms a two-dimensional symplectic space and the
ymplectic inner product represents the area of a parallelogram
onstructed by x, y as the adjacent sides.

It should be emphasized that the rules for a symplectic space
efined in Eqs. �2a	–�2d	 are global. There are various different
efinitions of symplectic inner product for a phase space and
herefore there exist different symplectic spaces. The symplectic
nner product defined in Eq. �3	 is called the normal symplectic
nner product in a 2n-dimensional real vector space R2n and this
pecific, normal symplectic space is always referred to throughout
or all works in symplectic elasticity.

Any two component vectors x, y defined in a symplectic space
re symplectic orthogonal if their symplectic inner product van-
shes as


x,y� = 0 �8	

therwise, they are symplectic adjoint. Hence, from Eq. �2d	,
here exists a symplectic adjoint nonzero vector for every nonzero
ector, or x and Jx must be symplectic adjoint if x�0.

Another important property is the definition of a symplectic
atrix S, a 2n�2n matrix S, which satisfies

STJS = J �9	

symplectic matrix has the following properties: �i	 The inverse
atrix of a symplectic matrix is a symplectic matrix, �ii	 the trans-

ose matrix of a symplectic matrix is a symplectic matrix, �iii	 the
eterminant of a symplectic matrix is equal to either 1 or �1, and
iv	 the product of two symplectic matrices is a symplectic matrix.

If a 2n�2n matrix H acting on arbitrary 2n-dimensional vec-
ors x ,y satisfies


x,Hy� = 
y,Hx� �10	

hen matrix H is a Hamiltonian matrix. It is obvious that a Hamil-
onian matrix satisfies

�JH	T = JH �11a	

JHJ = HT �11b	

here are many other important properties, definitions, and theo-
ems in the symplectic space, such as the adjoint symplectic or-
honormal vector set and normal adjoint symplectic orthonormal
ector set. Some theorems without proofs and definitions include
he facts that �i	 an adjoint symplectic orthonormal vector set is a
inearly independent vector set. �ii	 Every adjoint symplectic or-
honormal vector set in a 2n-dimensional symplectic space can be
xtended to an adjoint symplectic orthonormal basis. �iii	 Every
ormal adjoint symplectic orthonormal vector set in a
n-dimensional symplectic space can be extended to a normal
djoint symplectic orthonormal basis. �iv	 The transformation ma-
rix for normal adjoint symplectic orthonormal bases is a symplec-
ic matrix. �v	 If � is an eigenvalue of a Hamiltonian matrix with
ultiplicity m, then −� is also an eigenvalue with multiplicity m.

f zero is an eigenvalue of a Hamiltonian matrix H, then the
ultiplicity number is even. More details are available in Ref.

42�.
One useful conclusion from the theorems and properties above

s as follows. There exists an adjoint symplectic orthonormal basis
omposed of the basic eigenvectors and Jordan form eigenvectors
f the Hamiltonian matrix H in a 2n-dimensional symplectic
pace. Through normalization, a normal adjoint symplectic ortho-
ormal basis can be formed. The matrix formed by the column
ectors is indeed a symplectic matrix.

The readers are referred to Table 1.1 in Yao et al. �42� for a
orrelation between a Euclidean space and a symplectic space and
t describes a clear summary of the relevant concepts and proper-

ies.

4

4 Some Applications of the Symplectic Methodology in
Applied Mechanics

A few examples using the symplectic elasticity methodology is
presented in this section to illustrate the application of the method
for exact solutions to some common engineering mechanics prob-
lems. Contrary to the semi-inverse approach �44–50� where bend-
ing of beam is related to solving a nonhomogeneous set of equa-
tions while vibration of beam is an eigenvalue problem, from the
following examples, it is obvious that bending of beam becomes
an eigenvalue problem with the eigenvalue indicating the spatial
wave frequency, while the vibration or wave propagation problem
becomes a multiple eigenvalue problem with eigenvalues indicat-
ing the spatial and temporal frequencies.

4.1 Timoshenko Beam Theory. The Hamiltonian system for
a Timoshenko beam is established first and subsequently the ana-
lytical solutions for bending and wave propagation are presented
�42�.

For bending of a Timoshenko beam of length L, let the x-axis
be along the beam midaxis before deformation and the xz-plane be
the deflection plane. The beam deflection at a point along the

x-axis is denoted as w̃�x	 and �̃�x	 is the rotation of the cross
section.

To construct an analytical system, first, the x-coordinate is mod-
eled as the time coordinate of the Lagrangian system and the
Hamiltonian system. Furthermore, denote

q = �w,�T, q̇ = �ẇ, �̇T �12	

where an overdot indicates differentiation with respect to the

x-coordinate, i.e., � 	˙ =d /dx. Application of the variational prin-
ciple yields the Lagrange equation as

d

dx
� �L

� q̇
� −

�L

�q
= 0 �13	

where L�q , q̇	 is the Lagrange density function and the temporal
coordinate t is replaced by the spatial coordinate x.

A state vector is defined as

v = �q

p
� �14	

where the dual variable of q according to Legendre’s transforma-
tion is

p =
�L

� q̇
�15	

Then the Hamiltonian density function can be obtained as

H�q,p	 = pTq̇ − L�q, q̇	 �16	

The Hamiltonian dual system can be expressed as

q̇ =
�H

�p
�17a	

ṗ =
�H

�q
�17b	

which can also be expressed as

v̇ = Hv + h �18	

where H is the Hamiltonian matrix and h= �hq ,hpT is a 2n-vector
and hq ,hp are two n-vectors, which can be obtained from Eqs.
�14	–�16	, �17a	, and �17b	, and they are related to external load-
ings. The Hamiltonian density function, also known as the mixed
energy density, can be expressed in terms of the Hamiltonian ma-
trix �42�.
The systems expressed in Eqs. �17a	, �17b	, and �18	 are sys-
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ems of first-order equations in which the spatial differential of the
tate vector is only present on the left-hand-side. Hence, the origi-
al system of n second-order differential equations �13	 can be
ransformed into a system of 2n first-order differential equations
18	 and the transformation from Lagrange system to Hamiltonian
ystem is completed.

The physical meaning of the dual variable p can be interpreted
s follows. For a Timoshenko beam, it is easily derived that

p = �kGA�ẇ − �	 , EI�̇ T = �Fs, M T �19	

here k, E, G, A, I, Fs, and M are the shear correction factor,
oung’s modulus, shear modulus, cross-sectional area, second
oment of area, shear force, and bending moment, respectively.
ence, the dual variable p can be interpreted as a the generalized

nternal force vector and the state vector becomes

v = �w , �; Fs, M T �20	

4.1.1 Bending of Timoshenko Beam. For static bending of a
imoshenko beam �42�, the Hamiltonian matrix is

H = �
0 1 �kGA	−1 0

0 0 0 �EI	−1

0 0 0 0

0 0 − 1 0
� �21	

he eigenvalue � and eigenvector � for H can be obtained from

H� = − �� �22	

or nontrivial solution, the eigenvalue �=0 has quadruple multi-
licity. The corresponding eigenvectors are

v0
�0	 = �0

�0	 = �1, 0, 0, 0 T �23a	

hich represents beam rigid body translation

v0
�1	 = �0

�1	 + x�0
�0	 = �x , 1, 0, 0 T �23b	

hich represents beam rigid body rotation

v0
�2	 = �0

�2	 + x�0
�1	 + 1

2x2�0
�0	 = � 1

2x2 + c , x , 0, EI T �23c	

hich represents pure bending of beam, where c is an arbitrary
onstant, and

v0
�3	 = �0

�3	 + x�0
�2	 +

1

2
x2�0

�1	 +
1

6
x3�0

�0	

= �1

6
x3 + cx ,

1

2
x2 +

EI

kGA
+ c; − EI , EIx �T

�23d	

hich represents constant shear force bending of beam. The basic
igenvector pairs �0

�0	 ,�0
�1	 and �0

�0	 ,�0
�2	 are symplectic orthogo-

al, while �0
�0	 ,�0

�3	 are symplectic adjoint, i.e., 
�0
�1	 ,�0

�0	�=0,

�0
�2	 ,�0

�0	�=0, and 
�0
�3	 ,�0

�0	�=EI�0. It is also easy to prove that

�0
�1	 ,�0

�2	�=EI�0 and by assigning c=−EI /2�GA, 
�0
�2	 ,�0

�3	�
0. Hence, �0

�0	, �0
�1	, �0

�2	, and �0
�3	 form a set of adjoint symplec-

ic orthonormal basis. Consequently, all basic eigenvectors and
ordan form eigenvectors for static bending of Timoshenko beam
re established.

In the presence of external loading and/or external moment, h
0 in Eq. �18	 and a particular solution has to be determined.

his particular solution depends cannot be explicitly derived with-
ut the type of loadings being known. This will be left as an
xercise to the readers.

4.1.2 Wave Propagation for Timoshenko Beam. For wave
ropagation in a Timoshenko, the following solutions are stated
ithout derivation. The readers are referred to Zhong �37� and
ao et al. �42� for more details.

In this case, the Hamiltonian matrix H is given by

5

H = �
0 1 �kGA	−1 0

0 0 0 �EI	−1

− �	2A 0 0 0

0 − �	2I − 1 0
� �24	

where � and 	 are the material density and the wave frequency,
respectively. The eigenvalue � must satisfy that �2 be real. There
are three different cases for �2, which can be classified according
to a critical frequency as

	cr
2 =

�GA

�I
�25	

�i	 For 	2
	cr
2 , there are two negative roots for �2. The so-

lution in a Timoshenko beam indicates propagation of two
pairs of waves with velocities 	 /�1 and 	 /�2, and trav-
eling along −x and +x, respectively.

�ii	 For 	2�	cr
2 , there are a positive root and a negative root

for �2. The negative root indicates propagation of a pair of
waves along the positive and negative directions of x,
similar to case �i	 above The positive root indicates local
vibration capable of creating resonance.

�iii	 For 	2=	cr
2 , there are a negative root and a zero root for

�2. The zero root indicates that there are two zero roots for
� and there will be Jordan form solutions. The wave
propagation solutions for the roots are given in Ref. �42�.

4.2 Bending of Rectangular Plates. Consider an isotropic
rectangular Kirchhoff plate with uniform thickness h, length a,
width b, Young’s modulus E, and Poisson’s ratio �. Here only thin
plates having at least a pair of opposite sides simply supported are
considered. The plate, bounded within a domain −a /2xa /2
and 0yb where sides y=0,b are always simply supported, as
shown in Fig. 1, is subjected to uniformly distributed load q.
There are totally six cases with different boundary conditions. The
analytical bending solutions are presented as follows and the de-
tails can be referred to Ref. �90�. Here C, S, and F denote the
clamped support, the simple support, and the free support,
respectively.

In this case, the Hamiltonian matrix is

H = �
0 �

�

�y
D�1 − �2	 0

−
�

�y
0 0 2D�1 − �	

0 0 0 −
�

�y

0 −
1

D

�2

�y2 �
�

�y
0

� �26	

Fig. 1 Plan of a thin plate with support conditions
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nd the state vector is

v = ��x,�y,�y,�xyT �27	

here � and D are the Poisson ratio and the flexural rigidity of
��3 + �	 − 2e ��1 + 3�n�� − 1	 + �nx�� − 1	 + �� + 2��− 1

6

plate, and �x and �y are the bending moment functions, and �y
and �xy are the curvature and twisting curvature, respectively.

For a SSSS plate, the xy-midplane deflection w�x ,y	 solution
can be expressed as �90�
w =
q

24D
�y4 − 2by3 + b3y	 +

2q

Db�
n=1

�
��nx sinh��nx	 − cosh��nx	�2 + �n tanh �n	�sin��ny	

�n
5 cosh �n

�28	

or a SFSF plate, simply supported at y=0,b and free at x= �a /2, the deflection w�x ,y	 solution is �90�

w =
q

24D
�y4 − 2by3 + b3y	 +

4q

�1 − �	bD�
n=1

�
�� cosh��nx	��n�1 − �	cosh �n − �1 + �	sinh �n� − �nx�1 − �	� sinh �n sinh��nx	sin��ny	

�n
5��n�1 − �	 − �3 + �	cosh �n sinh �n�

�29	
or a SCSC plate, simply supported at y=0,b, and clamped at x
�a /2, the deflection w�x ,y	 solution is �90�

w =
q

24D
�y4 − 2by3 + b3y	 +

4q

bD�
n=1

�

��e4�n sin��ny	�− 2�3�n

+ �nx	cosh��n − �nx	 + ��n + �nx	cosh�3�n − �nx	

− 5�n cosh��n + �nx	 + 3�nx cosh��n + �nx	 + 2�n cosh�3�n

+ �nx	 − 2�nx cosh�3�n + �nx	

+ 8 cosh�2�n	cosh��nx	sinh �n − 4�n��n − �nx	sinh��n

+ �nx	�/��n
5�1 + 8�ne4�n − e8�n	� �30	

or a SFSC plate, simply supported at y=0,b, free at x=−a /2,
nd clamped at x=a /2, the deflection w�x ,y	 solution is �90�

w =
q

24D
�y4 − 2by3 + b3y	 +

8q

bD�
n=1

�

��e4�n sin��ny	��5 + 4�n
2��

− 1	2 + ��2 + �	�cosh��n − �nx	 + 3 cosh�3�n + �nx	

+ � cosh��nx	��1 + 4�n
2�� − 1	 + ��cosh �n + �− 3 + �n

− 2�	cosh�3�n	 + �nx�− 5 sinh �n − �� − 1	sinh�3�n	� + ��

− �nx�1 + 2�	cosh �n + �nx�� − 1	cosh�3�n	 + �1 + 4�n
2��

− 1	 + ��sinh �n + ��n − 1	sinh�3�n	sinh��nx	

− �n�cosh��nx	�4�nx�� − 1	cosh �n − 3 sinh �n

+ ��cosh�3�n	 + �5 − 4� + 4� cosh�2�n	�sinh�n + ��3

− 7�	cosh �n + 2� cosh�3�n	 + 4�nx�� − 1	�2� − 1	sinh �n

+ � sinh�3�n	�sinh��nx	 + �nx sinh��n − �nx	 − ��n�� − 3	

− �nx�� − 1	�� + 3	�sinh�3�n + �nx	/��n
5��� − 1	�� + 3	

+ e8�n�� − 1	�� + 3	 − 2e4�n�5 + 8�n
2�� − 1	2 + ��2 + �	�

�31	

or a SSSF plate, simply supported at y=0,b and x=−a /2, and
ree at x=a /2, the deflection w�x ,y	 solution is �90�

w =
q

24D
�y4 − 2by3 + b3y	 +

2q

bD�
n=1

�

��e�n−�nx�− 2e2��n+�nx	�− 1

+ 3�n�� − 1	 + �nx�� − 1	 − ��� + e2�nx�− 2 + �n + �nx	�� − 1	
4�n
− �n + �nx + �− 1 + �n − �nx	�� + e2�n�6 + 4�n
2�� − 1	2

+ 3�nx�� − 1	2 − �n�5 + 4�nx	�� − 1	2 + 2�2� + 2e6�n+2�nx��1

+ �n�� − 1	 + � − �nx�� − 1	� + e4�n+2�nx�− 4�n
2�� − 1	2

+ 3�nx�� − 1	2 + �n�− 5 + 4�nx	�� − 1	2 − 2�3

+ �	2�sin��ny	/��n
5�� − 1	�8�ne4�n�� − 1	 + �1 − e8�n	�3

+ �	� �32	

For a SSSF plate, simply supported at y=0,b and x=−a /2, and
clamped at x=a /2, the deflection w�x ,y	 solution is �90�

w =
q

24D
�y4 − 2by3 + b3y	 +

4q

bD�
n=1

�

��e4�n sin��ny	�− 2�3�n

+ �nx	cosh��n − �nx	 + ��n + �nx	cosh�3�n − �nx	

− 5�n cosh��n + �nx	 + 3�nx cosh��n + �nx	 + 2�n cosh�3�n

+ �nx	 − 2�nx cosh�3�n + �nx	

+ 8 cosh�2�n	cosh��nx	sinh��n	 − 4�n��n − �nx	sinh��n

+ �nx	/��1 + 8e4�n − e8�n	�n
5� �33	

4.3 Bending of Corner-Supported Rectangular Plates.
Consider an isotropic rectangular Kirchhoff plate with uniform
thickness h, length 2a, width 2b, Young’s modulus E, and Pois-
son’s ratio �. The Cartesian coordinate system is established with
the origin at the center of plate such that −axa and −by
b, as illustrated in Fig. 2. The analytical solution is presented
for bending of such a plate supported only at its four corners and
subjected to uniformly distributed load q. The details can be re-
ferred to Lim et al. �91� and Lim and Yao �99�. It should be

Fig. 2 Geometry and corner support conditions of a rectangu-

lar plate
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ighlighted here that all geometric and natural boundary condi-
ions are satisfied and the analytical solutions can be considered
xact to a very large extent except some stages toward the end of
he analysis where numerical solutions have to be sought. In ad-
ition, the twisting moment at the corners derived from static
ending equilibrium are also satisfied.

For such a corner-supported plate, the deflection w�x ,y	 solu-
ion can be expressed as �91�

w =
q

24D�− 1 + �	�1 + �	2 �− 6a2�1 + �	�− x2 + �y2	 + 2b2��− �1

+ 5�	x2 − �− 3 + �	�2 + �	y2� + �1 + �	�− x4 + 6�x2y2 + �− 2

+ �	�y4� + c1

+ �
n=1

� � fne�nx� �1 + � − �3 + �	cos2��nb	�cos��ny	
�nD�1 − �	2

−
y sin��ny	
D�1 − �	 � + f̄ ne�̄nx� �1 + � − �3 + �	cos2��̄nb	�cos��̄ny	

�̄nD�1 − �	2

−
y sin��̄ny	
D�1 − �	 �

+ f−ne�−nx� �1 + � − �3 + �	cos2��−nb	�cos��−ny	
�−nD�1 − �	2

−
y sin��−ny	

D�1 − �	 �
+ f̄−ne�̄−nx� �1 + � − �3 + �	cos2��̄−nb	�cos��̄−ny	

�̄−nD�1 − �	2

−
y sin��̄−ny	

D�1 − �	 �� �34	

4.4 Vibration of a Rectangular Plates. For vibration of rect-
ngular plate, the geometry, as illustrated in Fig. 2, is adopted
xcept that the supports are not at the corners but they are along
he boundaries with various conditions to be considered. At least
ne-pair of the sides at x= �a are simply supported, while the
ther sides y= �b could be free, simply supported, or clamped.
gain only the analytical frequency solutions are presented and

he details can be referred to Refs. �89,100� and Ref. �95�.
From the property of symplectic adjoint orthogonality of eigen-

ectors and expansion of eigenvectors, the state vector for free
ibration can be expanded as

v = �
n=1

�

�f1�n	e�nx�n�y	 + f2�n	e−�nx�−n�y	 + f3�n	e�n�x�n��y	

+ f4�n	e−�n�x�−n� �y	� �35	

here f i�n	 , i=1,2 ,3 ,4 are unknown functions depending on the
oundary conditions at x= �a and

�n = ��	n��h

D
+

n2�2

4b2 , �3

=�− 2	n��h

D
−

n2�2

4b2 , ��1 = � i
n�

2b
� �36a	
7

�n� = ��− 	n��h

D
+

n2�2

4b2 , �1

=�2	n��h

D
−

n2�2

4b2 , ��3 = � i
n�

2b
� �36b	

The circular frequencies 	n are the only unknowns in the state
vector in Eq. �35	. Satisfaction of the boundary conditions at x
= �a will lead to the frequency equation.

For a SSSS plate, combining Eq. �35	 with the boundary con-
ditions yields a frequency relation

sinh �na cosh �na sinh �n�a cosh �n�a = 0 �37	

which can be subsequently solved for the free vibration frequency
	n as

	n = �m2�2

�2a	2 +
n2�2

�2b	2�� D

�h
, �m,n = 1,2, . . .	 �38	

which is identical to the well-known solution in any text on thin
plate vibration �48,50�.

For plates with other boundary conditions at x= �a, similar
procedure as described above is followed. Combining Eqs. �35	,
�36a	, and �36b	 with the relevant boundary conditions yield the
following frequency relations:

• CSCS

��n
2 + �n�

2	sinh�2�na	sinh�2�n�a	

= 2�n�n��cosh�2�na	cosh�2�n�a	 − 1� �39	

• SSCS

�n cosh�2�na	sinh�2�n�a	 − �n� sinh�2�na	cosh�2�n�a	 = 0

�40	

• CSFS

2�n�n��k
4 − �1 − �	2� + 2�n�n��k

4 + �1

− �	2�cosh�2�na	cosh�2�n�a	 + ��n
2 + �n�

2	��1 − 2�	k4

− �1 − �	2�sinh�2�na	sinh�2�n�a	 = 0 �41	

• SSFS

�n�k2 − �1 − �	�2cosh�2�na	sinh�2�n�a	 = �n��k
2 + �1

− �	�2sinh�2�na	cosh�2�n�a	 �42	

• FSFS

��n
2�k2 − �1 − �	�4 + �n�

2�k2 + �1

− �	�4sinh�2�na	sinh�2�n�a	 = 2�n�n��k
4 − �1

− �	2�2�cosh�2�na	cosh�2�n�a	 − 1� �43	

where k2=�2 / l2, �2=	n
��h /D, and l2=n2�2 /4b2.

These frequency relations have to be solved numerical for the
frequency solutions. Unlike the classical semi-inverse method
�44–50�, the frequency relations above are derived analytically
and rigorously step-by-step in a rational manner without introduc-
ing any trial functions. Furthermore, unlike the semi-inverse trial
functions, which only satisfy the geometric boundary conditions,
these exact relations satisfy all natural and geometric boundary
conditions at the outset. However, no closed form solutions for the
transcendental frequency relation for 	n in Eqs. �39	–�43	 could
be obtained. The numerical solutions are available in Ref. �95�.

5 Conclusions
This paper presents a comprehensive review of the previous
works on the theory and application of the symplectic methodol-
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gy in applied mechanics and engineering. It begins with a de-
cription of Feng’s works on numerical symplectic algorithm in
he middle 1980s, a discussion on Zhong’s works on analytic sym-
lectic elasticity since the beginning of the 1900s, and the many
ther works using the approach for closed form or nearly closed
orm solutions to elasticity problems for which exact or closed
ormed solutions have been impossible based on the semi-inverse
ethod of Navier, Lévy, and Timoshenko �44–50�. A unique fea-

ure of this method is that bending of plate becomes an eigenvalue
roblem and vibration becomes a multiple eigenvalue problem.
his paper also presents an introductory background and funda-
entals of symplectic space and Hamiltonian dual system. This

aper finally ends with a presentation of some analytical solutions
o some beam and plate problems for bending and vibration for
hich only numerical solution are considered possible prior to

ymplectic methodology.
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