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HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS

by

Clément Erignoux

Abstract. � Collective dynamics can be observed among many animal species, and have given rise in the
last decades to an active and interdisciplinary �eld of study. Such behaviors are often modeled by active
matter, in which each individual is self-driven and tends to update its velocity depending on the one of its
neighbors.

In a classical model introduced by Vicsek & al., as well as in numerous related active matter models, a
phase transition between chaotic behavior at high temperature and global order at low temperature can be
observed. Even though ample evidence of these phase transitions has been obtained for collective dynamics,
from a mathematical standpoint, such active systems are not fully understood yet. Signi�cant progress has
been achieved in the recent years under an assumption of mean-�eld interactions, however to this day, few
rigorous results have been obtained for models involving purely local interactions.

In this paper, as a �rst step towards the mathematical understanding of active microscopic dynamics,
we describe a lattice active particle system, in which particles interact locally to align their velocities.
We obtain rigorously, using the formalism developed for hydrodynamic limits of lattice gases, the scaling
limit of this out-of-equilibrium system. This article builds on the multi-type exclusion model introduced by
Quastel [35] by detailing his proof and incorporating several generalizations, adding signi�cant technical
and phenomenological di�culties.

Résumé (Limite hydrodynamique pour un processus d'exclusion actif). � L'étude des dy-
namiques collectives, observables chez de nombreuses espèces animales, a motivé dans les dernières décennies
un champ de recherche actif et transdisciplinaire. De tels comportements sont souvent modélisés par de la
matière active, c'est-à-dire par des modèles dans lesquels chaque individu est caractérisé par une vitesse
propre qui tend à s'ajuster selon celle de ses voisins.

De nombreux modèles de matière active sont liés à un modèle fondateur proposé en 1995 par Vic-
sek & al.. Ce dernier, ainsi que de nombreux modèles proches, présentent une transition de phase entre
un comportement chaotique à haute température, et un comportement global et cohérent à faible tempéra-
ture. De nombreuses preuves numériques de telles transitions de phase ont été obtenues dans le cadre des
dynamiques collectives. D'un point de vue mathématique, toutefois, ces systèmes actifs sont encore mal
compris. Plusieurs résultats ont été obtenus récemment sous une approximation de champ moyen, mais il
n'y a encore à ce jour que peu d'études mathématiques de modèles actifs faisant intervenir des interactions
purement microscopiques.

Dans cet article, nous décrivons un système de particules actives sur réseau interagissant localement pour
aligner leurs vitesses. Comme première étape a�n d'atteindre une meilleure compréhension des modèles
microscopiques de matière active, nous obtenons rigoureusement, à l'aide du formalisme des limites hydro-
dynamiques pour les gaz sur réseau, la limite macroscopique de ce système hors-équilibre. Nous développons
le travail réalisé par Quastel [35], en apportant une preuve plus détaillée et en incorporant plusieurs général-
isations posant de nombreuses di�cultés techniques et phénoménologiques.

Key words and phrases. � Statistical physics, Hydrodynamic Limits, Lattice gases, Out-of-equilibrium systems,
Non-gradient systems, Exclusion process.
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1. Introduction60

1.1. Active matter and active exclusion process. � Active matter systems, i.e. microscopic61

interacting particles models in which each particle consumes energy to self-propel, have been the subject62

of intense scrutiny in physics in the recent years. As explained thoroughly in Appendix A, active matter63

exhibits a rich phenomenology. Its two most studied features are the emergence of global polarization,64

�rst discovered with Vicsek's seminal model [50], and the so-called Motility Induced Phase Separation65

(MIPS, cf. [11]), which can be roughly described as the particle's tendency to cluster where they move66

more slowly. As detailed in Appendix A, these two phenomena have been extensively studied by the67

physics community in the last decade (e.g. [41] [42] [43] for alignment phase transition , [10] [11] for68

MIPS).69

By essence, active matter models are driven out-of-equilibrium at a microscopic level, and although70

many are now well-understood from a physics standpoint, their mathematical understanding to this day71

remains partial. Inspired by Vicsek's original model [50], signi�cant mathematical progress has been72

achieved using analytical tools for active alignment models submitted to mean-�eld or local-�eld inter-73

actions, i.e. for which the particle's interactions are locally averaged out over a large number of their74

neighbors (e.g. [5], [15], [18]). However, in some cases, the local-�eld approximation is not mathemat-75

ically justi�ed, and deriving exact results on models with purely microscopic interactions can provide76

welcome insight for their phenomenological study [30].77

Let us start by brie�y describing a simpli�ed version of the active exclusion process studied in this78

article before giving some mathematical context. On a two-dimensional periodic lattice, consider two-79

types of particles, denoted �+� and �−�, which move and update their type according to their neighbors.80

� Each particle's type is randomly updated by a Glauber dynamics depending on its nearest81

neighbors.82

� The motion of any particle is a random walk, weakly biased in one direction depending on its83

type : the �+� particles will tend to move to the right, whereas the �−� particles will tend to move84

to the left.85

� The vertical displacement is symmetric regardless of the particle's type.86

To model hard-core interactions, an exclusion rule is imposed, i.e. two particles cannot be present on the87

same site : a particle jump towards an occupied site will be canceled. This induces the congestion e�ects88

which can lead to MIPS, and one can therefore hope that this model encompasses both the alignment89

phase transition and MIPS which are characteristic of many of the active models described in Appendix90

A. However, mathematically proving such phenomenology for our microscopic active model is still out of91

reach.92

In this article, as a �rst step towards this goal, we derive the hydrodynamic limit for an extension of the93

model brie�y described above. From a mathematical standpoint, a �rst microscopic dynamics combining94

alignment and stirring was introduced in [13], where De Masi et al. considered a lattice gas with two95

types of particles, in which two neighboring particles can swap their positions, and can change type96

according to the neighboring particles. They derived the hydrodynamic limit, as well as the �uctuations,97

when the stirring dynamics is accelerated by a di�usive scaling, w.r.t. the alignment dynamics. This scale98

separation is crucial to have both alignment and stirring present in the hydrodynamic limit. Generally,99

the strategy to obtain the hydrodynamic limit for a lattice gas depends signi�cantly on the microscopic100

features of the model, and must be adapted on a case-by-case basis to the considered dynamics. For101

example, the exclusion rule in the active exclusion process makes it non-gradient, thus the proof of its102

hydrodynamic limit is signi�cantly more elaborate. The end of this introduction is dedicated to putting103
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in context the mathematical contributions of this article and describing the di�culties occurring in the104

derivation of the hydrodynamic limit of our model.105

1.2. Hydrodynamics limits for non-gradients systems. � The active exclusion process presented106

above belongs to a broad class of microscopic lattice dynamics for which the instantaneous particle107

currents along any edge cannot be written as a discrete gradient. This di�culty appears naturally in108

exclusion systems, in particular for systems with multiple particle types, or for generalized exclusion109

processes where only a �xed number κ (κ ≥ 2) of particles can be present at the same site. Such systems110

are called non-gradients. A considerable part of this article is dedicated to solving the di�culties posed111

by the non-gradient nature the active exclusion process.112

The �rst proof for a non-gradient hydrodynamic limit was obtained by Varadhan in [48], and Quastel113

[35] (cf. below). To illustrate the di�culty let us consider a general di�usive particle system of size N114

in 1 dimension, evolving according to a Markov generator LN . Such a di�usive system must be rescaled115

in time by a factor N2, therefore each jump in LN should occur at rate N2. Denoting by ηx the state of116

the system at the site x (e.g. number of particles, energy of the site), LNηx is a microscopic gradient,117

LNηx = N2(jx−1,x − jx,x+1),

where jx,x+1 is the instantaneous current along the edge (x, x + 1), and the N2 comes from the time-118

rescaling. This microscopic gradient balances out a �rst factor N , and acts as a spatial derivative on119

a macroscopic level. In order to obtain a di�usive equation similar to the heat equation, one needs to120

absorb the second factor N in a second spatial derivative. This is the main di�culty for non-gradient121

systems, for which the instantaneous current jx,x+1 does not take the form of a microscopic gradient.122

The purpose of the non-gradient method developed by Varadhan is to establish a so-called microscopic123

�uctuation-dissipation relation124

jx,x+1 ' −D(ηx+1 − ηx) + LNgx,
where LNgx is a small �uctuation which usually disappears in the macroscopic limit according to Fick's125

law for di�usive systems. Although the link to the macroscopic �uctuation-dissipation relation (cf. Section126

8.8, p140-141 in [45] for more detail on this relation) is not apparent, the latter is indeed a consequence127

of the microscopic identi�cation above.128

1.3. Multi-type lattice gases, and contributions of this article. � The di�culties to derive the129

hydrodynamic limit of multi-type particle models vary signi�cantly depending on the speci�cities of each130

microscopic dynamics. Active matter provides natural examples of multi-type particle systems, since131

each possible velocity can be interpreted as a di�erent type. When the particles evolve in a continuous132

space domains, (e.g. [15], [16]) and in the absence of hard-core interactions, the density of each type133

of particles can essentially be considered independently regarding displacement, and the scaling limit134

usually decouples the velocity variable and the space variable.135

In the case of lattice gases, however, it becomes necessary to specify the way particles interact when136

they are on the same site. Dynamically speaking, multi-type models often allow either137

� swapping particles with di�erent types, as in [37] for a totally asymmetric system with velocity138

�ips.139

� The coexistence on a same site of particles with di�erent velocities, as in [14] or [39] for a140

model closely related to the one investigated in this article with weak driving forces, or in [20] for141

a zero-range model exhibiting MIPS-like behavior.142

These simpli�cations allow to bypass the speci�c issues arising for di�usive systems with complete exclu-143

sion between particles, since the latter often require the non-gradient tools mentioned previously.144

The �rst hydrodynamic limits for non-gradient microscopic systems were studied by Varadhan and145

Quastel. They developed in [48] and [35] a general method to derive the hydrodynamic limit for non-146

gradient systems with main requirement a sharp estimate for the Markov generator's spectral gap. Quastel147

also notably obtained in [35] an explicit expression for the di�usion and conductivity matrices for the148

multi-type exclusion process, as a function of the various particle densities and of the self-di�usion149
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coe�cient ds(ρ) of a tagged particle for the equilibrium symmetric simple exclusion process with density150

ρ. This result was then partially extended to the weakly asymmetric case (in [36] as a step to obtain a151

large deviation principle for the empirical measure of the symmetric simple exclusion process, and where152

the asymmetry does not depend on the con�guration, and in [24] for a weak asymmetry with a mean-�eld153

dependency in the con�guration), as well as a more elaborate dynamics with creation and annihilation154

of particles [38].155

In this article, we derive the hydrodynamic limit for an active matter lattice gas with purely microscopic156

interactions. To do so, we generalize the results obtained by Quastel [35] by incorporating many natural157

extensions, and apply in great detail the non-gradient method for multi-type exclusion with a weak drift.158

There are several reasons behind our choice to detail this di�cult proof. First, Quastel's original159

article su�ers from typos which are �xed in this paper, in particular the spectral gap for the multi-type160

exclusion process is not uniform with respect to the density and this required an adaptation of the original161

proof. Second, Quastel's proof relied signi�cantly on the structure of the microscopic dynamics which162

could be controlled by the symmetric exclusion. This played a crucial role in [35] to ensure that the163

particle density does not reach 1, because when this is the case, the system loses its mixing properties as164

represented by the decay of the spectral gap. When the considered dynamics is a multi-type symmetric165

exclusion (identical for any particle type, as in [35]), the macroscopic density for the total number of166

particles evolves according to the heat equation, and density control at any given time is ensured by167

the maximum principle. In our case, the limiting equation is not di�usive and a priori estimates on the168

density are much harder to derive. Finally, [35] was one of the �rst examples of hydrodynamic limit169

for non-gradient systems, and to make the proof more accessible, we used the more recent formalism170

developed in [27], in which an important upside is the clear identi�cation of the orders of the estimates171

in the scaling parameter N .172

We extend the proof of the hydrodynamic limit for the multi-type exclusion process [35] to the weakly173

asymmetric case when the particle types depend on a continuous parameter. The hydrodynamic limit for174

lattice gases with K particle types takes the form of K coupled partial di�erential equations. Extending175

it to a continuum of particle types therefore poses the issue of the well-posedness of the system. To176

solve this issue, we therefore introduce an angular variable joint to the space variable. Although the177

global outline of the proof remains similar, this induced numerous technical di�culties. In particular, as178

opposed to the previous examples, local equilibrium is not characterized by a �nite number of real-valued179

parameters (e.g. density, local magnetization), which required signi�cant adaptation of the proof of the180

hydrodynamic limit.181

1.4. Active exclusion process and main result. � The remainder of this section is dedicated to a182

short description of our model and its hydrodynamic limit. For clarity's sake, we �rst describe in more183

details the simpli�ed model with only two types of particles brie�y presented above, and then introduce184

the more general active exclusion process studied in this article. Precisely describing the complete model,185

and rigorously stating its hydrodynamic limit, will be the purpose of Section 2.186

Description of a simpli�ed process with two particle types. � For the clarity of notations, we describe187

and study our model in dimension d = 2. The simpli�ed version of the model can be considered as an188

active Ising model [43] with an exclusion rule : each site x of the periodic lattice T2
N of size N is either189

� occupied by a particle of type �+� (η+
x = 1),190

� occupied by a particle of type �−� (η−x = 1),191

� empty if η+
x = η−x = 0.192

Each site contains at most one particle, thus the pair (η+
x , η

−
x ) entirely determines the state of any site193

x, and is either (1, 0), (0, 1) or (0, 0). The initial con�guration for our particle system is chosen at194

local equilibrium and close to a smooth macroscopic pro�le ζ0 = ζ+
0 + ζ−0 : T2 → [0, 1], where T2 is195

the continuous domain [0, 1]2 with periodic boundary conditions, and ζ+
0 (x/N) (resp. ζ−0 (x/N)) is the196

initial probability that the site x contains a �+� particle (resp. �−�). We denote by η̂ the collection197

((η+
x , η

−
x ))x∈T2

N
.198
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Each particle performs a random walk, which is symmetric in the direction i = 2, and weakly asym-199

metric in the direction i = 1. The asymmetry is tuned via a positive parameter λ, thus a �+� (resp.200

�−�) particle at site x jumps towards x+ e1 at rate 1 + λ/N (resp. 1− λ/N) and towards x− e1 at rate201

1− λ/N (resp. 1 + λ/N). If a particle tries to jumps to an occupied site, the jump is canceled. In order202

to obtain a macroscopic contribution of this displacement dynamics, it must be accelerated by a factor203

N2.204

Moreover, the type of the particle at site x is updated at random times, depending on its nearest205

neighbors. Typically, to model collective motion, a �−� particle surrounded by �+� particles will change206

type quickly, whereas a �−� particle surrounded by �−� particles will change type slowly, to model the207

tendency of each individual to mimic the behavior of its neighbors. Although they determine the shape of208

the last term of the hydrodynamic limit, the microscopic details of this update dynamics are technically209

not crucial to the proof of the hydrodynamic limit (in the scaling considered here), we therefore choose210

general, bounded �ip rates cx,β(η̂) parametrized by an inverse temperature β ≥ 0 and depending only on211

the local con�guration around x. We further assume that these jump rates depend continuously on the212

θy's around x.213

The complete dynamics can be split into three parts, namely the symmetric and asymmetric contri-214

butions of the exclusion process, and the Glauber dynamics, evolving on di�erent time scales. For this215

reason, each corresponding part in the Markov generator has a di�erent scaling in the parameter N : the216

two-type process is driven by the generator217

LN = N2

[
L+

1

N
LWA

]
+ LG,

whose three elements we now de�ne. Fix a function f of the con�guration, we denote by218

ηx = η+
x + η−x ∈ {0, 1}

the total occupation state of the site x. The nearest-neighbor simple symmetric exclusion process gener-

ator L is

Lf(η̂) =
∑
x∈T2

N

∑
|z|=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

LWA encompasses the weakly asymmetric part of the displacement process,

LWAf(η̂) =
∑
x∈T2

N

∑
δ=±1

δλ(η+
x − η−x ) (1− ηx+δe1)

(
f(η̂x,x+δe1)− f(η̂)

)
,

which is not a Markov generator because of its negative jump rates, but is well-de�ned once added to the

symmetric part of the exclusion process. Finally, LG is the generator which rules the local alignment of

the angles

LGf(η̂) =
∑
x∈T2

N

ηxcx,β(η̂) (f(η̂x)− f(η̂)) .

In the identities above, η̂x,x+z is the con�guration where the states of x and x+ z have been swapped in219

η̂, and η̂x is the con�guration where the type of the particle at site x has been changed.220

Hydrodynamic limit. � Let us denote by ρ+
t (u) (resp. ρ−t (u)) the macroscopic density of �+� (resp.�−�)221

particles, and by ρt(u) = ρ+
t (u) + ρ−t (u) the total density at any point u in T2. Let us also denote by222

mt(u) = ρ+
t (u)− ρ−t (u) the local average asymmetry.223

Then, as a special case of our main result the pair (ρ+
t , ρ

−
t ) is solution, in a weak sense, to the partial224

di�erential system225

(1.1)

{
∂tρ

+
t = ∇ ·

[
d(ρt, ρ

+
t )∇ρt + ds(ρt)∇ρ+

t

]
− 2λ∂u1

[
mts(ρt, ρ

+
t ) + ds(ρt)ρ

+
t

]
+ Γt,

∂tρ
−
t = ∇ ·

[
d(ρt, ρ

−
t )∇ρt + ds(ρt)∇ρ−t

]
+ 2λ∂u1

[
mts(ρt, ρ

−
t )− ds(ρt)ρ−t

]
− Γt

with initial pro�le226

(1.2) ρ±0 (u) = ζ±(u).
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In the PDE (1.4), ∂u1
denotes the partial derivative in the �rst space variable, ds is the self-di�usion227

coe�cient for the SSEP in dimension 2 mentioned in the introduction, the coe�cients d and s are given228

by229

(1.3) d(ρ, ρ∗) =
ρ∗

ρ
(1− ds(ρ)) and s(ρ, ρ∗) =

ρ∗

ρ
(1− ρ− ds(ρ)),

and Γt is the local creation rate of particles with type �+�, which can be written as the expectation under

a product measure of the microscopic creation rate. Although it is not apparent, the coe�cients d, s,

and ds satisfy a Stokes-Einstein relation in a matrix form when the di�erential equation is written for

the vector (ρ+
t , ρ

−
t ), in the sense that(

d(ρ, ρ+) + ds(ρ) d(ρ, ρ+)

d(ρ, ρ−) d(ρ, ρ−) + ds(ρ)

)(
ρ+(1− ρ+) −ρ+ρ−

−ρ+ρ− ρ−(1− ρ−)

)
=

(
ρ+[s(ρ, ρ+) + ds(ρ)] ρ−s(ρ, ρ+)

ρ+s(ρ, ρ−) ρ−[s(ρ, ρ−) + ds(ρ)]

)
.

The second matrix above is the compressibility matrix, whose components are Covρ+,ρ−(ηs10 , η
s2
0 ), where230

both s1 and s2 take value in {+,−}.231

This simpli�ed model is very close to the active Ising model (cf. Appendix A, and [43]) with a weak232

driving force. The main di�erence is the exclusion rule : in the active Ising model, there is no limit to the233

number of particles per site, and each particle's type is updated depending on the other particles present234

at the same site. In our two-type model, the exclusion rule creates a strong constraint on the displacement235

and therefore changes the form of the hydrodynamic limit, which is no longer the one derived in [43].236

Description of the active exclusion process. � We now describe the active exclusion process considered237

in this article, which is in some form a generalization of the model presented above. Indeed, although for238

technical reasons the proof of our main result cannot be applied verbatim to a �nite number of particle239

types, the overwhole scheme is exremely similar, and under suitable assumptions on the initial pro�le,240

one can state an analogous result in the case of a �nite number of particle types as well. Since the241

active exclusion process is thoroughly introduced in Section 2, we brie�y describe it here, and only give242

a heuristic formulation for our main result. Denoting243

S := [0, 2π[,

the periodic set of possible angles, the type of any particle is now a parameter θ ∈ S representing the244

angular direction of its weak driving force. To compare with the simpli�ed model, the �+� particles245

correspond to the angle θ = 0, whereas the �−� particles correspond to the angular direction θ = π.246

Any site is now either occupied by a particle with angle θ (ηx = 1, θx = θ), or empty (ηx = 0, θx = 0247

by default). The initial con�guration η̂(0) of the system is chosen at local equilibrium, close to a smooth248

macroscopic pro�le ζ̂ : T2×S→ R+, where each site x is occupied by a particle with angle θx ∈ [θ, θ+dθ[249

with probability ζ̂(x/N, θ)dθ, and the site remains empty w.p. 1−
∫
S
ζ̂(x/N, θ)dθ.250

Our active exclusion process is driven by the Markov generator251

LN = N2

[
L+

1

N
LWA

]
+ LG,

with three parts described below. Fix a function f of the con�guration. The nearest-neighbor simple

symmetric exclusion process generator L is unchanged with respect to the two-type case, whereas LWA is

now given by

LWAf(η̂) =
∑
x∈T2

N

∑
|z|=1
z=δei

δλi(θx)ηx (1− ηx+δei)
(
f(η̂x,x+δei)− f(η̂)

)
,

where the asymmetry in the direction i for a particle with angle θ is encoded by the functions λi(θ),252

λ1(θ) = λ cos(θ) and λ2(θ) = λ sin(θ).
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To �x ideas, The Glauber generator will be taken of the form

LGf(η̂) =
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
(
f(η̂x,θ)− f(η̂)

)
dθ,

where η̂x,θ is the con�guration where θx has been set to θ, and we choose alignment rates similar to the253

Glauber dynamics of the XY model (cf. Appendix A). More precisely, we consider254

cx,β(θ, η̂) =
exp

(
β
∑
y∼x ηy cos(θy − θ)

)
∫
S

exp
(
β
∑
y∼x ηy cos(θy − θ′)

)
dθ′

,

which tends to align θx with the θy's, for y a neighbor site of x. In the jump rates above, we take the255

value in [−π, π] of the angle θy − θ. The intensity λ and the inverse temperature β ≥ 0 still tune the256

strength of the drift and the alignment.257

As mentioned before, we settle for now for a heuristic formulation of the hydrodynamic limit. Let us258

denote by ρθt (u) the macroscopic density of particles with angle θ, and by ρt(u) =
∫
θ
ρθt (u)dθ the total259

density at any point u in the periodic domain T2 := [0, 1]2. Let us also denote by
→
Ωt the direction of the260

local average asymmetry261

→
Ωt(u) =

∫
S

ρθt (u)

(
cos(θ)

sin(θ)

)
dθ.

As expected from (1.1), the main result (cf. Theorem 2.6) of this article is that ρθt is solution, in a weak262

sense, to the partial di�erential equation263

(1.4) ∂tρ
θ
t = ∇ ·

[
d(ρt, ρ

θ
t )∇ρt + ds(ρt)∇ρθt

]
− 2∇ ·

[
s(ρt, ρ

θ
t )λ
→
Ωt + ds(ρt)ρ

θ
t

(
λ1(θ)

λ2(θ)

)]
+ Γt,

with initial pro�le264

ρθ0(u) = ζ̂(u, θ).

In the PDE (1.4), ds is the self-di�usion coe�cient for the SSEP in dimension 2 mentioned previously, the265

coe�cients d and s are given by (1.3) as in the two-type case, and Γt is the local creation rate of particles266

with angles θ, which can be written as the expectation under a product measure of the microscopic267

creation rate.268

Before properly stating the hydrodynamic limit, let us recall the major di�culties of the proof. The269

main challenge is the non-gradient nature of the model : the instantaneous current of particles with angle270

θ between two neighboring sites x and x+ ei can be written271

jθx,x+ei = 1{θx=θ}ηx(1− ηx+ei)− 1{θx+ei
=θ}ηx+ei(1− ηx),

which is not a discrete gradient. One also has to deal with the loss of ergodicity at high densities, and with272

the asymmetry a�ecting the displacement of each particle, which drives the system out-of-equilibrium,273

and complicates the non-gradient method. Finally, the non-linearity of the limiting equation also induces274

several di�culties throughout the proof.275

Model extensions. � Several design choices for the model have been made either to simplify the notations,276

or to be coherent with the collective dynamics motivations (cf. Appendix A). However, we present now277

some of the possible changes for which our proof still holds with minimal adaptations.278

� The model can easily be adapted to dimensions d ≥ 2. The dimension 1, however, exhibits very279

di�erent behavior, since neighboring particles with opposite drifts have pathological behavior and280

freeze the system due to the exclusion rule.281

� The nearest neighbor jumps dynamics can be replaced by one with local and irreducible transition282

function p(·). This involves minor adjustments of the limiting equation, as solved by Quastel [35].283

In this case, the total jump generator must be split between a symmetric part scaled as N2, and284

an asymmetric part scaled as N whose jumps can be decomposed as a succession of jumps from285

the symmetric part. However, providing exact criteria for the validity of the extension to a more286

general jump kernel would be rather di�cult, and such extensions are best checked on a case-by-287

case basis. In the case of nearest-neighbor exclusion, the drift functions can be replaced by any288
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bounded function, and can also involve a spatial dependency, as soon as λi(u, θ) is a smooth C1,1
289

function of its two variables u and θ.290

� We chose for our alignment dynamics a jump process, however analogous results would hold for291

di�usive alignment. The jump rates can also be changed to any local and bounded rates, provided292

they are smooth in the θx's. The smoothness assumption in the last two comments is there to make293

sure that the expectation of their microscopic contribution under the grand-canonical measures is294

a Lipschitz-continuous function in the grand-canonical parameter.295

1.5. Structure of the article. � Section 2 is dedicated to the full description of the model, to296

introducing the main notations, and the proper formulation of the hydrodynamic limit for the active297

exclusion process.298

Section 3 is composed of three distinct parts. In Subsection 3.1 we characterize local equilibrium for299

our process by introducing the setM1(S) of parameters for the grand-canonical measures of our process.300

We also give a topological setup forM1(S), for which some elementary properties are given in Appendix301

C. In Subsection 3.2, we prove using classical tools that the entropy of the measure of our process with302

respect to a reference product measure is of order N2. The last Subsection 3.3 tackles the problem of303

irreducibility, which is speci�c to our model and is one of its major di�culties. Its main result, Proposition304

3.12, relies on a-priori density estimates, and states that on a microscopic scale, large local clusters are305

seldom completely full, which is necessary to ensure irreducibility on a microscopic level.306

Section 4 proves a law of large numbers for our process. The so-called Replacement Lemma stated in307

Subsection 4.1 relies on the usual one block (Subsection 4.3) and two blocks (Subsection 4.4) estimates.308

However, even though we use the classical strategy to prove both estimates, some technical adaptations309

are necessary to account for the speci�cities of our model.310

Section 5 acts as a preliminary to the non-gradient method. The �rst result of this section is the311

comparison of the active exclusion process's measure to that of an equilibrium process without drift nor312

alignment (Subsection 5.1). We also prove, adapting the classical methods, a compactness result for313

the sequence of measures of our process, (Subsection 5.2) as well as an energy estimate (Subsection 5.3)314

necessary to prove our main result.315

The non-gradient estimates are obtained in Section 6. It is composed of a large number of intermediate316

results which we do not describe in this introduction. The application of the non-gradient method to the317

active exclusion process, however, requires to overcome several issues which are speci�c to our model. One318

such di�culty is solved in Subsection 6.3, where we estimate the contributions of microscopic full clusters.319

In Subsections 6.6 and 6.7, we prove that for our well chosen di�usion and conductivity coe�cients, the320

total displacement currents can be replaced by the sum of a gradient quantity and the drift term. For the321

sake of clarity, we use to do so the modern formalism for hydrodynamic limits as presented in [27] rather322

than the one used in [35]. We state in this section a convergence result at the core of the non-gradient323

method (Theorem 6.11) whose proof is intricate and is postponed to the last section.324

All these results come together in Section 7, where we conclude the proof of the hydrodynamic limit325

for our process. Some more speci�c work is necessary in order to perform the second integration by parts,326

due to the delicate shape of the di�usive part of our limiting di�erential equation.327

Finally, Section 8 is dedicated to proving Theorem 6.11, following similar steps as in [27]. To do so,328

we estimate in Subsection 8.1 the spectral gap of the active exclusion process on a subclass of functions.329

We then describe in Subsection 8.2 the notion of germs of closed forms for the active exclusion process,330

and prove using the spectral gap estimate a decomposition theorem for the set of germs of closed forms.331

A di�culty of this model is that the spectral gap is not uniform in the density, and decays faster as the332

density goes to 1. This issue is solved by cutting o� large densities (cf. equation (8.2) and Lemma 8.15).333

Using the decomposition of closed forms, Theorem 6.11 is derived in Subsection 8.5.334
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2. Notations and Main theorem335

We describe an interacting particle system, where a particle follows an exclusion dynamics with a336

weak bias depending on an angle associated with this particle. At the same time, each particle updates337

its angle according to the angles of the neighboring particle. We study the macroscopic behavior of the338

corresponding 2-dimensional system with a periodic boundary condition.339

2.1. Main notations and introduction of the Markov generator. � On the two dimensional340

discrete set341

T2
N = {1, . . . , N}2

with periodic boundary conditions, we de�ne the occupation con�guration η = (ηx)x∈T2
N
∈ {0, 1}T2

N where342

ηx ∈ {0, 1} is the number of particles at site x. With any occupied site x ∈ T2
N , we associate an angle343

θx ∈ S representing the mean direction of the velocity in the plane of the particle occupying the site.344

When the site x is empty, we set the angle of the site to θx = 0 by default.345

De�nition 2.1 (Con�gurations, cylinder & angle-blind functions)346

For any site x ∈ T2
N , we denote by η̂x the pair (ηx, θx), and by η̂ = (η̂x)x∈T2

N
the complete con�guration.347

The set of all con�gurations will be denoted by348

ΣN =
{

(ηx, θx)x∈T2
N
∈ ({0, 1} × S)

T2
N

∣∣∣ θx = 0 if ηx = 0
}
.

Denote by Σ∞ the set of in�nite con�gurations above, where T2
N is replaced by Z2. We will call cylinder349

function any function f depending on the con�guration only through a �nite set of vertices Bf ⊂ Z2,350

and C1 w.r.t. each θx, for any x ∈ Bf . The set of cylinder functions on Z2 will be denoted by C. Note351

that a cylinder function is always bounded, and that any function f ∈ C admits a natural image as a352

function on ΣN for any N large enough. This is always the latter that we will consider, and we therefore353

abuse the notation and denote in the same way both f and its counterpart on ΣN .354

We will call angle-blind function any function depending on η̂ only through the occupation variables355

η = (ηx)x∈T2
N
. In other words, an angle-blind function depends on the position of particles, but not on356

their angles. We denote by S the set of angle-blind functions.357

We will use on the discrete torus the notations | · | for the norm |x | =
∑2
i=1|xi |.358

Let T be a �xed time, we now introduce the process (η̂(t))t∈[0,T ] on ΣN which is central to our work.359

Our goal is to combine the two dynamics present in Viscek's model [50] : The �rst part of the process360

is the displacement dynamics, which rules the motion of each particle. The moves occur at rates biased361

by the angle of the particle, and follows the exclusion rule. Thus, for δ = ±1 the rate px(δei, η̂) at which362

the particle at site x moves to an empty site x+ δei, letting e1 = (1, 0), e2 = (0, 1) be the canonical basis363

in Z2, is given by364

px(δei, η̂) =

{
1 + λδ cos(θx)/N if i = 1

1 + λδ sin(θx)/N if i = 2
,

where λ ∈ R is a positive parameter which characterizes the strength of the asymmetry. For convenience,365

we will denote throughout the proof366

(2.1) λ1(θ) = λ cos(θ) and λ2(θ) = λ sin(θ).

The previous rates indicate that the motion of each particle is biased in a direction given by its angle.367

The motion follows an exclusion rule, which means that if the target site is already occupied, the jump is368

canceled. Note that in order to see the symmetric and asymmetric contributions in the di�usive scaling369

limit, we must indeed choose an asymmetry scaling as 1/N . Furthermore, in order for the system to370

exhibit a macroscopic behavior in the limit N → ∞, we need to accelerate the whole exclusion process371

by N2, as discussed further later on.372

The second part of the dynamic is the angle update process, which will be from now on referred to373

as the Glauber part of the dynamics. A wide variety of choices is available among discontinuous angle374
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dynamics (jump process) and continuous angle dynamics (di�usion). We choose here a Glauber jump375

process with inverse temperature β ≥ 0 described more precisely below.376

The generator of the complete Markov process is given by377

(2.2) LN = N2LD + LG,

where378

(2.3) LD = L+
1

N
LWA

is the generator for the displacement process (which two parts are de�ned below) and LG is the generator379

of the Glauber dynamics. The process can therefore be decomposed into three distinct parts, with380

di�erent scalings in N , namely the symmetric part of the motion, with generator N2L, the asymmetric381

contribution to the displacement generator NLWA with parameter λ ≥ 0, and �nally the angle-alignment382

with generator LG and inverse temperature β ≥ 0, which are de�ned for any cylinder (and therefore C1
383

in the angular variables, cf. De�nition 2.1) function f : ΣN → R, by384

(2.4) Lf(η̂) =
∑
x∈T2

N

∑
|z|=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

LWAf(η̂) =
∑
x∈T2

N

∑
δ=±1
i=1,2

δλi(θx)ηx (1− ηx+δei)
(
f(η̂x,x+δei)− f(η̂)

)
,

385

(2.5) LGf(η̂) =
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
(
f(η̂x,θ)− f(η̂)

)
dθ.

Note that LWA alone is not a Markov generator due to the negative jump rates, but considering the386

complete displacement generator L+N−1LWA solves this issue for any N large enough. In the expressions387

above, we denoted η̂x,x+z the con�guration where the occupation variables η̂x and η̂x+z at sites x and388

x+ z have been exchanged in η̂389

η̂x,x+z
y =


η̂x+z if y = x,

η̂x if y = x+ z,

η̂y otherwise,

and η̂x,θ the con�guration where the angle θx in η̂ has been updated to θ390

η̂x,θy =

{
(ηy, θ) if y = x,

η̂y otherwise.

For x, y ∈ T2
N , we write x ∼ y i� |x− y| = 1. We choose for cx,β the jump rates391

cx,β(θ, η̂) =
exp

(
β
∑
y∼x ηy cos(θy − θ)

)
∫
S

exp
(
β
∑
y∼x ηy cos(θy − θ′)

)
dθ′

,

which tend to align the angle in x with the neighboring particles according to XY-like jump rates (cf.392

Appendix A) with inverse temperature β ≥ 0. Note that by construction, for any non-negative β,393 ∫
S
cx,β(θ, η̂)dθ = 1 and that the jump rates cx,β(θ, η̂) can be uniformly bounded from above and below394

by two positive constants depending only on β.395

The process de�ned above will be referred to as active exclusion process.396

2.2. Measures associated with a smooth pro�le and de�nition of the Markov process. �397

We now introduce the important measures and macroscopic quantities appearing in the expression of the398

hydrodynamic limit. Let us denote by T2 the continuous periodic domain in dimension 2,399

T2 = [0, 1)
2
.
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De�nition 2.2 (Density pro�le on T2). � We denote byM1(S) the set of non-negative measures α̂400

on S with total mass α̂(S) in [0, 1]. We call density pro�le on the torus any function401

ρ̂ : (u, dθ) 7→ ρ̂(u, dθ)

such that ρ̂(u, .) ∈ M1(S) ∀u ∈ T2
N . For any density pro�le ρ̂ on the torus, ρ̂(u, dθ) represents the local402

density in u of particles with angle in dθ, and ρ(u) represents the total density of particles in u.403

De�nition 2.3 (Measure associated with a density pro�le on the torus)404

To any density pro�le on the torus ρ̂, we associate µNρ̂ , the product measure on ΣN such that the405

distribution of η̂x is given for any x ∈ T2
N by406

(2.6)


µNρ̂ (ηx = 0) = 1− ρ(x/N),

µNρ̂ (ηx = 1) = ρ(x/N),

µNρ̂ (θx ∈ dθ | ηx = 1) = ρ̂(x/N, dθ)/ρ(x/N),

and such that η̂x, η̂y are independent as soon as x 6= y.407

In other words, under µNρ̂ , the probability that a site x ∈ T2
N is occupied is ρ(x/N) =

∫
S
ρ̂(x/N, θ)dθ ∈408

[0, 1]. Furthermore, the angle of an empty site is set to 0 by default, and the angle of an occupied site x409

is distributed according to the probability distribution ρ̂(x/N, ·)/ρ(x/N).410

De�nition of the process. � Let Σ
[0,T ]
N := D([0, T ],ΣN ) denote the space of right-continuous and left-411

limited (càdlàg) trajectories η̂ : t→ η̂(t). We will denote by η̂[0,T ] the elements of Σ
[0,T ]
N . For any initial412

measure ν on ΣN , any non-negative drift λ ≤ N (to make the displacement operator L + N−1LWA a413

Markov generator), and any β ≥ 0, we write Pλ,βν for the measure on Σ
[0,T ]
N starting from the measure414

η̂(0) ∼ ν, and driven by the Markov generator LN = LN (λ, β) described earlier. We denote by Eλ,βν the415

expectation w.r.t. Pλ,βν . In the case λ = β = 0, there is no drift and the angle of the particles are chosen416

uniformly in S. In this case, we will omit λ and β in the previous notation and write Pν for the measure417

and Eν for the corresponding expectation. Let us now de�ne the initial measure from which we start our418

process. Let ζ̂ ∈ C(T2× S) be a continuous non-negative function on T2× S, which will de�ne the initial419

macroscopic state of our particle system. We assume that for any u ∈ T2,420

(2.7) ζ(u) :=

∫
S

ζ̂(u, θ)dθ < 1,

i.e. that the initial density is less than one initially everywhere on T2. This assumption is crucial,421

because when the local density hits one, because of the exclusion rule, the system loses most of its mixing422

properties. At density 1, mixing only comes from the (slow, because of the scaling) Glauber dynamics,423

which is not su�cient to ensure that local equilibrium is preserved.424

We can now de�ne the initial density pro�le on the torus ρ̂0 by425

(2.8) ρ̂0(u, dθ) = ζ̂(u, θ)dθ.

We start our process from a random con�guration426

(2.9) η̂(0) ∼ µN := µNρ̂0

�tting the pro�le ρ̂0, according to De�nition 2.3. Given this initial con�guration, we de�ne the Markov427

process η̂[0,T ] ∈ Σ
[0,T ]
N ∼ Pλ,β

µN
driven by the generator LN introduced in (2.2), starting from µN .428
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Topological setup. � Let us denote byM(T2×S) the space of non-negative measures on the continuous429

con�guration space endowed with the weak topology, and430

(2.10) M[0,T ] = D
(
[0, T ],M(T2 × S)

)
the space of right-continuous and left-limited trajectories of measures on T2 × S. Each trajectory η̂[0,T ]

of the process admits a natural image inM[0,T ] through its empirical measure

πNt

(
η̂[0,T ]

)
=

1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

We further de�ne the projection πN , which associates to η̂[0,T ] the trajectory t 7→ πNt
(
η̂[0,T ]

)
. We endow431

M[0,T ] with Skorohod's metric de�ned in Appendix B.1, and the set P(M[0,T ]) of probability measures432

onM[0,T ] with the weak topology. We now de�ne QN ∈ P(M[0,T ]) the distribution of the trajectory of433

the empirical measure πN
(
η̂[0,T ]

)
of our process η̂[0,T ] ∼ Pλ,β

µN
.434

2.3. Hydrodynamic limit. �435

Self-di�usion coe�cient. � The hydrodynamic limit for our system involves the di�usion coe�cient of436

a tagged particle for symmetric simple exclusion process (SSEP) in dimension 2. Let us brie�y remind437

here its de�nition. On Z2, consider an in�nite equilibrium SSEP with density ρ and a tagged particle438

placed at time 0 at the origin. We keep track of the position X(t) = (X1(t), X2(t)) ∈ Z2 of the tracer439

particle at time t and denote by Q∗ρ the measure of the process starting with measure µρ on Z2 \ {0} and440

a particle at the origin.441

De�nition 2.4 (Self-Di�usion coe�cient). � The self-di�usion coe�cient ds(ρ) is de�ned as the442

limiting variance of the tagged particle443

ds(ρ) := lim
t→∞

EQ∗ρ(X1(t)2)

t
.

The existence of this limit is a consequence of [28]. A variational formula for ds has been obtained444

later by Spohn [44]. The regularity of the self-di�usion coe�cient was �rst investigated in [49], where445

Varadhan shows that the self-di�usion matrix is Lipschitz-continuous in any dimension d ≥ 3. Landim,446

Olla and Varadhan since then proved in [31] that the self-di�usion coe�cient is in fact of class C∞ in447

any dimension. The matter of self-di�usion being treated in full detail in Section 6, p199-240 of [29], we448

do not develop it further here. We summarize in appendix B.2 some useful results on the matter.449

Di�usion, conductivity and alignment coe�cients. � Given a density pro�le on the torus ρ̂(u, dθ), recall

from De�nition 2.2 that ρ(u) =
∫
S
ρ̂(u, dθ) is the local density. We introduce the coe�cients

d̂(ρ, ρ̂)(u, dθ) =
ρ̂(u, dθ)

ρ(u)
(1−ds(ρ(u)))1{ρ(u)>0}, ŝ(ρ, ρ̂)(u, dθ) = (1−ρ(u)−ds(ρ(u)))

ρ̂(u, dθ)

ρ(u)
1{ρ(u)>0},

where ds is the self-di�usion coe�cient described in the previous paragraph. We also de�ne
→
Ω(ρ̂), the450

vector representing the mean direction of the asymmetry under ρ̂,451

→
Ω(ρ̂)(u) =

∫
S

ρ̂(u, dθ′)

(
cos(θ′)

sin(θ′)

)
.

as well as Γ(ρ̂) the local creation and annihilation rate of particles with angle θ452

Γ(ρ̂)(u, dθ) = ρ(u)Eρ̂(u,·) [c0,β(θ, η̂)] dθ − ρ̂(u, dθ),

where under Eρ̂(u,·), each site is occupied independently w.p. ρ(u), and the angle of each particle is chosen453

according to the probability distribution ρ̂(u, ·)/ρ(u). The precise de�nition of Eρ̂(u,·) is given just below454

in De�nition 3.4.455



14 C.ERIGNOUX

Weak solutions of the PDE. � In order to state the hydrodynamic limit of our system, we need to456

describe the notion of weak solutions in our case, which is quite delicate because of the angles. For any457

measure π ∈ M(T2 × S) and any function H : T2 × S → R integrable w.r.t. π, we shorten < π,H >=458 ∫
T2×SH(u, θ)dπ(du, dθ).459

De�nition 2.5 (Weak solution of the di�erential equation). � Any trajectory of measures460

(πt)t∈[0,T ] ∈M[0,T ] will be called a weak solution of the di�erential system461

(2.11)
∂tρ̂t = ∇ ·

[
d̂(ρt, ρ̂t)∇ρt + ds(ρt)∇ρ̂t

]
− 2λ∇ ·

[
ŝ(ρt, ρ̂t)

→
Ωt + ρ̂tds(ρt)

(
cos(θ)

sin(θ)

)]
+ Γ(ρ̂t)

ρ̂0(u, dθ) = ζ̂(u, θ)dθ

,

if the following four conditions are satis�ed :462

i) π0(du, dθ) = ζ̂(u, θ)dudθ463

ii) for any �xed time t ∈ [0, T ], the measure πt is absolutely continuous in space w.r.t. the Lebesgue464

measure on T2, i.e. there exists a density pro�le on the torus (in the sense of De�nition 2.2) ρ̂t, such465

that466

πt(du, dθ) = ρ̂t(u, dθ)du.

iii) Letting ρt(u) =
∫
S
ρ̂t(u, dθ), ρ is in H1([0, T ] × T2), i.e. there exists a family of functions ∂uiρt467

in L2([0, T ]× T2) such that for any smooth function G ∈ C0,1([0, T ]× T2),468 ∫
[0,T ]×T2

ρt(u)∂uiGt(u)dtdu = −
∫

[0,T ]×T2

Gt(u)∂uiρt(u)dtdu

iv) For any function H ∈ C1,2,1([0, T ]× T2 × S),

< πT , HT > − < π0, H0 >=

∫ T

0

< πt, ∂tHt > dt

+

∫ T

0

∫
T2×S

[
2∑
i=1

(
− ∂uiHt(u, θ)

[
d̂(ρt, ρ̂t)− d′s(ρt)ρ̂t

]
(u, dθ)∂uiρt(u) + ∂2

uiHt(u, θ)ds(ρt)ρ̂t(u, dθ)

+ ∂uiHt(u, θ) [2λŝ(ρt, ρ̂t)Ωi(ρ̂t) + 2λi(θ)ds(ρt)ρ̂t] (u, dθ)

)
+Ht(u, θ)Γ(ρ̂t)(u, dθ)

]
dudt,

where the various coe�cients are those de�ned just before, and the functions λi are de�ned in (2.1).469

Note that in this De�nition, the only quantity required to be in H1 is the total density ρ : indeed, the470

term ds(ρt)∇ρ̂t is rewritten as471

ds(ρt)∇ρ̂t = ∇(ds(ρt)ρ̂t)− d′s(ρt)ρ̂t∇ρt,

and the �rst term in the right-hand side above allows another derivative to be applied to the test function472

H, whereas the second term only involves the derivative of ρ as wanted.473

We are now ready to state our main theorem :474

Theorem 2.6. � The sequence (QN )N∈N de�ned at the end of Section 2.2 is weakly relatively compact,475

and any of its limit points Q∗ is concentrated on trajectories (πt)t∈[0,T ] which are solution of (2.11) in476

the sense of De�nition 2.5.477

Remark 2.7 (Uniqueness of the weak solutions of equation (2.11))478

One of the reasons for our weak formulation of the scaling limit of the active exclusion process is479

the lack of proof for the uniqueness of weak solutions of equation (2.11). Several features of equation480

(2.11) make the uniqueness di�cult to obtain : First, our di�erential equation does not take the form481

of an autonomous di�erential equation : the variation of ρ̂t(u, θ) involves the total density ρ, therefore482

the di�erential equation is in fact a di�erential system operating on the vector (ρ̂t(u, θ), ρt(u)). Cross-483

di�usive systems can exhibit pathological behavior when the di�usion matrix has negative eigenvalues,484

but in our case, both eigenvalues are non-negative and this issue does not appear.485
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However, although cross-di�usive systems are quite well understood (cf. for example [1]), our equation486

involves a drift term which factors in via the vector
→
Ω(ρ̂t) the whole pro�le (ρ̂t(u, θ))θ∈S. One of the487

consequences of this drift term, which is the main obstacle to prove uniqueness, is that even the uniqueness488

of the total density ρt(u) is not well established. Indeed, contrary to [35], in which the total density evolves489

according to the heat equation, the total density in our case is driven by the Burgers-like equation490

∂tρt(u) = ∆ρt(u)− λ∇ · (mt(u)(1− ρt(u)))

where m is a quantity which depends on the whole pro�le (ρ̂t(u, θ))θ∈S, and for which uniqueness is hard491

to obtain.492

2.4. Instantaneous currents. � In order to get a grasp on the delicate points of the proof, and to493

introduce the particle currents on which rely the proof of Theorem 2.6, we need a few more notations.494

Throughout the proof, for any function ϕ : ΣN → R and x ∈ T2
N , we will denote by τxϕ : ΣN → R the495

function which associates to a con�guration η̂ the value ϕ(τxη̂), where τxη̂ ∈ ΣN is the translation of the496

con�guration η̂ by a vector x :497

(τxη̂)y = η̂x+y, ∀y ∈ T2
N .

498

For any function499

H : [0, T ]× T2 × S → R
(t, u, θ) 7→ Ht(u, θ)

,

in C1,2,1([0, T ]× T2 × S), and any measure π on T2 × S, let us denote500

< π,Ht >=

∫
T2×S

Ht(u, θ)dπ(u, θ)

the integral of H with respect to the measure π. We consider the martingale MH,N
t501

(2.12) MH,N
t =< πNt , Ht > − < πN0 , H0 > −

∫ t

0

(∂s + LN ) < πNs , Hs > ds,

where πNs is the empirical measure of the process502

πNs =
1

N2

∑
x∈T2

N

ηx(s)δx/N,θx(s).

The quadratic variation of this martingale can be explicitely computed, and is equal to (cf. Appendix

1.5 of [27])

[MH,N ]t =

∫ t

0

LN (< πNs , Hs >
2)− 2 < πNs , Hs > LN < πNs , Hs > ds

=
2

N4

∑
x∈T2

N

[ ∫ t

0

LN [ηx(s)ηx+1(s)Hs(x/N, θx(s))Hs((x+ 1)/N, θx+1(s))]

− ηx+1(s)Hs((x+ 1)/N, θx+1(s))LN [ηx(s)Hs(x/N, θx(s))]

− ηx(s)Hs(x/N, θx(s))LN [ηx+1(s)Hs((x+ 1)/N, θx+1(s))] ds

]
.

Because of the initial factor N−4, the contributions of the asymmetric and Glauber parts of the dynamic

can be crudely bounded respectively by CN−1 and CN−2. By computing the symmetric part, we �nally

obtain

[MH,N
t ]t =O(1/N) +

1

N2

∑
x∈T2

N

[ ∫ t

0

ηx(s)
[
H2
s (x+ 1/N, θx(s)) +H2

s (x− 1/N, θx(s))− 2H2
s (x/N, θx(s))

+ 2ηx(s)(1− ηx+1(s))Hs(x/N, θx(s))
[
Hs((x+ 1)/N, θx(s))−Hs(x/N, θx(s))

]
+ 2ηx+1(s)(1− ηx(s))Hs((x+ 1)/N, θx+1(s))

[
Hs((x+ 1)/N, θx+1(s))−Hs(x/N, θx+1(s))

]
.
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Because we assumed that H is a smooth function, the three lines above are of order at most N−1, and503

therefore [MH,N
t ]t vanishes as N goes to in�nity. The martingale thus vanishes uniformly in time, in504

probability under Pλ,β
µN

.505

Assume now that the function H takes the form506

(2.13) Hs(u, θ) = Gs(u)ω(θ),

where G and ω are respectively functions on [0, T ]×T2 and S. From now on, for any function Φ : S→ R,507

any con�guration η̂ and any x ∈ T2
N we will shorten508

ηΦ
x = Φ(θx)ηx.

With these notations, recalling that509

LN = N2
(
L+N−1LWA

)
+ LG,

we can write the generator part of the integral term of (2.12) as510

(2.14)

∫ T

0

LN < πNs , Hs > ds =
1

N2

∫ T

0

∑
x∈T2

N

Gs(x/N)
(
N2[Lηωx (s) +N−1LWAηωx (s)

)
+ LGηωx (s)]ds.

Let us introduce accordingly the three instantaneous currents in our active exclusion process. Recall that511

τx represents the translation of a function by x.512

De�nition 2.8. � Given a site x ∈ T2
N , each part of the generator LN 's action over ηωx can be written513

(2.15) Lηωx =

2∑
i=1

(τx−eij
ω
i − τxjωi ) with jωi (η̂) = ηω0 (1− ηei)− ηωei (1− η0) ,

514

(2.16) LWAηωx =

2∑
i=1

(τx−eir
ω
i − τxrωi ) with rωi (η̂) = ηωλi0 (1− ηe1) + ηωλiei (1− η0),

and515

(2.17) LGηωx = τxγ
ω with γω(η̂) = η0

∫
S

c0,β(θ, η̂)(ω(θ)− ω(θ0))dθ.

For i ∈ {1, 2} we will at times write jωx,x+ei = τxj
ω
i (resp. rωx,x+ei = τxr

ω
i ), which is interpreted as the516

instantaneous current with intensity ω in the direction i along the edge (x, x+ei) of the symmetric (resp.517

weakly asymmetric) part of the process. The last quantity τxγ
ω is the local alignment rate.518

When considering the time process (η̂(t))t∈[0,T ] we will, for the sake of concision, write jωi (t) for519

jωi (η̂(t)), and in the same fashion rωi (t) instead of rωi (η̂(t)), and γω(t) instead of γω(η̂(t)). Finally, in the520

case where ω ≡ 1, we will denote by521

ji := j1
i = η0 − ηei .

Performing a �rst integration by parts on the exclusion part of the right-hand side of (2.14), we obtain

thanks to equations (2.15), (2.16) and (2.17)

∫ T

0

LN < πNs , Hs > ds =
1

N2

∫ T

0

∑
x∈T2

N

τx

[
2∑
i=1

(
Njωi (s) + rωi (s)

)
∂ui,NGs(x/N) +Gs(x/N)γω(s)

]
ds,

(2.18)

where ∂ui,N is the discrete partial derivative522

(∂ui,NG)(x/N) = N [G((x+ ei)/N)−G(x/N)] .

523

The spatial averaging is of great importance throughout the proof of the hydrodynamic limit, we need524

some convenient notation to represent this operation. For any site x ∈ T2
N and any integer l, we denote525

by526

Bl(x) =
{
y ∈ T2

N

∣∣ ||y − x||∞ ≤ l }
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the box of side length 2l + 1 around x. In the case where x = 0 is the origin, we will simply write527

Bl := Bl(0). For any �nite subset B ⊂ T2
N , |B| denotes the number of sites in B. Given ϕ a function on528

ΣN , we denote by529

(2.19) 〈ϕ〉lx =
1

|Bl(x) |
∑

y∈Bl(x)

τyϕ

the average of the function ϕ over Bl(x). In the case where ϕ(η̂) = ηω0 , (resp. ϕ(η̂) = η0), we will write530

τxρ
ω
l = 〈ϕ〉lx (resp. τxρl) for the empirical average of ηω (resp. η) over the box centered in x of side531

length 2l + 1.532

We will also denote for any integer l by ρ̂l the empirical angular density de�ned by533

(2.20) ρ̂l =
1

|Bl |
∑
x∈Bl

ηxδθx ∈M1(S),

whereM1(S) is the set of non-negative measures on S with total mass in [0, 1] (cf. De�nition 3.1 below).534

Finally, to simplify notations throughout the proof, we will write εN instead of the integer part bεNc.535

3. Canonical measures, entropy and irreducibility536

3.1. De�nition of the canonical measures. � Due to the presence of angles, the canonical product537

measures for the active exclusion process are not parameterized by the local density α ∈ [0, 1] like the538

SSEP, but rather by a measure α̂ on [0, 2π] whose total mass
∫
S
α̂(dθ) is the local density.539

De�nition 3.1 (Grand-canonical parameters). � Recall that T2 is the 2-dimensional continuous540

torus (R/Z)2, and let M(S) be the set of non-negative measures on S. We will call grand-canonical541

parameter any measure α̂ ∈M(S) with total mass α :=
∫
S
α̂(dθ) ≤ 1. We denote by542

(3.1) M1(S) = { α̂ ∈M(S) | α ∈ [0, 1] } ,

the set of grand-canonical parameters.543

We now de�ne a topological setup on M1(S). Let us consider on C1(S), the set of continuously544

di�erentiable functions, the norm ||g||∗ = max(||g||∞ , ||g′||∞), and let B∗ be the unit ball in (C1(S), ||·||∗).545

De�nition 3.2. � We endow M(S), the vector space of �nite mass signed measures on S, with the546

norm547

||| α̂ ||| = sup
g∈B∗

{∫
g(θ)dα̂(θ)

}
,

and with the corresponding distance548

d(α̂, α̂′) := sup
g∈B∗

{∫
S

g(θ)dα̂(θ)−
∫
S

g(θ)dα̂′(θ)

}
.

We then endow M1(S) with the topology induced by ||| · |||. This distance is a generalization of the549

Wasserstein distance to measures which are not probability measures.550

Remark 3.3. � As checked in Appendix C, this topology satis�es551

� for any cylinder function ψ, the application α̂ 7→ Eα̂(ψ) is Lipschitz-continuous (cf. Proposition552

C.2).553

� any α̂ ∈M(S) is the limit of combinations of Dirac measures.554

� if θk → θ, then ||| δθk − δθ ||| → 0.555

It is therefore the natural choice for our problem.556

We now introduce the canonical measures of our process, which are translation-invariant particular557

cases of measures associated with a density pro�le, introduced in De�nition 2.3.558
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De�nition 3.4 (Grand canonical measures). � Consider a translation invariant density pro�le on559

the torus ρ̂, i.e. such that for any u ∈ T2,560

ρ̂(u, dθ) = α̂(dθ)

for some grand-canonical parameter α̂ ∈ M1(S) independent of u. We will write µα̂ for the product561

measure µNρ̂ , and Eα̂ will denote the corresponding expectation. This class of measures will be referred562

to as grand-canonical measures. Furthermore, for any α ∈ [0, 1], the measure µα̂ associated with the563

uniform density pro�le on the torus564

ρ̂(u, dθ) ≡ αdθ/2π,
where the angle of each particle is chosen uniformly in S, will be denoted by µ∗α, and the corresponding565

expectation will be denoted by E∗α.566

Note that these measures are dependent on N , but due to their translation invariant nature, we will567

omit this in our notation.568

Remark 3.5. � For any density α ∈ [0, 1], the measure µ∗α on ΣN is not invariant for our dynamic,569

because although it is invariant for the symmetric part of the exclusion, the weakly asymmetric part (as570

well as the Glauber part as soon as β 6= 0) breaks this property. We will however prove in Section 3.2571

that due to the scaling in N , the stationary distribution of our dynamics is locally close to µ∗α.572

De�nition 3.6 (Canonical measures). � Fix a positive integer l, an integer K ≤ (2l + 1)2 and573

ΘK = (θ1, . . . , θK) a family of K angles, taken up to reordering of its coordinates, we shorten by K̂ the574

pairs (K,ΘK), which we will refer to as canonical states on Bl. We will denote by Kl the set of canonical575

states K̂ on Bl,576

Kl = {K̂ = (K,ΘK) | K ≤ (2l + 1)2}.
Since our process loses its fast mixing properties when there is only one or less empty site (In which case577

mixing mainly comes from the Glauber dynamics, which is very slow w.r.t. the displacement dynamics,578

cf. Section 3.3 below), we also introduce579

(3.2) K̃l = {K̂ ∈ Kl | K ≤ (2l + 1)2 − 2},

the set of K̂ for which the exclusion process on Bl is irreducible. Furthermore, for any �xed K̂ ∈ Kl, we580

denote by581

(3.3) ΣK̂l =

{
η̂ con�g. on Bl

∣∣∣∣∣ ∑
x∈Bl

ηxδθx =

K∑
k=1

δθk

}
,

the set of con�gurations on Bl with canonical state K̂ in Bl.582

Let µ∗α,l denote the measure µ
∗
α on Bl, for any density α ∈]0, 1[, we will denote by µl,K̂ the conditioning583

of µ∗α,l to ΣK̂l (which is therefore a measure on the set of local con�gurations η̂ ∈ ({0, 1} × S)Bl), and by584

El,K̂ the corresponding expectation585

El,K̂(g) = E∗α,l
(
g
∣∣∣ η̂ ∈ ΣK̂l

)
.

These measures will be referred to as canonical measures of the process.586

De�nition 3.7. � Fix l ∈ N, we associate to any K̂ ∈ Kl the grand-canonical parameter587

α̂K̂,l =
1

(2l + 1)2

K∑
k=1

δθk .

When there is no ambiguity, we will drop the dependency in l and simply write α̂K̂ = α̂K̂,l.588

The pertinent results regarding the metric space (M1(S), ||| · |||) are regrouped in Appendix C : The589

equivalence of ensembles is proved in Section C.1, the Lipschitz-continuity of the expectation w.r.t. µα̂590

in the parameter α̂ is proved in Section C.2, and �nally, the compactness of the set (M1(S), ||| · |||) is591

proved in Section C.3.592
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3.2. Entropy production and local equilibrium. � The proof of the replacement Lemma is based593

on the control of the entropy production of the process. The di�culty here is that the invariant measures of594

the process are not known, and the decay of the relative entropy w.r.t. these measures cannot be computed595

directly. Thus we consider approximations of these measures, and for a �xed non-trivial density α ∈]0, 1[,596

our goal is to get an estimate of the entropy of the process's time average with respect to the reference597

measure µ∗α introduced in De�nition 3.4.598

Let us �x α ∈]0, 1[, we are going to prove that regardless of the initial density pro�le, the entropy of599

the active exclusion process w.r.t the measure of a process started from µ∗α and following a symmetric600

simple exclusion process can be controlled by CN2 for some constant C.601

The choice of µ∗α among the µ∗α′ , α
′ ∈]0, 1[ is not important, since for any di�erent angle density602

α′ ∈]0, 1[, the relative entropy between the two product measures µ∗α and µ∗α′ is of order N
2 as well.603

For some cylinder function h ∈ C, and some edge a = (a1, a2) in T2
N or Z2, we denote by ∇a the604

gradient representing the transfer of a particle from site a1 to site a2 under the exclusion process605

(3.4) ∇af(η̂) = ηa1 (1− ηa2) (f (η̂a1,a2)− f(η̂)) .

We will shorten this notation in the case where a = (0, ej) by writing ∇j := ∇(0,ej). Before turning606

to the control of the entropy itself, we introduce an important quantity in the context of hydrodynamic607

limits.608

De�nition 3.8 (Dirichlet form of the symmetric dynamics). � Let h be a cylinder function, we609

introduce the Dirichlet form of the process610

(3.5) Dα̂(h) = −Eα̂(hLh),

where L is the symmetric exclusion generator de�ned in equation (2.4). It can be rewritten thanks to611

the invariance of µα̂ w.r.t the symmetric exclusion process as612

Dα̂(h) =
1

2
Eα̂

∑
x∈T2

N

∑
|z|=1

(∇x,x+zh)
2

 .

If there is no ambiguity, we will omit the dependency in α̂ of the Dirichlet form, and simply denote it by613

D . The Dirichlet form is convex and non-negative. Furthermore, any function f in its kernel is such that614

f(η̂) = f(η̂′) for any pair (η̂, η̂′) of con�gurations with the same number of particles K ≤ N2− 2 and the615

same family of angles. For any non-negative function h, we also introduce the Dirichlet form616

(3.6) D(h) = D(
√
h),

which has the same properties as D .617

We now investigate the entropy production of the active exclusion process. Let PN,λ,βt be the semi-618

group of the active exclusion process associated with the complete generator LN introduced in equation619

(2.2), and µNt = µNPN,λ,βt the measure of the con�guration at time t. Because we assume the initial620

pro�le to be continuous (and therefore bounded), µN is absolutely continuous with respect to the product621

measure µ∗α, with density622

(3.7)
dµN

dµ∗α
(η̂) =

∏
x∈T2

N

[
(1− ηx)

1− ζ(x/N)

1− α
+ ηx

2πζ̂(x/N, θx)

α

]
.

This, and the fact that the alignment rates cx,β are bounded from above and below uniformly in θ,623

guarantee that for any time t, µNt is also absolutely continuous w.r.t. µ∗α. We therefore denote by624

fNt = dµNt /µ
∗
α the density of the measure at time t w.r.t. the reference measure µ∗α. We now prove the625

following estimate on the entropy of the function fNt .626

Proposition 3.9 (Control on the entropy and the Dirichlet form of fNt )627
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For any density f w.r.t. µ∗α, we denote by H(f) = E∗α(f log f) the entropy of the density f . Then, for

any time t > 0, there exists a constant K0 = K0(t, λ, β, ζ̂) such that

H

(
1

t

∫ t

0

fNs ds

)
≤ K0N

2 and D

(
1

t

∫ t

0

fNs ds

)
≤ K0.

Proof of Proposition 3.9. � The density fNt is solution to628

(3.8)

{
∂tf

N
t = L∗Nf

N
t

fN0 = dµN/dµ∗α,

where L∗N is the adjoint of LN in L2(µ∗α). To clarify the proof, we divide it in a series of steps.629

Expression of the entropy production of the system. � The relative entropy of µNt with respect to the630

reference measure µ∗α is given by631

H(µNt | µ∗α) = H(fNt ) = E∗α
(
fNt log fNt

)
,

which is non-negative due to the convexity on [0,+∞[ of x 7→ x log x. According to equation (3.8), its632

time derivative is633

(3.9) ∂tH(fNt ) = E∗α
(
log fNt L

∗
Nf

N
t

)
+ E∗α

(
L∗Nf

N
t

)
.

The second term on the right-hand side is equal to634

E∗α
(
L∗Nf

N
t

)
= E∗α

(
fNt LN 1̃

)
= 0,

since all constant functions are in the kernel of LN . Equation (3.9) can be rewritten, since L∗N is the635

adjoint of LN in L2(µ∗α), as636

∂tH(fNt ) = E∗α
(
fNt LN log fNt

)
.

Now thanks to the elementary inequality637

log b− log a ≤ 2√
a

(
√
b−
√
a),

we can control LN log fNt by638

2√
fNt

LN

√
fNt ,

therefore, the de�nition of LN yields639

∂tH(fNt ) ≤ −2N2D
(
fNt
)

+ 2NE∗α
(√

fNt LWA
√
fNt

)
+ 2E∗α

(√
fNt LG

√
fNt

)
,

where D is the Dirichlet form de�ned in De�nition 3.8.640

Integrating between the times 0 and t, we get641

(3.10) H(µNt | µ∗α) + 2N2

∫ t

0

D
(
fNs
)
≤ H(µN | µ∗α) + 2

∫ t

0

E∗α
(√

fNs (NLWA + LG)
√
fNs

)
ds

Since the Dirichlet form of the symmetric exclusion process is non-negative, we now focus on showing that642

the part of the entropy due to the weakly asymmetric part and Glauber part do not grow too much in N ,643

in order to get an upper bound on the Dirichlet form D(f) and on the entropy H(µNt | µ∗α). From here,644

control over the initial relative entropy should su�ce to ensure that the measure of the active exclusion645

process remains close to a product measure.646
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Bound on the entropy production of the asymmetric part of the dynamics. � by de�nition of the asym-647

metric dynamic,648

E∗α
(√

fNs LWA
√
fNs

)
= E∗α

 ∑
x,i,δ=±1

λi(θx)δηx(1− ηδei)
√
fNs (η̂)

(√
fNs (η̂x,x+δei)−

√
fNs (η̂)

) .

Despite the extra factor N , the jump rates of the weakly asymmetric dynamics are not very di�erent649

from symmetric exclusion process jump rates, which allows us to estimate the quantity above in terms of650

the Dirichlet form. More precisely, thanks to the elementary inequality651

E(ϕψ) ≤ γE(ϕ2)/2 + E(ψ2)/2γ

which holds for any positive constant γ, we can write with652

ϕ = ηx(1− ηδei)
(√

fNs (η̂x,x+δei)−
√
fNs (η̂)

)
,

and653

ψ = λi(θx)δ
√
fNs (η̂)

that

E∗α
(√

fNs LWA
√
fNs

)
≤

∑
x,i,δ=±1

[
E∗α
(
λi(θx)2fNs

)
2γ

+
γ

2
E∗α

(
ηx(1− ηδei)

(√
fNs (η̂x,x+δei)−

√
fNs (η̂)

)2
)]

.

In right-hand side above, letting Cλ = 4λ2 the �rst term can be bounded by CλN
2/2γ, since the number654

of terms in the sum is 4N2, whereas the second sum of terms is γD(fNs ). We then let γ = N to obtain655

the upper bound656

(3.11) 2NE∗α
(√

fNs LWA
√
fNs

)
≤ CλN2 +N2D(fNs ).

Bound on the entropy production of the Glauber part of the dynamics. � thanks to the elementary

inequality ab ≤ (a2 + b2)/2, and since the jump rates cx,β are less than e8β/2π, and ηx by 1

E∗α
(√

fNs LG
√
fNs

)
=E∗α

√fNs ∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)

(√
fNs (η̂x,θ)−

√
fNs (η̂)

)
dθ


≤e

8β

2π

∑
x∈T2

N

E∗α
(

1

2

∫
S

fNs (η̂x,θ)dθ +
3

2
fNs (η̂)

)
.

Since E∗α
(

1
2π

∫
S
fNs (η̂x,θ)dθ

)
= E∗α

(
fNs
)
, the expectation can be bounded from above by 2, and we can657

therefore write, letting Cβ = 2e8β/π658

(3.12) 2E∗α
(√

fNs LG
√
fNs

)
≤ CβN2.

Bound on the Dirichlet form and on the entropy production. � at this point, we obtain from (3.10),659

(3.11) and (3.12)660

H(µNt | µ∗α) +N2

∫ t

0

D
(
fNs
)
ds ≤ H(µN | µ∗α) + t(Cλ + Cβ)N2

By (3.7), there exists a constant K = K(ζ̂, α), such that for any N ∈ N,
∣∣∣∣log dµN/dµ∗α

∣∣∣∣
∞ ≤ KN

2, and661

we can therefore estimate the relative entropy of the initial measure µN w.r.t. µ∗α by662

(3.13) H(µN | µ∗α) ≤ KN2.

We can therefore write663

(3.14) H(µNt | µ∗α) +

∫ t

0

N2D
(
fNs
)
≤ K(t)N2.
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where K(t) = K + t(Cλ + Cβ) is a positive constant. Since H(f) = E∗α(f log f) and D(f) are both non-664

negative and convex, we can deduce from (3.14), that for some time-dependent constant K0 =
∫ t

0
K(s)ds,665

we have666

(3.15) H

(
1

t

∫ t

0

fNs

)
≤ K0N

2 and D

(
1

t

∫ t

0

fNs ds

)
≤ K0.

This upper bound proves proposition 3.9, and will be necessary in the next Section to apply the replace-667

ment Lemma 4.1 to the active exclusion process.668

Before taking on the problem of irreducibility, we give a result that will be needed several times669

throughout the proof, and comes from the entropy inequality. Let us denote by LG,β=0 the modi�ed670

Glauber generator with uniform update of the angle in S, (i.e. β = 0)671

LG,β=0f(η̂) =
∑
x∈T2

N

ηx
1

2π

∫
S

(f(η̂x,θ)− f(η̂))dθ

and denote in a similar fashion672

(3.16) Lβ=0
N = N2LD + LG,β=0,

which is the complete generator of the active exclusion process with random update of the angles. Then,673

accordingly to our previous notations, Pλ,0µ∗α is the measure on the trajectories started from µ∗α and driven674

by the generator Lβ=0
N . We can now state the following result.675

Proposition 3.10 (Comparison of Pλ,β
µN

and Pλ,0µ∗α ). � We endow ΣN with the topology associated676

with the metric677

(3.17) d(η̂, η̂′) =
∑
x∈T2

N

1{ηx=η′x}
|θx − θ′x|

π
+ 1{ηx 6=η′x}, ,

where |θx − θ′x| ∈ [0, π], and Σ
[0,T ]
N with the corresponding Skorohod's metric. There exists a constant678

K0 = K0(T, β, ζ̂) > 0 such that for any bounded and measurable function X : Σ
[0,T ]
N → R and any A > 0,679

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
≤ 1

A

(
K0N

2 + logEλ,0µ∗α
[
exp

(
AX

(
η̂[0,T ]

))])
,

where η̂[0,T ] is the notation already introduced at the end of Section 2.2 for a trajectory (η̂(t))t∈[0,T ].680

Proof of Proposition 3.10. � The proof of this Proposition is rather straightforward thanks to the en-681

tropy inequality. In a �rst step, we compare the same process starting from µ∗α. First note that for any682

function X : Σ
[0,T ]
N → R, we can write683

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
= Eλ,βµ∗α

(
dµN

dµ∗α
(η̂(0))X

(
η̂[0,T ]

))
.

This yields that

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
≤ 1

A

(
H(µN | µ∗α) + logEλ,βµ∗α

[
exp

(
AX

(
η̂[0,T ]

))])
.(3.18)

In the entropy inequality above, Eλ,β
µN

is the expectation under the measure of the process started from684

µN , whereas Eλ,βµ∗α is that of the process started from the stationary measure µ∗α.685

By (3.13), the �rst term in the right-hand side above is less than KN2/A for some �xed constant686

K = K(ζ̂). Furthermore, the Radon-Nikodym derivative of the process with alignment (β > 0) w.r.t the687

one without alignment (β = 0) can be explicitly computed. Given a càdlàg trajectory η̂[0,T ] ∈ Σ
[0,T ]
N ,688

consider τ1, . . . , τR the set of angle jumps between times 0 and T , let us denote by xi the site at which689

the angle changed at time τi, and by θi = θxi(τi) the new angle at site xi. Then, the density between the690

measures with and without alignment is given by691

dPλ,βν
dPλ,0ν

(η̂[0,T ]) =

R∏
i=1

cxi,β(θi, η̂(τi))

cxi,0(θi, η̂(τi))
≤ e8βR,
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where R is the number of angle updates between times 0 and T . To establish the estimate above, we692

used that cx,β(θ, η̂) can be uniformly bounded from above by e8β/2π, that cx,0(θ, η̂) = 1/2π, and that693

regardless of the con�guration and the inverse temperature β, each site updates its angle at rate 1(i.e.694 ∫
θ
cx,β(θ, η̂) = 1). We can now estimate the second term in the right-hand side of equation (3.18) by695

1

A
logEλ,0µ∗α

[
e8βR exp

(
AX

(
η̂[0,T ]

))]
.

Applying the Cauchy-Schwarz inequality yields that the quantity above is less than696

1

2A

(
logEλ,0µ∗α

[
e16βR

]
+ logEλ,0µ∗α

[
exp

(
2AX

(
η̂[0,T ]

))])
.

Since the angle updates happen in each site at rate 1 except when the site is empty, we can de�ne on the697

same probability space as our process a family Px of i.i.d. Poisson variable with mean T , and such that698

R ≤
∑
x∈T2

N
Px. Thanks to the elementary inequality699

logE
[
e

16β
∑
x∈T2

N
Px
]

= T (e16β − 1)N2,

we now only have to let700

K0(T, β, ζ̂) = 2K(ζ̂) + T (e16β − 1)

and replace A by 2A to conclude the proof of Proposition 3.10.701

3.3. Irreducibility and control on full clusters. � Unlike the exclusion process with one type of702

particles, the multi-type exclusion process is not irreducible when the number of particles is too large,703

namely when the domain has less than one empty site. When all the sites are occupied for example, the704

process is stuck in its current con�guration, up to realignment, due to the exclusion rule. At high density,705

we therefore lose the mixing properties we need to reach local equilibrium. To illustrate this statement,706

consider a square macroscopic domain of size εN , and on it a con�guration with the bottom half �lled707

with particles with angle θ, and the top half �lled with particles with angle θ′ 6= θ, and letting a �nite708

number of sites be empty, the mixing time of this setup is of order larger than N2 due to the rigidity of709

the con�guration. In order to reach equilibrium, an empty site needs to "fetch� a particle and transport it710

in the other cluster, and so on, until the density is homogeneous for both types of particles. The scaling711

of our alignment dynamics, is, furthermore, not su�cient to ensure su�ciently frequent realignment of712

the particles to solve this issue.713

In order to prove the scaling limit of a multi-type exclusion process, it is therefore critical to bound714

the particle density away from 1. This issue was solved in [35] by using the fact that the total density of715

the multi-type SSEP (the angle blind model) follows the standard SSEP dynamics (with one specie). Thus716

the total density could be controlled by the classical argument on the hydrodynamic limit for SSEP. In717

our case, however, the total density does not follow the SSEP dynamics. In fact, it is not even a Markov718

chain due to the asymmetric parts which depend on the angles. A di�erent argument is required to control719

the evolution of the total density, which is the purpose of the subsection.720

In the general setup where the number of types of particles in a domain B can reach |B| (which will721

often be the case when particles take their angles in S), it is known that the exclusion process with |B|−1722

particles is no longer irreducible, as a consequence of a generalization of the n-puzzle (cf. Johnson &723

Story, 1879, see [26]). We therefore need to consider only the local con�gurations with two empty sites,724

on which the exclusion process is irreducible regardless of the number of types of particles, as stated725

in the following Lemma. For any integers a, b ∈ Z, Ja, bK = {a, . . . , b} denotes the segment of integers726

between a and b.727

Lemma 3.11 (Irreducibility of the displacement process with two empty sites)728

Consider a square domain B = Bp(x), and two con�gurations η̂, η̂′ two con�gurations with the same729

types and number of particles in B, i.e. such that730 ∑
x∈B

ηxδθx =
∑
x∈B

η′xδθ′x .



24 C.ERIGNOUX

Initial positions of the two empty sites

New position of the two empty sites

a2a1

Figure 1. Reaching η̂a1,a2 from η .

Further assume that the number of empty sites in η and η′ is at least 2. Then, there exists a sequence of731

con�gurations η̂0, . . . , η̂n, such that η̂0 = η̂, η̂n = η̂′, and such that for any k ∈ J0, n− 1K, η̂k+1 is reached732

from η̂k by one allowed particle jump, i.e.733

η̂k+1 =
(
η̂k
)xk,xk+zk

, and ηkxk+zk
= 1− ηkxk = 0 and | zk | = 1.

Furthermore, there exists a constant C such that n ≤ Cp4.734

Proof of Lemma 3.11. � The proof of this statement is quite elementary. Fix a con�guration η̂ ∈ ΣN on735

a rectangular domain B with two empty sites, and let a = (a1, a2) be an edge in T2
N . We are �rst going736

to prove that η̂a1,a2 can be reached from η̂ using allowed particles jumps. Notice that according to the737

exclusion rule, we can consider that any empty site is allowed to move freely by exchanging their place738

with any site next to it.739

We �rst bring ourselves back to a con�guration described in Fig. 1, where the two closest empty sites740

are brought next to the edge a. More precisely, we reach a con�guration where the two empty sites and741

the two sites a1 and a2 are at the vertices of a side-1 square. From here, we are able to invert the two742

particles in a1 and a2 by a circular motion of the four empty sites along the edges of the square, and then743

bring back the empty sites along the paths that brought them next to a to their original location. Doing744

so, one reaches exactly the con�guration η̂a1,a2 from η̂ with allowed particle jumps in B.745

We deduce from this last statement that for any pair of con�gurations η̂, η̂′ with the same particles746

in B, η̂′ can be reached from η̂ with jumps in B since the transition can be decomposed along switches747

of nearest neighbor sites. The process is thus irreducible on the sets with �xed numbers K̂ of particles,748

as soon as K is smaller than |B| − 2. Furthermore, this construction ensures that any two neighboring749

particles can be switched with a number of particle exchanges of order p where we denoted by p the size750

of the box. Since one needs to invert 2p pairs of particles at most to move one particle to its �nal position751

in η̂′, this proves the last statement.752

We now prove that large microscopic boxes are rarely fully occupied under the dynamics. Let us753

denote by Ep,x the event754

(3.19) Ep,x =

 ∑
y∈Bp(x)

ηy ≤ |Bp(x) | − 2

 ,
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on which the box of size p around x contains at least two empty sites. When the site x is the origin,755

we will simply write Ep instead of Ep,0. In order to ensure that full clusters very rarely appear in the756

dynamics, we need the following Lemma.757

Proposition 3.12 (Control on full clusters). � For any positive time T ,758

(3.20) lim
p→∞

lim
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

1Ecp,x
(t)dt

 = 0.

Remark 3.13 (Scheme of the proof). � We �rst sketch the proof in a continuous idealized setup to759

explain the general ideas before giving the rigorous proof. To prove that the box of microscopic size p is760

not full, setting p′ = (2p+ 1)2 the cardinal of Bp, it is enough to prove thanks to the microscopic setting761

that762 ∫∫
[0,T ]×T2

ρp
′

t (u)dudt →
p′→∞

0,

where ρt(u) denotes the macroscopic density in u at time t.763

We expect the total density ρ to follow the partial di�erential equation764

(3.21) ∂tρ = ∆ρ−∇ · (m(1− ρ)),

where m is an a priori random quantity representing the local direction of the asymmetry, which can be765

represented as the vector �eld which would satisfy at any time t and for any smooth function H : T2 → R766 ∫
T2

H(u)mt(u)du = lim
N→∞

1

N2

∑
x∈T2

N

H(x)ηx(t)

(
cos(θx(t))

sin(θx(t))

)
.

Naturally, making sense of this quantity is not obvious, and it is not our purpose in this paragraph. For

now, we carry on with our heuristic presentation, and therefore assume that (3.21) holds true. We can

therefore formally write, letting φ(ρ) = 1/(1− ρ)

∂t

∫
T2

φ(ρt)du =

∫
T2

φ′(ρt) [∆ρt −∇ · (mt(1− ρt))] du

=

∫
T2

φ′′(ρt)
[
−(∇ρt)2 +mt(1− ρt)∇ρt

]
du

≤
∫
T2

φ′′(ρt)

[
−(∇ρt)2 +

(∇ρt)2

2
+ ||mt||2∞ (1− ρt)2

]
du(3.22)

≤
∫
T2

φ′′(ρt)||mt||2∞ (1− ρt)2du = 2 ||mt||2∞
∫
T2

φ(ρt)du

One could then apply Gronwall's Lemma to obtain that for any time t,767 ∫
T2

φ(ρt)du ≤ e2||m||2∞t
∫
T2

φ(ρ0)du.

Furthermore, for any time t,768 ∫
T2

φ(ρt)du ≥
1

δ

∫
T2

1{ρt≥1−δ} +

∫
T2

1{ρt≤1−δ} =
1− δ
δ

∫
T2

1{ρt≥1−δ} + 1,

therefore, for any time t,769

(3.23)

∫
T2

1{ρt≥1−δ} ≤
δ

1− δ

[
e2||m||2∞t

∫
T2

φ(ρ0)du− 1

]
→
δ→0

0.

As a consequence, for any time t, we could therefore write770

(3.24)

∫∫
[0,T ]×T2

ρp
′

t (u)dudt ≤ T (1− δ)p
′
+

∫∫
[0,T ]×T2

1{ρt≥1−δ}.

The �rst term in the right-hand side vanishes for any �xed δ as p′ →∞, whereas the second becomes as771

small as needed letting δ → 0.772
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Since our macroscopic density does not verify equation (3.21), however, the operations above need to773

be performed in a microscopic setup. The derivation of equation (3.23) is the purpose of Proposition774

3.14. Two intermediate Lemmas 3.15 and 3.16 prove the microscopic equivalent of equation (3.22).775

Before giving the proof of Proposition 3.12, which is postponed to the end of the subsection, we give776

�rst the following estimate.777

Proposition 3.14 (High density estimate). � Denote778

ρεN =
1

2εN + 1

∑
|y|≤εN

ηy

the average density in a small mesoscopic box centered at 0. For any positive 0 < δ′ < 1/2, and any time779

t > 0, we have the bound780

(3.25) lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}

 ≤ δ′C,
where C is a �nite constant depending continuously on t, and also depending on the asymmetry λ, and781

the initial pro�le ζ̂.782

Proof of Proposition 3.14. � For any small δ > 0, let us denote by φδ the application783

φδ : [0, 1 + δ/2] −→ R+

ρ 7→ 1
1+δ−ρ

.

Note that all successive derivatives of order less than k of φδ are positive (and increasing) functions, and784

all are bounded by Ck/δ
k+1 for some family of universal constants (Ck)k>0.785

We now �x a C1 function H : T2 → R+, and assume that
∫
T2 H(u)du = 1. For any u ∈ T2, we denote786

by Hu the function787

Hu : v 7→ H(u− v).

In order to simplify the notations, for any con�guration η̂ ∈ ΣN , and given its empirical measure πN , we788

shorten789

(3.26) ρN,Hx (η̂) :=< πN , Hx/N >=
1

N2

∑
y∈T2

N

H

(
x− y
N

)
ηy.

In some cases, this quantity could be larger than 1, so that we need to take further precautions. For any790

�xed δ we will therefore assume that N is large enough for the condition791

1

N2

∑
x∈T2

N

H(x/N) ≤ 1 +
δ

2
,

to hold, which is possible because we assumed that H is smooth and
∫
T2 H(u)du = 1. Note that this792

restriction to N large enough is not an issue, because in all what follows, H will be �xed and N will go793

to ∞.794

For N large enough, the density ρN,Hx (η̂) is now in the domain of φδ, we now write795

(3.27) ∂tEλ,βµN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (η̂)

) = Eλ,β
µN

 1

N2

∑
x∈T2

N

LNφδ
(
ρN,Hx (η̂)

) ,

where LN is the generator of the complete process LN = N2L + NLWA + LG. Our goal is to apply796

Gronwall's Lemma to the expectation in the left-hand side, therefore we now need to estimate the right-797

hand side.798

Since ρN,Hx does not depend on the angles of the particles, neither does φδ
(
ρN,Hx

)
, and the contribution799

of the Glauber part LG of the generator LN in the right-hand side above vanishes. The two other parts800

of the generator together yield the wanted bound, and are treated in separate lemmas for the sake of801

clarity. As mentioned earlier, these two lemmas are the microscopic equivalent of equation (3.22).802
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Lemma 3.15. � [Contribution of the symmetric part] There exists a sequence (cN (δ,H))N∈N depending803

only on δ and H, vanishing as N →∞, and such that for any con�guration η̂ ∈ ΣN804

(3.28)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
(η̂) ≤ −

∑
x∈T2

N
i=1,2

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

(η̂) + cN (δ,H).

Lemma 3.16. � [Contribution of the asymmetric part] There exists a sequence (c̃N (δ,H))N∈N depend-

ing only on δ and H, vanishing as N →∞, and such that for any con�guration η̂ ∈ ΣN

(3.29)
1

N

∑
x∈T2

N

LWAφδ
(
ρN,Hx

)
(η̂)

≤
∑
x∈T2

N

 2∑
i=1

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
4λ2φδ

(
ρN,Hx

)
N2

 (η̂) + c̃N (δ,H).

Proof of Lemma 3.15. � By de�nition of the symmetric part of the generator L,805 ∑
x∈T2

N

Lφδ
(
ρN,Hx (η̂)

)
=

∑
x,y∈T2

N

2∑
i=1

1{ηyηy+ei
=0}

[
φδ
(
ρN,Hx (η̂y,y+ei)

)
− φδ

(
ρN,Hx (η̂)

)]
.

We now develop the gradient of φδ to the second order, to obtain that the right-hand side above is equal

to ∑
x,y∈T2

N

2∑
i=1

1{ηyηy+ei
=0}

[
φ′δ
(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
+
φ′′δ
(
ρN,Hx (η̂)

)
2

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2
+ o

((
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2)]
.

Note that since the successive derivatives of order less than k of φδ are uniformly bounded on [0, 1] by806

Ck/δ
k, the vanishing quantity o

((
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2)
can be bounded uniformly in η̂, x, y and807

i (but not uniformly in δ). Since H is a smooth function,808 ∣∣ ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)
∣∣ =

1

N2

∣∣∣∣ Hx/N

(
y + ei
N

)
−Hx/N

( y
N

) ∣∣∣∣
is of order N−3, the contributions of the second line above are therefore at most of order N−2 and vanish809

in the limit N →∞. This yields810

(3.30)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
=
∑
x∈T2

N

φ′δ
(
ρN,Hx (η̂)

) ∑
y∈T2

N

2∑
i=1

1{ηyηy+ei
=0}

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
+ oN (1),

where oN (1) is less than a vanishing sequence (c1N )N∈N depending on δ and H only.811

Since for any z ∈ T2, Hu(v + z) = Hu−z(v), the de�nition of ρN,Hx yields

1{ηyηy+ei
=0}

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N2
(ηy − ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
ηy

(
Hx−ei/N

( y
N

)
−Hx/N

( y
N

))
− 1

N2
ηy+ei

(
Hx/N

(
y + ei
N

)
−Hx+ei/N

(
y + ei
N

))
.

Summing the quantity above over y, one obtains exactly ρN,Hx−ei + ρN,Hx+ei − 2ρN,Hx . This is the discrete

Laplacian in the variable x of ρN,Hx , and a discrete integration by parts allows us to rewrite the �rst term

on the right-hand side of equation (3.30) as

−
∑
x∈T2

N

2∑
i=1

(
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

))(
ρN,Hx+ei − ρ

N,H
x

)
.
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We now write812

(
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

))
=

(φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
)

2

(
ρN,Hx+ei − ρ

N,H
x

)
+ o

(
ρN,Hx+ei − ρ

N,H
x

)
,

in which ρN,Hx+ei − ρ
N,H
x is of order 1/N because H is a smooth function, to �nally obtain that813

(3.31)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
= −

∑
x∈T2

N

2∑
i=1

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+ oN (1),

where once again, the oN can be bounded by a vanishing sequence (cN )N depending only on δ, which814

completes the proof of Lemma 3.15815

Proof of Lemma 3.16. � This proof follows the exact same steps as for the previous one. We �rst obtain816

by de�nition of LWA and developing the discrete gradient of φ that817

(3.32)
1

N

∑
x∈T2

N

LWAφδ
(
ρN,Hx

)
= oN (1) +

1

N

∑
x,y∈T2

N

2∑
i=1

(τyj
λi
i )φ′δ

(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
,

where jλii is de�ned according to equation (2.15) as818

jλii (η̂) = λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0),

and oN (1) is less than a vanishing sequence depending only on δ and H. Once again, similar steps as in

the previous case allow us to rewrite

(τyj
λi
i )
(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N2
[λi(θy)ηy(1− ηy+ei) + λi(θy+ei)ηy+ei(1− ηy)]

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
λi(θy)ηy(1− ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
+

1

N2
λi(θy+ei)ηy+ei(1− ηy)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
λi(θy)ηy(1− ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx+ei/N

(
y + ei
N

))
+

1

N2
λi(θy+ei)ηy+ei(1− ηy)

(
Hx−ei/N

( y
N

)
−Hx/N

( y
N

))
Summing once again by parts in x, we obtain that the second term in the right-hand side of equation

(3.32) is

1

N

∑
x,y∈T2

N

2∑
i=1

(τyj
λi
i )φ′δ

(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)]
×

∑
y∈T2

N

[
λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
+ λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
:= S1 + S2,(3.33)

where819

S1 =
1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)] ∑
y∈T2

N

[
λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)]
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and820

S2 =
1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)] ∑
y∈T2

N

[
λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
.

These two terms are treated in the exact same fashion, we therefore only treat in full detail the case of821

S1, S2 will follow straightforwardly. First, we develop the di�erence φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)
to the822

�rst order,823

φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

)
= φ′′δ

(
ρN,Hx+ei

)(
ρN,Hx+ei − ρ

N,H
x

)
+ o

(
ρN,Hx+ei − ρ

N,H
x

)
.

Once again, H being a smooth function, ρN,Hx+ei − ρ
N,H
x is of order 1/N , therefore the o

(
ρN,Hx+ei − ρ

N,H
x

)
is824

also a oN (1/N), and the corresponding contribution in S1 vanishes in the limit N →∞. Recall that φ′′δ825

is a positive function, we now apply in S1 the elementary inequality ab ≤ a2/2 + b2/2 to826

a =
√
φ′′δ

(
ρN,Hx+ei

)(
ρN,Hx+ei − ρ

N,H
x

)
and827

b =
1

N3

√
φ′′δ

(
ρN,Hx+ei

) ∑
y∈T2

N

[
λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
.

This yields

|S1 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
φ′′δ

(
ρN,Hx+ei

)
2N6

∑
y∈T2

N

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)2
 .

The function H being non-negative, for any y, we can write828

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
≤ λ(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
.

Furthermore, since we assumed that
∫
T2 H = 1, and since H is smooth, we get that829

1

N2

∑
y∈T2

N

Hx/N (y/N) = 1 + oN (1),

which yields830 ∣∣∣∣∣∣ 1

N2

∑
y∈T2

N

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

) ∣∣∣∣∣∣ ≤ λ(1− ρN,Hx+ei) + oN (1)

This, combined with the previous bound, yields that831

|S1 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx+ei

)
2N2

(1− ρN,Hx+ei)
2

 .
A similar bound can be achieved for S2, this time developing the di�erence φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

)
in832

ρN,Hx instead of ρN,Hx+ei ,833

|S2 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

[
φ′′δ
(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx

)
2N2

(1− ρN,Hx )2

]
.

Combining these two bounds with identities (3.32) and (3.33), we obtain that
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1

N

∑
x∈T2

N

LWAφδ
(
ρN,Hx

)

≤
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx

)
N2

(1− ρN,Hx )2

+ oN (1),

where the oN (1) can be bounded by a vanishing sequence (c̃N )N depending only on H and δ. One easily834

obtains that for any non-negative δ and any ρ ∈ [0, 1 + δ/2],835

(1− ρ)2φ′′δ (ρ) ≤ 2φδ(ρ),

thus concluding the proof of Lemma 3.16.836

We are now ready to apply Gronwall's Lemma and complete the proof of Proposition 3.14. For that837

purpose, let us de�ne838

Φ(t) = Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (t)

) .

according to the previous Lemmas 3.15, 3.16 and to equation (3.27), there exists a sequence kN = cN + c̃N839

depending only on δ and H, verifying840

kN →
N→∞

0,

and such that841

∂tΦ(t) ≤ 4λ2Φ(t) + kN .

Since φδ is bounded from below by 1/1 + δ, Φ(t) also is, and therefore842

∂tΦ(t) ≤ (4λ2 + kN (1 + δ))Φ(t).

Gronwall's Lemma therefore yields that for any non-negative t,843

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (t)

) ≤ Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e(4λ2+kN (1+δ))t,

where this time the right-hand side depends on the trajectory only through its initial state η̂(0).844

Fix a small δ′ > 0. φδ being a non-decreasing function bounded from below by 1/1 + δ, one can write

for any ρ ∈ [0, 1 + δ/2]

φδ(ρ) ≥ 1

δ + δ′
1{ρ>1−δ′} + 1{ρ≤1−δ′}

1

1 + δ
=

1− δ′

(1 + δ)(δ + δ′)
1{ρ>1−δ′} +

1

1 + δ

We apply this decomposition to the left-hand side of the inequality above, to obtain that

(3.34) Eλ,β
µN

 1

N2

∑
x∈T2

N

1{ρN,Hx (t)>1−δ′}


≤ (1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e(4λ2+kN (1+δ))t − 1

1 + δ

 .
Coming back to the de�nition (3.26) of ρN,Hx , for any smooth non-negative function H with integral equal

to 1, taking the lim sup N →∞, we thus obtain from equation (3.34)

(3.35) lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{ρN,Hx (t)>1−δ′}


≤ lim sup

N→∞

(1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e4λ2t − 1

1 + δ

 .
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Fix a small ε > 0, and let us denote for any u, v ∈ T2
845

Hε(v) =
1

(2ε)2
1[−ε,+ε]2(v) and Hε

u(v) =
1

(2ε)2
1[−ε,+ε]2(v − u).

Recalling that ρεN (t) is the empirical density in a box of size εN around the origin at time t, we can846

then write847

τxρεN (t) =
(2εN)2

(2εN + 1)2
ρN,H

ε

x = ρN,H
ε

x + oN (1).

At this point, we want to apply equation (3.35) to H = Hε, which is an indicator function, and thus848

need to be smoothed out. For that purpose, consider a sequence (Hε
l )l∈N of functions such that849

� ∀l ∈ N, ∀u ∈ T2, Hε
l (u) ≥ 0 and sup

T2

Hε
l = sup

T2

Hε = 1/(2ε)2 .850

� ∀l ∈ N, Hε
l ∈ C1(T2) and

∫
T2 H

ε
l (u)du = 1.851

� Hε
l (u) 6= Hε(u)⇒ ε− 1/l < ||u||∞ < ε+ 1/l.852

The existence of such a sequence of functions is quite clear and is left to the reader. In particular, the853

last condition imposes that854

Il :=

∫
T2

1Hεl (u)6=Hε(u)du ≤
16ε

l
,

which is the area of the crown on which the two functions may di�er. The sequence Hε
l converges for any

�xed ε towards Hε in L1(T2). Furthermore, notice that for any x ∈ T2
N , since both the Hε

l 's and H
ε are

bounded by 1/(2ε)2,∣∣∣ ρN,Hεlx − ρN,H
ε

x

∣∣∣ ≤ 1

N2

∑
y∈T2

N

ηy

∣∣∣ Hε
l,x/N

( y
N

)
−Hε

x/N

( y
N

) ∣∣∣
≤
(

16ε

l
+ oN (1)

)
(||Hε

l ||∞ + ||Hε||∞) =
8

εl
+ oN (1),

where the last line represents the proportion of sites of the discrete torus in the crown around u = x/N855

on which Hε
l,x/N and Hε

x/N can be di�erent. The last observation yields that for any x ∈ T2
N , we can856

write857 ∣∣∣ τxρεN (t)− ρN,H
ε
l

x (t)
∣∣∣ ≤ 8

εl
+ oN (1),

where the oN (1) can be chosen independent of η̂ and x. Fix ε > 0 and consider N0 and l0 such that for858

any N ≥ N0 and any l ≥ l0,859 ∣∣∣ τxρεN (t)− ρN,H
ε
l

x (t)
∣∣∣ ≤ δ′

2
.

For any such pair l, N , we therefore also have860

1{τxρεN (t)>1−δ′/2} ≤ 1{
ρ
N,Hε

l
x (t)>1−δ′

}.
For any l, by our assumptions, equation (3.35) holds for H = Hε

l for any positive δ and δ′. For any

l ≥ l0, we can therefore write

(3.36) lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}


≤ lim sup

N→∞

(1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ

(
ρ
N,Hεl
x (0)

) e4λ2t − 1

1 + δ

 .
Recall that under Pλ,β

µN
, the initial con�guration η̂(0) is distributed according to a product measure �tting861

the initial pro�le ζ de�ned before (2.7). By law of large number, and since φδ is smooth on [0, 1 + δ/2],862

we therefore obtain for any v ∈ T2
863

lim sup
N→∞

Eλ,β
µN

(
φδ

(
ρ
N,Hεl
bNvc (0)

))
= φδ (ζ ∗Hε

l (v)) ,
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where bNvc = (bNv1c, bNv2c) ∈ T2
N and ” ∗ ” denotes the convolution operator on T2. By dominated864

convergence theorem, we thus obtain865

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ

(
ρ
N,Hεl
x (0)

) −−−−→
N→∞

∫
T2

φδ (ζ ∗Hε
l (v)) dv.

Since ζ and satis�es (2.7), it is bounded away from 1 uniformly on T2, ζ ∗Hε
l is also bounded away866

from 1 uniformly in ε, and therefore867

φδ (ζ ∗Hε
l (v)) ≤ C∗,

where C∗ = C∗(ζ̂) is a constant which does not depend on l, ε, v or δ. Letting now δ go to 0, we obtain868

from (3.36) and the limit above that for any ε > 0 and any time t,869

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}

 ≤ δ′

1− δ′
(e4λ2tC∗ − 1),

which concludes the proof of Proposition 3.14 since we assumed δ′ < 1/2.870

With the estimate stated in Proposition 3.14, we are ready to prove Proposition 3.12.871

Proof of Proposition 3.12. � First notice that in order to prove (3.20), it is su�cient to prove it both872

for Fp,x and F ′p,x instead of Ecp,x, where873

Fp,x =

 ∑
y∈Bp(x)

ηy = | Bp(x) |

 and F ′p,x =

 ∑
y∈Bp(x)

ηy = | Bp(x) | − 1

 .

We focus on the �rst case, the second is derived in the exact same fashion.874

Unlike in [35], the angle blind process's macroscopic density does not evolve according to the heat875

equation because of the weak drift. However, thanks to the bound (3.15) on the entropy of the measure876

µNt w.r.t. the reference measure µ∗α and on the Dirichlet form of the density fNt , local equilibrium holds for877

the angle-blind process. As a consequence, the replacement Lemma 4.1 holds for functions independent878

of the angles (cf. for example [27], p77). One therefore obtains that to prove879

(3.37) lim
p→∞

lim
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

1Fp,x(s)ds

 = 0,

one can replace 1Fp,x(s) by its expectation under the product measure with parameter τxρεN (s), namely880

EτxρεN (s)(1Fp,x) = [τxρεN (s)]
p′
,

where p′ = (2p+ 1)2 is the number of sites in Bp.881

To prove equation (3.37), it is therefore su�cient to prove that ∀t ∈ [0, T ],882

(3.38) lim
p′→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

[τxρεN (t)]
p′

 = 0.

To prove the latter, since ρεN (t) is at most 1, one only has to write, as outlined in equation (3.24),883

Eλ,β
µN

 1

N2

∑
x∈T2

N

[τxρεN (t)]
p′

 ≤ (1− δ)p
′
+ Eλ,β

µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ}

 ,

which holds for any positive δ.884

For any �xed δ > 0, the �rst term on the right-hand side vanishes as p→∞, whereas the second does885

not depend on p and we can therefore let δ → 0 after N → ∞, then ε → 0, then p′ → ∞. Since the886

right-hand side of equation (3.25) vanishes as δ′ = 2δ goes to 0, the left-hand side also does, and (3.38)887

holds for any t thanks to Proposition 3.14. This proves equation (3.37), and the equivalent proposition888

with F ′p,x instead of Fp,x is proved in the exact same fashion, thus concluding the proof of Proposition889

3.12.890



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 33

4. Law of large number for the exclusion process with angles891

4.1. Replacement Lemma. � Our goal in this section is to close the microscopic equations and892

to replace in the de�nition of the martingale MH,N introduced in (2.12) any cylinder (in the sense of893

De�nition 2.1) function g(η̂) by its spatial average Eρ̂εN (g), where ρ̂εN is the empirical angular density894

over a small macroscopic box of size εN . We use this Section to introduce new useful notations. The895

proof of the main result of this section, the Replacement Lemma 4.1, follows closely the usual strategy896

(c.f. Lemma 1.10 p.77 of [27]), however it requires several technical adaptations due to the nature of our897

canonical and grand-canonical measure. In particular, we will need the topological setup and the various898

results obtained in Section 3.899

Consider a cylinder function g ∈ C, and l a positive integer. Recall from (2.19) that 〈g〉l0 is the average900

of the translations of g over a box of side 2l + 1 centered at the origin. Recall from equation (2.20) and901

De�nition 3.1 that the empirical angular density ρ̂l over the box Bl of side 2l+1 is the measure on [0, 2π[902

ρ̂l =
1

|Bl |
∑
x∈Bl

ηxδθx .

De�ne903

(4.1) V l(η̂) = 〈g(η̂)〉l0 − Eρ̂l(g) and W l(η̂) = g(η̂)− Eρ̂l(g),

and for any smooth function G ∈ C(T2), let904

(4.2) X l,N (G, η̂) =
1

N2

∑
x∈T2

N

G(x/N)τxW l.

We �rst state that under the measure of active exclusion process, one can replace the average of g905

over a small macroscopic box by its expectation w.r.t. the grand-canonical measure with grand-canonical906

parameter ρ̂εN .907

Lemma 4.1 (Replacement Lemma). � For every δ > 0, we have with the notation (4.1)908

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂(t))

∣∣ dt > δ

 = 0.

The proof is postponed to Subsection 4.2, and requires the control of the full clusters stated in Propo-909

sition 3.12. For now, we can deduce from this lemma the following result, which will allow us to replace910

in (2.18) the currents by their spatial averages.911

Corollary 4.2. � For every δ > 0, and any continuous function912

G : [0, T ]× T2 −→ R
(t, u) 7→ Gt(u)

,

we get with the notation (4.2)913

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

[ ∣∣∣∣∣
∫ T

0

XεN,N (Gt, η̂(t))dt

∣∣∣∣∣ > δ

]
= 0.

Proof of Corollary 4.2. � Recall that ε→ 0 after N →∞, which means that the smoothness of G allows914

us to replace in the limit G(x/N) by its spatial average on a box of size ε, which is denoted by915

GεN (x/N) :=
1

(2εN + 1)2

∑
y∈BεN (x)

G(y/N).

More precisely, we can write, using notation (2.19) for the local averaging, and since g is a cylinder, hence

bounded, function,

lim sup
N→∞

∫ T

0

1

N2

∑
x∈T2

N

Gt(x/N)τxg dt = lim sup
ε→0

lim sup
N→∞

∫ T

0

1

N2

∑
x∈T2

N

GεNt (x/N)τxg dt
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= lim sup
ε→0

lim sup
N→∞

∫ T

0

1

N2

∑
y∈T2

N

Gt(y/N)〈g〉εNy dt,(4.3)

where the average 〈g〉εNy is de�ned in equation (2.19).916

As a consequence, τyg can be replaced by its average 〈g〉εNy . Note that917

VεN (η̂) =WεN (η̂) + 〈g〉εNy − g,

and that the replacement Lemma 4.1 implies in particular that for any bounded functionG ∈ C([0, T ]×T2)918

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

 ∣∣∣∣∣∣
∫ T

0

1

N2

∑
x∈T2

N

Gt(x/N)τxVεN (η̂(t))dt

∣∣∣∣∣∣ > δ

 = 0.

Therefore, thanks to equality (4.3), Corollary 4.2 follows directly from Lemma 4.1.919

4.2. Proof of the replacement Lemma. � In order to prove the replacement Lemma 4.1, we will920

need the two lemmas below. The �rst one states that the average of any cylinder function 〈g(η̂)〉l0 over921

a large microscopic box (a box of size l which tends to in�nity after N) can be replaced by its expected922

value w.r.t. the grand-canonical measure whose parameter is the empirical density Eρ̂l(g).923

The second states that the empirical angular density does not vary much between a large microscopic924

box and a small macroscopic box. We state these two results, namely the one and two-blocks estimates,925

in a quite general setup, because they are necessary in several steps of the proof of the hydrodynamic926

limit.927

Lemma 4.3 (one-block estimate). � Consider α ∈]0, 1[ and a density f w.r.t the translation invari-928

ant measure µ∗α (cf. De�nition 3.4) satisfying929

i) There exists a constant K0 such that for any N930

H(f) ≤ K0N
2 and D (f) ≤ K0.

ii)

(4.4) lim
p→∞

lim
N→∞

E∗α

f 1

N2

∑
x∈T2

N

1Ecp,x

 = 0.

Then, for any cylinder function g,931

lim sup
l→∞

lim sup
N→∞

E∗α

f 1

N2

∑
x∈T2

N

τxV l
 = 0,

where V l was de�ned in (4.1).932

Lemma 4.4 (two-block estimate). � For any α ∈]0, 1[ and any density f satisfying conditions i)933

and ii) of Lemma 4.3,934

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
y∈BεN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂εN |||f

 = 0,

where τz ρ̂k is the local empirical angular density in the box of size k centered in z introduced in (2.20).935

The proofs of these two lemmas will be presented resp. in Section 4.3 and 4.4. For now, let us show936

that they are su�cient to prove the replacement Lemma 4.1.937

Proof of Lemma 4.1. � Lemma 4.1 follows from applying the two previous lemmas to the density938

f
N

T =
1

T

∫ T

0

fNt dt,
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where fNt = dµNt /dµ
∗
α, de�ned in Section 3.2, is the density of the active exclusion process at time t939

started from µN , and prove that Lemma 4.1 follows. Proposition (3.9) proved that f
N

T satis�es condition940

i) of Lemma 4.3. Furthermore, f
N

T also satis�es condition ii)941

lim
p→∞

lim
N→∞

E∗α

fNT 1

N2

∑
x∈T2

N

1Ecp,x

 = 0

thanks to Proposition 3.12, thus the one-block and two-blocks estimates apply to f = f
N

T .942

Now let us recall that we want to prove for any δ > 0943

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂(t))

∣∣ dt > δ

 = 0,

where944

VεN (η̂) = 〈g(η̂)〉εN0 − Eρ̂εN (g).

Thanks to the Markov inequality, it is su�cient to prove that945

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂(t))

∣∣ dt
 = 0.

We can now express the expectation above thanks to the mean density f
N

T . Since T is �xed, to obtain946

the replacement Lemma it is enough to show that947

(4.5) lim sup
ε→0

lim sup
N→∞

E∗α

fNT 1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂)

∣∣  = 0.

For any function ϕ(·) on the torus T2
N , recall that we denoted in (2.19) by 〈ϕ(·)〉lx the average of the948

function ϕ over a box centered in x of size l, and that τyρ̂l is the empirical angular density in a box of949

size l centered in y de�ned in (2.20). Let us add and subtract950 〈
〈g(η̂)〉l0 − Eρ̂l(g)

〉εN
0

=
1

(2εN + 1)2

∑
x∈BεN

 1

(2l + 1)2

∑
| y−x |≤l

τyg − Eτxρ̂l(g)


inside

∣∣ VεN (η̂)
∣∣ . We can then write thanks to the triangular inequality951 ∣∣ VεN (η̂)

∣∣ ≤ (Z l,εN1 + Z l,εN2 + Z l,εN3 )(η̂),

where952

Z l,εN1 =

∣∣∣∣∣∣ 1

(2εN + 1)2

∑
x∈BεN

τxg − 1

(2l + 1)2

∑
| y−x |≤l

τyg

 ∣∣∣∣∣∣ ,
is the di�erence between g and its local average,953

Z l,εN2 =
1

(2εN + 1)2

∑
x∈BεN

∣∣∣∣∣∣ Eτxρ̂l(g)− 1

(2l + 1)2

∑
| y−x |≤l

τyg

∣∣∣∣∣∣ ,
is the di�erence between the local average of g and its expectation under the product measure with954

parameter the local empirical angular density ρ̂l, and955

Z l,εN3 =
1

(2εN + 1)2

∑
x∈BεN

| Eτxρ̂l(g)− Eρ̂εN (g) |

is the di�erence between the expectations of g under the empirical microscopic and macroscopic empirical956

angular density ρ̂l and ρ̂εN .957

Let us consider the �rst term, N−2
∑
x τxZ

l,εN
1 . All the terms in Z l,εN1 corresponding to the x's in958

BεN−l vanish, since they appear exactly once in both parts of the sum. The number of remaining terms959
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can be crudely bounded by 4εNl, and each term takes the form τzg/(2εN + 1)2. Hence, we have the960

upper bound961

E∗α

fNT 1

N2

∑
x∈T2

N

τxZ l,εN1

 ≤ Kl

εN
E∗α

fNT 1

N2

∑
x∈T2

N

τx| g |

 .

Since g is a bounded function, this expression can be bounded from above by962

Kl ||g||∞
εN

E∗α
(
f
N

t

)
= C(l, ε, g)oN (1),

which proves that963

lim sup
ε→0

lim sup
N→∞

E∗α

 1

N2

∑
x∈T2

N

τxZ l,εN1 f
N

t

 = 0.

Now since964 ∑
x∈T2

N

1

(2εN + 1)2

∑
y∈BεN (x)

τyg =
∑
x∈T2

N

τxg,

the two following terms can respectively be rewritten as965

(4.6) E∗α

fNT 1

N2

∑
x∈T2

N

τxZ l,εN2

 = E∗α

fNT 1

N2

∑
x∈T2

N

τx
∣∣ Eρ̂l(g)− 〈g〉l0

∣∣  ,

and966

(4.7) E∗α

fNT 1

N2

∑
x∈T2

N

τxZ l,εN3

 = E∗α

fNT 1

N2

∑
x∈T2

N

| Eτxρ̂l(g)− Eρ̂εN (g) |

 .

The quantity (4.6) vanishes in the limit N →∞ then l →∞ thanks to the one-block estimate stated in967

Lemma 4.3.968

Finally, according to De�nition 3.2, (4.7) also vanishes thanks to the two-block estimate of Lemma 4.4969

and the Lipschitz-continuity of the application970

Ψg : (M1(S), ||| · |||) −→ R
α̂ 7→ Eα̂ (g)

,

which was proved in Proposition C.2. The Replacement Lemma 4.1 thus follows from the one and971

two-blocks estimates.972

In the next two Sections 4.3 and 4.4, we prove the one-block and two-block estimates. The strategy973

for these proofs follows closely these presented in [27], albeit it requires some adjustments due to the974

measure-valued nature of the parameter of the product measure µα̂ and the necessity to control the full975

clusters.976

4.3. Proof of Lemma 4.3 : The one-block estimate. � The usual strategy to prove the one block977

estimate is to project the estimated quantity on sets with �xed number of particles, on which the density978

of f should be constant thanks to the bound on the Dirichlet form.979

To prove the one-block estimate, thanks to the translation invariance of µ∗α, it is su�cient to control980

the limit as N goes to ∞, then l→∞ of981

E∗α

f. 1

N2

∑
x∈T2

N

τxV l
 = E∗α(V lf),

where f = N−2
∑

T2
N
τxf is the average over the periodic domain of the translations of the density f .982

Furthermore, de�ne sg a �xed integer such that g is measurable w.r.t. (η̂x)x∈Bsg . We introduce for l983

larger than sg984

Ṽ l = 〈g(η̂)〉l−sg0 − Eρ̂l(g) = V l + o1(l),
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where the o1(l) vanishes uniformly in η̂ as l→∞. Proving the one block estimate for Ṽ l instead of V l is985

therefore su�cient, and Ṽ l depends on the con�guration only through the sites in Bl.986

We �rst eliminate the con�gurations in which the box Bl is almost full. Notice that the average Ṽ l is987

bounded because g is a cylinder function. We can therefore write988

E∗α(Ṽ lf) ≤ E∗α(Ṽ l1Elf) + C(g)E∗α(1Ecl f),

where El is the event on which at least two sites are empty in Bl, de�ned after equation (3.19), and Ecl989

is its complementary event. The second term in the right-hand side vanishes by de�nition of f , because990

f veri�es (4.4), and it is therefore su�cient to prove that991

lim sup
l→∞

lim sup
N→∞

E∗α(Ṽ l1Elf) = 0.

Furthermore, the convexity of the Dirichlet form and the entropy yield that condition i) of the one-block992

estimate is also satis�ed by f . Since Ṽ l1El depends on η̂ only through the η̂x's in the cube Bl we can993

replace the density f in the formula above by its conditional expectation f l, de�ned, for any con�guration994

η̂′ on Bl by995

f l(η̂
′) = E∗α(f | η̂x = η̂′x, x ∈ Bl).

For any function f depending only on sites in Bl let E∗α,l be the expectation with respect to the product996

measure µ∗α over Bl. With the previous notations, and in order to prove the one-block estimate, it is997

su�cient to prove that998

lim sup
l→∞

lim sup
N→∞

E∗α,l
(
Ṽ l1Elf l

)
≤ 0.

In order to proceed, we need to estimate the Dirichlet form and the entropy of f l thanks to that of f ,999

and prove the following Lemma1000

Lemma 4.5. � We have the following bounds1001

(4.8) Dl

(
f l
)
≤ C(l)N−2 and H(f l) ≤ C(l).

Proof of Lemma 4.5. �1002

Estimate on the Dirichlet form of f l - we denote by Lx,y the symmetric part of the exclusion1003

generator corresponding to the transfer of a particle between x and y1004

Lx,yf(η̂) = (ηx − ηy) (f(η̂y,x)− f(η̂)),

and by Dx,y the part of the Dirichlet form of the exclusion process corresponding to Lx,y1005

Dx,y(f) = −E∗α
(√

fLx,y
√
f
)
.

With this notation, we have1006

D(f) =
∑

| x−y |=1

Dx,y(f),

where D is the Dirichlet form introduced in equation (3.6). We denote in a similar fashion the Dirichlet1007

form restricted to the box of size l for any function h depending only on the sites in Bl by1008

Dx,y
l (h) = −E∗α,l

(√
hLx,y

√
h
)
.

Since the conditioning f 7→ fl is an expectation, and since the Dirichlet elements Dx,y
l are convex, the1009

inequality1010

Dx,y
l (f l) ≤ Dx,y(f)

follows from Jensen's inequality. We deduce from the previous inequality, by summing over all edges1011

(x, y) ∈ Bl, thanks to the translation invariance of f , that1012

Dl(f l) ≤
∑

(x,y)∈Bl

Dx,y(f) = 2l(2l + 1)

2∑
j=1

D0,ej (f) =
(2l + 1)2

N2
D(f),
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where Dl is the Dirichlet form of the process restricted to the particle transfers with both the start and1013

end site in Bl. Up to this point, we have proved that for any function f such that D(f) ≤ D(f) ≤ K0,1014

we have as wanted1015

(4.9) Dl(f l) ≤ C1(l)N−2.

Estimate on the entropy of f l - recall that we de�ned the entropy H(f) = E∗α(f log f) and that1016

we already established H(f) ≤ K0N
2. Let us partition T2

N in q := bN/(2l + 1)c2 square boxes B1 :=1017

Bl(x1), . . . , Bq := Bl(xq), and B
q+1, which contains all the site that weren't part of any of the boxes.1018

We can thus write1019

T2
N =

q+1⊔
i=1

Bi.

We denote by η̂i the con�guration restricted to Bi and by ξ̂i the complementary con�guration to η̂i. In1020

other words, for any i ∈ J1, q+ 1K, we split any con�guration on the torus η̂ into η̂i and ξ̂i. We de�ne for1021

any i ∈ J1, qK the densities on the η̂i's1022

f
i

l(η̂
i) = E∗α

(
f(η̂i, ξ̂i)

∣∣η̂i) .
Let us denote by ϕ the product density w.r.t. µ∗α with the same marginals as f , de�ned by1023

ϕ(η̂) = f
1

l (η̂
1)f

2

l (η̂
2) . . . f

q+1

l (η̂q+1),

elementary entropy computations yield that1024

H(f) = Hϕ

(
f/ϕ

)
+

q+1∑
i=1

H
(
f
i

l

)
,

where Hϕ(f) = H(fµ∗α | ϕµ∗α). Since by construction f is translation invariant, for any i = 1, . . . , q, we1025

can write H
(
f
i

l

)
= H

(
f

1

l

)
= H

(
f l
)
, therefore in particular, the previous bound also yields, thanks to1026

the non-negativity of the entropy, that1027

H(f) ≥ qH
(
f l
)
.

Since q is of order N2/l2, this rewrites1028

(4.10) H(f l) ≤
K0N

2

q
≤ C2(l),

and proves equation (4.8).1029

Thanks to Lemma (4.5) we now reduced the proof of Lemma 4.3 to1030

(4.11) lim sup
l→∞

lim sup
N→∞

sup
Dl(f)≤C1(l)N−2

H(f)≤C2(l)

E∗α,l
(
Ṽ l1Elf

)
= 0.

Since the set of measures with density w.r.t. µ∗α such that H(f) ≤ C2(l) is weakly compact, to prove the1031

one block estimate of Lemma 4.3, it is su�cient to show that1032

lim sup
l→∞

sup
Dl(f)=0

H(f)≤C2(l)

E∗α,l
(
Ṽ l1Elf

)
.

Before using the equivalence of ensembles, we need to project the limit above over all sets with �xed1033

number of particles ΣK̂l de�ned in equation (3.3). Recall from De�nition 3.6 the projection of the grand-1034

canonical measures on the sets with �xed number of particles. For any density f w.r.t. µ∗α, such that1035

Dl(f) = 0, thanks to Section 3.3 and the presence of the indicator function, f is constant on ΣK̂l for any1036

K̂ ∈ K̃l. We therefore denote, for any such f , by f(K̂) the value of f on the set ΣK̂l . Shortening
∫
K̂∈Kl1037

for the sum
∑
K≤(2l+1)2

∫
θ1∈S . . .

∫
θK∈S, we can write thanks to the indicator functions 1El , for any f1038

satisfying Dl(f) = 0,1039

(4.12) E∗α,l
(
Ṽ l1Elf

)
=

∫
K̂∈K̃l

f(K̂)El,K̂(Ṽ l)dµ∗α
(

ΣK̂l

)
,
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l

B1

Bp

B0

Bl

2k

Figure 2. Construction of the Bi

where K̃ was de�ned in (3.2).1040

Since
∫
K̂∈Kl f(K̂)dµ∗α

(
ΣK̂l

)
= 1 and El,K̂

(
Ṽ l
)
≤ supK̂∈K̃l El,K̂

(
Ṽ l
)
, we obtain1041

lim sup
l→∞

lim sup
N→∞

sup
Dl(f)≤C2(l)N−2

H(f)≤C2(l)

E∗α,l
(
Ṽ l1Elf

)
≤ lim sup

l→∞
sup
K̂∈K̃l

El,K̂
(
Ṽ l
)
.

To conclude the proof of equation (4.11) and the one-block estimate, it is therefore su�cient to prove1042

that the right-hand side above vanishes.1043

For any K̂ ∈ Kl, recall that α̂K̂ ∈M1(S) is the grand-canonical parameter1044

α̂K̂ =
1

(2l + 1)2

K∑
k=1

δθk ∈M1(S).

Since the expectation El,K̂ conditions the process to having K particles with angles ΘK in Bl, by1045

de�nition of Ṽl, letting l′ = l − sg we can write1046

∣∣∣ El,K̂ (Ṽ l) ∣∣∣ ≤ El,K̂

 ∣∣∣∣∣∣ 1

(2l′ + 1)2

∑
x∈Bl′

τxg − Eα̂
K̂

(g)

∣∣∣∣∣∣
 .

Let k be an integer that will go to in�nity after l, and let us divide Bl according to Figure 2 into q boxes1047

B1, . . . , Bq, each of size (2k+ 1)2, with q = b 2l+1
2k+1c

2. let k′ = k− sg, B′i denotes the box of size (2k′+ 1)1048

centered inside Bi, and Let B′0 = Bl′ −∪qi=1B
′i, the number of sites in B0 is bounded for some constant1049

C := C(g) by Ckl.1050

With these notations, the triangular inequality yields

El,K̂

 ∣∣∣∣∣∣ Eα̂K̂ (g)− 1

(2l′ + 1)2

∑
x∈Bl′

τxg

∣∣∣∣∣∣
 ≤|B′1 |

|Bl′ |

q∑
i=0

El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

|B′i |
∑
x∈B′i

τxg

∣∣∣∣∣
)

=
(2k′ + 1)2

(2l′ + 1)2

q∑
i=1

El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

(2k′ + 1)2

∑
x∈B′i

τxg

∣∣∣∣∣
)

+O

(
k

l

)
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Since the distribution of the quantity inside the expectation does not depend on i, the quantity above1051

can be rewritten1052

q
(2k′ + 1)2

(2l′ + 1)2︸ ︷︷ ︸
→1

El,K̂

 ∣∣∣∣∣∣ Eα̂K̂ (g)− 1

(2k′ + 1)2

∑
x∈Bk′

τxg

∣∣∣∣∣∣
+O

(
k

l

)
.

Because g is a cylinder function, and since k goes to ∞ after l, the quantity inside absolute values is a1053

local function for any �xed k. Letting l go to ∞, the equivalence of ensembles stated in Proposition C.11054

allows us to replace the expectation above, uniformly in K̂, by1055

Eα̂
K̂

 ∣∣∣∣∣∣ Eα̂K̂ (g)− 1

(2k′ + 1)2

∑
x∈Bk′

τxg

∣∣∣∣∣∣
 .

Finally, since ∪l∈N{α̂K̂ , K̂ ∈ K̃l} ⊂ M1(S), where M1(S) is the set of angle density pro�les introduced1056

in De�nition 3.1,1057

lim sup
l→∞

sup
K̂∈Kl

El,K̂(Ṽ l) ≤ sup
α̂∈M1(S)

Eα̂

 ∣∣∣∣∣∣ Eα̂(g)− 1

(2k′ + 1)2

∑
x∈Bk′

τxg

∣∣∣∣∣∣
 ,

whose right-hand side vanishes as k →∞ by the law of large numbers, thus concluding the proof of the1058

one-block estimate.1059

4.4. Proof of Lemma 4.4 : The two-block estimate. � This Sections follows the usual strategy1060

for the two-block estimate, with small adaptations to the topological setup on the space of parameters1061

M1(S) introduced in De�nition 3.2.1062

Our goal is to show that for any density f satisfying conditions i) and ii) in Lemma 4.3,1063

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
y∈BεN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂εN |||f

 = 0.

The previous expectation can be bounded from above by triangle inequality by1064

E∗α

 1

N2

∑
x∈T2

N

1

(2εN + 1)2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
z∈BεN

(τx+yρ̂l − τx+z ρ̂l)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣f
+ o(l/εN).

In this way, we reduce the proof to comparing average densities in two boxes of size l distant of less than1065

2εN . Let us extract in the sum inside the integral the terms in z′s such that | y − z′ | ≤ 2l, the number1066

of such terms is at most (4l + 1)2, and this quantity is bounded from above by1067

E∗α

 1

N2

∑
x∈T2

N

1

(2εN + 1)2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
z∈BεN
| y−z |>2l

(τx+yρ̂l − τx+z ρ̂l)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣f
+ o(l/εN).

This separation was performed in order to obtain independent empirical measures τx+yρ̂l and τx+z ρ̂l.1068

Regarding the expectation above, notice that we now only require to bound each term in the sum in z.1069

In order to prove the two-block estimate, it is thus su�cient to show that1070

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
2l<| y |<2εN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂l |||f

 = 0.

As in the proof of the one-block estimate, the expectation above can be rewritten1071

E∗α
(
||| τyρ̂l − ρ̂l |||f

)
,

where f = N−2
∑
x∈T2

N
τxf is the average of the density f . We can also introduce the cuto� functions1072

1El in the expectation above, thanks to f satisfying (4.4) and ||| τyρ̂l − ρ̂l ||| being a bounded quantity.1073
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Bl, η̊1

τyBl, η̊2

y

0

2l

Figure 3

Let By,l be the set Bl ∪ τyBl, the quantity under the expectation above is measurable with respect to1074

the sites in By,l. Before going further, let us denote, for any con�guration η̂ ∈ ΣN , η̊1 the con�guration1075

restricted to Bl and η̊2 the con�guration restricted to y+Bl = τyBl. We also denote by η̊ the con�guration1076

(η̊1, η̊2) on By,l. Let us �nally write µy,l for the projection of the product measure µ∗α on By,l, and Ey,l1077

the expectation with respect to the latter.1078

With these notations, the expectation above can be replaced by1079

E∗α
(
||| τyρ̂l − ρ̂l |||1Elfy,l

)
,

where for any density f , fy,l is its conditional expectation with respect to the sigma-�eld generated by1080

(η̂x)x∈By,l ,1081

fy,l(η̊) = E∗α
(
f | η̂|By,l = η̊

)
,

which is well-de�ned because the two boxes Bl and τyBl are disjoint, thanks to the condition | y | > 2l.1082

As in the proof of the one-block estimate, we now need to estimate the Dirichlet form of fy,l in terms

of that of f , on which we have some control. For that purpose, let us introduce with the notations of the

previous Section

Dl,y(h) = −Ey,l(hL0,yh)−
∑

x,z∈Bl
| x−z |=1

Ey,l(hLx,zh)−
∑

x,z∈y+Bl
| x−z |=1

Ey,l(hLx,zh)

:= D0
l,y + D1

l,y + D2
l,y(4.13)

the Dirichlet form corresponding to particle transfers inside the two boxes, and allowing a particle to1083

transfer from the center of one box to the center of the other, according to Figure 3. The work of the1084

previous section allows us to write that1085

−Ey,l(fy,lLx,zfy,l) ≤ Dx,z(f),

which implies, if D (f) ≤ C0 that1086

(4.14) D1
l,y(fy,l) +D2

l,y(fy,l) ≤ 2C0
(2l + 1)2

N2
,

by translation invariance of µα̂ and f . We now only need to estimate the third term D0
l,y. Let us consider1087

a path x0 = 0, x1, . . . , xk = y of minimal length, such that | xi − xi+1 | = 1 for any i ∈ {0, . . . , k − 1}.1088

For any such path, we have k ≤ 4εN , since | y | ≤ 2εN , and we can write1089

D0
l,y(f) ≤ −E∗α(fL0,yf) =

1

2
E∗α
[
| η0 − ηy | (f(η̂0,y)− f(η̂))2

]
where η̂0,y here is the state where the sites in 0 and y are inverted regardless of the occupation of either1090

site. Since η0 − ηy vanishes whenever both sites 0 and y are occupied or both are empty, we can for1091

example assume that η0 = 1 and ηy = 0. For any con�guration η̂0 = η̂, we let for any i ∈ {1, . . . , k}1092

η̂i =
(
η̂i−1

)xi−1,xi



42 C.ERIGNOUX

Thanks to the elementary inequality1093  k∑
j=1

aj

2

≤ k
k∑
j=1

a2
j ,

and by de�nition of the sequence (η̂i)i=0...k (which yields in particular η̂
0 = η̂ and η̂k = η̂0,y), the previous

equation yields

E∗α
[
η0(1− ηy)(f(η̂0,y)− f(η̂))2

]
≤ k

k−1∑
i=0

E∗α
[
η0(1− ηy)(f(η̂i+1)− f(η̂i))2

]
= k

k−1∑
i=0

E∗α
[
ηixi(1− η

i
xi+1

)
[
f(
(
η̂i
)xi,xi+1

)− f(η̂i)
]2]

Since µ∗α is invariant through any change of variable η̂ → η̂i, and since we can easily derive the same kind1094

of inequalities with ηy(1− η0) instead of η0(1− ηy), we obtain that1095

(4.15) D0,y
l (f) ≤ k

k−1∑
i=0

Dxi+1,xi(f) = k2N−2D (f) ≤ 16ε2D (f)

thanks to the translation invariance of f . Finally, equations (4.13), (4.14) and (4.15) yield1096

(4.16) Dl,y(fy,l) ≤ 2C0
(2l + 1)2

N2
+ 16C0ε

2,

which vanishes as N →∞ then ε→ 0. A bound on the entropy analogous to (4.8) is straightforward to1097

obtain. Finally, to prove the two-block estimate, as in the proof of the one-block estimate, we can get1098

back to proving that1099

(4.17) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
2l<| y |<2εN

sup
Dl,y(f)≤2C0

(2l+1)2

N2 +16C0ε2

Ey,l (||| τyρ̂l − ρ̂l |||1Elf) = 0.

Any density satisfying the bound Dl,y(f) ≤ 2C0
(2l+1)2

N2 + 16C0ε
2 is ultimately constant on any set with1100

�xed number of particles and angles in the set By,l with at least two empty sites. More precisely, denote1101

α̂y,`(η̂) =
1

2(2l + 1)2

∑
x∈Bl∪τyBl

ηxδθx

the empirical canonical state of the con�guration in Bl ∪ τyBl, and denote by f̂(·) the conditional expec-1102

tation of f w.r.t. the canonical state of the con�guration in Bl ∪ τyBl, de�ned for any K̂ on Bl ∪ τyBl1103

by1104

f̂(K̂) = E∗α
(
f
∣∣α̂y,`(η̂) = α̂K̂

)
.

We can now write for any |y| > 2l

Ey,l (||| τyρ̂l − ρ̂l |||1Elf) ≤
∫
Ky,l

EK̂,y,l (||| τyρ̂l − ρ̂l |||) f̂(K̂)dK̂ + Ey,l
(
1El

∣∣∣ f − f̂(α̂y,`(η̂))
∣∣∣ )

≤ sup
K̂∈Kyl,l

EK̂,yl,l (||| τyl ρ̂l − ρ̂l |||) + Ey,l
(
1El

∣∣∣ f − f̂(α̂y,`(η̂))
∣∣∣ ) ,

where we shortened yl = (2l + 1)e1, Ky,l denotes the set of canonical parameters on Bl ∪ τyBl, and1105

EK̂,y,l(·) = E∗α(· | α̂y,`(η̂) = α̂K̂). By compactness of the set of densities w.r.t. µ∗α on Bl ∪ τyBl, the1106

supremum over all densities satisfying Dl,y(f) ≤ 2C0
(2l+1)2

N2 + 16C0ε
2 of the second term above vanishes1107

uniformly in |y| > 2l as N →∞ and then ε→ 0, whereas the �rst term does not depend on y. To prove1108

(4.17), it is therefore su�cient to prove that1109

lim sup
l→∞

sup
K̂∈Kyl,l

EK̂,yl,l (||| τyl ρ̂l − ρ̂l |||) = 0,

which follows from the equivalence of ensembles.1110
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5. Preliminaries to the non-gradient method1111

The main focus of Sections 5 and 6 is the symmetric part of the displacement process, whose contri-1112

bution to the hydrodynamic limit requires the non-gradient method. Before engaging in the proof of the1113

non-gradient estimates, however, we regroup several results which will be needed throughout the proof.1114

5.1. Comparison with an equilibrium measure. � In this section, we prove a result that will1115

be used several times throughout the proof, and which allows to control the exponential moments of a1116

functional X by a variational formula involving the equilibrium measure µ∗α. This control is analogous1117

to the so called sector condition for asymmetric processes, which ensures that the mixing due to the1118

symmetric part of the generator is su�cient to balance out the shocks provoked by the antisymmetric1119

part.1120

Remark 5.1. � [Non-stationarity of µ∗α for the weakly asymmetric process] It has already been pointed1121

out that L is self-adjoint w.r.t any product measure µα̂, which is not in general the case of LG,β=0.1122

However, LG,β=0 is self-adjoint w.r.t. µ∗α due to the uniformity in θ of that measure. Asymmetric1123

generators are usually "almost" anti-self-adjoint, in the sense that one could expect LWA∗ = −LWA. This1124

identity is for example true for the TASEP , for which the asymmetry is constant and does not depend1125

on each particle.1126

It is not true in our case however, due to the exclusion rule and the dependency of the asymmetry1127

in the angle of the particle. To clarify this statement, see the adjoint operator as a time-reversal, and1128

consider a con�guration with two columns of particles wanting to cross each other. This con�guration1129

would be stuck under LWA, however, under the time-reversed dynamics LWA∗, it starts to move. This1130

illustrates that in our model, the asymmetric generator LWA is not anti-self-adjoint.1131

Let us denote accordingly to the previous notation (2.15) and recalling the de�nition of the λ′is (2.1),1132

for i = 1, 21133

jλii = λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0).

Elementary computations yield accordingly that the adjoint in L2(µ∗α) of LWA is in fact given by1134

(5.1) LWA,∗ = −LWA + 2
∑
x∈T2

N

∑
i=1,2

τxj
λi
i .

This identity will be necessary to prove the following result, which compares the measure of the process1135

with drift to the measure µ∗α.1136

Lemma 5.2. � Recall the topology on ΣN introduced in Proposition 3.10, and �x a bounded measurable1137

function1138

X : ΣN × [0, T ] −→ R
(η̂, t) 7→ Xt(η̂)

.

For any γ > 0, we have1139

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xt(η̂(t))dt

)]
≤ 2Tλ2

γ
+

1

γ

∫ T

0

dt sup
ϕ

{
E∗α (ϕγXt(η̂))− 1

2
D(ϕ)

}
,

where the supremum in the right-hand side is taken on the densities w.r.t. µ∗α.1140

Proof of Lemma 5.2. � Let us denote by Pλ,Xt the modi�ed semi-group1141

Pλ,Xt = exp

[∫ t

0

Lβ=0
N + γN2Xsds

]
.

where Lβ=0
N is the alignment-free generator introduced in (3.16) and let us denote in this section by

< ., . >α the inner product in L2(µ∗α). For any i = 1, 2, and any H, and T > 0, the Feynman-Kac

formula yields

Eλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xt(η̂(t))dt

)]
= < 1, Pλ,XT 1 >α ≤ < Pλ,XT 1, Pλ,XT 1 >1/2

α .(5.2)
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by de�nition of Pλ,Xt ,1142

(5.3)
d

dt
< Pλ,Xt 1, Pλ,Xt 1 >α=< Pλ,Xt 1, (Lβ=0

N + Lβ=0,∗
N + 2γN2Xt)P

λ,X
t 1 >α,

where M∗ stands for the adjoint in L2(µ∗α) of M . By de�nition of Lβ=0
N , we have1143

Lβ=0,∗
N = N2L∗ +NLWA,∗ + LG,β=0,∗.

We now work to control the weakly asymmetric contribution in the right-hand side of equation (5.3),1144

which does not vanish in our case, as a consequence of Remark 5.1. For that purpose, consider a function1145

ϕ ∈ L2(µ∗α), identity (5.1) yields1146

< ϕ, (LWA + LWA,∗)ϕ >α= 2
∑
x∈T2

N

∑
i=1,2

E∗α
[
ϕ2τxj

λi
i

]
.

Recall the de�nition of ∇af given in equation (3.4). A change of variable η̂ 7→ η̂x,x+ei on the second part1147

of τxj
λi
i yields that for any x1148

E∗α(ϕ2τxj
λi
i ) = −E∗α(λi(θx)∇x,x+eiϕ

2) = −E∗α
[
λi(θx)

(
ϕ(η̂x,x+ei) + ϕ

)
∇x,x+eiϕ

]
,

therefore applying the elementary inequality ab ≤ a2/2 + b2/2, to1149

a =
√
N∇x,x+eiϕ and b = −λi(θ0)√

N

(
ϕ(η̂x,x+ei) + ϕ

)
,

we obtain (since λi(θ) is either λ cos(θ) or λ sin(θ) and is less than λ)

< ϕ, (LWA + LWA,∗)ϕ >α≤
N

2

∑
x∈T2

N

∑
i=1,2

E∗α
[
(∇x,x+eiϕ)

2
]

+
λ2

2N

∑
x∈T2

N

∑
i=1,2

E∗α
[
(ϕ(η̂x,x+ei) + ϕ)2

]
.

Since (ϕ(η̂x,x+ei) + ϕ)2 is less than 2ϕ2(η̂x,x+ei) + 2ϕ2, we �nally obtain that,1150

< ϕ,N(LWA + LWA,∗)ϕ >α≤ −N2E∗α [ϕLϕ] + 4λ2N2E∗α
[
ϕ2
]
.

In particular, applying this identity to ϕ = Pλ,Xt 1, we deduce from equation (5.3) that

d

dt
< Pλ,Xt 1, Pλ,Xt 1 >α≤ < Pλ,Xt 1,

[
2γN2Xt +N2L+ 2LG,β=0 + 4λ2N2

]
Pλ,Xt 1 >α

≤
(
νγ(t) + 4λ2N2

)
< Pλ,Xt 1, Pλ,Xt 1 >α +2 < Pλ,Xt 1,LG,β=0Pλ,Xt 1 >α,

where νγ(t) is the largest eigenvalue of the self-adjoint operator N2L + 2γN2Xt. It is not hard to see

that the second term above is non-positive. Indeed, for any function ϕ on ΣN , by de�nition of LG,β=0

(cf. equation (2.5))

< ϕ,LG,β=0ϕ >α =
∑
x∈T2

N

E∗α
(
ηxϕ(η̂)

[
1

2π

∫
S

ϕ(η̂x,θ)dθ − ϕ(η̂)

])

= −1

2

∑
x∈T2

N

E∗α

(
ηx

[
1

2π

∫
S

ϕ(η̂x,θ)dθ − ϕ(η̂)

]2
)
≤ 0.

To establish the last identity, we only used that under µ∗α, the angles are chosen uniformly, and therefore1151

E∗α (ηxϕ(θx)) = E∗α(ηx)(1/2π)
∫
S
ϕ(θ′)dθ′. We thus obtain that1152

d

dt
< Pλ,Xt 1, Pλ,Xt 1 >α≤

(
νγ(t) + 4λ2N2

)
< Pλ,Xt 1, Pλ,Xt 1 >α,

and Grönwall's inequality therefore yields that1153

< Pλ,XT 1, Pλ,XT 1 >α≤ exp

(
4Tλ2N2 +

∫ T

0

νγ(t)dt

)
.

This, combined with (5.2), allows us to write1154

(5.4)
1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xtdt

)]
≤ 2Tλ2

γ
+

∫ T

0

νγ(t)

2γN2
dt.
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The variational formula for the largest eigenvalue of the self-adjoint operator N2(L+ 2γXt) yields that

νγ(t) =N2 sup
ψ, E∗α(ψ2)=1

E∗α (ψ(L+ 2γXt)ψ) = 2N2 sup
ϕ

{
γE∗α (Xtϕ)− 1

2
D(ϕ)

}
,

where the second supremum is taken over all densities ϕ w.r.t. µ∗α, which together with (5.4) concludes1155

the proof of Lemma 5.2. To prove the last identity, one only has to note that the supremum must be1156

achieved by functions ψ of constant sign, so that we can let ϕ =
√
ψ.1157

1158

5.2. Relative compactness of the sequence of measures. � We prove in this section that the1159

sequence (QN )N∈N, de�ned in equation (B.4), is relatively compact for the weak topology. It follows from1160

two properties stated in Proposition 5.3 below. The �rst one ensures that the �xed-time marginals are1161

controlled, whereas the second ensures that the time-�uctuations of the process's measure are not too wide.1162

1163

Given a function H : T2 × S→ R, we already introduced in the outline of Section 2.4 the notation1164

< π,H >=

∫
T2×S

H(u, θ)π(du, dθ).

The following result yields su�cient conditions for the weak relative compactness of the sequence (QN )N .1165

Recall from equation (2.10) the de�nition of the set of trajectoriesM[0,T ].1166

Proposition 5.3 (Characterization of the relative compactness on P(M[0,T ]))1167

Let PN be a sequence of probability measures on the set of trajectories M[0,T ] de�ned in (2.10), such1168

that1169

(1) There exists some A0 > 0 such that for any A > A0,1170

lim sup
N→∞

PN

(
sup

s∈[0,T ]

< πs, 1 > ≥ A

)
= 0

(2) For any H ∈ C2,1(T2 × S), ε > 0,1171

lim
δ→0

lim sup
N→∞

PN

 sup
| t−t′ |≤δ
0≤t′,t≤T

| < πt′ , H > − < πt, H > | > ε

 = 0.

Then, the sequence (PN )N∈N is relatively compact for the weak topology.1172

Since this proposition is, with minor adjustments, found in [3] (cf. Theorem 13.2, page 139), we do1173

not give its proof, and refer the reader to the latter. For now, our focus is the case of the active exclusion1174

process, for which both of these conditions are realized. The strategy of the proof follows closely that1175

of Theorem 6.1, page 180 of [27], but requires two adjustments. First, our system is driven out of1176

equilibrium by the drift, and we therefore need to use the Lemma 5.2 stated in the previous section to1177

carry out the proof. The second adaptation comes from the presence of the angles, and since most of the1178

proof is given for a test function H(u, θ) = G(u)ω(θ), we need to extend it in the general case where H1179

cannot be decomposed in this fashion.1180

Proposition 5.4 (Compactness of (QN )N∈N). � The sequence (QN )N∈N de�ned in equation (B.4)1181

of probabilities on the trajectories of the active exclusion process satis�es conditions (1) and (2) above,1182

and is therefore relatively compact.1183

Proof of Proposition 5.4. � The �rst condition does not require any work since the active exclusion1184

process only allows one particle per site and we can thus choose A0 = 1. Regarding the second condition,1185

recall that1186

(5.5) < πNt′ , H > − < πNt , H >=

∫ t

t′
LN < πNs , H > ds+MH

t −MH
t′ ,
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where MH is a martingale with quadratic variation of order N−2. For more details, we refer the reader

to appendix A of [27]. First, Doob's inequality yields uniformly in δ the crude bound

Eλ,β
µN

(
sup
t′,t≤δ

∣∣MH
t −MH

t′

∣∣ ) ≤ 2Eλ,β
µN

(
sup

0≤t≤T

∣∣MH
t

∣∣ ) ≤ C(H)N−1,(5.6)

where Eλ,β
µN

is the expectation w.r.t the measure Pλ,β
µN

introduced just after De�nition 3.4 of the complete1187

process η̂[0,T ] started from the initial measure µN .1188

Regarding the integral part of (5.5), we �rst assume like earlier that H takes the form1189

H(u, θ) = G(u)ω(θ),

where G and ω are both C2 functions. When this is not the case, an application of the periodic Weierstrass

Theorem will yield the wanted result. Then, following the same justi�cation as in Section 2.4 we can

write∫ t

t′
LN < πNs , H > ds =

1

N2

∫ t

t′
ds
∑
x∈T2

N

τx

(
2∑
i=1

[Njωi + rωi ] (s)∂ui,NG(x/N) + τxγ
ω(s)G(x/N)

)
,

where the instantaneous currents jω, rω and γω were introduced in De�nition 2.8.1190

The weakly asymmetric and Glauber contributions are easy to control, since both jump rates rω and

γω can be bounded by a same constant K, and we can therefore write∫ t

t′

(
NLWA + LG

)
< πNs , H > ds ≤ K

∫ t

t′
ds

1

N2

∑
x∈T2

N

| G(x/N) | +

2∑
i=1

| ∂ui,NG(x/N) |

→N→∞ K(t− t′)
∫
T2

| G(u) | +

2∑
i=1

| ∂uiG(u) | du,

which vanishes as soon as | t′ − t | ≤ δ in the limit δ → 0. Finally,

QN

(
sup

| t−t′ |≤δ
0≤t′,t≤T

| < πt′ , H > − < πt, H > | > ε

)

≤ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2L < πNs , H > ds

∣∣∣∣ > ε/3



+ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′

(
NLWA + LG

)
< πNs , H > ds

∣∣∣∣ > ε/3



+ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣MH
t −MH

t′

∣∣ > ε/3

 .
The second line of the right-hand side vanishes in the limit N →∞ then δ → 0 thanks to the computation1191

above, whereas the third line also vanishes thanks to Markov's inequality and equation (5.6). Finally,1192

the �rst term vanishes accordingly to Lemma 5.5 below and the Markov inequality, thus completing the1193

proof in the case where H(u, θ) = G(u)ω(θ). The general case is derived just after the proof of Lemma1194

5.5.1195

Lemma 5.5. � For any function H(u, θ) = G(u)ω(θ) ∈ C2,0(T2 × S),1196

(5.7) lim
δ→0

lim sup
N→∞

Eλ,β
µN

 sup
| t′−t |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2L < πNs , H > ds

∣∣∣∣
 = 0.
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Proof of Lemma 5.5. � The proof of this Lemma follows, with minor adjustments to account for the1197

drift, the proof given in [27]. First, we get rid of the supremum and come back to the reference measure1198

with �xed parameter α ∈]0, 1[ thanks to Lemma 5.2 of Section 5.1. Let us denote1199

(5.8) g(t) =

∫ t

0

N2L < πNs , H > ds.

We now compare the measure of the active exclusion process to that of the process started from equi-1200

librium (µN = µ∗α), and with no alignment (β = 0), according to Proposition 3.10 with A = RN2
1201

and1202

X
(
η̂[0,T ]

)
= sup
| t′−t |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2L < πNs , H > ds

∣∣∣∣ = sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |.

This yields that for some constant K0 > 0, the expectation in equation (5.7) is bounded from above for1203

any positive R by1204

(5.9)
1

RN2

K0N
2 + logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


 .

We therefore reduce the proof of Lemma 5.5 to showing that1205

(5.10) lim
δ→0

lim sup
N→∞

1

R(δ)N2
logEλ,0µ∗α exp

R(δ)N2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 = 0,

where R(δ) goes to ∞ as δ goes to 0.1206

Let p and ψ be two strictly increasing functions such that ψ(0) = p(0) = 0 and ψ(+∞) = +∞, with1207

ψ continuous, we denote1208

I =

∫
[0,T ]×[0,T ]

ψ

(
| g(t)− g(t′) |
p(| t′ − t |)

)
dt′dt,

the Garsia-Rodemich-Rumsey inequality [23] yields that1209

(5.11) sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) | ≤ 8

∫ δ

0

ψ−1

(
4I

u2

)
p(du).

Given any positive a, we choose p(u) =
√
u and ψ(u) = exp(u/a) − 1, hence ψ−1(u) = a log(1 + u). An

integration by parts yields for any δ < e−2 that∫ δ

0

ψ−1

(
4I

u2

)
p(du) = a

∫ δ

0

log

(
1 +

4I

u2

)
du

2
√
u

= a
√
δ log

(
1 + 4Iδ−2

)
+ a

∫ δ

0

8I

u3 + 4Iu

√
udu

≤ a
√
δ log

(
1 + 4Iδ−2

)
+ a

∫ δ

0

2√
u
du

= a
√
δ
[
log
(
δ2 + 4I

)
− 2 log δ + 4

]
≤ a
√
δ

[
− log δ

2
log
(
δ2 + 4I

)
− 4 log δ

]
≤ a
√
δ
[
−4 log δ log

(
δ2 + 4I

)
− 4 log δ

]
,(5.12)

since by assumption − log(δ) > 2. From equations (5.11) and (5.12) we deduce that

logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 ≤ logEλ,0µ∗α exp
(
−32aRN2

√
δ log δ

[
1 + log

(
δ2 + 4I + 1

)])
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holds for any a > 0. For δ < 1, Let us choose a = −(32RN2
√
δ log δ)−1 > 0, we can write for the second

term of (5.9) the upper bound

1

RN2
logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 ≤ 1

RN2

[
1 + log

(
1 + δ2 + 4Eα̂ (I)

)]
.

By de�nition,1210

I =

∫
[0,T ]×[0,T ]

exp


∣∣∣ ∫ tt′ N2L < πNu , H > du

∣∣∣
a
√
| t− t′ |

 dt′dt− T 2.

Let us assume, purely for convenience, that T > 1/2, for δ su�ciently small, we have 4T 2 − 1− δ2 > 0,

and the quantity inside the limit in equation (5.10) can be estimated by

(5.13)
1

RN2
logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


≤ 1

RN2

1 + log 4Eλ,0µ∗α

∫
[0,T ]×[0,T ]

exp


∣∣∣ ∫ tt′ N2L < πNs , H > ds

∣∣∣
a
√
| t′ − t |

 dt′dt

 .
If T ≤ 1/2, we simply carry out a constant term in the log above, which does not alter the proof.1211

Let us take a look at the two constants a and R. Noting the �rst bound on the entropy mentioned

earlier, in order to keep the �rst term of (5.9) in check, R = R(δ) must simply grow to∞. Furthermore, we

previously obtained that a = −(RN232
√
δ log δ)−1, we can choose a = N−2, thus R = (−1/32

√
δ log δ)−1,

which is non-negative, and goes to ∞ as δ → 0+. Therefore, the second term above can be rewritten

1

RN2
log

∫
[0,T ]×[0,T ]

4Eλ,0µ∗α exp


∣∣∣∣∣∣∣∣
∫ t

t′

N

| t′ − t |1/2
∑
x∈T2

N
i=1,2

jωx,x+ei(s)∂ui,NG(x/N)ds

∣∣∣∣∣∣∣∣ dt
′dt

 .
In order to estimate the expectation above, we can get rid of the absolute value, since e| x | ≤ ex + e−x,1212

and since the function G is taken in a symmetric class of functions. Furthermore, Lemma 5.2, applied1213

with γ = 1 yields that the second term in the right-hand side of (5.13) is less than1214

(5.14)
1

RN2
log

∫
[0,T ]×[0,T ]

exp

[
(t− t′)

2

[
4λ2N2 + νN (G,ω)

]]
dtdt′,

where νN (G,ω) is the largest eigenvalue in L2(µ∗α) of the self-adjoint operator1215

N2L+
2N

| t′ − t |1/2
∑
x∈T2

N
i=1,2

jωx,x+ei∂ui,NG(x/N),

which can be rewritten as the variational formula1216

(5.15) νN (G,ω) = sup
f


2N

| t′ − t |1/2
∑
x∈T2

N
i=1,2

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
−N2D(f)

 ,

where the supremum is taken on all densities f w.r.t. µ∗α. In order to prove that the eigenvalue above is1217

of order N2, we now want to transform1218

N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
.

For any density f , and i = 1, 2, since jωx,x+ei(η̂
x,x+ei) = −τxjωi , we can write

E∗α
(
fjωx,x+ei

)
∂ui,NG(x/N) =− 1

2
E∗α
[
(f(η̂x,x+ei)− f)jωx,x+ei

]
∂ui,NG(x/N)
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≤ 1

4C
E∗α
(

(jωx,x+ei)
2
(√

f(η̂x,x+ei)−
√
f
)2
)

+
C

4
(∂ui,NG(x/N))2E∗α

((√
f(η̂x,x+ei) +

√
f
)2
)
.

Since (jωx,x+ei)
2 ≤ ||ω||2∞ 1ηxηx+ei

=0, and since
[√
f(η̂x,x+ei) +

√
f
]2 ≤ 2f(η̂x,x+ei) + 2f , we obtain the1219

upper bound1220

N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
≤

N ||ω||2∞
2C| t′ − t |1/2

D(f) +
N3C

| t′ − t |1/2
||∂uiG||

2
∞ ,

which holds for any positive C. We now set C = | t′ − t |−1/2 ||ω||2∞ /N so that the Dirichlet form

contributions in the variational formula (5.15) cancel out. We �nally obtain that for some positive

constant C1 = C1(G,ω), independent of N ,

νN (G,ω) ≤ C1N
2

| t− t′ |
,

which yields that (5.14) vanishes in the limit N →∞ and δ → 0, since R = R(δ) goes to ∞ as δ goes to1221

0. Finally, we have proved thanks to equation (5.13) that1222

lim
δ→0

lim sup
N→∞

1

RN2
logEλ,0µ∗α

exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


 = 0,

which concludes the proof of Lemma (5.5).1223

In order to complete the proof of Proposition 5.4, we still have to consider the case when H does not1224

take a product form G(u)ω(θ). In this case, since H is smooth it can be approximated by a trigonometric1225

polynomial in u1, u2 and θ. Each term of the approximation is then of the form G(u)ω(θ), and the1226

previous result can therefore be applied. More precisely, consider a smooth function H, and for any1227

α > 0, there exists a �nite family (pαijk)0≤i,j,k≤Mα
of coe�cients such that1228

sup
u∈T2,
θ∈S

∣∣∣∣∣∣ H(u, θ) −
∑

i,j,k∈J0,MK

pαijku
i
1u
j
2θ
k

∣∣∣∣∣∣ ≤ α.
Let us now �x an ε > 0, and let us take α = ε/4. Then, considering the corresponding family Pijk(u, θ) =1229

pαijku
i
1u
j
2θ
k we have that1230

∣∣ < πNt′ , H > − < πNt , H >
∣∣ ≤

∣∣∣∣∣∣ < πNt′ − πNt , H −
∑

i,j,k≤Mα

Pijk >

∣∣∣∣∣∣ +
∑

i,j,j≤Mα

∣∣ < πNt′ − πNt , Pijk >
∣∣ .

Since we allow at most 1 particle per site, and since H −
∑
i,j,k≤Mα

Pijk is smaller than ε/4, the �rst

term of the right-hand side above is less than ε/2. From this, we deduce that for the left-hand side to

be greater than ε, one of the terms
∣∣ < πNt′ , Pijk > − < πNt , Pijk >

∣∣ must be larger than ε/2M3
α. This

yields that

QN

 sup
| s−t | ≤δ
0≤t′,t≤T

| < πt′ , H > − < πt, H > | > ε


≤

∑
i,j,k≤Mα

QN

 sup
| t′−t |≤δ
0≤t′,t≤T

| < πt′ , Pijk > − < πt, Pijk > | >
ε

2M3
α

 .

Since α is �xed, we can now take the limit N → ∞ then δ → 0, in which the right-hand side vanishes1231

since all functions are decorrelated in u and θ. The result thus holds for any smooth function H, thus1232

completing the proof of Proposition 5.4.1233
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We now prove that in the limit, the empirical measure of our process admits at any �xed time a density1234

w.r.t. the Lebesgue measure on T2.1235

Lemma 5.6. � Any limit point Q∗ of the sequence QN is concentrated on measures π ∈ M[0,T ] with1236

time marginals absolutely continuous w.r.t the Lebesgue measure on T2,1237

Q∗ (π, πt(du, dθ) = ρ̂t(u, dθ)du, ∀t ∈ [0, T ]) = 1.

Proof of Lemma 5.6. � For any smooth function H ∈ C(T2) con�guration η̂ in ΣN and any correspond-1238

ing empirical measure πN , we have1239

∣∣ < πN , H >
∣∣ =

∣∣∣∣∣∣ 1

N2

∑
x∈T2

N

H(x/N)ηx

∣∣∣∣∣∣ ≤ 1

N2

∑
x∈T2

N

|H(x/N) |.

The right-hand side above converges as N goes to ∞ towards
∫
T2 |H(u) |du. Since for any �xed function1240

H, the application1241

π 7→ sup
0≤t≤T

| < πt, H > |

is continuous, any limit point Q∗ of (QN )N is concentrated on trajectories π such that1242

sup
0≤t≤T

| < πt, H > | ≤
∫
T2

|H(u) |du,

for any smooth function H on T2, and therefore is absolutely continuous w.r.t. the Lebesgue measure on1243

T2.1244

5.3. Regularity of the density and energy estimate. � In this section we prove that the macro-1245

scopic particle density is regular enough for the weak hydrodynamic limit (2.11) to be well de�ned, i.e.1246

that criterion iii) of De�nition 2.5 is satis�ed. The proof follows the same strategy as in [27], we give it1247

for exhaustivity.1248

Due to the non-constant di�usion coe�cients, the second derivative in equation (2.11) cannot be1249

applied to the test function, and we need, according to condition iii) of De�nition 2.5, to prove that1250

the macroscopic pro�les of our particle system are such that ∇ρ is well-de�ned. We can now state the1251

following result.1252

Theorem 5.7. � Any limit point Q∗ of the measure sequence (QN )N is concentrated on trajectories1253

with ρt(u) ∈ H1 = W 1,2([0, T ] × T2) for any p ≥ 1. In other words, Q∗-a.s., there exists functions1254

∂uiρt(u) in L2([0, T ]× T2) such that for any smooth function H ∈ C0,1([0, T ]× T2)1255

(5.16)

∫∫
[0,T ]×T2

ρt(u)∂uiHt(u)dudt = −
∫∫

[0,T ]×T2

Ht(u)∂uiρt(u)dudt

Furthermore, there exists a constant K = K(T, λ, β, ζ̂) such that for any limit point Q∗ of (QN ), and for1256

any i,1257

(5.17) EQ∗
(∫∫

[0,T ]×T2

[∂uiρt(u)]2dudt

)
< K.

In particular, any such limit point Q∗ is concentrated on measures satisfying condition iii) of De�nition1258

2.5.1259

The proof is postponed to the end of this section. The usual argument to prove this result is Riesz1260

representation theorem, that yields that if1261 ∫∫
[0,T ]×T2

ρt(u)∂uiHt(u)dudt ≤ C

(∫
[0,T ]×T2

H2

)1/2

for any H, there exists a function ∂uiρ ∈ L2([0, T ]×T2) such that (5.16) holds. For that purpose, we need

the estimate given in Lemma 5.8 below. Fix a direction i ∈ {1, 2}, for any x ∈ T2
N , shorten xk = x+ kei,
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k ∈ {0, . . . , εN}. Following the strategy of the energy estimate of [27], and recalling that τxρδN is the

empirical particle density in BδN (x), we let

WN,i(ε, δ,H, η) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[τx+εNeiρδN − ρδN ]−H(x/N)

)
.

Note that to emphasize that this quantity does not depend on the angles, we denote its third variable as1262

η instead of η̂.1263

Lemma 5.8. � Let {H l, l ∈ N} be a dense sequence in the separable algebra C0,1([0, T ]× T2) endowed1264

with the norm ||H||∞+
∑2
i=1 ||∂uiH||∞. For any i = 1, 2, there exists a positive constant K = K(T, λ, β, ζ̂)1265

such that for any k ≥ 1 and ε > 0,1266

lim sup
δ→0

lim sup
N→∞

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

WN,i(ε, δ,H
l
t , η(t))dt

)
≤ K0.

Proof of Lemma 5.8. � By the replacement Lemma 4.1, it is su�cient to show the result above without

the limit in δ, and with W̃N,i(ε,H, η) instead of WN,i, where

W̃N,i(ε,H, η) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[ηx+εNei − ηx]−H(x/N))

)

=
1

N2

∑
x∈T2

N

H(x/N)
1

εN

εN−1∑
k=0

[
N(ηxk+1

− ηxk)−H(x/N)
]
.

Applying Proposition 3.10 to A = N2 and1267

X
(
η̂[0,T ]

)
= max

1≤i≤k

∫ T

0

W̃N,i(ε,H
l
t , η(t))dt,

the contribution of the Glauber dynamics and the initial measure can be compared to the case β = 0

started from µ∗α,

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

W̃N,i(ε,H
l
t , η(t))dt

)

≤ K0(T, β, ζ̂) +
1

N2

(
logEλ,0µ∗α

[
exp

(
N2 max

1≤l≤k

∫ T

0

W̃N,i(ε,H
l
t , η(t))dt

)])
.

The max can be taken out of the log in the second term because for any �nite family (ul),1268

exp

(
max
l
ul

)
≤
∑

expul and lim sup
N→∞

N−2 log

(∑
l

ul,N

)
≤ max

l
lim sup
N→∞

N−2 log uN,l.

Furthermore, we apply Lemma 5.2 to γ = 1, and Xt = W̃N,i(ε,Ht, η), to obtain that

1

N2
logEλ,0µ∗α

[
exp

(
N2

∫ T

0

W̃N,i(ε,Ht, η(t))dt

)]

≤ 2Tλ2 +
1

2

∫ T

0

dt sup
ϕ

{
2E∗α

(
ϕW̃N,i(ε,Ht, η)

)
−D (ϕ)

}
,

where the supremum is taken over all densities w.r.t. µ∗α. Letting1269

K(T, λ, β, ζ̂) = K0(T, β, ζ̂) + 2Tλ2,

to prove Lemma 5.8 it is therefore su�cient to show that the second term on the right-hand side of the1270

inequality above is non-positive in the limit N → ∞. This will be implied by Lemma 5.9 below, since1271

the time integral is now only applied to H.1272
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Lemma 5.9. � For any H ∈ C1(T2), and ε > 0,1273

lim sup
N→∞

sup
ϕ

{
2E∗α

(
W̃N,i(ε,H, η)ϕ

)
−D(ϕ)

}
≤ 0,

where the supremum is taken over the densities ϕ w.r.t the product measure µ∗α.1274

Proof of Lemma 5.9. � The proof of this Lemma follows the exact same steps as the treatment of equa-1275

tion (7.3), p.106 in [27], we do not detail it: since ηxk+1
−ηxk appearing in the expression of W̃N,i(ε,H, η)1276

can be rewritten ηxk+1
(1− ηxk)− ηxk(1− ηxk+1

), the proof of the Lemma is just a matter of performing1277

changes of variables η̂ 7→ η̂xk,xk+1 , and using the elementary inequality1278

ab(c− d) ≤ a2(c+ d) +
b2

2
(
√
c−
√
d)2,

which holds for any positive c, d, to1279

a = H(x/N), b = ηxk+1
(1− ηxk), ηxk(1− ηxk+1

), c =
√
ϕ(η̂xk,xk+1), and d =

√
ϕ

in the �rst term of W̃N,i(ε,H, η).1280

Lemma 5.8 allows us to complete the proof of Theorem 5.7.1281

Proof of Theorem 5.7. � Recall that we de�ned in Section 2.2 Pλ,β
µN

, the measure on the space1282

D([0, T ],ΣN ) of the active exclusion process η̂(s) started with the measure µN , and QN is the1283

measure on the corresponding measure spaceM[0,T ]. Let us introduce1284

ϕδ(u) = (2δ)−2
1[−δ,δ]2(u).

Since τxρδN = (2δN)2

(2δN+1)2 < πt, ϕδ(x/N − ·) > for any weak limit point Q∗ of (QN ), Lemma 5.8 yields

lim sup
δ→0

EQ∗
(

max
1≤l≤k

∫∫
[0,T ]×T2

H l
t(u)

ε

(
< πt, ϕδ(u+ εei − ·) > − < πt, ϕδ(u− ·) >

)
−H l

t(u)2dudt

)
≤ K.

Since thanks to Lemma 5.6 any limit point Q∗ of (QN ) is concentrated on trajectories absolutely contin-

uous w.r.t. the Lebesgue measure on T2, letting δ then ε go to 0, by dominated convergence, we obtain

that

EQ∗
(

max
1≤l≤k

∫∫
[0,T ]×T2

[
∂uiH

l
t(u)ρt(u)−H l

t(u)2
]
dudt

)
≤ K,

where ρt(u) is the density of the measure
∫
S
πt(du, dθ) w.r.t. the Lebesgue measure on T2. By monotone1285

convergence, and since the sequence (Hl) is dense in C
0,1([0, T ]× T2), we therefore obtain1286

(5.18) EQ∗
(

sup
H

∫∫
[0,T ]×T2

[
∂uiHt(u)ρt(u)−Ht(u)2

]
dudt

)
≤ K,

where the supremum is taken over all functions H ∈ C0,1([0, T ] × T2). Given a limit point Q∗, let us1287

denote by E the event on which the quantity inside parenthesis above is �nite :1288

E =

{
sup
H

∫∫
[0,T ]×T2

[
∂uiHt(u)ρt(u)−Ht(u)2

]
dudt <∞

}
,

and denote by ξ the elements of E . Then, thanks to the L1 bound we just obtained, we have that1289

Q∗(E ) = 1.1290

De�ne on C0,1([0, T ]× T2) the linear operator1291

fi(H) =

∫∫
[0,T ]×T2

∂uiHt(u)ρt(u)dudt,

then equation (5.18) yields that for any ξ ∈ E , there exists a constant K(ξ) such that for any positive1292

constant r, rfi(H)− r2
∫∫

H2 ≤ K(ξ), i.e.1293

fi(H) ≤ 1

r
K(ξ) + r

∫∫
H2.
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Letting r =
√
K(ξ)/

∫∫
H2, and C0 = 2

√
K(ξ), we obtain that for any function H ∈ C0,1([0, T ]× T2),1294

fi(H) ≤ C0(ξ)

(∫∫
[0,T ]×T2

H2

)1/2

.

The functional fi can then be extended to a bounded linear functional in L2([0, T ]×T2). The conclusion1295

then follows from Riesz's representation theorem.1296

6. Non-gradient estimates1297

6.1. Replacement of the symmetric current by a macroscopic gradient. � In this section, we1298

focus on the complete exclusion process, and replace the current jωi by a quantity of the form τeih−h+Lf ,1299

with f a function of the con�guration with in�nite support. We then show that the perturbation Lf is1300

of the same order as the weakly asymmetric contribution, and they both contribute to the drift term of1301

equation (2.11). To obtain the non gradient estimates, we use the formalism developed in [27] rather than1302

that of [35]. This changes the proof substantially, with the upside that the orders in N , as well as the1303

studied quantities, are clearly identi�ed at any given point of the proof.1304

One of the challenges in proving the non-gradient hydrodynamic limit is to replace the local particle1305

currents jωi by the gradient of a function of the empirical measure. Recall that we already de�ned in1306

equation (2.20) the empirical angular density ρ̂l ∈M1(S),1307

ρ̂l =
1

(2l + 1)2

∑
x∈Bl

ηxδθx ,

and we denote by ρl the empirical density1308

ρl =
1

(2l + 1)2

∑
x∈Bl

ηx = ρ̂l(S).

Let1309

ρωl =
1

(2l + 1)2

∑
x∈Bl

ηωx ,

be the average of ηω over a box of side 2l + 1. Finally, for any function ϕ on ΣN , recall that δi is the1310

discrete derivative1311

δiϕ = τeiϕ− ϕ
(for example, δiη

ω
0 = ηωei − η

ω
0 ).1312

The usual strategy in the proof of the non-gradient hydrodynamic limit is to show that for some1313

coe�cients dω, d : [0, 1]× R→ R+,1314

jωi + dω (ρεN , ρ
ω
εN ) δiρ

ω
εN + d (ρεN , ρ

ω
εN ) δiρεN

vanishes as N → ∞. More precisely, the quantity above is in the range of the generator L, which is1315

usually su�cient when the functions of the form Lf are negligible. In our case, however, due to the1316

addition of a weak drift, the usual martingale estimate does not yield that Lf is negligible, but that1317

LDf = (L+N−1LWA)f is negligible, therefore this perturbation can be integrated to the drift part, which1318

is done in Section 6.7.1319

For this replacement, we will need further notations similar to the ones introduced in Section 4.1. In1320

our case, the di�usion coe�cient dω(ρ, ρω) is in fact the self-di�usion coe�cient ds(ρ), therefore we will1321

from now on simply write ds(ρ) for the di�usion coe�cient relative to ρω. Note that it depends on the1322

con�guration only through the empirical density, and not on the particle angles. For any positive integer1323

l, and any cylinder function f , let us thus denote1324

Vf,εNi (η̂) = jωi + ds (ρεN ) δiρ
ω
εN + d (ρεN , ρ

ω
εN ) δiρεN − Lf,

where d : [0, 1]× R→ R+ is the di�usion coe�cient given in (1.3).1325
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We introduce for any smooth function G ∈ C2(T2)1326

(6.1) Xf,εN
i,N (G, η̂) =

1

N

∑
x∈T2

N

G(x/N)τxVf,εNi .

Our goal throughout this section is to prove that under the measure of our process, Xf,εN
i,N (G, η̂) vanishes1327

for any smooth function G, i.e. that the microscopic currents can be replaced by a macroscopic average1328

of the gradients up to a perturbation Lf that will be dealt with later on.1329

The sum contains N2 terms, and the normalization is only 1/N , therefore an order N has to be gained,1330

and this is the major di�culty of the non-gradient dynamics. To prove this statement, we decompose1331

Xf,εN
i,N (G, η̂) into distinct vanishing parts. We already introduced in equation (3.19) the set1332

Ep,x =

 ∑
| y−x |≤p

ηy ≤ |Bp | − 2

 ,

such that at least two sites are empty in a vicinity of x of size p. The cuto� functions 1Ep,x are crucial1333

in order to control the local variations of the measure of the process with the Dirichlet form.1334

We set for any integer l1335

(6.2) ρω,pl =
1

(2l + 1)2

∑
x∈Bl

ηωx1Ep,x and ρω,pl = ρωl − ρ
ω,p
l =

1

(2l + 1)2

∑
x∈Bl

ηωx1Ecp,x ,

where Ecp,x is the complementary event of Ep,x.1336

We are now ready to split Xf,εN
i,N into 4 vanishing parts. Let us denote by1337

W1 =Wf,l
i,1 (η̂) = jωi − 〈jωi 〉l

′

0 −
(
Lf − 〈Lf〉l−sf0

)
,

the di�erence between jωi − Lf and their local average, and by1338

W2 =WεN,p
i,2 (η̂) = ds (ρεN ) δiρ

ω,p
εN

the mesoscopic contributions of full clusters, where ρω,pεN was de�ned in equation (6.2) above. Let us also1339

introduce1340

W3 =W l,εN,p
i,3 (η̂) = ds (ρεN ) δiρ

ω,p
εN − ds (ρl) δiρ

ω,p
lp

+ d (ρεN , ρ
ω
εN ) δiρεN − d (ρl, ρ

ω
l ) δiρl′ ,

where lp = l−p−1 and l′ = l−1, which is the di�erence between the cuto� microscopic and macroscopic1341

gradients. Note that the cuto� functions are not needed for the total density ρ, because the gradients1342

will vanish on full con�gurations. Finally, we set1343

(6.3) W4 =Wf,l,p
i,4 (η̂) = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈Lf〉

l−sf
0 ,

the microscopic di�erence between currents and gradients, taking into consideration the perturbation Lf .1344

For any smooth function G ∈ C2(T2), we also introduce1345

Y1 = Y f,li,1 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW1, Y2 = Y εN,pi,2 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW2,

1346

Y3 = Y l,εN,pi,3 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW3 and Y4 = Y f,l,pi,4 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW4.

By construction,1347

Xf,εN
i,N (G, η̂) =

4∑
k=1

Yk(G, η̂).

We can now state the main result of this section.1348

Theorem 6.1. � Let G be a smooth function in C1,2([0, T ] × T2), T > 0, and i ∈ {1, 2}. For any1349

cylinder function f ,1350

(6.4) lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y f,li,1 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.
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Furthermore,1351

(6.5) lim
p→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y εN,pi,2 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

For any integer p > 1,1352

(6.6) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y l,εN,pi,3 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

Finally,1353

(6.7) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y f,l,pi,4 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0,

where the in�mum in f is taken over the set C of cylinder functions.1354

The core of this section is dedicated to proving these four estimates. The proof of equation (6.4) is1355

immediate and is sketched in Section 6.2.1356

Equation (6.5) is quite delicate, and requires both the control on full clusters derived in equation (3.20)1357

and the energy estimate (5.17). It is proved in Section 6.3, in which the main challenge, as in the control1358

of full clusters, is to carry out the macroscopic estimate (5.17) in a microscopic setup.1359

The proof of equation (6.6) is given in Section 6.4. This limit is the non-gradient counterpart of the1360

two-block estimate stated in Lemma 4.4. It follows closely the replacement of local gradients by their1361

macroscopic counterparts performed in Lemma 3.1, p.156 of [27], but needs some technical adaptation1362

due to the presence of the cuto� functions.1363

The last limit (6.7) requires the tools developed by Varadhan and Quastel [48] [35] for the hydrody-1364

namic limit for non-gradient systems, and therefore requires more work. It is the non-gradient counterpart1365

of the one-block estimate of Lemma 4.3. However, if the latter was essentially a consequence of the law1366

of large numbers, (6.7) is analogous to the central limit theorem, where the gradient term plays the role1367

of −E(jωi ). The limit (6.7) is the focus of Sections 6.5-6.6.1368

Finally, Section 6.7, and in particular Lemma 6.21, is dedicated to the integration of the contribution1369

Lf to the drift part of the scaling limit.1370

These four estimates are su�cient to allow the replacement of currents by macroscopic averages of1371

gradients, up to a perturbation Lf .1372

Corollary 6.2. � Let G be a smooth function in C1,2([0, T ] × T2), and T > 0, and consider Xf,εN
i,N1373

introduced in (6.1). Then for i ∈ {1, 2}1374

(6.8) inf
f

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

[ ∣∣∣∣∣
∫ T

0

Xf,εN
i,N (Gt, η̂(t))dt

∣∣∣∣∣
]

= 0.

Proof of Corollary 6.2. � Since1375

Xf,εN
i,N (G, η̂) =

4∑
k=1

Yk(G, η̂),

this Corollary follows immediately from the triangular inequality, and Theorem 6.1 above, taking the1376

limits N → ∞, then ε → 0 then l → ∞, then p → ∞, and �nally the in�mums over the local functions1377

f .1378

6.2. Replacement of the currents and Lf by their local average. � In this paragraph, we prove

equation (6.4), i.e. that for any i = 1, 2, any function G ∈ C1,2([0, T ]×T2), and any cylinder function f ,

lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y1(Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.
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We set1379

Gl,N (x/N) =
1

(2l + 1)2

∑
y∈T2

N , | y−x |≤l

G(y/N),

an integration by parts yields that, shortening l′ = l − 1

1

N

∑
x∈T2

N

G(x/N)

jωx,x+ei −
1

(2l′ + 1)2

∑
| y−x |≤l′

jωy,y+ei


=

1

N

∑
x∈T2

N

(
G(x/N)−Gl

′,N (x/N)
)
jωx,x+ei ≤

C(G)l2

N
.

since the di�erence G(x/N)−Gl,N (x/N) is a discrete Laplacian, and is therefore of order l2/N2, and the

currents jωx,x+ei are bounded. By the same reasoning, letting lf = l − sf , we obtain a similar bound on

the di�erence

1

N

∑
x∈T2

N

G(x/N)

τxLf − 1

(2lf + 1)2

∑
| y−x |≤lf

τyLf

 ≤ C ′(G, f)l2

N
,

since Lf is a bounded function (this last statement comes from the fact that f is, and depends only on1380

a �nite number of sites). These two bounds �nally yield that for some constant K = C(G) + C ′(G, f),1381

| Y1(G, η̂) | ≤ Kl2

N
,

which immediately yields equation (6.4) for any cylinder function f .1382

6.3. Estimation of the gradients on full clusters. � We now prove that equation (6.5) holds. Our1383

goal is to bound Y εN,pi,2 (G, η̂(s)) thanks to the control of full clusters functions obtained in (3.20), and to1384

the energy estimate (5.17). For the sake of clarity, we drop the various dependencies, and simply write1385

Y2 = Y εN,pi,2 .

By de�nition of Y2 and ρω,pεN (6.2),

Y2(G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx (ds (ρεN ) δiρ
ω,p
εN )

=
1

N

∑
x∈T2

N

G(x/N)τx

ds (ρεN )

 1

(2εN + 1)2

∑
y∈BεN (ei)

ηωy 1Ecp,y −
1

(2εN + 1)2

∑
y∈BεN

ηωy 1Ecp,y

 ,

and we can rewrite it by summation by parts as1386

(6.9)

Y2(G, η̂) =
1

N

∑
x∈T2

N

ηωx1Ecp,x
1

(2εN + 1)2

 ∑
y∈BεN (x−ei)

G(y/N)τyds(ρεN )−
∑

y∈BεN (x)

G(y/N)τyds(ρεN )

 .

Most of the terms in the parenthesis above cancel out, since the boxes BεN (x− ei) and BεN (x) overlap1387

except on the two sides (cf. Figure 4).1388

For any k ∈ J−εN, εNK, we let according to Figure 41389

yk = −(εN + 1)ei + kei′ and zk = εNei + kei′ ,

where i′ 6= i is the second direction on the torus, which are de�ned so that BεN (−ei)\BεN =1390

{y−εN , . . . , yεN} and BεN\BεN (−ei) = {z−εN , . . . , zεN}.1391

We thus obtain from (6.9)

(6.10) Y2(G, η̂(s))

=
1

N

∑
x∈T2

N

ηωx1Ecp,x
1

(2εN + 1)2

(
εN∑

k=−εN

G

(
x+ yk
N

)
ds(τx+ykρεN )−G

(
x+ zk
N

)
ds(τx+zkρεN )

)
.
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z00
BεN

BεN(−ei)

yεN

yεN−1

y−εN

y1−εN

zεN

zεN−1

z1−εN

z−εN

yεN−2

y0

y2−εN

zεN−2

z2−εN

Figure 4. De�nition of the yk's and zk's.

We can now rewrite the quantity inside the parenthesis as the sum over k of1392 [
G

(
x+ yk
N

)
−G

(
x+ zk
N

)]
ds(τx+ykρεN )−G

(
x+ zk
N

)
[ds(τx+zkρεN )− ds(τx+ykρεN )] .

Since yk and zk are distant of 2εN + 1, the �rst term in the decomposition above can be bounded in1393

absolute value uniformly in x and k by (2εN + 1) ||∂uiG||∞ /N . Let C(G,ω) = ||∂uiG||∞ ||ω||∞ ||ds||∞,1394

the corresponding contribution in (6.10) is1395

1

N

∑
x∈T2

N

ηωx︸︷︷︸
≤||ω||∞

1Ecp,x

1

(2εN + 1)2


εN∑

k=−εN

[
G

(
x+ yk
N

)
−G

(
x+ zk
N

)]
︸ ︷︷ ︸

≤(2εN+1)||∂uiG||∞/N

ds(τx+ykρεN )︸ ︷︷ ︸
≤||ds||∞

 ,

and can therefore be bounded by1396

C(G,ω)

N2

∑
x∈T2

N

1Ecp,x
.

Furthermore, since ds is C
∞ on [0, 1], it is Lipschitz-continuous on [0, 1] with Lipschitz constant c, we1397

let C ′(G,ω) = c ||G||∞ ||ω||∞ /2. We can now write thanks to the previous considerations that1398

|Y2 | ≤
C(G,ω)

N2

∑
x∈T2

N

1Ecp,x
+
C ′(G,ω)

N2

∑
x∈T2

N

1

(2εN + 1)

εN∑
k=−εN

1Ecp,x

| τx+ykρεN − τx+zkρεN |
ε

.

For any positive γ, we have the elementary bound1399

1Ecp,x

| τx+ykρεN − τx+zkρεN |
ε

≤ γ1Ecp,x +
1

γ

(τx+ykρεN − τx+zkρεN )
2

ε2
,

and �nally, for any positive γ,

|Y2 | ≤
C + γC ′

N2

∑
x∈T2

N

1Ecp,x
+

C ′

γN2

∑
x∈T2

N

1

(2εN + 1)

εN∑
k=−εN

(
τx−(εN+1)eiρεN − τx+εNeiρεN

)2
ε2

=
C + γC ′

N2

∑
x∈T2

N

1Ecp,x +
C ′

γN2

∑
x∈T2

N

(
τx−(εN+1)eiρεN − τx+εNeiρεN

)2
ε2

.(6.11)
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ϕ̃ε(., υ)

| υ | > ε+ ε3
| υ | ≤ ε

ϕε

ε

ui

ε+ ε3

1/4ε2

−ε−(ε+ ε3)

(a)

∇εiϕε

hε = ∇εi ϕ̃ε(., v)

−ε3

1/4ε3

ε ε+ ε3

−(ε+ ε3)−ε ui

ε3

(b)

Figure 5. (a) Representations of ϕ̃ε(·, v) depending on the value of v.

(b) Representation of hε(·, v) = ∇εϕ̃ε(·, v) depending on the value of v.

Recall that we want to prove (6.5), i.e.

lim
p→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

(∫ T

0

| Y2(Gt, η̂(t)) | dt

)
= 0.

The contribution of the �rst term in the bound for |Y2 | in equation (6.11) vanishes for any γ as N then1400

p goes to ∞, thanks to Proposition 3.12.1401

Furthermore, we can replace τx−(εN+1)eiρεN by τx−εNeiρεN in (6.11) since the di�erence between these1402

two quantities is of order 1/N and vanishes in the limit N → ∞. This replacement allows us to work1403

only with quantities that can be expressed in terms of the empirical measure of the process. Equation1404

(6.5) therefore holds according to Lemma 6.3 below, letting γ go to ∞ after N → ∞ then ε → 0 then1405

p→∞. �1406

Lemma 6.3. � There exists a positive constant K such that

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

(τx−εNeiρεN (t)− τx+εNeiρεN (t))
2

ε2
dt

 ≤ K.
Proof of Lemma 6.3. � This Lemma states that the di�erence of macroscopic densities between two1407

points distant from 2ε is also of order ε, and is a consequence of the energy estimate (5.17). We are1408

going to prove this macroscopic estimate in the topological setup of the space of càdlàg trajectories of1409

measures on T2 × S . Recall from Section 5.2 thatM(T2 × S) is the space of non-negative measures on1410

the continuous con�guration space,1411

M[0,T ] = D
(
[0, T ],M(T2 × S)

)
is the space of right-continuous, left-limit trajectories on the set of measures on T2 × S, and that QN1412

is the distribution onM[0,T ] of the process's empirical measure πN . We have proved in Proposition 5.41413

that the sequence (QN )N∈N is relatively compact for the weak topology. Let Λε = [ε, ε]2 ⊂ T2 be the1414

cube of size ε, and (ϕε)ε>0 be a family of localizing functions on T2
1415

ϕε(·) =
1

(2ε)2
1Λε(·),

we then have1416

τxρεN (t) =
(2εN)2

(2εN + 1)2
< πNt , ϕε(.+ x/N) > .
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We de�ne the mesoscopic gradient1417

∇ε
iϕ(·) = ε−1(ϕ(· − εei)− ϕ(·+ εei)),

represented in Figure 5b. Note that ∇ε
iϕε is at most of order ε

−3 since ϕε is of order ε
−2. We can rewrite

the left-hand side in Lemma 6.3 as

EQN

∫ T

0

1

N2

∑
x∈T2

N

< πt,∇ε
iϕε(.+ x/N) >2 dt

+ oN (1).(6.12)

Furthermore, since for any two sites x, x′ ∈ T2 distant from less than 1/N ,

| < πt,∇ε
iϕε(.+ x/N) > − < πt,∇ε

iϕε(.+ x′/N) > | ≤ C(ε)
1

N
,

we can replace the sum above by the integral over the continuous torus.1418

However, regarding the weak topology onM(T2×S), it will be convenient later on to consider smooth1419

functions instead of ϕε. We therefore introduce for any ε a function ϕ̃ε, represented in Figure 5a verifying1420

� ϕ̃ε = ϕε on Λε and on T2\Λε+ε3 .1421

� ||ϕ̃ε||∞ = ||ϕε||∞.1422

� ϕ̃ε is in C
1(T2).1423

Since ϕ̃ε and ϕε coincide everywhere except on Λε+ε3\Λε, and since ||ϕ̃ε||∞ = (2ε)−2 we can write for

any x ∈ T2
N∣∣ < πNt , ϕε(.+ x/N) > − < πNt , ϕ̃ε(.+ x/N) >

∣∣ ≤ 1

(2ε)2
< πNt ,1Λε+ε3\Λε(.+ x/N) >︸ ︷︷ ︸

≤4ε×ε3

.

≤ Cε2,

for some positive constant C. This bound immediately yields1424 ∣∣ < πNt ,∇
ε
iϕε(.+ x/N) > − < πNt ,∇

ε
i ϕ̃ε(.+ x/N) >

∣∣ ≤ Cε,
which allows us to replace in equation (6.12), in the limit N →∞ then ε→ 0, ϕε by ϕ̃ε.1425

To prove Lemma 6.3 it is therefore su�cient to prove that1426

(6.13) lim sup
ε→0

lim sup
N→∞

EQN

(∫∫
[0,T ]×T2

< πt, hε(.+ u) >2 dudt

)
≤ K,

where hε = ∇ε
i ϕ̃ε, is a continuous bounded function, represented in Figure 5b. Let us denote by Π the1427

subset ofM[0,T ]
1428

Π =

{
π ∈M[0,T ]

∣∣∣ sup
t∈[0,T ]

< πt, 1 >≤ 1

}
of trajectories with mass less than one at all times, which is compact w.r.t Skorohod's topology introduced1429

in Section 5.2.1430

Consider a weakly convergent subsequence QNk → Q∗, in order to substitute Q∗ to QN in the limit1431

above, we want to prove that for any �xed ε > 0, the application1432

Iε : π 7→
∫∫

[0,T ]×T2

< πt, hε(.+ u) >2 dudt

is bounded, and continuous on Π w.r.t. Skorohod's topology.1433

Note that this application is bounded on Π by construction, we now prove the following Lemma.1434

Lemma 6.4. � Fix ε > 0, the application Iε is continuous on (Π, d), where d is the Skorohod metric1435

de�ned in equation (B.3).1436

Proof of Lemma 6.4. � For any two trajectories π and π′ in Π, and some continuous strictly increasing1437

function κ from [0, T ] into itself, such that κ0 = 0 and κT = T , we can write1438

Iε(π)− Iε(π′) =

∫∫
[0,T ]×T2

du < π′t + πt, hε(.+ u) >< π′t − πκt + πκt − πt, hε(.+ u) > dt.
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The �rst factor < π′t + πt, hε(.+ u) > can be crudely controlled by 2 ||hε||∞, which yields

| Iε(π)− Iε(π′) | ≤2 ||hε||∞
∫∫

[0,T ]×T2

| < π′t − πκt , hε(.+ u) > + < πκt − πt, hε(.+ u) > | dudt.

(6.14)

Note that by de�nition of ||κ||, one easily gets that for any t ∈ [0, T ], | t− κt | ≤ T (e||κ|| − 1),1439

therefore, κt → t uniformly on [0, T ] as ||κ|| → 0. Let us �x π ∈ Π, and assume that d(π, πn) → 01440

for some sequence of trajectories (πn)n ∈ ΠN, there exists a sequence (κn)n∈N such that ||κn|| → 01441

and limn→∞ supt∈[0,T ] δ(π
n
t , πκnt ) = 0. This last statement yields in particular that for any t ∈ [0, T ],1442

δ(πnt , πκnt )→ 0, therefore for any t ∈ [0, T ], and for any u ∈ T2,1443

lim
n→∞

< πnt − πκnt , hε(.+ u) >= 0,

since hε(.+u) is a continuous bounded function, and δ is a metric of the weak convergence. Furthermore,1444

since κnt converges uniformly towards t on [0, T ] and since t→ πt is weakly continuous almost everywhere1445

on [0, T ] by de�nition ofM[0,T ], we also have that for almost every (t, u) ∈ [0, T ]× T2,1446

lim
n→∞

< πκnt − πt, hε(.+ u) >= 0.

Since π and the πn's are in Π, both of these quantities are crudely bounded in absolute value by 2 ||hε||∞,
which is naturally integrable on [0, T ] × T2. One �nally obtains by dominated convergence, from (6.14)

applied to π′ = πn and κ = κn, that

| Iε(π)− Iε(πn) | →
n→∞

0.

Lemma 6.4 is complete.1447

We have now proved that the application Iε is continuous for any �xed ε, therefore the left-hand side

of (6.13) is less than

lim sup
ε→0

sup
Q∗

EQ∗
(∫∫

[0,T ]×T2

du < πt, hε(.+ u) >2 dt

)
,

where the supremum is taken over all limit points Q∗ of the sequence QN . Since by de�nition hε =1448

∇ε
i ϕ̃ε does not depend on θ, we drop the dependency of π on θ and consider simply for any u ∈ T2,1449

ρ(t, u) =
∫
S
ρ̂t(u, dθ), where ρ̂t(u, dθ) is the density of πt(·, dθ) w.r.t. the Lebesgue measure T2, which1450

exists Q∗-a.s. according to Lemma 5.6. We can write1451

(6.15)

EQ∗
(∫∫

[0,T ]×T2

du < πt, hε(.+ u) >2 dt

)
= EQ∗

(∫∫
[0,T ]×T2

(∫
v∈T2

ρ(t, v)∇ε
i ϕ̃ε(v + u)dv

)2

dudt

)
.

We can now express ∇ε
i ϕ̃ε as a gradient, by writing1452

∇ε
i ϕ̃ε(u) = ∂ui

∫ ui

−1/2

∇ε
i ϕ̃ε(υei + ui′ei′)dυ = ∂uiΦε,i,

where i′ 6= i still denotes the second direction on the torus.1453

Furthermore, Φε,i, represented in Figure 6, is in C2(T2) because ϕ̃ε is C
1, and the various integrals1454

can be freely swapped since all quantities are bounded at any �xed ε. Since Q∗-a.s. ρ ∈W 1,2([0, T ]×T2)1455

according to Theorem 5.7, the right-hand side in equation (6.15) is therefore equal to1456

(6.16) EQ∗
(∫∫

[0,T ]×T2

(∫
v∈T2

Φε,i(v + u)∂uiρ(t, v)dv

)2

dudt

)
.

In order to conclude, we adapt the proof of Young's Inequality, and apply Cauchy-Schwarz inequality to

f = (Φε,i(v + u))
1/2

and g = (Φε,i(v + u))
1/2

∂uiρ(t, v), to �nally obtain that

EQ∗
(∫∫

[0,T ]×T2

du < πt, hε(.+ u) >2 dt

)
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1/4ε2 + 0ε(1)

Φε,i(., υ)

| υ | > ε+ ε3
| υ | ≤ ε

−(ε+ ε3) ε+ ε3−ε εε3−ε3

Figure 6. Representation of Φε,i(·, v) depending on v.

≤ EQ∗
(∫∫

[0,T ]×T2

||Φε,i||1

[∫
v∈T2

Φε,i(v + u)(∂uiρ(t, v))2dv

]
dudt

)

= ||Φε,i||21 EQ∗
(∫∫

[0,T ]×T2

(∂uiρ(t, u))2dudt

)
,

where the last identity was obtained by integrating �rst w.r.t. u, then w.r.t. v. Since ||Φε,i||1 = 1+oε(1),1457

Lemma 6.3 follows from equation (5.17).1458

6.4. Replacement of the macroscopic gradients by their local counterparts. � We now prove1459

equation (6.6), i.e. that the macroscopic average of the gradients can be replaced by a local average. To1460

simplify the notations, throughout this section, we drop the various dependencies of Y l,εN,pi,3 and simply1461

denote it by Y3.1462

Recall that LG,β=0 stands for the modi�ed Glauber generator without alignment of the angles, where1463

each angle is updated uniformly in S,1464

LG,β=0f(η̂) =
∑
x∈T2

N

ηx

∫
S

(f(η̂x,θ)− f(η̂))

2π
dθ,

and

Lβ=0
N = N2LD + LG,β=0.

Recall that Pλ,0µ∗α is the measure on the trajectories starting from the equilibrium measure µ∗α and driven1465

by the generator Lβ=0
N , and that the expectation w.r.t the latter is denoted by Eλ,0µ∗α . We �rst apply1466

Proposition 3.10 to the positive functional1467

X
(
η̂[0,T ]

)
=

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣ ,
letting A = γN2, and obtain that for some constant K0 = K0(T, β, ζ̂),1468

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)
≤ K0

γ
+

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)]

.

Letting γ go to ∞ after N , to prove (6.6) it is therefore enough to show that for any integer p > 11469

(6.17) lim
γ→∞

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)]

= 0.
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We now get rid of the absolute value by using both of the elementary inequalities1470

e| x | ≤ ex + e−x

and1471

lim sup
N→∞

1

N2
log(aN + bN ) ≤ max

(
lim sup
N→∞

1

N2
log aN , lim sup

N→∞

1

N2
log bN

)
.

Both of these imply that the limit in equation (6.6) is bounded up by the maximum of the limits of1472

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
and1473

1

γN2
logEλ,0µ∗α

[
exp

(
−γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
.

Since −Y3(G, η̂) = Y3(−G, η̂), and since the identity above must be true for any function G, to obtain1474

the wanted result it is su�cient to show that for any γ and any G ∈ C1,2([0, T ]× T2)1475

(6.18) lim
γ→∞

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
≤ 0.

We now get back to a variational problem, since Lemma 5.2 yields1476

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
≤ 2Tλ2

γ
+

1

γ

∫ T

0

sup
ϕ

{
E∗α (ϕγY3(Gt, η̂))− 1

2
D(ϕ)

}
.

The �rst term in the right-hand side above vanishes as γ goes to ∞. Furthermore, the time integral is1477

now only applied to the function Gt, therefore to obtain equation (6.6), it is su�cient to prove that for1478

any γ and any function G ∈ C2(T2),1479

(6.19) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ
{2γE∗α (ϕY3(G, η̂))−D(ϕ)} ≤ 0.

Since this must be true for any G and any γ, we can safely assume that γ = 1/2, and equation (6.19)1480

follows from Lemma 6.5 below. Thus this completes the proof of (6.6).1481

In order to avoid repeating a similar proof twice, we forget for the moment that dω (ρ, ρω) = ds(ρ) only1482

depends on the total particle density, and present the proof of the following Lemma in the most di�cult1483

case where the gradient is on ρω,p and where the di�usion coe�cient depends on both ρ and ρω. We1484

simply assume throughout this proof that the di�usion coe�cient dω is a uniformly continuous function1485

of ρ and ρω on the set1486 {
(α, αω) ∈ [0, 1]× [− ||ω||∞ , ||ω||∞] such that |αω| ≤ ||ω||∞ α

}
.

Lemma 6.5. � Let us �x 1 ≤ i, j ≤ 2, we shorten1487

Dk = dω (ρk, ρ
ω
k ) and vk = δiρ

ω,p
k .

For any G ∈ C2(T2)1488

(6.20) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ

∑
x∈T2

N

[
1

N
G(x/N)E∗α

(
ϕτx(DεNvεN −Dlvlp)

)]
−D(ϕ)

 ≤ 0,

where as before lp = l − p − 1, and the supremum is taken over all probability densities with respect to1489

µ∗α. The same result is true for the gradients vk = δiρk instead of δiρ
ω,p
k , d instead of dω, and l′ = l − 11490

instead of lp.1491

Proof of Lemma 6.5. � The di�culty of this Lemma comes from the extra factor N , which prevents us1492

from using directly the replacement Lemma 4.1. We hence need to get some precise control over each1493

term to ensure that they are small enough. We start by splitting in two parts the quantity in Lemma 6.51494

by noticing that1495

(6.21) DεNvεN −Dlvlp = DεN (vεN − vlp) + (DεN −Dl)vlp .
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x+ ei

τx+eiBp

τxBp

x

yp

yp−1

y−p

zp

zp−1

z−p

Figure 7. Change of variable η̂ → T x
i,pη̂.

Both terms are treated in the same fashion due to the continuity of the di�usion coe�cients (which follows1496

directly from their explicit expression). More precisely, we intend to show that the di�erence between1497

the average over a microscopic and macroscopic box is of order 1/N , and hence yields the extra factor1498

N needed to use the replacement Lemma. Let us thus consider the �rst term appearing in the Lemma,1499

namely1500

1

N
E∗α

ϕ ∑
x∈T2

N

G(x/N)τxDεN (vεN − vlp)

 .

Recall that we denoted Bl = {x ∈ T2
N , |x | ≤ l}, and |Bl | = (2l+ 1)2. Since both vεN and vlp are merely

spatial averages of the gradients δi(η
ω
0 1Ep), a �rst summation by parts yields that the quantity above is

equal to

1

N
E∗α

(
ϕ
∑
x∈T2

N

(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

[
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN

− 1

|Blp |
∑

| y−x |≤lp

G(y/N)τyDεN

])
.

Now let Sx(η̂) denote the quantity inside braces, i.e1501

Sx(η̂) =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN −
1

|Blp |
∑

| y−x |≤lp

G(y/N)τyDεN .

We are now going to prove that1502

(6.22) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ

 1

N
E∗α

ϕ ∑
x∈T2

N

Sx(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

− 1

2
D(ϕ)

 ≤ 0.

In order to transfer the gradient appearing in the expression above on ϕ and Sx, we need the speci�c1503

change of variable represented in Figure 7. For any direction i ∈ {1, 2}, let i′ 6= i be the second direction1504

on the torus. Given x in the torus, we denote for any k ∈ J−p, pK (See Figure 4)1505

yk = x− pei + kei′ ∈ Bp(x) and zk = x+ (p+ 1)ei + kei′ ∈ Bp(x+ ei).

Given these, we denote, for any con�guration η̂, by1506

T xi,p(η̂) =
((

(η̂x,x+ei)y−p,z−p
)...)yp,zp

the con�guration where the sites x and x+ ei have been swapped, as well as the boundary sites yk and1507

zk.1508

By construction, we have1509

ηωx 1Ep,x(T xi,pη̂) = ηωx+ei1Ep,x+ei
(η̂)
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The �rst term in the left-hand side of (6.22) can be rewritten as

1

N
E∗α

ϕ ∑
x∈T2

N

Sx(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

 =
1

N
E∗α

∑
x∈T2

N

ηωx1Ep,x
(
(ϕSx)(T xi,pη̂)− ϕSx

)
=

1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,x

[
ϕ(T xi,pη̂)

(
Sx(T xi,pη̂)− Sx

)
+
(
ϕ(T xi,pη̂)− ϕ

)
Sx
])
.(6.23)

We are going to show that the contribution of the �rst term of the right-hand side in (6.23) vanishes1510

in the limit N → ∞, whereas the second term can be controlled with the Dirichlet form D(ϕ). Recall1511

that Sx is de�ned as1512

Sx(η̂) =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN −
1

|Blp |
∑

| y−x |≤lp

G(y/N)τyDεN .

Since the only dependency of Sx in η̂ lies in DεN , which is the di�usion coe�cient evaluated in the

macroscopic empirical density ρ̂εN , in order to control the �rst term in the right-hand side of (6.23), we

can write

(6.24) Sx(T xi,pη̂)− Sx =

1

|BεN |
∑

| y−x |≤εN

G(y/N)τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
− 1

|Blp |
∑

| y−x |≤lp

G(y/N)τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
.

Recall that τyDεN (η̂) = dω(τyρεN , τyρ
ω
εN ). Since it depends on the con�guration through an average over1513

BεN (y), τyDεN (η̂) is invariant under any exchange of a pair of sites with both ends in BεN (y). We deduce1514

from this remark that for any | y − x | ≤ lp, the quantity1515

τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
vanishes, since all the exchanges happen between sites at a distance at most p of x, and therefore at a1516

distance at most p+ lp of y. This yields that the second term in the right-hand side of (6.24) vanishes.1517

We now consider the �rst term in the right-hand side of (6.24). For the same reason as before, for1518

any y in BεN−p−1(x), all the exchanges in T xi,p have both ends in BεN (y), and τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
1519

vanishes. We can �nally rewrite (6.24) as1520

(6.25) Sx(T xi,pη̂)− Sx =
1

|BεN |
∑

y∈BεN (x)\BεN−p−1(x)

G(y/N)τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
.

We now take a closer look at each of the remaining term. By de�nition, the con�guration T xi,pη̂ can be1521

obtained from η̂ by inverting 2p+2 pair of sites in η̂. Furthermore, �x a y in the sum above, and consider1522

any inversion η̂z1,z2 with z1 ∈ BεN (y) and z2 /∈ BεN(y), we wan write by de�nition of ρεN and ρωεN1523

| τyρεN (η̂z1,z2)− τyρεN (η̂) | ≤ 1

|BεN |
and | τyρωεN (η̂z1,z2)− τyρωεN (η̂) | ≤

2 ||ω||∞
|BεN |

.

By assumption, dω(α, αω) is uniformly continuous on the set1524 {
(α, αω) ∈ [0, 1]× [− ||ω||∞ , ||ω||∞] such that |αω | ≤ ||ω||∞ α

}
.

We deduce from this that1525

τy (DεN (η̂z1,z2)−DεN (η̂)) = oN (1),

therefore1526 ∣∣ τy (DεN (T xi,pη̂)−DεN (η̂)
) ∣∣ ≤ oN (1),

where this time oN (1) stands for a constant depending on p which vanishes as N → ∞. We inject the1527

latter identity in equation (6.25), to obtain that1528

Sx(T xi,pη̂)− Sx =
| BεN (x) \BεN−p−1(x) |

|BεN |
oN (1) =

1

N
oN (1),
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where the last oN (1) depends on p and ε, but vanishes as N →∞. This allows us to get back to equation1529

(6.23), in which the �rst term in the right-hand side can be rewritten1530 ∣∣∣∣∣∣ 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,xϕ(T xi,pη̂)

(
Sx(T xi,pη̂)− Sx

)) ∣∣∣∣∣∣ ≤ ||ω||∞N2

∑
x∈T2

N

E∗α
(
ϕ(T xi,pη̂)

)
oN (1) = oN (1),

since µ∗α is invariant under the change of variable T xi,pη̂, and therefore E∗α
(
ϕ(T xi,pη̂)

)
= E∗α(ϕ) = 1.1531

We now work on the contribution of the second part of (6.23), namely1532

(6.26) E∗α

N−1
∑
x∈T2

N

ηωx1Ep,xSx(η̂)
[
ϕ
(
T xi,pη̂

)
− ϕ

] ,

that we wish to estimate by the Dirichlet form D(ϕ). The elementary bound

cd (a− b) ≤ Ac2

2

(√
a+
√
b
)2

+
d2

2A

(√
a−
√
b
)2

,

which holds for any positive constant A, applied to1533

a = ϕ
(
T xi,pη̂

)
, b = ϕ, c = ηωxSx and d = 1Ep,x

yields that the quantity above (6.26) can be bounded from above for any positive A by1534

(6.27)
1

N

∑
x∈T2

N

E∗α
(
A

2
(ηωxSx)

2 (√
ϕ
(
T xi,pη̂

)
+
√
ϕ
)2

+
1

2A
1Ep,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
.

Since we already established that Sx
(
T xi,pη̂

)
= Sx+ (εN)−1oN (1), since ηωx can be bounded by C(ω) > 0,1535

and since 1Ep,x ≤ 1Ep+1,x
the sum above is less than1536

(6.28)
AC2

N

∑
x∈T2

N

E∗α(ϕS2
x) +

1

2AN

∑
x∈T2

N

E∗α
(
1Ep+1,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
+ oN (1).

According to Section 3.3, on the event Ep+1,x on which there are two empty sites in Bp+1, there exists1537

a sequence of allowed jumps permitting to reach T xi,pη̂ from η̂. However, this sequence is random, which1538

we avoid by crudely bounding1539

1Ep+1,x
≤

∑
z1,z2∈Bp+1

(1− ηz1)(1− ηz2),

since the right-hand side only vanishes when there are less than one empty site in Bp+1. Given two �xed1540

empty sites z1 and z2 there exists an integer np(z1, z2) bounded by a constant Cp, and a sequence of1541

edges ((am, bm))m∈J0,npK such that1542

η̂ = η̂(0), T xi,pη̂ = η̂(np), and η̂(m+ 1) = η̂(m)am,bm ∀m ∈ J0, np − 1K,

where am and bm are neighboring sites in Bp+1(x) and ηam(η̂(m)) = 1−ηbm(η̂(m)) = 1. We can therefore

write

E∗α
(
1Ep,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2) ≤ ∑
z1,z2∈Bp+1

E∗α

(
np

np−1∑
m=0

1Ep,x (
√
ϕ (η̂(m+ 1))−√ϕ(η̂(m)))

2

)
≤ KpDN,p+1(ϕ),

since η̂(m + 1) is reached from η̂(m) by an allowed particle jump, where DN,p+1(ϕ) is the contribution1543

of edges in Bp+1 in D(ϕ).1544

The sum in the second term of (6.28) can therefore be bounded by C∗pD (ϕ), where C∗p = (2p+ 1)2Kp.1545

Finally, (6.26) can be bounded, for any positive A by1546

AC2

N

∑
x∈T2

N

E∗α(ϕS2
x) +

C∗p
2AN

D (ϕ) + oN (1).
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We can now set A = C∗p/N , to obtain that

E∗α

N−1
∑
x∈T2

N

ηωx1Ep,xSx(η̂)
[
ϕ
(
T xi,pη̂

)
− ϕ

] ≤ C(p, ω)

N2

∑
x∈T2

N

E∗α(ϕS2
x) +

1

2
D (ϕ) + oN (1).

The �rst term in the right-hand side above vanishes as a consequence of the two-block estimate stated1547

in Lemma 4.3, since the di�usion coe�cients are continuous according to their explicit expression. This1548

concludes the proof of equation (6.22).1549

The contribution of the second part of equation (6.21) is treated in a similar fashion. Denoting by1550

S′x(η̂) =
1

|Blp |
∑

| y−x |≤lp

G(y/N)(τyDεN − τyDl).

As before, the corresponding contribution in the left-hand side of (6.20) can be written as

− 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,x

(
ϕ(T xi,pη̂)− ϕ

)
S′x
)
,

since this time, S′x is invariant under the action of T xi,p by de�nition of lp, whereas the second term can1551

be controlled in the limit N →∞ as well by D(ϕ)/2. This completes the proof of Lemma 6.5 in the case1552

where Dk = dω (ρk, ρ
ω
k ) and vk = δiρ

ω,p
k .1553

In the case where Dk = d (ρk, ρ
ω
k ) and vk = δiρk, the proof is easier and no longer requires indicator1554

functions, since unlike δiη
ω
x , δiηx vanishes when there is no empty site. We do not give a detailed proof,1555

which would be an easier version of the previous case. We will instead just give a brief outline and the1556

equivalent quantities to the previous ones. The same summation by parts allows us to rewrite1557

1

N
G(x/N)E∗α

(
ϕτx(DεNvεN −Dlvlp)

)
=

1

N
E∗α

ϕ ∑
x∈T2

N

(Sx + S′x)(ηx+ei − ηx)

 ,

where1558

Sx =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN −
1

|Bl′ |
∑

| y−x |≤l′
G(y/N)τyDεN ,

and1559

S′x(η̂) =
1

|Bl′ |
∑

| y−x |≤l′
G(y/N)(τyDεN − τyDl).

We can now rewrite ηx+ei − ηx = ηx+ei(1− ηx)− ηx(1− ηx+ei), to obtain that the quantity above is1560

1

N

∑
x∈T2

N

E∗α
(
ηx(1− ηx+ei) ((Sx + S′x)ϕ) (η̂x,x+ei)− (Sx + S′x)ϕ

)
.

The gradients of Sx and S′x still vanish, whereas the average of the gradients ϕ(η̂x,x+ei) − ϕ can be1561

controlled by the sum of a vanishing term and the Dirichlet form of ϕ, since this time the jump rates1562

ηx(1− ηx+ei) are already present. This concludes the proof of Lemma 6.5.1563

6.5. Projection on non-full sets and reduction to a variance problem. � We now prove the1564

limit (6.7), which states that in a local average, the current can be replaced by gradients, up to a1565

perturbation Lf . Following the exact same steps as in Section 6.4, up until the statement of Lemma1566

6.5, where we reduced the proof of equation (6.6) to (6.19), we reduce the proof of equation (6.7) to the1567

variational formula1568

(6.29) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

sup
ϕ
{E∗α (ϕY4(G, η̂))−D(ϕ)} ≤ 0,

where we shortened1569

Y4(G, η̂) = Y f,l,pi,4 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxWf,l,p
i,4 ,
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and Wf,l,p
i,4 was introduced in equation (6.3). Since this step is performed in the exact same way as in1570

the beginning of Section 6.4, we do not detail them here and refer the reader to the latter. To simplify1571

notations, we shorten1572

W l
i =Wf,l,p

i,4

for the local average of the di�erence between gradients and currents in the direction i.1573

We will now work to get an estimate of the largest eigenvalue of the small perturbation L+ Y4 of L.1574

The strategy is close to the one used in the one-block estimate of Section 4.3. To do so, we break down1575

the process on �nite boxes with a �xed number of particles, where the generator L has a positive spectral1576

gap. In order to introduce this restriction, we adopt once again the notations introduced in Section 4.3,1577

which we brie�y recall here. Let Bl = J−l, lK2 be the box of size l, K̂ = (K, {θ1, . . . , θK}) be some particle1578

number and angles. Recall that Kl is the set of K̂'s such that K ≤ (2l + 1)2, and denote by α̂K̂ the1579

grand-canonical parameter1580

α̂K̂ =
1

(2l + 1)2

K∑
k=1

δθk ∈M1(S).

Recall that we already de�ned in (3.3)

ΣK̂l =
{
η̂ ∈ ΣN

∣∣ ρ̂l = α̂K̂
}

the set of con�gurations with K particles in Bl with angles θk's. Also recall that µl,K̂ is the canonical1581

measure µ∗α( . | ΣK̂l ) conditioned to particle con�gurations of the form K̂ in Bl.1582

We denote for any site x ϕx = τ−xϕ, and by ϕx
l,K̂

the density induced by ϕx on ΣK̂l . It can be de�ned1583

for any con�guration ζ̂ on Bl by1584

ϕx
l,K̂

(ζ̂) =
E∗α(ϕx | η̂|Bl = ζ̂)

E∗α(ϕx | ΣK̂l )
.

Let us now get back to the quantity of interest,1585

(6.30) E∗α (ϕY4(G, η̂)) =
1

N

∑
x∈T2

N

G(x/N)E∗α
(
ϕτxW l

i

)
=

1

N

∑
x∈T2

N

G(x/N)E∗α
(
W l
iϕ
x
)
.

Because W l
i only depends on the vertices in Bl, we can replace the expectation under µ∗α by the integral1586

over Kl of the expectation under µl,K̂ . More precisely, let us denote1587

mx(dK̂) = E∗α
(
ϕx1

ΣdK̂l

)
,

the in�nitesimal probability of being on the set ΣK̂l under the measure with density ϕx w.r.t µ∗α. Thanks

to (6.30), letting E∗l,α be the conditional expectation of E∗α w.r.t the sites inside of Bl, we can write

E∗α (ϕY4(G, η̂)) =
1

N

∑
x∈T2

N

G(x/N)E∗l,α
(
W l
iϕ
x
)

=
1

N

∑
x∈T2

N

G(x/N)

∫
K̂∈Kl

El,K̂
(
W l
iϕ
x
l,K̂

)
mx(dK̂).(6.31)

Let us now decompose in a similar fashion the Dirichlet form. For ϕ some density with respect to µα̂,1588

let Dl,K̂ be the Dirichlet form on ΣK̂l1589

Dl,K̂(ϕ) =
1

2

∑
x,y∈Bl
| x−y |=1

El,K̂

[
ηx(1− ηy)

(√
ϕ (η̂x,y)−√ϕ

)2
]
.

We have with the same tools as in the proof of Lemma 4.31590

(6.32)
∑
x∈T2

N

∫
K̂∈Kl

Dl,K̂

(
ϕx
l,K̂

)
mx(dK̂) ≤ (2l + 1)2D(ϕ).
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From the previous considerations, we can localize the quantity inside braces in equation (6.29), which

is bounded above thanks to (6.31) and (6.32) by

E∗α (ϕY4(G, η̂))−D(ϕ) =
∑
x∈T2

N

∫
K̂∈Kl

mx(dK̂)

(
1

N
G(x/N)El,K̂

(
W l
iϕ
x
l,K̂

)
− (2l + 1)−2Dl,K̂

(
ϕx
l,K̂

))

≤κ1

∑
x∈T2

N

sup
K̂∈Kl

[κ2

N
El,K̂

(
W l
iϕ
x
l,K̂

)
−Dl,K̂

(
ϕx
l,K̂

)]
≤κ1

∑
x∈T2

N

sup
K̂∈Kl

sup
ψ

[κ2

N
El,K̂

(
W l
iψ
)
−Dl,K̂ (ψ)

]
,(6.33)

since
∫
K̂∈Kl mx(dK̂) = 1, where1591

κ1 = (2l + 1)−2 and κ2 = G(x/N)(2l + 1)2,

and the supremum is taken over all densities ψ with respect to µl,K̂ .1592

We now wish to exclude in the supremum over K̂ above the con�gurations with one or less empty1593

sites since on the corresponding sets, the exclusion process is not irreducible as investigated in Section1594

3.3. First note that for any K̂ such that K = |Bl |, W l
i vanishes. Indeed, thanks to our cuto� functions1595

1Ep , and since l goes to ∞ before p, in that case, the currents, the gradients as well as the Lf 's in W l
i1596

all vanish as well as Dl,K̂ (ψ).1597

We now consider the case where K = |Bl | − 1, i.e. when there is one empty site in Bl. We state the1598

corresponding estimate as a separate lemma for the sake of clarity.1599

Lemma 6.6. � There exists a constant C = C(G,ω, f) such that for any K̂ such that K = |Bl | − 1,1600

κ2

N
El,K̂

(
W l
iψ
)
≤ Dl,K̂ (ψ) +

C

N2
.

Proof of Lemma 6.6. � First note that all the gradients δiη
ω,p vanish in the expression ofW l

i due to the1601

cuto� functions. We can therefore write, for any con�guration with one or less empty site, that1602

W l
i =

1

(2l′ + 1)2

∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)
− 1

(2lf + 1)2
Llf,

where we denoted by dK̂ the value on ΣK̂l of d (ρl, ρ
ω
l ), which does not depend on the con�guration, and1603

f =
∑
x∈Blf

τxf . The quantity we want to estimate can therefore be rewritten1604

κ2

N
El,K̂

(
W l
iψ
)

=
κ2

N(2l′ + 1)2
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)− κ2

N(2lf + 1)2
El,K̂

(
ψLlf

)
,

where Ll is the generator of the symmetric exclusion process restricted to jumps with both ends in Bl.

Since κ2, (2l′ + 1)2, and (2lf + 1)2 are of order (2l + 1)2, and since the sign of f is arbitrary, to prove

Lemma 6.6 it is su�cient to prove that for any A > 0, we have both

(6.34)
1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

) ≤ Dl,K̂ (ψ)

2A
+
AC(ω)

N2

and
1

N
El,K̂

(
ψLlf

)
≤
Dl,K̂ (ψ)

2A
+
AC(f)

N2
.

The two inequalities above are proved in the same way. We treat in detail the second, which is the1605

most delicate, and simply sketch the adaptations to obtain the �rst. Using the elementary inequality1606

(6.35) ab ≤ γa2

2
+
b2

2γ
,
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which holds for any positive γ, we �rst write

El,K̂
(
ψLlf

)
=

∑
x,x+z∈Bl

El,K̂
(
ψ∇x,x+zf

)
= −1

2

∑
x,x+z∈Bl

El,K̂
(
∇x,x+zψ∇x,x+zf

)
≤

∑
x,x+z∈Bl

γ

4
El,K̂

(
(∇x,x+z

√
ψ)2
)

+
1

4γ
El,K̂

(
(∇x,x+zf)2(

√
ψ +

√
ψ(η̂x,x+z))2

)

=
γ

2
Dl,K̂ (ψ) +

1

4γ
El,K̂

 ∑
x,x+z∈Bl

ηx(1− ηx+z)(f − f(η̂x,x+z))2(
√
ψ +

√
ψ(η̂x,x+z))2

 .

One only has now to carefully account for the order of the di�erent quantities in the second term. Since1607

f is a bounded local function, by de�nition of f , it is invariant under particle jumps with both ends1608

outside of its domain. There hence exists a constant C(f) such that for any x and x+ z, f − f(η̂x,x+z) ≤1609

C(f). In particular, the constant C(f) does not depend on l. We can also crudely bound ηx by 1 and1610

(
√
ψ +
√
ψ(η̂x,x+z))2 by 2ψ + ψ(η̂x,x+z). These bounds and a change of variable η̂ → η̂x,x+z �nally yield1611

that for any positive γ,1612

El,K̂
(
ψLlf

)
≤ γ

2
Dl,K̂ (ψ) +

C(f)

2γ
El,K̂

 ∑
x,x+z∈Bl

(2− ηx − ηx+z)ψ

 .

Furthermore, since there is only one empty site in Bl,1613 ∑
| y |≤l−1

(2− ηy − ηy+ei) = |Bl−1 | −
∑

y∈Bl−1

ηy︸ ︷︷ ︸
≤1

+ | τeiBl−1 | −
∑

y∈τeiBl−1︸ ︷︷ ︸
≤1

ηy ≤ 2,

therefore, since ψ is a probability density, and setting γ = N/A proves the second identity of (6.34).1614

The second identity is obtained in the same way, since1615

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

) =
1

N

∑
| y |≤l−1

El,K̂
(
(ω(θy) + dK̂)∇y,y+eiψ

)
,

we also obtain

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)
≤ γ

2
Dl,K̂ (ψ) +

(||ω||∞ + ||d||∞)
2

2γ
El,K̂

 ∑
x,x+ei∈Bl

(2− ηx − ηx+ei)ψ

 .

The last estimate, in turn, yields the �rst inequality in (6.34), which concludes the proof of Lemma1616

6.6.1617

In the limit N → ∞ then l → ∞, Lemma 6.6 yields, since κ1 vanishes as l → ∞, and since all1618

quantities vanish when K = |Bl |, that1619

κ1

∑
x∈T2

N

sup
K̂∈Kl

K≥|Bl |−1

sup
ψ

[κ2

N
El,K̂

(
W l
iψ
)
−Dl,K̂ (ψ)

]
→ 0.

We can therefore restrict the supremum over K̂ to those satisfying K ≤ |Bl | − 2. Recall that we1620

denoted in equation (3.2) by K̃l the set of such K̂, the left-hand side of (6.29) is bounded by1621

(6.36) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

κ1

∑
x∈T2

N

sup
K̂∈K̃l

sup
ψ

[κ2

N
El,K̂

(
W l
iψ
)
−Dl,K̂ (ψ)

]
,
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where the supremum is taken over all densities ψ w.r.t. µl,K̂ . On all the sets ΣK̂l considered, Ll is
invertible and the supremum over ψ is a variational formula for the largest eigenvalue of the operator

Ll + κ2W l
i/N . Proposition B.7 then allows us to bound the quantity whose limit is taken in (6.36) by

lim sup
N→∞

sup
K̂∈K̃l

κ1κ
2
2

1− 2γl
∣∣∣∣W l

i

∣∣∣∣
∞ κ2N−1

El,K̂
(
W l
i(−Ll)−1W l

i

)
≤ ||G||2∞ (2l + 1)2 sup

K̂∈K̃l
El,K̂

(
W l
i(−Ll)−1W l

i

)
.

To obtain the last inequality, we denoted by γl the spectral gap of the local generator Ll, which is positive,1622

and used that
∣∣∣∣W l

i

∣∣∣∣
∞ is �nite, and κ1κ

2
2 = ||G||2∞ (2l + 1)2. In order to obtain inequality (6.29), and1623

conclude the proof of equation (6.7), it is therefore su�cient to prove the following result.1624

Proposition 6.7 (Estimate of the local covariance). � Recall that W l
i is the local average of the

di�erence between currents and gradients up to Lf , namely

W l
i = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈Lf〉

lf
0 ,

where d is given by equation (1.3). Recall that K̃l only takes into account con�gurations with two empty1625

sites in Bl. Then,1626

(6.37) inf
f

lim
p→∞

lim sup
l→∞

sup
K̂∈K̃l

(2l + 1)2El,K̂
(
W l
i(−Ll)−1W l

i

)
= 0.

6.6. Limiting variance and di�usion coe�cients. � In Section 6.5, we reduced the proof of (6.7),1627

and that of Theorem 6.1, to estimating a local variance. In this section, we introduce the limiting variance1628

� · �α̂ and investigate its properties and the structure of a set of functions with mean-0 w.r.t. any1629

canonical measures, equipped with� · �α̂. The presence of indicator functions in δiη
ω,p
0 and the necessity1630

for a uniform estimate in the canonical state K̂ ∈ K̃l makes this section fairly technical, however, most1631

of the results come from elementary linear algebra. The main results of this section is Proposition 6.14,1632

which is the main ingredient to prove Proposition 6.7, and therefore concludes the proof of Theorem 6.1.1633

1634

To prove Proposition 6.7, we are now going to investigate the limit as l → ∞ and α̂K̂l → α̂ (cf1635

De�nition 3.2) of1636

(6.38)
1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 := � ψ �α̂,

where ψ is supported by Bsψ and lψ = l − sψ − 1 is chosen such that
∑
x∈Blψ

τxψ is measurable w.r.t.1637

sites in Bl. There are therefore two important steps to prove (6.37) :1638

� prove that the limit (6.38) is well-de�ned for any function ψ in a convenient class of functions1639

containing at least the currents, the gradients and LC. This is done in De�nitions 6.8, 6.9, and1640

Theorem 6.11 below.1641

� Prove that, shortening Eα̂(ω) = Eα̂(ω(θ0)|η0 = 1) and letting1642

(6.39) d(α̂) = Eα̂(ω)(1− ds(α)),

we have1643

(6.40) inf
f∈C

lim
p→∞

sup
α̂
� jωi + ds(α)δi(η

ω
0 1Ep) + d(α̂)δiη0 − Lf �α̂= 0.

which is done below in Proposition 6.16.1644

We introduce a class of local functions with mean 0 w.r.t. any µB,K̂ . When there are less than1645

one empty site in the domain B, we require these functions to vanish in order to avoid classifying the1646

irreducible subsets of ΣN when there is only one empty site. Recall that we already introduced in1647

De�nition 3.6 the sets Kl and K̃l. We now de�ne1648

(6.41) C0 =

{
ψ ∈ C

∣∣∣ Esψ,K̂(ψ) = 0 ∀K̂ ∈ K̃sψ and ψ|ΣK̂sψ
≡ 0 ∀K̂ ∈ Ksψ r K̃sψ

}
.
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In particular, any function ψ ∈ C0 has mean zero w.r.t any canonical measure. Note that ψ ∈ C0, and any1649

α̂ ∈ M1(S), conditioning w.r.t. the canonical state of the con�guration in Bsψ , we obtain in particular1650

that Eα̂(ψ) = 0. Further de�ne1651

(6.42) Tω =

{
f∈ C

∣∣∣ f(η̂) = ϕ(η) +
∑
x∈Z2

ηωxψx(η), ϕ, ψx ∈ S, ∀x ∈ Z2

}
,

of functions whose only dependency in the θx's is a linear combination of the ω(θx). Note that since we1652

only consider local functions, this set is well-de�ned.1653

Denote1654

(6.43) T ω0 = C0 ∩ Tω.

Note that T ω0 and C0 are stable by the symmetric exclusion generator L. Further note that by construction,1655

δi(η
ω
0 1Ep) ∈ T ω0 .1656

Recall that for any function Φ on S, jΦ
i = Φ(θ0)η0(1− ηei)−Φ(θei)ηei(1− η0) denotes the symmetric1657

current associated with Φ (we also shortened ji = j1
i = η0 − ηei). We de�ne J∗ the set of linear1658

combinations of currents spanning any smooth angular functions,1659

(6.44) J∗ =
{
jΦ1
1 + jΦ2

2 , for Φ1, Φ2 ∈ C1(S)
}
,

and let1660

(6.45) Jω = J∗ ∩ Tω =
{
ja,b :=

∑
i=1,2

aij
ω
i + biji, a, b ∈ R2

}
.

We now have all the notations needed to introduce the limiting variance � · �α̂. In order to be able1661

to estimate concisely the drift term later on, and to solve a technical issue, we need a rather general1662

result. In particular, we give two distinct constructions for � f �α̂ depending on the nature of the1663

function f . Fix α̂ ∈M1(S).1664

De�nition 6.8 (De�nition of � · �α̂ on J∗ + LC). � For any Φ1, Φ2 ∈ C1(S) and for any local1665

function g ∈ C, we de�ne1666

(6.46) � jΦ1
1 + jΦ2

2 + Lg �α̂=
∑
i=1,2

Eα̂
(
η0(1− ηei)

[
Φi(θ0) + Σg(η̂

0,ei)− Σg)
]2)

,

where Σg =
∑
x∈Z2 τxg, which is not a priori well-de�ned, but whose gradient Σg(η̂

0,ei)− Σg is, because1667

g is a local function. For any function ψ ∈ T ω0 + J∗ + LC, de�ne1668

(6.47) � ψ , Lg + jΦ1
1 + jΦ2

2 �α̂= −Eα̂

(
ψ

[
Σg +

∑
x∈Z2

(
x1η

Φ1
x + x2η

Φ2
x

) ])
which once again is well-de�ned because any ψ ∈ T ω0 +J∗+LC is a local function with mean-0 w.r.t. any1669

µα̂, therefore the expectation above only involves a �nite number of non-0 contributions. In particular,1670

an elementary computation yields that for any g ∈ C, and j ∈ J∗1671

� Lg + j , Lg + j �α̂=� Lg + j �α̂

where the left hand-side is given by (6.47) and the right-hand side by (6.46).1672

De�nition 6.9 (De�nition of � · �α̂ on T ω0 ). � For any ψ ∈ T ω0 , de�ne1673

(6.48) � ψ �α̂= sup
g∈Tω
j∈Jω

{
2� ψ , Lg + j �α̂ − � Lg + j �α̂

}
,

where Tω, T ω0 and Jω were de�ned in (6.43) and (6.45), and the two terms inside braces are respectively1674

given by (6.46) and (6.47).1675

For ψ ∈ T ω0 and jΦ1
1 + jΦ2

2 + Lg ∈ J∗ + LC, we also de�ne1676

� ψ + Lg + jΦ1
1 + jΦ2

2 �α̂ =� Lg + jΦ1
1 + jΦ2

2 �α̂ +� ψ �α̂ +2� ψ,Lg + jΦ1
1 + jΦ2

2 �α̂,

where the three terms in the right-hand side are respectively given by (6.46), (6.48) and (6.47).1677
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These de�nitions allow us to �nally de�ne on T ω0 + J∗ + LC a bilinear form � ·, · �α̂ by letting1678

� ψ,ψ �α̂=� ψ �α̂ for any ψ ∈ T ω0 + J∗ + LC, by polarization identity on T ω0
2 and (J∗ + LC)2, and1679

by (6.47) on T ω0 × (J∗ + LC).1680

Remark 6.10. � We will see in the proof of Theorem 6.11 below that this de�nition coincides with1681

De�nition 6.8 for any ψ ∈ T ω0 ∩ {J∗ + LC} ⊂ Jω + LTω, since in this case the supremum in (6.48) is1682

reached for f = Lg + ja,b itself.1683

For any cylinder function ψ, recall that sψ is the smallest �xed integer such that ψ is measurable with1684

respect to Fsψ , and let lψ = l − sψ − 1 for any integer l large enough. The following result justi�es the1685

de�nitions above, and states that � ψ �α̂ de�ned for any ψ ∈ T ω0 + J∗ + LC is the limit of (6.38).1686

Theorem 6.11. � Fix α̂ ∈ M1(S), and a sequence (K̂l)l∈N such that K̂l ∈ K̃l and
∣∣∣∣∣∣∣∣∣ α̂K̂l − α̂ ∣∣∣∣∣∣∣∣∣ → 0,1687

where α̂K̂l ∈M1(S) is the grand-canonical parameter de�ned in (3.7).1688

The bilinear form � ·, · �α̂ introduced in De�nition 6.9 is a semi-inner product on T ω0 + J∗ + LC,1689

and, for any functions ψ,ϕ ∈ T ω0 + J∗ + LC,1690

(6.49) lim
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blϕ

τxϕ

 =� ψ,ϕ�α̂ .

Furthermore, for any ψ,ϕ ∈ T ω0 + J∗ + LC, the application α̂→� ψ,ϕ�α̂ is continuous in α̂, and the1691

convergence above is uniform in α̂. In particular, for any ψ ∈ T ω0 + J∗ + LC,1692

(6.50) lim
l→∞

sup
K̂∈K̃l

1

(2l + 1)2
El,K̂

(−L−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
α̂∈M1(S)

� ψ �α̂ .

The proof of Theorem 6.11 is the purpose of Section 8, and is postponed for now. It requires many1693

adaptations because of the angles, but follows the global strategy presented in [27]. Let us explicitly write1694

the dependency in p and f of W l
i =Wf,l

i,p appearing in Proposition 6.7, and de�ne for any α̂ ∈M1(S)1695

(6.51) Vfi,p(α̂) = jωi + ds(α)δiη
ω,p
0 + d(α̂)δiη0 + Lf ∈ T ω0 + J∗ + LC.

Recall that lf = l − sf − 1, where sf is also the size of the support of Vfi,p (since we can safely increase1696

sf , in order to have sf = sVfi,p
) and de�ne1697

Q1 = (2l + 1)2Wf,l
i,p −

∑
x∈Blf

(τxVfi,p)(ρ̂l) and Q2 =
∑
x∈Blf

[
(τxVfi,p)(ρ̂l)− (τxVfi,p)(α̂)

]
.

For h a cylinder function measurable w.r.t. sites in Bl, de�ne Dl,K̂(h) = El,K̂(h(−Ll)h). For α̂K̂l → α̂,1698

the variational formula for the variance yields1699

El,K̂l
(
Wf,l
i,p (−L−1

l )Wf,l
i,p

)
= sup

h

{
El,K̂l

(
hWf,l

i,p

)
−Dl,K̂l

(h)
}

≤ sup
h

 1

(2l + 1)2
El,K̂l

h ∑
x∈Blf

(τxVfi,p)(α̂)

− 1

3
Dl,K̂l

(h)


+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ1)− 1

3
Dl,K̂l

(h)

}
+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ2)− 1

3
Dl,K̂l

(h)

}

≤ 3

(2l + 1)4
El,K̂l

(−L−1
l )

∑
x∈Blf

(τxVfi,p)(α̂) .
∑
x∈Blf

(τxVfi,p)(α̂)


+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ1)− 1

3
Dl,K̂l

(h)

}
+ sup

h

{
1

(2l + 1)2
El,K̂l (hQ2)− 1

3
Dl,K̂l

(h)

}
.
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Since the discrepancies in Q1 = (2l + 1)2Wf,l
i,p −

∑
x∈Blf

Vfi,p(ρ̂l) occur only in Bl−1 \ Blf , letting γ =1700

1/(2l + 1)2, Lemma 8.23 below yields that the second term above is less than1701

Cf
∣∣ Bl−1 \Blf

∣∣ (2l + 1)−4 = O(l−3).

The last term multiplied by (2l + 1)2 vanishes as well thanks to Lemma 8.23 and because the di�usion

coe�cients ds and d are continuous in α̂. Furthermore, as in Lemma 8.23, both of these convergences

are uniform in K̂l and α̂. We can therefore apply Theorem 6.11 to the �rst term to obtain that for any

f ∈ C,

lim
l→∞

sup
K̂

(2l + 1)2El,K̂
(
Wf,l
i,p (−Ll)−1Wf,l

i,p

)
≤ 3 sup

α̂∈M1(S)

� Vfi,p(α̂)�α̂,

therefore to prove Proposition 6.7, and thus Equation (6.7), it is su�cient to prove1702

(6.52) inf
f∈C

lim
p→∞

sup
α̂∈M1(S)

� Vfi,p(α̂)�α̂= 0.

This estimate is proved later on in Proposition 6.16, and requires to understand the structure of the space1703

T ω0 + J∗ + LC equipped with � · �α̂. It is the main result of this section.1704

For any Φ ∈ C1(S) and any α̂ ∈M1(S), we shorten1705

Eα̂(Φ) := Eα̂(Φ(θ0) | η0 = 1) and Vα̂(Φ) := V arα̂(Φ(θ0) | η0 = 1),
1706

Covα̂(ω,Φ) = Eα̂(ωΦ)− Eα̂(ω)Eα̂(Φ), and Φ̂(θ) = Φ(θ)− Eα̂(Φ).

In particular, we denote by jΦ̂
i = jΦ

i − Eα̂(Φ)ji = jΦ
i + Eα̂(Φ)δiη the associated current. Note that any

element jΦ1
1 + jΦ1

2 of J∗ can be written as a linear combination of the jΦ̂i
i and ji's, i = 1, 2. For any �xed

α̂, we �nally de�ne the function hpi by

hpi (η̂) = ds(α)(δiη
ω,p
0 + Eα̂(ω)ji) = δi

[
ds(α)(ηω0 1Ep − Eα̂(ω)η0)

]
= ds(α)(ηω̂ei − η

ω̂
0 )− ds(α)

[
ηωei1τeiEcp − η

ω
0 1Ecp

]
,

where as before Ep =
{∑

x∈Bp ηx ≤ |Bp | − 2
}
.1707

We can now rewrite (6.51) as1708

(6.53) Vfi,p(α̂) = jω̂i + hpi + Lf.

Note that both jω̂i and hpi depend on α̂ as well as ω, but to simplify notations, we do not write it explicitly.1709

Throughout this section, we will not indicate the dependencies in ω which is a �xed smooth function.1710

We now compute the inner product � ·, · �α̂ of hpi with elements of J∗ + LC.1711

Corollary 6.12. � For any α̂ ∈M1(S), g ∈ C, Φ ∈ C1(S) and i, k = 1, 2,1712

(6.54) � hpi ,Lg �α̂ = 0, � hpi , j
Φ̂
k �α̂ = 1{i=k}q

Φ
p (α̂) and � hpi , jk �α̂ = 1{i=k}rp(α̂),

where we shortened1713

qΦ
p (α̂) = −αds(α)Covα̂(ω,Φ)µα̂(Ep|η0 = 1)

and1714

rp(α̂) = ds(α)Eα̂(ω)Eα̂
(
η01Ecp

[
1− ηe1 − (2p+ 1)2(α− ηe1)

])
.

Furthermore, shortening qp(α̂) := qωp (α̂),1715

(6.55) lim
p→∞

sup
α̂∈M1(S)

|qp(α̂)µα̂(Ep|η0 = 1) + αds(α)Vα̂(ω)| = 0 and lim
p→∞

sup
α̂∈M1(S)

r2
p(α̂)

α(1− α)
= 0.

In particular, qp(α̂)→ −αds(α)Vα̂(ω) and rp(α̂)→ 0 as p→∞ uniformly in α̂ ∈M1(S).1716
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Proof of Corollary 6.12. � The three identities in (6.54) are consequences of (6.47). Regarding the �rst1717

one,1718

� hpi ,Lg �α̂= −Eα̂(hpiΣg) = −ds(α)Eα̂
(
Σg
[
ηωei1τeiEp − η

ω
0 1Ep − Eα̂(ω)ηei + Eα̂(ω)η0)

])
= 0

by translation invariance of µα̂.1719

For the second, we write

� hpi , j
Φ̂
k �α̂ = −

∑
x∈Z2

xkEα̂(hpi η
Φ̂
x )

= −ds(α)
∑
x∈Z2

xkEα̂
(
(ηω̂ei − η

ω̂
0 )ηΦ̂

x

)
+ ds(α)

∑
x∈Z2

xkEα̂
(
(ηωei1τeiEcp − η

ω
0 1Ecp

)ηΦ̂
x

)
.

Since by construction Φ̂ has mean 0 w.r.t. the product measure µα̂, for any function ψ which does not

depend on θx, Eα̂(ψηΦ̂
x ) = 0. In particular, in both sums, any term x 6= 0, ei vanishes. The terms for

x = 0 also vanishes because of the factor xk, and so does the term for x = ei if i 6= k. This yields

� hpi , j
Φ̂
k �α̂= −1{i=k}ds(α)

{
Eα̂
(
ηω̂eiη

Φ̂
ei

)
− Eα̂

(
ηωeiη

Φ̂
ei1τeiE

c
p

)}
= −1{i=k}αds(α)Covα̂(ω,Φ)µα̂(Ep|η0 = 1)

as wanted.1720

We now turn to the third identity, for which we can write, applying the same steps as before

� hpi , jk �α̂= −ds(α)
∑
x∈Z2

xkEα̂
(
(ηω̂ei − η

ω̂
0 )ηx

)
+ ds(α)

∑
x∈Z2

xkEα̂
(

(ηωei1τeiEcp − η
ω
0 1Ecp

)ηx

)
.

By de�nition of ω̂, each term in the �rst sum vanishes. Regarding the second term, recall that Bp(x) =

x + Bp, for any x ∈ (Bp ∪ Bp(ei))c and any x ∈ Bp ∩ Bp(ei) \ {0, ei}, the corresponding contribution

vanishes, because ηωeiηx1τeiEcp and η
ω
0 ηx1Ecp have the same distribution. The term for x = 0 vanishes once

again because of the factor xk. We can therefore write

� hpi , jk �α̂= 1{i=k}ds(α)Eα̂
(

(ηωei1τeiEcp − η
ω
0 1Ecp

)ηei

)
+ ds(α)

∑
x∈Bp, xi=−p

or x∈Bp(ei), xi=p+1

xkEα̂
(

(ηωei1τeiEcp − η
ω
0 1Ecp

)ηx

)
.

If i 6= k, the sum in the second line vanishes because the contributions for xk = q cancel out the

contributions for xk = −q. If i = k, all the contributions for xi = −p (i.e. x ∈ Bp \Bp(ei)) are identical
and equal to −pds(α)Eα̂(ω)Eα̂

(
αηei1τeiEcp − ηxη01Ecp

)
= −pds(α)Eα̂(ω)Eα̂

(
(α − ηe1)η01Ecp

)
and the

contributions for xi = p+1 (i.e. x ∈ Bp(ei)\Bp) are each equal to −(p+1)ds(α)Eα̂(ω)Eα̂
(

(α−ηe1)η01Ecp

)
.

Since each of those contributions appear 2p+ 1 times, we �nally obtain as wanted that

� hpi , jk �α̂= 1{i=k}ds(α)Eα̂(ω)
[
Eα̂
(

(1− ηe1)η01Ecp

)
− (2p+ 1)2Eα̂

(
(α− ηe1)η01Ecp

)]
.

According to Proposition B.3, c(1−ρ) ≤ ds(ρ) ≤ C(1−ρ) for some positive constants c, C. Using this1721

fact, the uniform estimates (6.55) follow from elementary computations : for high densities, the factor1722

µα̂(Ecp|η0) fail to converge uniformly in α̂, but then ds(α) provides the needed control. Regarding rp the1723

principle is the same, and the extra factor (2p + 1)2 is balanced out as α → 1 by the factor α − η1. We1724

start with the �rst estimate. To prove that qp(α̂)µα̂(Ep|η0 = 1) + αds(α)Vα̂(ω) vanishes uniformly in α̂,1725

by de�nition of qp and since ω is bounded, it is enough to prove that |1 − µα̂(Ep|η0 = 1)2|αds(α) also1726

does. The probability µα̂(Ep|η0 = 1) is explicit, and given by1727

µα̂(Ep|η0 = 1) = 1− αP − P (1− α)αP−1

where we shortened P = (2p+ 1)2 − 1 = |Bp \ {0}|. In particular, since ds(α) ≤ C(1− α),1728

|1− µα̂(Ep|η0 = 1)2|αds(α) ≤ Cα(1− α)
[
2αP + 2P (1− α)αP−1 − [αP + P (1− α)αP−1]2

]
.
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Thanks to the prefactor 1 − α, Each of the terms above is bounded by P a(1 − α)a+1αC1P for some1729

di�erent constants a ∈ {0, 1, 2} and C1 > 0 independent of P . The previous expression is maximal in1730

αP = C1P/(a+ 1 + C1P ), and is therefore, uniformly in α̂ ∈M1(S), less than1731

P a
(

a+ 1

a+ 1 + C1P

)a+1

,

which vanishes as wanted as P →∞.1732

We now turn to the second estimate. Once again, since ds(α) ≤ C(1− α), we obtain immediately1733

rp(α̂)2

α(1− α)
≤ C ′ 1− α

α
Eα̂
(
η01Ecp

[
1− ηe1 − (2p+ 1)2(α− ηe1)

])2

.

The expectation above can be split in two terms, resp.
(
1− (2p+ 1)2

)
Eα̂
(
η0(1 − ηe1)1Ecp

)
and (1 −1734

α)(2p+ 1)2Eα̂
(
η01Ecp

)
. We still shorten P = (2p+ 1)2 − 1 = |Bp \ {0}|, to obtain the bound1735 ∣∣∣ Eα̂(η01Ecp

[
1− ηe1 − (2p+ 1)2(α− ηe1)

]) ∣∣∣ ≤ P (1− α)αP + α(1− α)(P + 1)µα̂(Ecp|η0 = 1).

the last probability µα̂(Ecp|η0 = 1) has already been computed for the previous estimate, and one obtains1736

straightforwardly that rp(α̂)2/α(1−α) is also bounded from above by a (�nite) sum of terms of the form1737

C1P
a(1 − α)a+1αC2p for a ∈ {2, 3, 4} and C1, C2 positive constants. As before, each of those vanishes1738

uniformly in α̂ ∈M1(S), which concludes the proof.1739

We are ready to investigate the structure of T ω0 with respect to the semi-norm� · �α̂ on T ω0 +J∗+LC.1740

Denote by Nα̂ = Ker � · �α̂ and de�ne Hωα̂ the completion of (T ω0 + J∗ + LC)/Nα̂ with respect to1741

� · �1/2
α̂ . We need to de�ne � · �α̂ on a rather general space, including in particular J∗+LC, in order1742

to be able later on to estimate the drift contribution to the hydrodynamic limit. However for now, we1743

focus on the symmetic current, and further de�ne Hω the closure in Hωα̂ of (T ω0 + Jω + LTω)/Nα̂.1744

Proposition 6.13 (Structure of Hω). � For any α̂ ∈M1(S), (Hωα̂,� · �
1/2
α̂ ) is a Hilbert space, and1745

Hω =
LTω
Nα̂

⊕ Jω,

where LTω/Nα̂ is the closure of LTω/Nα̂ w.r.t. � · �α̂ in Hω,0α̂ .1746

Proof of Proposition 6.13. � First note that if α = 0 or 1, � · �α̂≡ 0 and therefore Hωα̂ = {0} is1747

trivial. We now assume that α̂ is such that α ∈]0, 1[. Since we took the quotient by Nα̂, the fact that1748

(Hωα̂,� · �
1/2
α̂ ) is a Hilbert space is immediate. By construction Hω is a closed linear subspace of Hωα̂,1749

and the inclusion1750

LTω
Nα̂

+ Jω ⊂ Hω

is immediate. Since both sets are closed subspaces of Hωα̂, we have1751

Hω =

(
LTω
Nα̂

+ Jω
)
⊕
(
LTω
Nα̂

+ Jω
)⊥,Hω

,

where the second set on the right-hand side denotes the orthogonal complement of LT
ω

Nα̂ + Jω in Hω. To1752

prove the converse inclusion, it is therefore su�cient to prove that this orthogonal complement is reduced1753

to {0}. This is rather straightforward, although a bit technical because of the di�erent de�nitions for1754

� · �α̂. For that purpose, and to give a proof as clear as possible, let us shorten M = LTω/Nα̂ + Jω,1755

and denote by m = ja,b +Lh its elements. Since M
⊥,Hω ⊂ Hω, and since Hω is by de�nition the closure1756

of T ω0 +M any of its element can be written either as g +m, where g ∈ T ω0 and m ∈M , or as the limit1757

of elements of this type. In order to avoid taking convergent sequences, �x1758

g0 +m0 ∈M
⊥,Hω

,

where g0 ∈ T ω0 and m0 ∈M , we want to prove that g0 +m0 = 0. By construction, for any m ∈M1759

� g0 +m0,m�α̂= 0.
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and since g0 ∈ T ω0 , we can rewrite by the de�nition of � · �α̂ on T ω0 (cf. (6.48))

� g0 �α̂ = sup
m∈M

{2� g0,m�α̂ − � m�α̂},(6.56)

therefore there exists a sequence (mk)k→∞ of elements of M such that � g0 + mk �α̂→ 0 as k → ∞.1760

We can thus write1761

� g0 +m0 �α̂=� g0 +mk, g0 +m0 �α̂ +� m0 −mk, g0 +m0 �α̂ .

The second term vanishes because m0 −mk ∈M , whereas the �rst term in the right-hand side vanishes1762

as k → ∞, therefore � g0 + m0 �α̂= 0 as wanted. The same proof holds if g0 + m0 is replaced by a1763

convergent sequence of elements of T ω0 +M , which proves the reverse inclusion.1764

Only remains to prove that the sum LTω
Nα̂ + Jω is direct. Assume that for some coe�cients ai, bi, and1765

for some cylinder function g ∈ T ω01766

�
∑
i=1,2

aij
ω̂
i + biji − Lg �α̂= 0.

(We should really write this identity for a sequence gn instead of g, with the identity above holding only1767

as n→∞, but this is purely cosmetic and the proof below holds in this case as well). Thanks to equation1768

(6.54), we can take the inner product of the identity above w.r.t. hpi and since we assumed that 0 < α < 11769

let p → ∞ to obtain that for i = 1, 2, aids(α)Vα̂(ω)α(1 − α) = 0, therefore a1Vα̂(ω) = a2Vα̂(ω) = 0. In1770

both cases, we therefore have � a1j
ω̂
1 �α̂=� a2j

ω̂
2 �α̂= 0. This yields1771

� b1j1 + b2j2 − Lg �α̂= 0,

so that we can now take the inner product with δiη0 = −ji (which is orthogonal to Lg), to obtain that1772

b1α(1 − α) = b2α(1 − α) = 0, therefore b1 = b2 = 0 as wanted. This proves that the sum is direct, and1773

concludes the proof of Proposition 6.13.1774

The next Proposition states that in Hωα̂, jωi can be written as a combination of hpi and ji, up to a1775

function which takes the form Lg, and that the coe�cients converge as p→∞ to those given in (6.53).1776

Proposition 6.14 (Decomposition of the currents). � For any positive integer p, de�ne1777

cp(α) =

{
µα̂(Ep|η0 = 1)−1 if α < 1

1 else
, and dp(α̂) =

{
−rp(α̂)cp(α)/α(1− α) if 0 < α < 1

0 else
,

where rp was de�ned in Corollary 6.12. Then, for any i ∈ 1, 2 and α̂ ∈M1(S).1778

(6.57) inf
g∈Tω

� jω̂i + cp(α)hpi + dp(α̂)ji + Lg �α̂= 0.

Furthermore, any sequence (gm)m ultimately realizing (6.57) can be chosen independently of p, and also1779

ultimately realizes1780

(6.58) inf
g∈Tω

� jω̂i + Lg �α̂ .

Proof of Proposition 6.14. � We start by clearing out the trivial cases when α = 0 and α = 1. In1781

those, all quantities vanish and (6.57) is trivially true for any coe�cients. Another trivial case is when1782

Vα̂(ω) = 0. In this case, jω̂i = 0 in Hωα̂, therefore, the h
p
i and ji being orthogonal (as local gradients) to1783

LTω, and hpi being orthogonal to jk for k 6= i, as a consequence of Proposition 6.13 we can then write1784

� hpi +apji �α̂= 0 for some constant ap. This constant can be determined using Lemma 6.12 and taking1785

the inner product of the previous quantity with ji, which yields ap = −rp(α̂)/� ji �α̂= −rp(α̂)/α(1−α).1786

In this case, � cp(α)hpi + dp(α̂)ji �α̂= 0 for any p, as wanted.1787

We now �x α̂ ∈ M1(S) satisfying α ∈]0, 1[ and Vα̂(ω) > 0. Fix p ∈ N, and de�ne cp, dp as in1788

Proposition 6.14, we now prove that (6.57) holds. According to Proposition 6.13, there exists coe�cients1789

api,k and b
p
i,k such that,1790

(6.59) inf
g∈Tω

� hpi +
∑
k=1,2

api,kj
ω̂
k + bpi,kjk + Lg �α̂= 0.
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In order not to burden the proof, we will assume that the in�mum in g is reached, i.e. that there exists1791

a function gpi ∈ Tω such that1792

(6.60) � hpi +
[ ∑
k=1,2

api,kj
ω̂
k + bpi,kjk

]
+ Lgpi �α̂= 0.

This assumption is purely for convenience, and we can substitute at any point to gpi a sequence of functions1793

(gpi,m)m∈N such that the previous identity holds in the limit m→∞.1794

Using (6.47), one obtains immediately that� jω̂i , j
ω̂
k �α̂= 1{i=k}Vα̂(ω)α(1−α), � jω̂i , jk �α̂= 0 and1795

� ji, jk �α̂= 1{i=k}α(1−α). Using these formulas and Corollary 6.12, we take the inner product of the1796

function in (6.60) with jω̂l , jl, Lg
p
l , and h

p
l , to obtain the four identities1797

1{i=l}qp(α̂) + api,lVα̂(ω)α(1− α)+� Lgpi , j
ω̂
l �α̂= 0 , 1{i=l}rp(α̂) + bpi,lα(1− α) = 0,

1798

(6.61)∑
k=1,2

api,k � jω̂k ,Lg
p
l �α̂ +� Lgpi ,Lg

p
l �α̂= 0 and � hpi , h

p
l �α̂ +api,lqp(α̂) + bpi,lrp(α̂) = 0.

Note that since we assumed α ∈]0, 1[, Vα̂(ω) > 0 and p > 0, we have qp(α̂) < 0. De�ne Ap, Bp, Hp,1799

Gp and Jp the matrices whose respective elements are given for i, k = 1, 2 by api,k, b
p
i,k, � hpi , h

p
k �α̂,1800

� Lgpi ,Lg
p
k �α̂ and� Lgpi , jω̂k �α̂. Note in particular that Hp and Gp are symmetric with non-negative1801

eigenvalues. Further denote by I the two-dimensional identity matrix. The four identities above then1802

rewrite in matrix form as1803

Jp = −qp(α̂)I − Vα̂(ω)α(1− α)Ap, Bp = − rp(α̂)

α(1− α)
I

1804

−ApJ†p = Gp and − qp(α̂)Ap − rp(α̂)Bp = Hp,

where J†p is the transposed matrix of Jp. The second and last identities show that Bp and Ap are1805

symmetric, therefore so is Jp, and that1806

Ap = − 1

qp(α̂)

[
Hp −

rp(α̂)2

α(1− α)
I

]
.

In particular, since Hp is positive in the matrix sense, it is diagonalizable, and thus so is Ap. Finally, the1807

�rst and third identities then yields1808

Ap[qp(α̂)I + Vα̂(ω)α(1− α)Ap] = Gp.

therefore, since Gp is positive in the matrix sense, any eigenvalue λ of Ap must satisfy1809

λ[qp(α̂) + Vα̂(ω)α(1− α)λ] ≥ 0,

and therefore λ > −qp(α̂)/Vα̂(ω)α(1−α) > 0. Let Cp denote the inverse of Ap, which is a positive matrix1810

with eigenvalues bounded from above by −Vα̂(ω)α(1−α)/qp(α̂). Since Ap is invertible, we can therefore1811

rewrite (6.60) as1812

(6.62) � jω̂i +
[ ∑
k=1,2

cpi,kh
p
k + dpi,kjk

]
+ Lg̃ki �α̂= 0.

which holds for i = 1, 2, where g̃ki =
∑
k=1,2 c

p
i,kg

p
k, and the cpi,k (resp. dpi,k) are the matrix elements

of Cp (resp. Dp := CpBp). For x, y ∈ R2, shorten x · y = x1y1 + x2y2 their usual inner product. Let

jω̂ = (jω̂1 , j
ω̂
2 ), and de�ne the quadratic form Q as

x†Qx = inf
g∈Tω

� x · jω̂ + Lg �α̂ .

Then, (6.62) yields for any x ∈ R2
1813

(6.63) inf
g∈Tω

� x · jω̂ +
[ ∑
i,k=1,2

xic
p
i,kh

p
k + xid

p
i,kjk

]
+ Lg �α̂= 0.
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Taking the inner product of the expression above with x · jω̂ + Lg, and since the terms in the sum are

orthogonal to any Lg, we obtain

x†Qx = inf
g∈Tω

� x · jω̂ + Lg �α̂=− � x · jω̂,
∑

i,k=1,2

xic
p
i,kh

p
k + xid

p
i,kjk �α̂

=−
∑

i,k=1,2

xixkc
p
i,k � hpk, j

ω̂
k �α̂ +xixkd

p
i,k � jk, j

ω̂
k �α̂

=− qp(α̂)x†Cpx,

thanks to Corollary 6.12 and because jk and jω̂k are orthogonal. We prove in Appendix B.2, equation1814

(B.6), that Q = αV (α̂)ds(α)I, therefore1815

Cp = −αV (α̂)ds(α)

qp
I = µα̂(Ep | η0 = 1)−1I = cp(α)I,

and Dp = [−cp(α)rp(α̂)/α(1−α)]I = dp(α̂)I, where cp, dp were de�ned in Proposition 6.14. We can now1816

rewrite (6.63) as wanted as1817

(6.64) inf
g∈Tω

� jω̂i + cp(α)hpi + dp(α̂)ji + Lg �α̂= 0.

Since hpi and ji are both orthogonal to any Lg, taking the inner product of the identity above with1818

jω̂i + Lg, one obtains that any sequence of functions realizing the in�mum above also realizes infg∈Tω �1819

jω̂i + Lg �α̂, which proves the last statement and concludes the proof of Proposition (6.14).1820

Remark 6.15 (Bound on � hpi �α̂). � We already obtained in (6.61) � hpi , h
p
l �α̂ +api,lqp(α̂) +1821

bpi,lrp(α̂) = 0. Since we now have an explicit expression for the matrix Ap = C−1
p = c−1

p (α)I, and1822

Bp = −rp(α̂)/α(1− α)I, we obtain � hpi �α̂= −qp(α̂)c−1
p (α) +

rp(α̂)2

α(1−α) . Equation (6.55) then yields the1823

uniform bound1824

(6.65) lim
p→∞

sup
α̂∈M1(S)

| � hpi �α̂ −αds(α)Vα̂(ω)| = 0.

We now prove equation (6.52), and thus concludes the proof of Theorem 6.1. Up until now, we have1825

only used � · �α̂ for functions in Tω, but in (6.52) the function f is a priori no longer in Tω bur rather1826

in C, we therefore need the extension of � · �α̂ to LC introduced in De�nitions 6.8 and 6.9. Thanks to1827

(6.53), the result can be stated as follows.1828

Proposition 6.16 (Uniform bound on � Vfi,p �α̂). � Identity (6.52) holds, in the sense that there1829

exists a sequence of local functions fn ∈ C such that1830

(6.66) lim sup
n→∞

lim sup
p→∞

sup
α̂∈M1(S)

� jω̂i + hpi + Lfn �α̂ = 0.

Furthermore, for any α̂ ∈M1(S), limn→∞ � jω̂i + Lfn �α̂= infg∈Tω � jω̂i + Lg �α̂1831

Proof of Proposition 6.16. � In order not to burden with technical estimates, we start by cutting o� the

extreme densities for which the convergences as p→∞ can be problematic. For any α̂, we can write by

triangular inequality and using (6.65),

� jω̂i + hpi + Lf �α̂≤ � jω̂i �α̂ +� hpi �α̂ +� Lf �α̂

≤Vα̂(ω)α(1− α) + αds(α)Vα̂(ω)(1 + op(1)) +
∑
i=1,2

Eα̂(η0(1− ηei)[Σf (η̂0,ei)− Σf ]2),

where the op(1) does not depend on α̂. As stated in Proposition B.3, ds(α) ≤ C(1 − α), ω is bounded,

and f is a cylinder function and therefore Σf (η̂0,ei)−Σf is bounded as well. Fix ε > 0, in particular, the

estimate above yields, for some constant Cω,f , and for any α̂ such that α /∈ [ε, 1− ε]

� jω̂i + hpi + Lf �α̂ ≤ Cω,f (1 + op(1))ε.

We now �x α̂ such that ε ≤ α ≤ 1− ε, by triangular inequality,1832

� jω̂i + hpi + Lf �α̂ ≤ � jω̂i + cp(α)hpi + dp(α̂)ji + Lf �α̂ +� (cp(α)− 1)hpi + dp(α̂)ji �α̂ .
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Since α̂ is bounded away from the extreme densities, the second term in the right-hand side is Cεop(1),1833

and we can therefore write1834

sup
α̂
� jω̂i + hpi + Lf �α̂ ≤ sup

α̂
� jω̂i + cp(α)hpi + dp(α̂)ji + Lf �α̂ +Cω,f ε+ Cε,ω,fop(1).

We then let p→∞ and then ε→ 0 to obtain that1835

lim sup
p→∞

sup
α̂
� jω̂i + hpi + Lf �α̂ ≤ lim sup

p→∞
sup
α̂
� jω̂i + cp(α)hpi + dp(α̂)ji + Lf �α̂ .

Proposition (6.16) is therefore a consequence of Lemma (6.17) below.1836

Lemma 6.17. � There exists a sequence of local functions fn ∈ C such that

lim sup
p→∞

sup
α̂
� jω̂i + cp(α)hpi + dp(α̂)ji + Lfn �α̂ ≤

3

n
,

and for any α̂ ∈M1(S), limn→∞ � jω̂i + Lfn �α̂= infg∈Tω � jω̂i + Lg �α̂1837

Proof of Lemma 6.17. � The proof of this Lemma is analogous to that of Theorem 5.6, p.176 of [27]. We1838

now write explicitly the dependency of hpi in α̂. According to Theorem 6.11 the application α̂ 7→� ψ �α̂1839

is continuous on M1(S), and thanks to equation (6.52), for any α̂0 ∈ M1(S), there exists a function1840

gα̂0
∈ Tω and a neighborhood Nα̂0

of α̂0 such that for any α̂ ∈ Nα̂0
,1841

� jω̂i + cp(α0)hpi (α̂0) + dp(α̂0)ji + Lgα̂0
�α̂ ≤ n−1.

Furthermore, thanks to the last statement in Proposition 6.14, this function is an approximation of the1842

one realizing infg∈Tω � jω̂i + Lg �α̂0
, and can be chosen independently of p.1843

We prove in Proposition C.3 that M1(S) is compact, it therefore admits a �nite covering M1(S) ⊂1844

∪mj=1Nα̂j . We can build a C2 interpolation of the gα̂j 's, and therefore obtain a function (α̂, η) 7→ ψ(α̂, η)1845

which coincides in α̂ = α̂j with gα̂j , with the two following properties :1846

� let B be a �nite set of edges in Z2 containing the support of all the gα̂j 's, ψ(α̂, . ) is a cylinder1847

function in Tω with support included in B for any α̂ ∈M1(S).1848

� For any �xed con�guration η̂, ψ( . , η̂) is in C2(M1(S)).1849

� for any α̂ ∈M1(S)1850

(6.67) � jω̂i + cp(α)hpi (α̂) + dp(α̂)ji + Lψ(α̂, ·)�α̂ ≤ 2n−1.

Recall that we introduced in (2.20) ρ̂r = |Br |−1
∑
x∈Br ηxδθx the empirical angular density in the box1851

of side (2r + 1) around the origin. De�ne1852

fr(η̂) = ψ(ρ̂r, η̂),

for any r large enough for the support B of the ψ(α̂, η)'s to be contained in Br. Note that fr is not1853

necessarily in Tω, but it is a local function for r �xed.1854

By triangle inequality,1855

(6.68) sup
α̂
� jω̂i + cp(α)hpi (α̂) + dp(α̂)ji + Lfr �α̂ ≤ 2n−1 + sup

α̂
� L(fr − ψ(α̂, ·))�α̂ .

The second term in the right-hand side is1856

∑
i

Eα̂

(∇0,ei

∑
x∈Z2

τx [fr − ψ(α̂, ·)]

)2
 =

∑
i

Eα̂

(∑
x∈Z2

∇x,x+ei [fr − ψ(α̂, ·)]

)2
 ,

by translation invariance of µα̂. We extend B by 1 in such a way that for any edge a outside of B,1857

∇aψ(α̂, .) vanishes. Therefore, the only contributions outside of B in the sums above are at the boundary1858

of Br, where fr has a variation in its �rst argument of order (2r+ 1)−2. Thanks to the regularity of ψ in1859

α̂, and since the number of corresponding edges is roughly 4(2r + 1), the contribution of all these jumps1860

is of order r−1 in the whole sum.1861
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Then, since the number of edges in B depends only on ψ, and since Eα̂
(
(∇af)2

)
≤ 4Eα̂(f2), we obtain1862

by de�nition of fr that1863

(6.69) sup
α̂
� L(fr − ψ(α̂, ·))�α̂ ≤ sup

α̂
C(ψ)Eα̂

[
(ψ(ρ̂r, .)− ψ(α̂, ·))2

]
+O(r−2),

whose right-hand side vanishes as r goes to in�nity by the law of large numbers.1864

Let us �x rn such that the right-hand side of (6.69) is less than 1/n, and let fn = frn , (6.68) �nally1865

yields1866

(6.70) sup
α̂
� jω̂i + cp(α)hpi (α̂) + dp(α̂)ji + Lfn �α̂ ≤ 3n−1,

as wanted. The last statement of the Lemma is a direct consequence of the construction of fn and of1867

Proposition 6.14. This concludes the proof of Lemma 6.17.1868

6.7. Drift part of the hydrodynamic limit. � Recall that LN = N2L+NLWA+LG is the complete1869

generator of our process introduced in (2.2). In the previous section, we proved that the symmetric currents1870

can be replaced by a gradient, up to a perturbation Lf . In our case, this perturbation is not negligible,1871

and must be added to the asymmetric currents induced by the asymmetric generator LWA to complete the1872

drift term in equation (2.11). This is the purpose of this section.1873

To achieve that goal, we need notations similar to the ones introduced in Section 4.1. For any positive1874

integer l, and any smooth function G ∈ C([0, T ]× T2), let us introduce1875

Rf,li (η̂) = rωi + LWAf − Eρ̂l(r
ω
i + LWAf),

and1876

Y f,li,N (G, η̂) =
1

N2

∑
x∈T2

N

G(x/N)τxRf,li ,

where rωi is the asymmetric current introduced in (2.16). According to Theorem 6.1, for any i, there

exists a family of cylinder functions (fωi,n)n∈N introduced in Proposition 6.16 such that

lim
γ→∞

lim
n→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,βµ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

X
fωi,n,εN

i,N (Gt, η̂(t))dt

∣∣∣∣∣
)]

= 0,

where Xf,εN
i,N was de�ned in equation (6.1). Furthermore, we also established in Proposition 6.16 that1877

this sequence satis�es for any α̂ ∈M1(S)1878

(6.71) lim
n→∞

� jωi + Lfωi,n �α̂= inf
f∈Tω

� jωi + Lf �α̂ .

The replacement Lemma 4.1 applied to g(η̂) = rωi + LWAf yields the following result.1879

Lemma 6.18. � Let G be some smooth function in C1,2([0, T ] × T2), and T ∈ R∗+, then for i ∈ {1, 2}1880

we have1881

lim
n→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

[ ∣∣∣∣∣
∫ T

0

Y
fωi,n,εN

i,N (G, η̂)ds

∣∣∣∣∣
]

= 0.

Furthermore, we now prove the following result, which states that any function of the form NLDf1882

vanishes in the hydrodynamic limit, where LD = L+N−1LWA is the generator of whole exclusion process.1883

Lemma 6.19. � For any function G : [0, T ]× T2 → R in C1,2, and any cylinder function f ,

lim sup
N→∞

EµN

 ∣∣∣∣∣∣
∫ T

0

1

N

∑
x∈T2

N

G (s, x/N) τxLDf(η̂(s))ds

∣∣∣∣∣∣
 = 0.
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Proof of Lemma 6.19. � For any such smooth function H and cylinder function f , let us denote1884

FG(s, η̂(s)) = N−2
∑
x∈T2

N

G(s, x/N)τxf(η̂(s)).

The process1885

MG(t) = FG(t, η̂(t))− FG(0, η̂(0))−
∫ T

0

∂sFG(s, η̂(s))ds−
∫ T

0

LNFG(s, η̂(s))ds

is a martingale, where LN is the complete generator of our process, introduced in (2.2). Since f is

bounded, the �rst three terms are of order 1, it remains to control
∫ T

0
LNFGds. The quadratic variation

of this martingale is given (cf. Appendix 1.5, Lemma 5.1 in [27]) by

[MG(·, η̂(·))]t =

∫ T

0

LNFG(s, η̂(s))2 − 2FG(s, η̂(s))LNFG(s, η̂(s))ds

=

∫ T

0

dsN2
∑
x∈T2

N

δ=±1,i∈{1,2}

τλx,z,i,δ
[
FG(s, η̂x,x+δei(s))− FG(s, η̂(s))

]2

+

∫ T

0

ds
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
[
FG(s, η̂x,θ(s))− FG(s, η̂(s))

]2
dθ

=
1

N2

∫ T

0

ds
∑
x∈T2

N

δ=±1,i∈{1,2}

τλx,z,i,δ(η̂(s))

 ∑
y∈T2

N

G(s, y/N)
(
τyf(η̂x,x+z(s))− τyf(η̂(s))

)2

+
1

N4

∫ T

0

ds
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)

 ∑
y∈T2

N

G(s, y/N)
(
τyf(η̂x,x+z(s))− τyf(η̂(s))

)2

dθ,

where1886

τλx,z,i,δ(η̂) =

(
1 +

δλi(θx)

N

)
ηx(1− ηx+z)

is the total displacement jump rate.1887

Since f is a local function, all but a �nite number of terms in the y sums vanish, and the quadratic

variation is hence of order N−2. We deduce from the estimate of the quadratic variation of MG and the

order of the three �rst terms in the expression of MG that

EµN

( ∣∣∣∣∣
∫ T

0

N−1LNFG(s, η̂(s))ds

∣∣∣∣∣
)
≤ N−1

EµN ([MG(t, η̂(t))])
1/2︸ ︷︷ ︸

O(N−1)

+ON (1)

 →
N→∞

0.

The previous martingale estimate shows that EµN
( ∣∣∣ ∫ T0 N−1LNFG(s, η̂(s))ds

∣∣∣ ) vanishes in the limit

N →∞. Furthermore, elementary computations yield a crude bound on the contribution of the Glauber

generator of order N−1. Finally, since LN = N2LD + LG, we obtain

EµN

( ∣∣∣∣∣
∫ T

0

NLDFG(s, η̂(s))ds

∣∣∣∣∣
)
→

N→∞
0,

which completes the proof of Lemma 6.19.1888

We now use these two Lemmas to prove that the total displacement current can be replaced by the1889

wanted averages. More precisely, let1890

Uf,li (η̂) = jωi +
1

N
rωi + ds (ρl) δiρ

ω
l + d (ρl, ρ

ω
l ) δiρl −

1

N
Eρ̂l(r

ω
i + LWAf),

we can state the following result.1891
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Corollary 6.20. � For any G ∈ C1,2([0, T ]× T2), T ∈ R∗+, and i ∈ {1, 2},1892

lim
n→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 ∣∣∣∣∣∣
∫ T

0

1

N

∑
x∈T2

N

G(x/N)Uf
ω
i,n,εN

i (G, η̂)ds

∣∣∣∣∣∣
 = 0.

Proof of Corollary 6.20. � Adding and subtracting LDfωi,n to Uf
ω
i,n,εN

i , we can split it into three parts,1893

jωi + ds (ρεN ) δiρ
ω
εN + d (ρεN , ρ

ω
εN ) δiρεN + Lfωi,n,

1894

1

N
(rωi + LWAfωi,n)− 1

N
Eρ̂εN (rωi + LWAfωi,n), and − LDfωi,n.

The contribution of the �rst quantity vanishes in the limit of Corollary 6.20, according to Corollary1895

6.2. The second contribution also does thanks to Lemma 6.18, as well as the third due to Lemma 6.19,1896

thus completing the proof of the Corollary.1897

We now derive an explicit expression for the limit of Eρ̂εN (rωi +LWAfωi,n), appearing in Ufn,li , as n goes1898

to ∞.1899

Lemma 6.21. � For any α̂ ∈M1(S),1900

(6.72) lim
n→∞

Eα̂
(
rωi + LWAfωi,n

)
= 2ds(α)αωλi + 2

αωαλi
α

(1− α− ds(α)),

where for any function Φ ∈ C1(S), we de�ned αΦ = Eα̂(Φ(θ0)η0).1901

Proof of Lemma 6.21. � By de�nition of rωi = λi(θ0)ω(θ0)η0(1− ηe1) + λi(θei)ω(θei)ηei(1− η0), we can1902

write, shortening as before Eα̂(Φ) = Eα̂(Φ(θ0)|η0 = 1),1903

(6.73) Eα̂(rωi ) = 2Eα̂(λiω)α(1− α) = 2� jλii , j
ω
i �α̂ .

For any cylinder function f , by translation invariance of µα̂ and De�nition 6.8, one also obtains by1904

elementary computations that1905

(6.74) Eα̂(LWAf) = 2� jλ1
1 + jλ2

2 ,Lf �α̂ .

Recalling Corollary 6.12, we can then write

� jλkk , hp,ωi �α̂ =� jλ̂kk , hp,ωi �α̂ +Eα̂(λk)� jk, h
p,ω
i �α̂

= −1{i=k}[αds(α)Covα̂(ω, λi)(1− op(1))− Eα̂(λi)op(1)]

where as before λ̂k = λk − Eα̂(λk). We can also write by De�nition 6.81906

� jλkk , jωi �α̂= 1{i=k}Eα̂(λkω)α(1− α).

Once again, in order to avoid taking everywhere limits n → ∞, we assume for the convenience of

notations, that there exists a local function fωi realizing the in�mum (6.71). Recall then from equation

(6.57) that in Hωα̂, we have the identity jω̂i + Lfωi = −cp(α)hpi − dp(α̂)ji. Then, using (6.73), (6.74), and

the explicit formulas for the inner products which prove orthogonality of directions i 6= k,

Eα̂(rωi + LWAfωi ) = 2� jλ1
1 + jλ2

2 ,Lfωi �α̂ +2� jλii , j
ω
i �α̂

= 2� jλ1
1 + jλ2

2 , jω̂i + Lfωi �α̂ −2� jλ1
1 + jλ2

2 , jω̂i �α̂ +2� jλii , j
ω
i �α̂

= −2� jλ1
1 + jλ2

2 , cp(α)hp,ωi + dp(α̂)ji �α̂ −2� jλii , j
ω̂
i �α̂ +2� jλii , j

ω
i �α̂

= −2cp(α)� jλii , h
p,ω
i �α̂ −2dp(α̂)� jλii , ji �α̂ +2Eα̂(ω)� jλii , ji �α̂ .(6.75)

We now let p→∞, so that dp vanishes, cp goes to 1, to obtain as wanted, by De�nition 6.8 and Corollary1907

6.12,1908

Eα̂(rωi + LWAfωi ) = 2αds(α)Covα̂(ω, λi) + 2Eα̂(ω)Eα̂(λi)α(1− α).

Reorganizing the terms yield Lemma 6.21.1909
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7. Proof of the hydrodynamic limit1910

We now have all the pieces to prove Theorem 2.6. The last remaining di�culty is to perform the1911

second integration by parts, since even the gradients obtained in Section 6 are not exactly microscopic1912

gradients due to the non-constant di�usion coe�cient. This is not a problem when the variations only1913

depend on one quantity, the density for example, since we can then simply consider a primitive of the1914

di�usion coe�cient and obtain at the highest order in N a discrete gradient. This is not the case here,1915

and we need some more work to obtain the wanted gradient.1916

Let us recall from Section 2.4 that for any smooth function H ∈ C1,2,1([0, T ]×T2×S), that we denoted1917

by MH,N
t the martingale1918

(7.1) MH,N
t =< πNt , Ht > − < πN0 , H0 > −

∫ t

0

[
< πNs , ∂sHs > +LN < πNs , Hs >

]
ds,

where1919

πNs =
1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(s)

is the empirical measure of the process on T2 × S.1920

Proof of Theorem 2.6. � The quadratic variation [MH,N ]t of M
H,N
t (cf. A1.5. Lemma 5.1 in [27]) is

[MH,N ]t =

∫ t

0

LN < πNs , Hs >
2 −2 < πNs , Hs > LN < πNs , Hs > ds

=

∫ t

0

1

N4

∑
x∈T2

N

∑
|z|=1

A1(η̂, x, z)Hs(x/N)Hs((x+ z)/N) +A2(η̂, x)Hs(x/N)2

 ds
≤
∫ t

0

1

N4

∑
x∈T2

N

C ||H||2∞ ds ≤ 1

N2
tC ||H||2∞ ,

where C, A1(η̂, x, z) and A2(η̂, x) are bounded uniformly in N . The quadratic variation [MH,N ]t is1921

therefore of order N−2, and vanishes as N goes to in�nity. Doob's inequality hence gives us for any1922

T > 0, δ > 01923

lim
N→∞

Pλ,β
µN

(
sup

0≤t≤T

∣∣∣MH,N
t

∣∣∣ ≥ δ) = 0,

and in particular1924

(7.2) lim
N→∞

Pλ,β
µN

( ∣∣∣MH,N
T

∣∣∣ ≥ δ) = 0.

We �rst consider the case of a function H such that1925

Ht(u, θ) = Gt(u)ω(θ),

the general case will be a simple consequence of a periodic version of the Weierstrass approximation

Theorem. For any such H, we can write∫ T

0

LN < πNt , Ht > dt =
1

N2

∫ T

0

dt
∑
x∈T2

N

τx

[
2∑
i=1

[Njωi + rωi ](t)∂ui,NGt(x/N) +Gt(x/N)γω(t)

]
,(7.3)

where jωi , r
ω
i and γω were introduced in De�nition 2.8, and1926

∂ui,NG(x/N) = N(G(x+ ei/N)−G(x/N))

is a microscopic approximation of the spatial derivative ∂uiG.1927

Thanks to Sections 4 and 6, we can perform the following replacements, in the expectation of the1928

expression above, and in the limit N →∞ then ε→ 0:1929
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� Thanks to Corollary 6.20, we can replace jωi by1930

(7.4) − [ds(ρεN )δiρ
ω
εN + d(ρεN , ρ

ω
εN )δiρεN ] ,

where d is given by equation (6.39),1931

d(ρ, ρω) = ρω(1− ds(ρ))/ρ,

� Thanks to Corollary 6.20 and Lemma 6.21, rωi can be replaced by1932

Rωi (ρ̂εN ) := 2

[
ds(ρεN )Eρ̂εN (ηωλi0 ) +

Eρ̂εN (ηω0 )Eρ̂εN (ηλi0 )

ρεN
(1− ρεN − ds(ρεN ))

]
.

� Finally, the Replacement Lemma 4.1 yields that γω can be replaced by Eρ̂εN (γω).1933

In other words, thanks to equation (7.2), for any Hs(u, θ) = Gs(u)ω(θ), we can write1934

(7.5) lim sup
ε→0

lim
N→∞

Pλ,β
µN

( ∣∣∣ M̃H,N,ε
T

∣∣∣ ≥ δ) = 0,

where

(7.6) M̃H,N,ε
T =< πNT , HT > − < πN0 , H0 > −

∫ T

0

< πNt , ∂tHt > dt

+

∫ T

0

dt

[
1

N2

∑
x∈T2

N

τx

2∑
i=1

[N (ds(ρεN )δiρ
ω
εN + d(ρεN , ρ

ω
εN )δiρεN )−Rωi (ρ̂εN )] ∂ui,NGt(x/N)

−Gt(x/N)Eρ̂εN (γω)

]
(t),

In order to give a clear scheme, we divide the end of the proof in a series of steps.1935

Performing the second integration by parts. � Due to the presence of the di�usion coe�cients, one1936

cannot switch directly the last discrete derivatives δiρεN and δiρ
ω
εN onto the smooth function G. In one1937

dimension, one would consider a primitive d(ρ) of the di�usion coe�cient D(ρ), and write that1938

D(ρεN )δiρεN = δid(ρεN ) + oN (δiρεN ).

However, our case cannot be solved that way because the di�erential form1939

(ρ, ρω) 7→ ds(ρ)dρω + d(ρ, ρω)dρ,

is not closed, and therefore not exact either, which means that we cannot express (7.4) as1940

δiF (ρεN , ρ
ω
εN ) + oN (1/N).

We thus need another argument to obtain the di�erential equation (2.11).1941

First, we get rid of the part with δiρ
ω. To do so, notice that

δi [ds(ρεN )ρωεN ] = ds(ρεN )δiρ
ω
εN + ρωεNδids(ρεN ) + oN (1/N)

= ds(ρεN )δiρ
ω
εN + ρωεNd

′
s(ρεN )δiρεN + oN (1/N).

We can therefore write1942

(7.7) ds(ρεN )δiρ
ω
εN = δi [ds(ρεN )ρωεN ]− ρωεNd′s(ρεN )δiρεN + oN (1/N).

Let us denote for any x ∈ T2
N1943

DεN
x = τx (d(ρεN , ρ

ω
εN )− ρωεNd′s(ρεN )) .

We perform a second integration by parts in the contribution of the �rst term in the right-hand side1944

of (7.7), whereas the left-hand side is added to the existing contribution of δiρεN , with the modi�ed1945

di�usion coe�cient DεN
x de�ned above. We can now rewrite M̃H,N,ε

T as1946

(7.8) < πNT , HT > − < πN0 , H0 > −
∫ T

0

< πNt , ∂tHt > dt−
∫ T

0

I1(t, η̂t)− I2(t, η̂t)dt+ oN (1),
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where1947

I1(t, η̂) =
1

N2

∑
x∈T2

N

τx

[
2∑
i=1

ds(ρεN )ρωεN∂
2
ui,NGt(x/N) +Rωi (ρ̂εN )∂ui,NGt(x/N) +Gt(x/N)Eρ̂εN (γω))

]

and

I2(t, η̂) =
1

N2

∑
x∈T2

N

τx

2∑
i=1

NDεN
0 δiρεN∂ui,NGt(x/N)

=
1

N2

∑
x∈T2

N

2∑
i=1

NDεN
x (τx+eiρεN − τxρεN )∂ui,NGt(x/N).

In I1, we regrouped all the terms for which taking the limit N →∞ is not a problem, whereas I2 is the1948

term where the extra factor N still has to be absorbed in a spatial derivative.1949

Replacement of the microscopic gradient by a mesoscopic gradient. � Since we cannot switch the deriva-1950

tive on the smooth function G due to the di�usion coe�cient, we need to obtain the gradient of ρ in1951

another way. For this purpose, we need to replace the microscopic gradient τx+eiρεN − τxρεN by a meso-1952

scopic gradient, and make the derivative (in a weak sense) of ρ appear directly. More precisely, let us1953

de�ne1954

Ĩ2(t, η̂) =
1

N2

∑
x∈T2

N

2∑
i=1

DεN
x

τx+ε3NeiρεN − τx−ε3NeiρεN
2ε3

∂ui,NGt(x/N).

We are going to prove that for any con�guration η̂,1955

(7.9)
∣∣∣ I2(t, η̂)− Ĩ2(t, η̂)

∣∣∣ ≤ oN (1) + oε(1),

uniformly in η̂. To prove the latter, for any k ∈ J−ε3N, ε3NK, let us denote by xk = x+ kei,1956

τx+ε3NeiρεN − τx−ε3NeiρεN =

k=ε3N−1∑
k=−ε3N

τxk+1
ρεN − τxkρεN .

A summation by parts therefore allows us to rewrite Ĩ2 as1957

Ĩ2(t, η̂) =
1

N2

∑
x∈T2

N

2∑
i=1

 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

N(τx+eiρεN − τxρεN ).

Furthermore, we can write for any x ∈ T2
N∣∣∣∣∣∣ DεN

x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣
≤ 1

2ε3N

k=ε3N−1∑
k=−ε3N

∣∣ DεN
x (∂ui,NGt(x/N)− ∂ui,NGt(xk/N))

∣∣ +
∣∣ ∂ui,NGt(xk/N)(DεN

x −DεN
xk

)
∣∣ .

Since the di�usion coe�cients are bounded and Gs is C
2, and since x and the xk's are distant of ε

3N ,1958

we can write1959 ∣∣ DεN
x (∂ui,NGt(x/N)− ∂ui,NGt(xk/N))

∣∣ ≤ C(Gt)ε
3.

Since DεN
xk

depends on the macroscopic density ρ̂εN , and since the di�usion coe�cients can be extended

as C1 functions due to their explicit expression, we also have∣∣ ∂ui,NGt(xk/N)(DεN
x −DεN

xk
)
∣∣ ≤ C ′(Gt) ( | τxρεN − τxkρεN | + | τxρωεN − τxkρωεN | )

≤ C ′′(Gt, ω)
ε3N

εN
.
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These two bounds �nally yield that1960

(7.10)

∣∣∣∣∣∣ DεN
x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣ ≤ C(Gt)ε
3 + C ′′(Gt, ω)ε2 = oε(ε).

By de�nition of I2 and Ĩ2, the triangular inequality yields

| I2 − Ĩ2 | ≤

1

N2

∑
x∈T2

N

2∑
i=1

∣∣∣∣∣∣ DεN
x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣ N(τx+eiρεN − τxρεN ).

The quantity inside the absolute values in the right-hand side above is oN (1) + oε(ε), thanks to (7.10),1961

whereas N(τx+eiρεN−τxρεN ) is of order at most 1/ε, whereas the quantity inside absolute values is oε(ε),1962

therefore their product vanishes as ε → 0, which proves equation (7.9). We therefore have obtained as1963

wanted that1964

(7.11) lim sup
ε→0

lim sup
N→∞

I2(t, η̂)− Ĩ2(t, η̂) = 0,

uniformly in η̂. We can now replace in equation (7.8) I2 by Ĩ2.1965

Embedding in the space of trajectories of measures M[0,T ]. � Recall that QN is the distribution of1966

the empirical measure of our process. We now wish to express the martingale M̃H,N,ε
t introduced after1967

equation (7.5) as an explicit function of the empirical measure πN in order to characterize the limit points1968

Q∗ of the compact sequence QN . For that purpose, let (ϕε)ε→0 be a family of localizing functions on T2,1969

ϕε(·) = (2ε)−2
1[−ε,ε]2(·),

and recall that we de�ned the empirical measure as1970

πNt =
1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

Then, for any function Φ : S→ R, and any u ∈ T2 we denote by ϕΦ
ε,u the function1971

ϕΦ
ε,u : T2 × S −→ R

(v, θ) 7→ ϕε(v − u)Φ(θ)
.

With this notation, we can therefore write1972

Eτxρ̂εN (ηΦ
0 ) =

1

(2εN + 1)2

∑
||y−x||∞≤εN

ηΦ
y =

(2εN)2

(2εN + 1)2
< πN , ϕΦ

ε,x/N > .

In the particular case where Φ ≡ 1, (resp. Φ = ω), this rewrites1973

τxρεN =
(2εN)2

(2εN + 1)2
< πN , ϕ1

ε,x/N >

(
resp.τxρ

ω
εN =

(2εN)2

(2εN + 1)2
< πN , ϕωε,x/N >

)
.

Since (2εN)2/(2εN + 1)2 = 1 + oN (1), we can replace in the limit N → ∞ the quantity Eτxρ̂εN (ηΦ
0 )1974

(resp. τxρεN , τxρ
ω) by the function of the empirical measure < πN , ϕΦ

ε,x/N > (resp. < πN , ϕ1
ε,x/N >,1975

< πN , ϕωε,x/N >).1976

We deduce from equations (7.5), (7.8) and (7.11) and what precedes that for any positive δ,1977

(7.12) lim sup
ε→0

lim sup
N→∞

QN
( ∣∣∣ NH,N

T

(
π[0,T ]

) ∣∣∣ ≥ δ) = 0.

where NH,N
T is de�ned as

NH,N
T

(
π[0,T ]

)
=< πT , HT > − < π0, H0 > −

∫ T

0

< πt, ∂tHt > dt

(7.13)
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−
∫ T

0

 1

N2

∑
x∈T2

N

2∑
i=1

d̃x/N,ε(πt)∂
2
ui,NGt(x/N) + R̃x/N,ε,i(πt)∂ui,NGt(x/N) + Γωx/N,ε (πt)Gt(x/N)

 dt
+

∫ T

0

 1

N2

∑
x∈T2

N

2∑
i=1

D̃x/N,ε(πt) < πt,
ϕ1
ε,x/N+ε3ei

− ϕ1
ε,x/N−ε3ei

2ε3
> ∂ui,NGt(x/N)

 dt.
In the identity above, we denoted1978

d̃x/N,ε(π) = ds(< π,ϕ1
ε,x/N >) < π,ϕωε,x/N >

1979

D̃x/N,ε(π) = d(< π,ϕ1
ε,x/N >,< π, ϕωε,x/N >)− < π,ϕωε,x/N > d′s(< π,ϕ1

ε,x/N >)

R̃x/N,ε,i(π) = ds

(
< π,ϕ1

ε,x/N >
)
< π,ϕωλiε,x/N >

+
< π,ϕωε,x/N >< π,ϕλiε,x/N >

< π,ϕ1
ε,x/N >

[
1− < π,ϕ1

ε,x/N > −ds
(
< π,ϕ1

ε,x/N >
)]
,

and Γωu,ε (π) = Eα̂x/N,ε(π)(γ
ω), where α̂x/N,ε(π) ∈M1(S) is the measure on S1980

α̂x/N,ε(π)(dθ) =

∫
T2

ϕε(.− x/N)π(du, dθ).

Limit N →∞. � We have now successfully balanced out all the factors N , and can thus let N go to ∞
in (7.12). Since G is a smooth function, one can replace in (7.13) the discrete space derivatives ∂ui,N by

the continuous derivative ∂ui , the sums N
−2
∑
x∈T2

N
by the integral

∫
T2 du, and the variables x/N by u.

We proved in Proposition 5.4 that the sequence of distributions (QN )N is relatively compact. Since the

quantity inside the absolute values is a continuous function (for Skorohod's topology de�ned in Appendix

B.1) of π[0,T ], the whole event is an open set, we obtain that for any weak limit point Q∗ of (QN ), and

any positive δ,

lim sup
ε→0

Q∗

(∣∣∣∣∣ < πT , HT > − < π0, H0 > −
∫ T

0

< πt, ∂tHt > dt

−
∫ T

0

∫
T2

2∑
i=1

[
d̃u,ε(πt)∂

2
uiGt(u) + R̃u,ε,i(πt)∂uiGt(u) + Γωu,ε (πt)Gt(u)

]
dudt

+

∫ T

0

∫
T2

2∑
i=1

[
D̃u,ε(πt) < πt,

ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
> ∂uiGt(u)

]
dudt.

∣∣∣∣∣ > δ

)
= 0(7.14)

Limit ε→ 0. � In order to consider the limit ε→ 0, we need to express1981

< πt,
ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
>

in the third line above as an approximation of the gradient of the density ∂uiρt(u). As in the proof of1982

Lemma 6.3, consider a smooth function hε,i,u such that1983

(7.15)

∫
T2

∣∣∣∣∣ ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
(v)− hε,i,u

∣∣∣∣∣ dv = oε(1).

Since such a function is very similar to the one already presented in Lemma 6.3, we do not give a detailed1984

construction here. Then, we can build a smooth anti-derivative Hε,u of hε,i,u, and we can write for any1985

u ∈ T2, and any density ρ in H1,1986 ∫
T2

ρ(v)hε,i,u(v)dv =

∫
T2

∂uiρ(v)Hε,u(v)dv.

Regarding the third line of (7.14), this yields1987

< πt,
ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
>=

∫
T2

∂uiρ(v)Hε,u(v)dv + oε(1),
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where Hε,u is a smooth approximation of a Dirac in u and oε(1) is uniform in u. According to (5.17),1988

∂uiρ is in L
2([0, T ]× T2) Q∗-a.s, therefore1989

(7.16)

∫
T2

∂uiρt(v)Hε,u(v)dv
L2([0, T ]× T2)

−−−−−−−−−−−−−−−→
ε→0

∂uiρt(u),

Q∗-a.s. (see, for example, Theorem 4.22, p.109 in [6]).1990

By Lemma 5.6 any limit point Q∗ of (QN ) is concentrated on measures absolutely continuous w.r.t.1991

the Lebesgue measure on T2. For any such measure π[0,T ], we denote by ρ̂t(u, dθ) its corresponding1992

density pro�le on the torus at time t, and let1993

ρωt (u) =

∫
S

ω(θ)ρ̂t(u, dθ).

We also shorten ρ(u) = ρ1(u). Thanks to this last remark and using both (7.16) and the dominated

convergence theorem for the second line of (7.14), we can now let ε go to 0 in equation (7.14), to obtain

that for any limit point Q∗ of (QN ) and any δ > 0,

(7.17) Q∗

(∣∣∣∣∣ < πT , HT > − < π0, H0 > −
∫ T

0

< πt, ∂tHt > dt

−
∫ T

0

∫
T2

2∑
i=1

ds(ρt)ρ
ω
t ∂

2
uiGt(u)+2

[
ds(ρt)ρ

λiω
t +

ρωt
ρt

(1− ρt − ds(ρt))ρλit
]
∂uiGt(u)+Eρ̂t(γ

ω)Gt(u)

)
dudt

+

∫ T

0

∫
T2

2∑
i=1

[
d(ρt, ρ

ω
t )− d′s(ρt)ρωt

]
(∂uiρt)∂uiGt(u)dudt

∣∣∣∣∣ > δ

)
= 0.

Conclusion. � As expected, all the quantities above are linear in ω, and elementary computations yield1994

that1995

Eρ̂t(u,·)(γ
ω) =

∫
S

ω(θ)
[
ρt(u)Eρ̂t(u,·)(cu,β(θ, η̂))dθ − ρ̂t(u, dθ)

]
.

Furthermore, since Ht(u, θ) = Gt(u)ω(θ), we can write for k = 1, 21996

ρωt ∂
k
uiGt(u) =

∫
S

ω(θ)∂kuiGt(u)ρ̂t(u, dθ) =

∫
S

∂kuiHt(u, θ)ρ̂t(u, dθ).

analogous identities can be obtained when ω is replaced by another function Φ ∈ C1(S). Using in equation

(7.17) the identities above �nally yield, as wanted, that for any δ > 0

Q∗

(∣∣∣∣∣ < πT , HT > − < π0, H0 > −
∫ T

0

< πt, ∂tHt > dt

−
∫ T

0

∫
T2×S

[
2∑
i=1

(
− ∂uiHt(u, θ)

[
d̂(ρt, ρ̂t)− d′s(ρt)ρ̂t

]
(u, dθ)∂uiρt(u) + ∂2

uiHt(u, θ)ds(ρt)ρ̂t(u, dθ)

+ ∂uiHt(u, θ)

[
2λŝ(ρt, ρ̂t)

→
Ω(ρ̂t) + 2λi(θ)ds(ρt)ρ̂t

]
(u, dθ)

)
+Ht(u, θ)Γt(ρ̂)(u, dθ)

]
dudt

∣∣∣∣∣ > δ

)
= 0.

As in the proof of Proposition 5.4, this last identity can be extended in the case where Ht(u, θ) does1997

not take the form Gt(u)ω(θ) by using a periodic version of the Weierstrass Theorem, thus letting δ → 01998

completes the proof of Theorem 2.6.1999

8. Limiting space-time covariance2000

This section is entirely dedicated to the proof Theorem 6.11, that was postponed. The strategy of the2001

proof, follows the same scheme as in Section 7.4 of [27]. One of its core ingredients is a decomposition2002

theorem (cf. Proposition (8.11)) for translation-invariant closed di�erential forms. To prove this decom-2003

position, one requires a sharp estimate on the spectral gap of the symmetric exclusion generator, which is2004

not uniform w.r.t. the density in our case, and some adaptations w.r.t. the classical scheme are necessary2005

to account for the angles. The non-uniformity of the spectral gap comes from the slow mixing occurring2006
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at high densities, and requires some minor adaptation w.r.t. [35] where this issue was not dealt with. It2007

is solved by cutting o� large densities (cf. equation (8.2) and Lemma 8.15).2008

8.1. Spectral gap for the symmetric exclusion process with angles. � As investigated in Sec-2009

tion 3.3, the mixing time for the exclusion dynamics on con�gurations of size n with angles is not of2010

order n2. We therefore cannot consider a general class of functions as dependent on the θx's as wanted,2011

and need to restrict to a subclass of functions with low levels of correlations between particle angles, but2012

large enough for the non-gradient method to apply. In this section, we prove that the spectral gap of the2013

symmetric exclusion process on this class of functions is of order C(ρ)n−2 if the density in the box is less2014

than ρ < 1. The core estimate was �rst derived by Quastel in [35]. We present here a modi�ed version2015

to take into account the continuous angles.2016

Throughout this section, we consider the square domain2017

Bn = J−n, nK2

with closed boundaries. Recall that S was introduced in De�nition 2.1 as the set of angle-blind functions,

and that ω is the angular dependency of our test function H (cf. equation (2.13)). We already de�ned

Tω =

{
f ∈ C

∣∣∣ f(η̂) = ϕ(η) +
∑
x∈Z2

ηωxψx(η), ϕ, ψx ∈ S, ∀x ∈ Z2

}
,

and now denote by Cn (resp. Sn) the set of cylinder functions (resp. angle-blind functions) depending2018

only on sites in Bn. Finally, we de�ne T
ω
n = Cn ∩ Tω.2019

Remark 8.1. � The purpose of the non-gradient method is to replace the instantaneous current jωi2020

introduced in equation (2.15) by a gradient quantity D(η0 − ηei) + d(ηω0 − ηωei), and the class Tω above2021

is the simplest set of functions, stable by Ln and containing both the currents and the gradients.2022

We expect that it is not the biggest class of functions on which a spectral gap estimate of order n−2
2023

holds. Indeed, we believe that introducing some �nite numbered correlations between angles might not2024

alter too much the order of the spectral gap. It is not, however, the purpose of this section, and this2025

remark is therefore left as a conjecture at this point.2026

Recall from De�nition 3.6 that we encoded in the canonical state K̂ ∈ Kn the number and angles2027

of the particles in Bn, and that we denote by µn,K̂ = µα̂

(
· | η̂ ∈ ΣK̂n

)
the canonical measure with K̂2028

particles inside Bn. Finally, de�ne2029

Dn,K̂(f) = En,K̂(fLnf),

where Ln is the symmetric exclusion generator restricted to jumps with both extremities in Bn. We are2030

now ready to state the main result of this section.2031

Proposition 8.2 (Estimate on the spectral gap for the SSEP with angles)2032

For any 0 ≤ α < 1, there exists a constant C(α) such that for any K̂ ∈ Kn such that K ≤ α|Bn|, and2033

any f ∈ Tωn such that En,K̂(f) = 0,2034

En,K̂(f2) ≤ C(α)n2Dn,K̂(f).

Remark 8.3 (Non-uniformity of the spectral gap). � Note that this estimate is not uniform in2035

the density. Actually, the constant C(α) behaves as 1/(1 − α), and therefore even on the set Tω, the2036

spectral gap of the exclusion process when there are only a �nite number of empty sites in Bn is or order2037

n−4. This high density estimate is sharp : de�ne K̂n by Kn = (2n + 1)2 − 1, and for k = 1, . . . ,Kn,2038

θk = 2kπ/Kn, then for2039

fn(η̂) =
∑
x∈Bn

(θx − π)ηx cos

(
2πx1

2n+ 1

)
,
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one easily checks that there exists a positive constant C such that2040

n4
Dn,K̂n

(fn)

V arn,K̂n(fn)
−−−−→
n→∞

C.

This non-uniformity is not an issue here, however, because when we later on classify the germs of closed2041

forms for our model, we are able to cuto� the large densities (cf. equation (8.2)).2042

In order to prove Proposition 8.2, we need the following lemma, which states that the angle-blind2043

process has a uniform spectral gap of order n−2. For any angle-blind function ψ ∈ Sn, we will write ψ(η)2044

instead of ψ(η̂) to emphasize that it does not depend on the angles.2045

Lemma 8.4 (Spectral gap for the angle-blind exclusion process)2046

Denote by Ẽn,K the expectation w.r.t. the angle-blind canonical measure with K particles inside Bn,2047

de�ned for any angle-blind function ψ ∈ Sn by2048

Ẽn,K(ψ) = Eα̂

(
ψ

∣∣∣∣ ∑
x∈Bn

ηx = K

)
,

which holds for any α̂ with density α ∈ (0, 1). There exists a universal constant C1 > 0 such that for any2049

n ≥ 1, any 0 ≤ K ≤ (2n+ 1)2 and any ψ ∈ Sn satisfying Ẽn,K(ψ) = 0,2050

Ẽn,K(ψ2) ≤ C1n
2D̃n,K(ψ),

where D̃n,K(ψ) = Ẽn,K(ψ(−Ln)ψ).2051

This result is fairly classical, its proof can be found for instance in [27], we do not repeat it here. Note in2052

particular that for the angle-blind process, the constant can be chosen independently of the cap on the2053

density α. Before proving Proposition 8.2, we need one more de�nition. Fix α ∈ [0, 1), and a canonical2054

state K̂ ∈ Kn such that K ≤ α|Bn|. We then de�ne for any site x ∈ Z2,2055

(8.1) ω̂ = ω − En,K̂(ω) and ηω̂x =
[
ω(θx)− En,K̂(ω)

]
ηx,

where En,K̂(ω) stands for En,K̂(ω(θ0) | η0 = 1). In particular, for any con�guration η̂,
∑
x∈Bn η

ω̂
x = 02056

under µn,K̂ . This centered occupation variable plays a particular role in the proof of the spectral gap,2057

and we state in the following Lemma two identities regarding ηω̂, which will be used later on.2058

Lemma 8.5 (Properties of ηω̂). � De�ne Vn,K̂(ω) = V arn,K̂(ω(θ0) | η0 = 1). For any x 6= y ∈ Bn,2059

K̂ ∈ Kn, and any angle-blind function ψ ∈ Sn, we have En,K̂
(
ηω̂xψ

)
= 0,2060

En,K̂
(

(ηω̂x )2ψ
)

= Vn,K̂(ω)Ẽn,K(ηxψ) and En,K̂
(
ηω̂x η

ω̂
y ψ
)

=

{
−Vn,K̂(ω)

K−1 Ẽn,K(ηxηyψ) if K > 1

0 else
.

Proof of Proof of Lemma 8.5. � This Lemma follows from elementary computations. Under µn,K̂ , for2061

any angle-blind function ψ ∈ Sn and any function Φ on S, we have2062

En,K̂(ηΦ
x ψ) = En,K̂(Φ(θ0) | η0 = 1)Ẽn,K(ηxψ).

For the �rst (resp. second) identity, we set Φ = ω − En,K̂(ω) (resp. Φ = (ω − En,K̂(ω))2), which by2063

construction has mean 0 (resp. Vn,K̂(ω)) w.r.t. µn,K̂(· | η0 = 1). Regarding the last identity, we obtain2064

similarly2065

En,K̂
(
ηω̂x η

ω̂
y ψ
)

=
[
En,K̂(ω(θx)ω(θy) | ηx = ηy = 1)− En,K̂(ω)2

]
Ẽn,K(ηxηyψ) = −

Vn,K̂(ω)

K − 1
Ẽn,K(ηxηyψ)

if K > 1, and trivially vanishes if K = 0, 1.2066

We now estimate the spectral gap of the angle process on Tωn .2067
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Proof of Proposition 8.2. � Fix α ∈ [0, 1), K̂ ∈ Kn such that K ≤ α|Bn|, and consider a function2068

f = ϕ(η) +
∑
x∈Bn η

ω
xψx(η) in Tωn , where ϕ,ψx ∈ Sn, such that En,K̂(f) = 0. Recall the notation2069

introduced in (8.1), and denote2070

f1 =
∑
x∈Bn

ηω̂xψx, fb = ϕ+ En,K̂(ω)
∑
x∈Bn

ηxψx ∈ Sn.

By construction, f = f1 + fb. Since for any ψ ∈ Sn, En,K̂
(
ηω̂xψ

)
= 0, it is straightforward to obtain that2071

En,K̂
(
f2
)

= En,K̂
(
f2

1

)
+ Ẽn,K

(
f2
b

)
and En,K̂ (fLnf) = En,K̂ (f1Lnf1) + Ẽn,K (fbLnfb) ,

(i.e Dn,K̂(f) = Dn,K̂(f1) + D̃n,K(fb)). By assumption En,K̂(f) = 0, therefore, since by construction2072

En,K̂(f1) = 0, we also have En,K̂(f b) = 0. Lemma 8.4 can therefore be applied to fb. To prove Proposition2073

8.2, it is thus su�cient to prove it for any function of the form f =
∑
x∈Bn η

ω̂
xψx(η). We can further2074

assume, without loss of generality, that
∑
ψx = 0 and that each ψx vanishes if ηx = 0 since we can2075

rewrite2076

f(η̂) =
∑
x∈Bn

ηω̂x ψ̃x(η)

where2077

ψ̃x = ηx(ψx − ψ) and ψ =

∑
x∈Bn ηxψx∑
x∈Bn ηx

=

∑
x∈Bn ηxψx

K(η̂)
.

Note that we only consider K > 0, since if K = 0, Proposition 8.2 is immediate.2078

To prove Proposition 8.2, it is therefore su�cient to prove it for any function2079

f =
∑
x∈Bn

ηω̂xψx,

where ψx = ηxψx, and satisfy
∑
x∈Bn ψx = 0. For any such f , if K = 1, there is only one particle in Bn2080

and ηω̂x = 0 for any x, therefore f = 0. We now assume that 1 < K ≤ α|Bn|. By Lemma 8.5, since by2081

assumption
∑
x ψx = 0,2082

(8.2) En,K̂
(
f2
)

=
∑

x,y∈Bn

En,K̂
(
ηω̂x η

ω̂
y ψxψy

)
=

K

K − 1
Vn,K̂(ω)

∑
x∈Bn

En,K̂
(
ψ2
x

)
.

We now turn our attention to En,K̂(fLnf). For any site x and any angle-blind function ψ ∈ Sn, we2083

can write2084

Ln(ηω̂xψx) = ηω̂xLnψx +
∑
|z|=1

1{ηxηx+z=0}ψx(ηx,x+z)((ηx,x+z)ω̂x − ηω̂x ).

Since we assumed that ψx vanishes when the site x is empty, the quantity above can be rewritten2085

Ln(ηω̂xψx) = ηω̂xLnψx +
∑
|z|=1

ηω̂x+z(1− ηx)ψx(ηx,x+z).

It follows that2086

Dn,K̂(f) =
∑

x,y∈Bn

En,K̂(ηω̂x η
ω̂
y ψx(−Ln)ψy)− En,K̂

ηω̂xψx ∑
|z|=1

ηω̂y+z(1− ηy)ψy(ηy,y+z)

 .
Using once again that

∑
x∈Bn ψx = 0, and Lemma 8.5 the identity above rewrites2087

(8.3) Dn,K̂(f) =
K

K − 1
Vn,K̂(ω)

∑
x∈Bn

D̃n,K(ψx)−
∑
|z|=1

Ẽn,K
(
(1− ηx+z)ψxψx+z

(
ηx,x+z

)) .
Let us introduce the Dirichlet form locally cropped in x2088

(8.4) D̃x
n,K(ψ) =

1

2
Ẽn,K

 ∑
y,y+z∈Bn\{x}

|z|=1

ηy(1− ηy+z)(ψ(ηy,y+z)− ψ(η))2

 ,
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which forbids jumps to and from the site x. Since ψx vanishes whenever the site x is empty, the quantity2089

ηx(1− ηx+z)(ψx(ηx,x+z)− ψx(η))2 is also equal to (1− ηx+z)ψx(η)2, and a similar argument with ψx+z2090

allows us to rewrite equation (8.3)2091

Dn,K̂(f) =
K

K − 1
Vn,K̂(ω)

∑
x∈Bn

D̃x
n,K(ψx) +

1

2

∑
|z|=1

Ẽn,K
(

(1− ηx+z)
[
ψx+z

(
ηx,x+z

)
− ψx(η)

]2).
To obtain Proposition 8.2, thanks to the identity above together with (8.2) it is enough to prove that for2092

some constant C(α),2093

(8.5)
∑
x∈Bn

Ẽn,K
(
ψ2
x

)
≤ C(α)n2

∑
x∈Bn

D̃x
n,K(ψx) +

1

2

∑
|z|=1

Ẽn,K
(

(1− ηx+z)
[
ψx+z

(
ηx,x+z

)
− ψx

]2) .
We now state a technical Lemma, which gives a spectral gap estimate when one site remains frozen.2094

Lemma 8.6 (Spectral gap for the exclusion process with a frozen site)2095

Fix x ∈ Bn. There exists a universal constant C2 such that for any angle-blind function ψ ∈ Sn2096

satisfying Ẽn,K(ψ | ηx = 1) = 0,2097

Ẽn,K(ψ2 | ηx = 1) ≤ C2n
2D̃x

n,K(ψ | ηx = 1),

where the conditioned Dirichlet form is de�ned by the conditional expectation Ẽn,K(. | ηx = 1) instead of2098

Ẽn,K ,2099

D̃x
n,K(ψ | ηx = 1) = −Ẽn,K(ψLnψ | ηx = 1).

Proof of Lemma 8.6. � We do not give the detail of this proof. It is quite similar to the proof without2100

the frozen site for an angle-blind function, the only di�erence being that whenever a path should go2101

through the site x, the path is bypassed around it, which results in a larger constant C but does not2102

a�ect the order n2.2103

We now take a look at the left-hand side of equation (8.5). Since ψx vanishes whenever ηx = 0 we2104

have Ẽn,K(ψx | ηx = 1) = |Bn|
K Ẽn,K(ψx), the previous lemma applied to ψx − En,K̂(ψx | ηx = 1) yields2105

(8.6)
∑
x∈Bn

Ẽn,K
(
ψ2
x

)
− |Bn|

K
Ẽn,K (ψx)

2 ≤ C2n
2
∑
x∈Bn

D̃x
n,K(ψx).

Furthermore,∑
x,y∈Bn

[Ẽn,K (ψx)− Ẽn,K(ψy)]2 =
∑

x,y∈Bn

[Ẽn,K(ψx)2 + Ẽn,K(ψy)2]− 2
∑

x,y∈Bn

Ẽn,K(ψx)Ẽn,K(ψy)

= 2n2
∑
x∈Bn

Ẽn,K(ψx)2,

because the last term of the �rst line vanishes by the assumption
∑
x∈Bn ψx = 0. Furthermore, consider2106

the family of paths (γx,y)x,y∈Bn going from x to y, de�ned as follows : starting from x, the path γx,y starts2107

straight in the �rst direction, until reaching the �rst coordinate of y. then, it goes in the second direction2108

until reaching y. With this construction, each edge a is used at most a number of times pa ≤ Cn3 in2109

the γx,y's, for some universal constant C. Furthermore, each path γx,y has length at most 4n. With this2110

construction, we therefore write, since2111

ψx − ψy =
∑

a=(a1,a2)∈γx,y

(ψa1
− ψa2

),

and (
∑p
k=1 xk)2 ≤ p

∑p
k=1 x

2
k that∑

x,y∈Bn

[Ẽn,K (ψx)− Ẽn,K(ψy)]2 ≤
∑

x,y∈Bn

4n
∑

(a1,a2)∈γx,y

[Ẽn,K (ψa1
)− Ẽn,K(ψa2

)]2

=4n
∑

(a1,a2)⊂Bn

pa[Ẽn,K (ψa1)− Ẽn,K(ψa2)]2
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≤4Cn4
∑

(a1,a2)⊂Bn

[Ẽn,K (ψa1
)− Ẽn,K(ψa2

)]2

=4Cn4
∑

x,x+z∈Bn,
|z|=1

[Ẽn,K (ψx+z)− Ẽn,K(ψx)]2.

Using the two previous identities, we obtain that2112

(8.7)
∑
x∈Bn

Ẽn,K(ψx)2 ≤ Cn2
∑

x∈Bn,|z|=1

[Ẽn,K (ψx+z)− Ẽn,K(ψx)]2,

so that using equations (8.5), (8.6), and (8.7), to prove Proposition 8.2 it is enough to show that for some

constant C(α),

(8.8)
∑

x∈Bn,|z|=1

[Ẽn,K (ψx+z)− Ẽn,K(ψx)]2

≤ K

|Bn|
C(α)

∑
x∈Bn

D̃x
n,K(ψx) +

∑
|z|=1

Ẽn,K
(

(1− ηx+z)
[
ψx+z

(
ηx,x+z

)
− ψx

]2) .
Let us denote by ex+z the empty site nearest to x + z other than x, chosen arbitrarily if there are2113

multiple candidates. We want to reach from η a con�guration with an empty site in x + z, where the2114

successive jumps will be controlled by the Dirichlet form of the ψ′xs, and the resulting di�erence will be2115

controlled by the second term above. To do so, we merely have to "move" the empty site from ex+z to2116

x + z, using a path of minimal length. We denote by a1, . . . , ap the sequence of edges along which the2117

empty site travels. For any integer r ≤ p let η(r−1) = ηa1...ar be the con�guration where the empty site2118

has traveled along r edges. In particular, η(0) = η, and η
(p)
x+z = 0. Furthermore, for each edge ar in this2119

sequence, we denote by ar,1 the position throughout this construction of the displaced particle at the2120

r − th stage, and ar,2 the position of the empty site, therefore, ar = (ar,1, ar,2). One easily sees that if2121

ex+z 6= x, we can perform this construction with the following conditions satis�ed.2122

1) The path followed by the empty site contains at most p(ex+z) ≤ 2 | ex+z − x | jumps.2123

2) None of the edges ar connects x and one of its neighbors.2124

3) The only edge linking x + z to one of its neighbor is the last edge ap, and it is of the form2125

ap = (x + z, x + z + z′), with z and z′ orthogonal. In other words, we assume that the empty site2126

comes from the direction orthogonal to the direction of the edge (x, x+ z).2127

With this construction, for any function h, since every successive jump is allowed (each initial site is

occupied, each end site is empty) we have(
1− η(p)

x+z

)
h
(
η(p)

)
= h

(
η(p)

)
= h(η) +

p∑
r=1

(
h
(
η(r−1)

)
− h

(
η(r−1)

))
= h(η) +

p∑
r=1

η(r−1)
ar,1 (1− η(r−1)

ar,2 )∇̃arh
(
η(r−1)

)
,

where ∇̃af = f(ηa1,a2)− f(η). We can rewrite this identity2128

h(η) =
(

1− η(p)
x+z

)
h
(
η(p)

)
−

p∑
r=1

η(r−1)
ar,1 (1− η(r−1)

ar,2 )∇̃arh
(
η(r−1)

)
.

Note that in the formula above, both p and the path η(r−1) depends on the position of ex+z.2129

We not let h(η) = ψx+z(η
x,x+z) − ψx. This function vanishes if there is an empty site in x, which is

the only case for which the construction above does not hold (because in particular the empty site cannot

avoid the edges surrounding x). Using the construction above, we obtain

Ẽn,K (ψx+z)− Ẽn,K(ψx) =Ẽn,K
(
ψx+z(η

x,x+z)
)
− Ẽn,K(ψx)
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=− Ẽn,K

(
p∑
r=1

η(r−1)
ar,1 (1− η(r−1)

ar,2 )∇̃ar
[
ψx+z((η

(r−1))x,x+z)− ψx(η(r−1))
])

+ Ẽn,K
((

1− η(p)
x+z

) [
ψx+z((η

(p))x,x+z)− ψx(η(p))
])
.

We now project on the possible positions for ex+z, by Cauchy-Schwarz inequality, and since (
∑p
i=1 ai)

2 ≤
p
∑p
i=1 a

2
i , we obtain

(8.9)
∣∣∣Ẽn,K (ψx+z)− Ẽn,K(ψx)

∣∣∣ ≤ ∑
e∈Bn\{x}

√
(2p(e) + 1)µ̃n,K

(
ex+z = e, ηx = 1

)
×

[
Ẽn,K

(
1{ex+z=e,ηx=1}

(
1− η(p(e))

x+z

) [
ψx+z((η

(p(e)))x,x+z)− ψx(η(p(e)))
]2)

+

p(e)∑
r=1

Ẽn,K
(
1{ex+z=e,ηx=1}η

(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx+z((η

(r−1))x,x+z)
]2)

+

p(e)∑
r=1

Ẽn,K
(
1{ex+z=e,ηx=1}η

(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx(η(r−1))

]2)]1/2

.

We now estimate each of the three terms in the bracket.2130

The empty site e being �xed, the sequence of edges (ar) and its length p are also �xed. The �rst term

in the bracket can therefore be rewritten, thanks the one-to-one change of variables η(p−1) ← [ η

Ẽn,K
(
1{ex+z=e,ηx=1}(η

′) (1− ηx+z)
[
ψx+z(η

x,x+z)− ψx(η)
]2)

≤ Ẽn,K
(

(1− ηx+z)
[
ψx+z(η

x,x+z)− ψx(η)
]2)

,

where η′ denotes the invert change of variable η ← [ η(p−1). Since none of the edges ar connects x to one

of its neighbors, and since each edge is used at most once, one-to-one changes of variable η(r−1) ←[ η also
allow us to crudely estimate

p∑
r=1

Ẽn,K
(
1{ex+z=e,ηx=1}η

(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx(η(r−1))

]2)

=

p∑
r=1

Ẽn,K
(
1{ex+z=e,ηx=1}(η

′(r))ηar,1(1− ηar,2)
[
∇̃arψx(η)

]2)
≤ D̃x

n,K(ψx).

Finally, for the third contribution, we can write the same estimate, except for the last gradient which

is over an edge (ap,1, ap,2) = (x+ z, x+ z + z′), with |z′| = |z| = 1. We therefore write

p∑
r=1

Ẽn,K
(
1{ex+z=e,ηx=1}η

(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx+z((η

(r−1))x,x+z)
]2)

≤ D̃x+z
n,K (ψx+z) + Ẽn,K

(
1{ex+z=e,ηx=1}η

(p−1)
ap,1 (1− η(p−1)

ap,2 )
[
∇̃apψx+z((η

(p−1))x,x+z)
]2)

≤ D̃x+z
n,K (ψx+z) + Ẽn,K

(
ηx+z(1− ηx+z+z′)

[
ψx+z

((
ηx+z,x+z+z′

)x,x+z
)
− ψx+z

(
ηx,x+z

)]2
)
.

One easily obtains that ηx,x+z+z′ =
(

(ηx,x+z)
x+z,x+z+z′

)x,x+z

, therefore performing the change of vari-

able ηx,x+z ←[ η in the bound above yields

p∑
r=1

Ẽn,K
(
1{ex+z=e,ηx=1}η

(r−1)
ar,1 (1− η(r−1)

ar,2 )
[
∇̃arψx+z((η

(r−1))x,x+z)
]2)
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≤ D̃x+z
n,K (ψx+z) + Ẽn,K

(
ηx(1− ηx+z+z′)

[
ψx+z

(
ηx,x+z+z′

)
− ψx+z (η)

]2)
︸ ︷︷ ︸

≤2Ẽn,K((∇x,x+z′ψx+z)2)+2Ẽn,K((∇x+z′,x+z+z′ψx+z)2)

≤ 3D̃x+z
n,K (ψx+z),

where we used that z′ and z are orthogonal by assumption, which means that the gradients in the last

term are not of the form (x+ z, x+ z + z′′). We now use these three bounds in (8.9), to obtain that for

some universal constant C3

(
Ẽn,K (ψx+z)− Ẽn,K(ψx)

)2

≤ C3

 ∑
e∈Bn\{x}

√
(1 + 2p(e))µ̃n,K(ex+z = e, ηx = 1)

2

×

[
Ẽn,K

(
(1− ηx+z)

[
ψx+z(η

x,x+z)− ψx(η)
]2)

+ D̃x
n,K(ψx) + D̃x+z

n,K (ψx+z)

]
.

Since we assumed K ≤ α|Bn|, for α < 1 one straightforwardly obtains by elementary computations that∑
e∈Bn\{x}

√
(1 + 2p(e))µ̃n,K(ex+z = e, ηx = 1) ≤

√
K

|Bn|
C(α),

therefore (8.8) holds as desired. This concludes the proof of Proposition 8.2.2131

8.2. Discrete di�erential forms in the context of particles systems. � We introduce in this2132

section the concept of discrete di�erential forms in the context of particle systems. The key point of the2133

non-gradient method is that any translation-invariant closed form can be decomposed as the sum of a2134

gradient of a translation-invariant function and the currents. This result is stated in Proposition 8.11,2135

and directly rewrites as an approximation (in the sense of equation (6.37)) of any function in T ω0 by a2136

linear combination of the currents up to an element of LC.2137

Let us denote by Σ∞ the set of con�gurations on Z2
2138

Σ∞ =
{

(ηx, θx)x∈Z2 ∈ ({0, 1} × S)Z
2 ∣∣ θx = 0 if ηx = 0

}
.

We consider here the graph G = (Σ∞, E) with oriented edge set2139

(8.10) E =
{

(η̂, η̂′) ∈ Σ2
∞ | η̂′ = η̂x,x+z for some x ∈ Z2, |z| = 1 and ηx(1− ηx+z) = 1

}
.

In other words, there is an edge from η̂ to η̂′ if and only if the latter can be reached from the former2140

with exactly one licit particle jump (i.e. the jump of a particle to an empty site). We endow G with the2141

usual distance d on graphs, i.e. d(η̂, η̂′) is the minimal number of particle jumps necessary to go from one2142

con�guration to the other. Note that this graph is not connected, since for example the con�guration η̂2143

with no particles is not accessible from any con�guration η̂′ with any number of particles. This is also2144

the case for two con�gurations with di�erent angle distributions. In such a case where there is no path2145

between η̂′ and η̂, we will adopt the usual convention d(η̂, η̂′) =∞. By abuse of notation, we also denote2146

by µα̂ (cf. De�nition 3.4) the grand-canonical measure measure on Z2 with parameter α̂, and write Eα̂(·)2147

for the expectation w.r.t µα̂.2148

We call di�erential form on (G, d) a collection of L2(µα̂) variables associated with each edge in E.2149

More precisely, it is a collection u = (ux,x+z)x∈Z2,|z|=1, satisfying2150

ux,x+z(η̂) = ηx(1− ηx+z)ux,x+z(η̂) ∈ L2(µα̂).

This de�nition arbitrarily attributes to ux,x+z(η̂) the value 0 if ηx(1−ηx+z) vanishes (i.e. if the jump from2151

x to x+ z cannot be performed in η̂), which is just a notation shortcut to de�ne u on all con�gurations2152

rather than only on those such that ηx(1 − ηx+z) = 1. Another way to look at these objects is that2153

with each possible particle jump in a con�guration η̂ is associated a weight. In this section, we will2154

only consider closed forms, i.e. di�erential forms for which the added weight of any �nite-length path2155

(composed only of licit jumps, i.e. jumps from x to x+ z with x occupied and x+ z empty) between two2156
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con�guration does not depend on the path chosen but only on the two endpoints. Equivalently, closed2157

forms are those for which the integral over a closed loop of licit jumps vanishes.2158

We call path a �nite sequence of jumps coordinates γ = (xi, xi + zi)0≤i≤qγ , where the xi's are in Z2,2159

and |zi| = 1. Given a con�guration η̂, we denote Γ(η̂) (resp. Γc(η̂)) the set of licit paths (resp. licit loops,2160

i.e. licit closed paths) such that all successive jumps in the path are licit starting from η̂, (resp. and such2161

that the con�guration reached at the end of the sequence of jumps is η̂)2162

Γ(η̂) = {γ = (xi, xi + zi)0≤i≤qγ
∣∣ η̂(i,γ)

xi (1− η̂(i,γ)
xi+zi) = 1, 0 ≤ i ≤ qγ},

(resp. Γc(η̂) = {γ = (xi, xi + zi)0≤i≤qγ ∈ Γ(η̂) | η̂(qγ+1,γ) = η̂ },) where for any path γ, and any2163

con�guration η̂, we denote η̂(0,γ) = η̂, and η̂(i+1,γ) =
(
η̂(i,γ)

)xi,xi+zi
for 0 ≤ i ≤ qγ . For any di�erential2164

form u = (ux,x+z)x∈Z2,|z|=1, and any �nite path γ, we denote2165

Iγ,u(η̂) = 1{γ∈Γ(η̂)}
∑

0≤i≤qγ

uxi,xi+zi(η̂
(i,γ)),

the random variable representing the integral of u along the path γ. We assign for convenience the value2166

0 to the integral if one of the jumps in the path was not licit.2167

De�nition 8.7 (Closed and exact forms on (G, d)). � A di�erential form u = (ux,x+z)x∈Z2,|z|=1 is2168

closed if for any �nite path γ,2169

1{γ∈Γc(η̂)}Iγ,u(η̂) = 0 µα̂ − a.s.,

i.e. if its integral along any closed loop vanishes a.s..2170

For any cylinder function f ∈ C, we say that uf is an exact di�erential form associated with f if2171

ufx,x+z(η̂) = ηx(1− ηx+z)(f(η̂x,x+z)− f(η̂))

point-wise. It is easily checked that for any f ∈ C, uf is a closed form, since then2172

(8.11) Iγ,uf (η̂) = 1{γ∈Γ(η̂)}

[
f(η̂(qγ+1,γ))− f(η̂)

]
,

which vanishes point-wise if the loop is closed.2173

We now consider the case of translation invariant closed forms.2174

De�nition 8.8 (Germs of a closed form). � A pair u = (u1,u2) : Σ∞ → R2 in L2(µα̂) is a germ of2175

a closed form if u de�ned by2176

(8.12) ux,x+ei(η̂) = τxui(η̂) and ux+ei,x(η̂) = −τxui(η̂x,x+ei) = −ux,x+ei(η̂
x,x+ei)

is a closed form. We endow the set of germs of closed forms with its L2(µα̂) norm2177

(8.13) ||u||α̂,2 =
[
Eα̂(u2

1 + u2
2)
]1/2

.

Denote by T ωα̂ the closure in L2(µα̂) of Tω (the set of cylinder functions, de�ned in (6.42), depending on2178

the angles through a linear combination of the ω(θx)), and let Tω = Tω
0 denote the closure in L2(µα̂) of2179

the set Tω
0 of germs of closed forms with components in T ωα̂ , namely2180

(8.14) Tω
0 =

{
u = (u1,u2)

∣∣ u is a L2(µα̂) germ of a closed form, ui ∈ T ωα̂ , ∀i ∈ {1, 2}
}
.

2181

De�nition 8.9 (Germs of an exact form). � A pair u = (u1,u2) will be called germ of an exact2182

form associated to a cylinder function h ∈ C if we can write2183

(u1,u2) = ∇Σh := (∇0,e1Σh,∇0,e2Σh)

point-wise, where Σh is the formal sum Σh =
∑
x∈Z2 τxh. Note that although the formal sum Σh is2184

ill-de�ned a priori, its gradient ∇Σh is not, because h is assumed to be a cylinder function, and therefore2185

only depends on a �nite number of sites.2186
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One easily veri�es that any germ of an exact form is also the germ of a closed form. In particular, for2187

any function h ∈ Tω, (cf. (6.42)), we have ∇Σh ∈ Tω. We denote by Eω = Eω0 the closure in L2(µα̂) of2188

the set Eω0 of germs of exact forms associated to functions in Tω,2189

Eω0 = {∇Σh,
(
h ∈ Tω} ⊂ Tω

0 .

De�nition 8.10 (Germs of a closed form associated with the currents)2190

De�ne j1, j2, j1,ω, and j2,ω as2191

(8.15) jki (η̂) = 1{i=k}η0(1− ηei) and jk,ωi (η̂) = 1{i=k}η
ω
0 (1− ηei) for k, i = 1, 2.

These four functions are germs of closed forms, and can be seen as germs of "almost" exact forms2192

associated with the formal functions2193

fk =
∑
x∈Z2

xkηx and fk,ω =
∑
x∈Z2

xkη
ω
x ,

which are not well de�ned, but for which the gradient along any licit jumps is. Of course, since the2194

functions fk, fk,ω above are merely formal sums, the jk, jk,ω's are not germs of exact forms. In other2195

words, the closed form j̄
k
associated with the germ jk is equal to ±1 on any edge representing a particle2196

jump in the direction ±ek, and the closed form j̄
k,ω

associated with jk,ω is equal to ±ω(θ) on any edge2197

representing a jump in the direction ±ek of a particle with angle θ. We denote by Jω linear span of the2198

jk, jk,ω2199

Jω =
{
ja,b := a1j

1 + a2j
2 + b1j

1,ω + b2j
2,ω, a ∈ R2, b ∈ R2

}
⊂ Tω

0 .

We are now ready to state the main result of this section.2200

Proposition 8.11 (Structure of Tω). � We have the decomposition2201

Tω = Jω ⊕ Eω.

Remark 8.12. � Note that we can safely assume that the total density α is in ]0, 1[. If not, the graph2202

G is trivial since its edge set is empty. This assumption will be made throughout the rest of this section.2203

Before turning to the proof of the last proposition, we investigate the case of a �nite domain. We start2204

by a technical Lemma. Recall that Cn is the set of functions depending only on sites in Bn, and C
1 with2205

respect to each θx for x in Bn, we denote T
ω
n = Tω ∩ Cn, the set of functions depending only on sites in2206

Bn, and depending on the angles through a linear combination of the ω(θx).2207

Lemma 8.13. � For any n ≥ 0, Tωn is closed in L2(µα̂).2208

Proof of Lemma 8.13. � We need to show that if a sequence of functions
(
ϕk(η)+

∑
x∈Bn η

ω
xψk,x(η)

)
k∈N2209

converges as k → ∞ in L2(µα̂) to f , then there exists angle-blind functions ϕ∗, ψ∗x such that f =2210

ϕ∗(η) +
∑
x∈Bn η

ω
xψ
∗
x(η) a.s.. Here, the ϕk, ψk,x, ϕ

∗ and ψ∗x are angle-blind functions depending only on2211

sites in Bn. Denote σxη̂ the con�guration equal to η̂ everywhere in Bn except in x where it is distributed2212

as an independent copy η̂′x = (η′x, θ
′
x) with distribution α̂. Then, we abuse our notation, and also denote2213

Eα̂ the expectation taken w.r.t. both η̂ and η̂′x.2214

We can now write2215

Eα̂
[
(f(η̂)− f(σxη̂))

2
1{ηx=η′x=1}

]
= lim
k→∞

Eα̂
[(
ω(θx)− ω(θ′x)2ψ2

k,x(η)1{ηx=η′x=1}
)]
.

Now assume that the variance of ω(θx) w.r.t. µα̂ does not vanish (else, the result obviously holds, because2216

in L2(µα̂), Tωn is the set of angle blind functions), we can write for some constant C := C(ω, α̂)2217

lim
k→∞

Eα̂
[
ψ2
k,x(η) | ηx = 1

]
≤ CEα̂(f2).

In particular, since the set of angle blind con�gurations in Bn is �nite, and since we can assume without2218

loss of generality that ψk,x(η) vanishes if ηx = 0, all the ψk,x must be bounded, uniformly in x, k, and2219

η by some constant M , and therefore remain in a compact set. Up to successive extractions, we can in2220

particular assume that each sequences (ψk,x)k converges uniformly in η as k →∞ to ψ∗x. In particular, the2221
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sequence ϕk also converges to a function ϕ
∗, and we can thus write as wanted f = ϕ∗(η)+

∑
x∈Bn η

ω
xψ
∗
x(η)2222

a.s..2223

We now consider closed di�erential forms in a �nite box. Considering the graph Gn with vertices the2224

con�gurations η̂ on the box Bn, and connected, as on the in�nite graph, if one can be reached from the2225

other with one licit jump along an edge of Bn.2226

Proposition 8.14. � Fix a parameter α̂, n ≥ 0, and a L2(µα̂) closed form u = (ux,x+z)x,x+z∈Bn on2227

Gn satisfying for any x, x+ z ∈ Bn2228

i) ux,x+z identically vanishes when there are 1 or less empty sites in Bn,2229

ii) There exists u′x,x+z in Tωn such that ux,x+z = u′x,x+z µα̂-a.s..2230

Then, there exists a cylinder function h ∈ Tωn such that2231

ux,x+z = ∇x,x+zh ∀x, x+ z ∈ Bn, µα̂-a.s.,

i.e. on a �nite set, all closed forms are exact forms. Furthermore, one can assume without loss of2232

generality that for any K̂ ∈ Kn, En,K̂(h) = 0.2233

Proof of Proposition 8.14. � Since u is a closed form, since each element of u′ is smooth in the angle2234

variables, and since u′ = u µα̂-a.s., we deduce that 1{γ∈Γc(η̂)}Iγ,u′ vanishes not only a.s. but also point-2235

wise for any �nite path γ. We are going to build a function h in E whose point-wise gradient is u′. Recall2236

that ux,x+z, and therefore u′x,x+z vanishes if there is one or less empty site in Bn, we split the set of2237

con�gurations on Bn into components (ΣK̂n )K̂∈Kn each connected on the graph Gn. In particular, for any2238

two con�gurations η̂, η̂′ in the same ΣK̂n , we must have by construction d(η̂, η̂′) <∞.2239

For any K̂ with at least two empty sites, let us denote η̂K̂ the con�guration where the particles are2240

inserted from the bottom left, row by row, and in the order of increasing angles from 0 to 2π. In other2241

words, we insert the particle with the angle closest to 0 at site (−n,−n), the second closest at (−n,−n+1),2242

and so on until all particles have been placed. The choice of this reference con�guration is arbitrary, but2243

depends continuously in the angles in K̂ ∈ K̃n. We then set h(η̂K̂) = 0 for each K̂ ∈ K̃n, and for any2244

other con�guration η̂ ∈ ΣK̂n , we �x a path γη̂ of licit jumps from η̂K̂ to η̂, and let2245

h(η̂) = Iγη̂,u′(η̂
K̂).

Since u′ is a pointwise closed form, this expression does not depend on the choice of γη̂ and pointwise,2246

we have for any x, x + z, u′x,x+z = ∇x,x+zh. In particular, ux,x+z(η̂) = ∇x,x+zh(η̂) on E, and therefore2247

µα̂-a.s.. Furthermore, by construction, because both u′ and η̂K̂ depend smoothly on the particle's angles,2248

so does h, and therefore h ∈ Cn. We now show that h ∈ Tωn .2249

Since, according to Lemma 8.13, Tωn is a closed linear subspace of L2(µα̂), we can write on Bn L
2(µα̂) =2250

Tωn ⊕ (Tωn )
⊥
. Straightforwardly, one can show that both Tωn and (Tωn )

⊥
are stable under any symmetric2251

gradient ∇̃x,x+zf := 1{ηxηx+z=0}(f(η̂x,x+z)− f(η̂)), for x, x+ z ∈ Bn. In particular, since u′x,x+z ∈ Tωn ,2252

we also have ∇̃x,x+zh = ux,x+z(η̂) + ux,x+z(η̂
x,x+z) ∈ Tωn for any x, x + z ∈ Bn. Let now write h as2253

h1 +h2, where h1 ∈ Tωn and h2 ∈ (Tωn )⊥, we must have ∇̃x,x+zh = ∇̃x,x+zh1. All gradients of h2 therefore2254

vanish a.s., we conclude that h2 is a.s. constant on each connected component, therefore we can choose it2255

to be 0 without changing ∇̃x,x+zh. We thus have as wanted u′x,x+z = ∇x,x+zh1, we can therefore choose2256

h = h1 ∈ Tωn .2257

Regarding the second claim of the Proposition, given a con�guration η̂ on Bn, let us denote by2258

K̂n(η̂) := (K(η̂),ΘK(η̂)(η̂)) the parameter giving the number and angles of particles in η̂, i.e.2259

K(η̂) =
∑
x∈Bn

ηx and ΘK(η̂)(η̂) =
{
θx1

, . . . , θxK(η̂)

}
,

where x1, . . . , xK are the positions of the K particles in η̂. Since the function K(η̂) is unchanged under2260

any gradient inside Bn, we can replace h by h0 = h−En,K̂n(η̂)(h) (where En,K̂ is the expectation w.r.t. the2261

canonical measure corresponding to having K̂ particles in Bn) and still satisfy ux,x+z(η̂) = ∇x,x+zh0(η̂).2262

2263



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 99

We now turn to the proof of the decomposition of germs of closed forms on the in�nite graph.2264

Proof of Proposition 8.11. � We �rst prove that the sum is direct : assume that for a, b ∈ R2, there2265

exists a cylinder function h such that ja,b = a1j
1 +a2j

2 + b1j
1,ω + b2j

2,ω = ∇Σh. In particular �x i = 1, 2,2266

one easily obtains that2267

aiji + bij
ω
i = ∇0,eiΣh −∇0,eiΣh(η̂0,ei) = 1{η0ηei=0}(Σh(η)− Σh(η0,ei)),

where the ji's are the currents de�ned in (2.8). Multiplying by ηei − η0 (resp. ηωei − η
ω
0 ) and taking the2268

expectation w.r.t. µα̂, the identity above rewrites2269

2(ai + biEα̂(ω))α(1− α) = 0 ( resp. 2(aiEα̂(ω) + biEα̂(ω2))α(1− α) = 0),

where, as in Section 8.1, Eα̂(ωk) stands for Eα̂(ωk(θ0)|η0 = 1). In particular, since α ∈ (0, 1) this yields2270

that ai + biEα̂(ω) = 0 and that Eα̂(ω2) = Eα̂(ω)2, therefore ω(θ0) is constant under µα̂. In particular,2271

aiji + bij
ω
i vanishes in L2(µα̂) as wanted. The inclusion Tω ⊃ Jω + Eω is immediate.2272

We now prove the reverse inclusion. The set of germs of an exact form being a linear (therefore convex)

subset of L2(µα̂), its weak and strong closure in L2(µα̂) coincide. In order to prove Proposition 8.11, it

is therefore su�cient to prove that for any u ∈ Tω, there exists a sequence of cylinder functions hn ∈ Tω
such that the sequence (∇Σhn)n∈N is weakly relatively compact in L2(µα̂), and for any of its weak limit

points h, there exists a and b in R2 such that

h = u + ja,b.

Fix u ∈ Tω, and (ux,x+z)x,x+z the associated closed form de�ned by (8.12). For any �xed integer n,2273

let Fn be the σ-algebra generated by the sites inside Bn2274

Fn = σ ( η̂x, x ∈ Bn ) ,

and let unx,x+z denote the conditional expectation2275

unx,x+z = Eα̂(ux,x+z | Fn).

Note in particular that since u is in Tω, un is a closed form on Gn, and each of its coordinate is in Tωn ,2276

according to Lemma 8.13.2277

Fix once and for all a density α < α′ < 1, and de�ne ρn = 1
|Bn|

∑
x∈Bn ηx the density in Bn, according

to Proposition 8.14, there exists a family of Fn-measurable functions ϕn ∈ Tωn with mean 0 w.r.t. any

canonical measure on Bn such that

1{ρn≤α′}u
n
x,x+z = ∇x,x+zϕn ∀x, x+ z ∈ Bn µα̂ − a.s..

Note that we would need a weaker indicator function to respect the conditions of Proposition 8.14 (namely,2278

that there are two empty sites in Bn) however in order to estimate the L2(µα̂)-norm of the ϕn, we will2279

need the indicator function above.2280

Let us �x n ∈ N, and consider the germ of an exact form 1
(2n)2∇Σϕn , whose coordinates can be2281

rewritten for i = 1, 22282

1

(2n)2
∇0,eiΣϕn =

1

(2n)2

∑
x∈Z2

τ−x∇x,x+eiϕn.

Since ϕn is Fn-measurable, ∇x,x+eiϕn vanishes as soon as neither x nor x + ei is in Bn. Hence, the2283

previous quantity is equal to2284

(8.16)
1

(2n)2
∇0,eiΣϕn =

1

(2n)2

∑
−n−1≤xi≤n

x∈Bn

τ−x∇x,x+eiϕn = Rn,i +
1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+eiϕn,

where the boundary term Rn,i is2285

Rn,i =
1

(2n)2

 ∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+eiϕn +
∑
xi=n
x∈Bn

τ−x∇x,x+eiϕn

 .
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For any n, the left-hand side in (8.16) the germ of an exact form as introduced in De�nition 8.9. We2286

will see that the second term of the right-hand side converges in L2(µα̂) as n goes to in�nity towards2287

ui. Hence to prove Proposition 8.11 it will be su�cient to show that the boundary term Rn,i is weakly2288

relatively compact in L2(µα̂), and that any of its weak limit points is in Jω. Since ϕn is supported in2289

Bn, the exchanges at the boundary act as reservoirs with creation (�rst term in Rn,i) at the sites x+ ei2290

with xi = −n − 1, and annihilation of particles (second term in Rn,i) at the sites x such that xi = n,2291

and cannot be expressed as such as particle transfers. To prove that the sequence of boundary terms is2292

weakly relatively compact, we therefore need to smooth out the ϕn's, by letting2293

(8.17) ϕ̃n = Eα̂(ϕ3n | Fn).

Not in particular that we still have ϕ̃n ∈ Tωn .2294

Rewrite (8.16) with ϕ̃n instead of ϕn2295

(8.18)
1

(2n)2
∇0,eiΣϕ̃n =

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+ei ϕ̃n + R̃n,i,

where this time2296

(8.19) R̃n,i =
1

(2n)2

 ∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+ei ϕ̃n +
∑
xi=n
x∈Bn

τ−x∇x,x+ei ϕ̃n

 .
We are going to show that2297

� the bulk term converges in L2(µα̂) to ui,2298

� the sequence of boundary term is bounded in L2(µα̂), and any of its weak limit points is an2299

element of Jω.2300

For the sake of clarity, we state both of these results as separate lemmas, and we will prove them2301

afterwards.2302

Lemma 8.15 (Convergence of the bulk term towards ui). � For any i ∈ {1, 2},2303

(8.20) lim sup
n→∞

Eα̂


 1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

[
τ−x∇x,x+ei ϕ̃n − ui

]
2 = 0.

Lemma 8.16 (Limit of the boundary term). � For any i ∈ {1, 2}, we split the boundary term as2304

R̃n,i = R̃−n,i + R̃+
n,i,

where2305

(8.21) R̃−n,i =
1

(2n)2

∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+ei ϕ̃n, and R̃+
n,i =

1

(2n)2

∑
xi=n
x∈Bn

τ−x∇x,x+ei ϕ̃n,

which will be referred to respectively as negative and positive boundary terms. With the previous notations,2306

both sequences (R̃−n,i)n∈N and (R̃+
n,i)n∈N are bounded in L2(µα̂). Furthermore, for any weakly convergent2307

subsequence R̃−kn,i → R−i , there exists ai, bi ∈ R such that2308

R−i = aiη
ω
0 (1− ηei) + biη0(1− ηei).

The same is true for the positive boundary term.2309

Thanks to (8.18), these two lemmas prove Proposition 8.11.2310

The proof of Lemma 8.15 is simple, we treat it right now before turning to the proof of Lemma 8.16,2311

which is the main di�culty of this section.2312
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Proof of Lemma 8.15. � By construction, for any x, x+ ei ∈ Bn,

∇x,x+ei ϕ̃n = ∇x,x+eiEα̂(ϕ3n | Fn)

= Eα̂(∇x,x+eiϕ3n | Fn)

= Eα̂(1{ρ3n≤α′}u
3n
x,x+ei | Fn)

= Eα̂(1{ρ3n≤α′}Eα̂(ux,x+ei | F3n) | Fn)

= Eα̂(1{ρ3n≤α′}ux,x+ei | Fn).(8.22)

By triangular inequality, translation invariance of µα̂, and using (
∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i , we can bound2313

the expectation in (8.20) by2314

(8.23)
1

2n2

∑
−n≤xi≤n−1

x∈Bn

(
Eα̂
[(
Eα̂(ux,x+ei | Fn)− ux,x+ei

)2]
+ Eα̂

[
1{ρ3n>α′}u

2
x,x+ei

])
.

We start by estimating the contribution of the �rst expectation in the sum. To do so, split it for any

positive ε as

1

2n2

∑
x∈Bn(1−ε)

Eα̂
[(
Eα̂(ux,x+ei | Fn)− ux,x+ei

)2]
+

1

2n2

∑
−n≤xi≤n−1
x∈Bn\Bn(1−ε)

Eα̂
[(
Eα̂(ux,x+ei | Fn)− ux,x+ei

)2]

By de�nition of u, τxui = ux,x+ei , thus for any ε > 0, the expectations in the �rst term vanish uniformly2315

in x ∈ Bn(1−ε) as n → ∞ by martingale convergence theorem, whereas the second sum can be crudely2316

estimated by Jensen inequality and is less than2317

Cε max
−n≤xi≤n−1
x∈Bn\Bn(1−ε)

Eα̂
[
(Eα̂(ux,x+ei | Fn)− ux,x+ei)

2
]
≤ 4CεEα̂(u2

i )

which vanishes as ε→ 0 regardless of n.2318

We now consider the contributions of the second part in (8.23). That each term vanishes is a direct

consequence of the dominated convergence theorem, however since we need a convergence that is uniform

in x, we give a more detailed and quantitative argument. We can rewrite by translation invariance of µα̂,

for any x, x+ ei ∈ Bn, and for any p < 2

Eα̂
[
1{ρ3n>α′}u

2
x,x+ei

]
= Eα̂

[
u2
i (τ−x1{ρ3n>α′})

]
≤ Eα̂

[ ∣∣ u2
i − |ui|p

∣∣ ]+ Eα̂
[
|ui|p(τ−x1{ρ3n>α′})

]
≤ Eα̂

[ ∣∣ u2
i − |ui|p

∣∣ ]+ Eα̂
(
u2
i

)p/2
µα̂ (ρ3n > α′)

1−p/2

by Holder inequality. By a standard large deviation estimate, µα̂ (ρ3n > α′) = O(e−Cn
2

). We then choose2319

p = p(n) = 2− 1/n, to obtain that second term in the right-hand side above is less than C(ui)e
−Cn. The2320

function inside the expectation in the �rst term is point-wise less than max(2u2
i , 1) which is integrable2321

and the �rst term therefore vanishes by dominated convergence as p(n)→ 2. Since the bound above does2322

not depend on x, we �nally obtain2323

(8.24) lim
n→∞

1

2n2

∑
−n≤xi≤n−1

x∈Bn

Eα̂
[
1{ρ3n>α′}u

2
x,x+ei

]
= 0

as wanted, which proves Lemma 8.15.2324

Proof of Lemma 8.16. � The proof of this Lemma being long, we split it into three steps.2325

� We �rst control the L2(µα̂) norm of the ϕ̃n's.2326

� Thanks to this control, we prove that the sequence of boundary terms R̃±n,i is bounded in L
2(µα̂).2327

� Finally, we prove that any weak limit point R±i of the boundary term can only depend on the2328

con�guration through η̂0 and η̂ei , and that they can be written as a combination of the ji and ji,ω.2329



102 C.ERIGNOUX

The scheme follows closely that of Theorem 4.14 in Appendix 3 of [27] however adjustments are needed2330

in the second and third step to take into account the presence of the angles.2331

First step : Control on the L2 norm of the ϕn's.2332

2333

We proved in Section 8.1 that, even though we do not have a general spectral gap of order n−2, we2334

could circumvent this di�culty by staying in a convenient class of functions linear in the angles and2335

by cutting o� the large densities. This spectral gap estimate is needed to control the norm of the ϕ′ns.2336

This is the reason for limiting the result to closed forms in Tω de�ned in (8.14), and for introducing the2337

indicator functions 1{ρn≤α′}. We state this step as a separate lemma for the sake of clarity.2338

Lemma 8.17. � There exists a constant K := K(α̂, α′,u) such that for any n ∈ N,2339

Eα̂(ϕ2
n) ≤ Kn4,

where ϕn was introduced in (8.2).2340

Proof of Lemma 8.17. � For any K̂ ∈ Kn, we proved in Proposition 8.14 that we could assume2341

En,K̂(ϕn) = 0, and thanks to the indicator function 1{ρn≤α′}, ϕn vanishes when the density in Bn is2342

larger than α′, therefore the spectral gap estimate given in Proposition 8.2, since ϕn ∈ Tωn , yields2343

Eα̂(ϕ2
n) = Eα̂(ϕ2

n1{ρn≤α′}) ≤ C(α̂, α′)n2Dn(ϕn),

where Dn(f) = −Eα̂(fLnf) is the Dirichlet form relative to the symmetric exclusion process restricted2344

to Bn,2345

Dn(ϕn) =
1

2

2∑
i=1

∑
δ∈{−1,1}

∑
x,x+δei∈Bn

Eα̂
[
(∇x,x+δeiϕn)2

]
.

By construction (cf. (8.2)),∇x,x+eiϕn = 1{ρn≤α′}u
n
x,x+ei and∇x+ei,xϕn = −1{ρn≤α′}u

n
x,x+ei(η̂

x,x+ei).2346

Thus, since u is in L2(µα̂), and since µα̂ is invariant under the change of variables η̂ 7→ η̂x,x+ei , Jensen's2347

inequality yields2348

(8.25) Dn(ϕn) ≤
2∑
i=1

∑
x,x+ei∈Bn

Eα̂
[
(unx,x+ei)

2
]
≤

2∑
i=1

∑
x,x+ei∈Bn

Eα̂
[
(ui)

2
]
≤ C ′(u)n2.

We obtain as wanted, thanks to the spectral gap estimate above,2349

(8.26) Eα̂(ϕ2
n) ≤ Kn4,

where K = CC ′ depends only on α̂, α′, and u.2350

Second step : Control on the L2 norm of the boundary terms.2351

2352

We now prove thanks to Lemma 8.17 that the boundary terms are bounded in L2(µα̂).2353

Lemma 8.18. � There exists a constant C = C(α̂, α′,u) such that for any n,2354

(8.27) Eα̂
[(
R̃−n,i

)2] ≤ C,
The statement remains true if R̃−n,i is replaced by R̃+

n,i.2355

Proof of Lemma 8.18. � We will treat in full detail only the case of the negative boundary term2356

R̃−n,i =
1

(2n)2

∑
xi=−n−1
x∈Bn(−ei)

τ−x∇x,x+ei ϕ̃n,

analogous arguments yield the bound for R̃+
n,i. Using (

∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i , we obtain2357

Eα̂
[(
R̃−n,i

)2] ≤ (2n+ 1)

(2n)4

∑
xi=−n−1
x∈Bn(−ei)

Eα̂
[
(τ−x∇x,x+ei ϕ̃n)2

]
≤ Cn−3

∑
xi=−n−1
x∈Bn(−ei)

Eα̂
[
(∇x,x+ei ϕ̃n)2

]
,
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for some universal constant C, by translation invariance of µα̂. For x in the negative boundary, under2358

µα̂, we can rewrite2359

(8.28) ∇x,x+ei ϕ̃n(η̂) = ηx(1− ηx+ei)
(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)
,

where η̂ + δθx+ei is the con�guration equal to η̂ everywhere except in x + ei, where the site contains a2360

particle with angle θ distributed as α̂/α independently of η̂. Note that in the expectation Eα̂, we will also2361

take the expectation w.r.t. θ, but still denote it Eα̂ not to burden the notations. Since ϕn is independent2362

of η̂x for any x in the negative boundary term,2363

(8.29) Eα̂
[(
R̃−n,i

)2] ≤ αCn−3
∑

xi=−n−1
x∈Bn(−ei)

Eα̂
[
(1− ηx+ei)

(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)2]
,

where the expectation w.r.t θ is also taken, under the distribution α̂/α. Recall that ϕ̃n = Eα̂(ϕ3n | Fn),2364

since the number of terms in the sum is O(n), Lemma 8.18 is a consequence of Lemma 8.19 below.2365

Lemma 8.19. � There exists a constant C = C(α̂, α′,u) such that for any x ∈ Bn(−ei) such that2366

xi = −n− 1,2367

Eα̂
[
(1− ηx+ei)

(
Eα̂(ϕ3n| Fn)(η̂ + δθx+ei)− Eα̂(ϕ3n| Fn)(η̂)

)2] ≤ Cn2,

where the expectation above is taken w.r.t. µα̂ on B3n and w.r.t. θ distributed under α̂/α.2368

Proof of Lemma 8.19. � Let us �x x, such that xi = −n − 1 in the negative boundary. To make the2369

Dirichlet form appear, we are going to force an occupied site in a neighborhood of x, and transform2370

the particle creation into a particle transfer. This is the reason for smoothing out ϕn and taking ϕ̃n2371

instead. For the sake of clarity, any con�guration η̂ on B3n will be considered as the pair of an interior2372

con�guration ζ̂ on Bn (which is hence Fn-measurable), and an exterior con�guration ξ̂ on B3n \Bn.2373

For any y ∈ B3n \Bn, we rewrite using the identity (1− α)−1[1− ξ + ξ − α] = 12374

Eα̂(ϕ3n| Fn)
(
ζ̂ + δθx+ei

)
=

1

1− α

(
Eα̂
(

(1− ξy)ϕ3n | Fn
)

+ Eα̂
(

(ξy − α)ϕ3n | Fn
))(

ζ̂ + δθx+ei

)
,

where ξy is the occupation variable in y, and is either 1 or 0 depending on whether the site y is empty or2375

not.2376

The �rst part of this decomposition will be controlled by the Dirichlet form, as the existence of an2377

empty site in y (thanks to 1 − ξy) will allow us to reconstruct a particle transfer from y to x + ei. The2378

second term will be estimated after a spatial averaging over a large microscopic box. This box must be2379

measurable with respect to the sites in B3n\Bn, in order to be able to introduce it inside the expectation.2380

For any x in the negative boundary, consider the set2381

Bxn−1,i = x− nei +Bn−1,

which is the box of radius n− 1 centered in x− nei. Remark that the cardinal of Bxn−1,i is (2n− 1)2, so

that averaging the previous identity over the y's in Bxn−1,i yields

(8.30) Eα̂(ϕ3n| Fn)
(
ζ̂ + δθx+ei

)
=

1

(2n− 1)2

∑
y∈Bxn−1,i

(
Eα̂
(

1− ξy
1− α

ϕ3n

∣∣∣∣ Fn)+ Eα̂
(
ξy − α
1− α

ϕ3n

∣∣∣∣ Fn))(ζ̂ + δθx+ei

)
.

Let us consider the �rst term of the previous equality. For any y in the boundary, thanks to the factor

1− ξy the site y is empty. Performing the change of variable ξ̂ → ξ̂− δy where ξ̂− δy is the con�guration
identical to ξ̂ everywhere except in y where the site is now empty, we obtain

Eα̂
( 1− ξy

1− α
ϕ3n

∣∣∣∣Fn)(ζ̂ + δθx+ei

)
=Eα̂

(
ξy
α
ϕ3n

(
ξ̂ − δy

) ∣∣∣∣ Fn)(ζ̂ + δθx+ei

)
=Eα̂

(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣Fn)+ Eα̂

(
ξy
α
ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ Fn) .
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We deduce from the last identity and equation (8.30) that we can write Eα̂(ϕ3n| Fn)
(
ζ̂ + δθx+ei

)
as

1

(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ Fn)

+ Eα̂
(
ξy
α
ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ Fn)+ Eα̂

(
ξy − α
1− α

ϕ3n

(
ζ̂ + δθx+ei , ξ̂

) ∣∣∣∣ Fn)
]
,

and therefore

(8.31) Eα̂(ϕ3n| Fn)
(
ζ̂ + δθx+ei

)
− Eα̂(ϕ3n| Fn)(ζ̂)

=
1

(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ Fn)

+ Eα̂
(
ξy − α
α

ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ Fn)+ Eα̂

(
ξy − α
1− α

ϕ3n

(
ζ̂ + δθx+ei , ξ̂

) ∣∣∣∣ Fn)
]
.

Using (
∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i as well as Jensen's inequality yields

Eα̂
(

(1− ηx+ei)
(
Eα̂(ϕ3n| Fn)(η̂ + δθx+ei)− Eα̂(ϕ3n| Fn)(η̂)

)2)
≤ 3

(2n− 1)2

 ∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

α2

[
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

]2)
+ 3Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
α

 ϕ3n

∣∣∣∣∣∣ Fn
2


+ 3Eα̂

Eα̂

 (1− ηx+ei)

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
1− α

ϕ3n

(
η̂ + δθx+ei

) ∣∣∣∣∣∣ Fn
2
 .(8.32)

From now on, the strategy to prove Lemma 8.19 is straightforward. We are going to prove that each of2382

the three terms in the right-hand side above is of order n2 :2383

� The second and third line above are controlled thanks to the spatial averaging by the L2 norm2384

of the ϕn's.2385

� In the �rst line, the angle of the particle deleted in y is not necessarily the same as the one2386

of the particle created in x + ei, because the angle θ above is distributed according to α̂/α and2387

independent of the con�guration. However, since the ϕn are in Tωn their dependency in the angles2388

can be sharply estimated. Once this di�culty is dealt with, the remaining quantity will be controlled2389

by the Dirichlet form.2390

We �rst treat the �rst step above. Thanks to the Cauchy-Schwarz inequality, we can estimate the second

line

Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
α

 ϕ3n

∣∣∣∣∣∣ Fn
2


≤ 1

α2
Eα̂


 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

2
Eα̂

(
ϕ2

3n

)
=

(1− α)

α(2n− 1)2
Eα̂
(
ϕ2

3n

)
,
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since under µα̂, the ηy's are i.i.d. variables. We can now use the bound obtained in Lemma 8.17, which2391

yields that for some constant C1 = C1(α̂, α′,u),2392

(8.33) Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

 ϕ3n

∣∣∣∣∣∣ Fn
2
 ≤ C1n

2.

Similarly, since2393

Eα̂
(

(1− ηx+ei)ϕ3n

(
η̂ + δθx+ei

)2)
=

1− α
α

Eα̂(ηx+eiϕ
2
3n) ≤ Cn2,

we also have for some constant C2 = C2(α̂, α′,u)2394

(8.34) Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
1− α

 (1− ηx+ei)ϕ3n

(
η̂ + δθx+ei

) ∣∣∣∣∣∣ Fn
2
 ≤ C2n

2.

We now estimate the �rst line of the right-hand side of (8.32), namely2395

(8.35)
1

(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

α2

[
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

]2)
.

We �rst deal with the fact that the deleted and created particles do not have the same angle. Recall that2396

η̂y,θ is the con�guration where the angle of the particle at the site y has been set to θ, we can thus write2397

η̂ + δθx+ei − δy =
(
η̂y,θ

)y,x+ei
,

therefore(
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

)2 ≤ 2
[
ϕ3n

((
η̂y,θ

)y,x+ei
)
− ϕ3n

(
η̂y,θ

)]2
+ 2

[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2
.

Since θ is distributed according to α̂/α, conditionally to ηy = 1, η̂y,θ has the same distribution as η̂ under2398

µα̂, and we can therefore control (8.35) by2399

(8.36)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ηy(1− ηx+ei)

[
ϕ3n

(
η̂y,x+ei

)
− ϕ3n (η̂)

]2)
+ Eα̂

(
ηy
[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2)]
.

Once again, we are going to prove that the contributions of both terms in the right-hand side above are2400

of order n2.2401

We �rst need to decompose, as in the proof of the two-block estimate of Lemma 4.4, the particle

jumps appearing in the �rst term into nearest neighbor jumps. More precisely, there exists a �nite family

x0, . . . , xp such that x0 = y, xp = x and for any k ∈ J0, p − 1K, |xk − xk+1 | = 1. Furthermore, we can

safely assume that p = | y − x |. With this construction, for any y ∈ Bxn−1,i, we can write

Eα̂
[
ηy(1− ηx+ei)

(
ϕ3n(η̂y,x+ei)−ϕ3n(η̂)

)2
]

≤ | y − x |
| y−x |∑
k=1

Eα̂
[
ηxk(1− ηxk+1

)
(
ϕ3n(η̂xk,xk+1)− ϕ3n(η̂)

)2
]

≤ | y − x |
| y−x |∑
k=1

Eα̂
([
∇xk,xk+1

ϕ3n

]2)
,(8.37)

since (
∑p
k=1 ak)2 ≤ p

∑p
k=1 a

2
k. As in the proof of Lemma 8.17, one easily checks that, xk and xk+1 being2402

neighbors,2403

Eα̂
([
∇xk,xk+1

ϕ3n(η̂)
]2) ≤ C(u).

therefore (8.37) yields2404

Eα̂
[
ηy(1− ηx+ei)

(
ϕ3n(η̂y,x+ei)− ϕ3n(η̂)

)2
]
≤ | y − x |2C(u).
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We now get back to the �rst term in (8.36). It is not hard to see that
∑
y∈Bxn−1,i

| y − x |2 is of order n4,2405

and we obtain as wanted that for some constant C3 = C3(α̂,u),2406

(8.38)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

[
ϕ3n

(
η̂y,x+ei

)
− ϕ3n (η̂)

]2) ≤ C3n
2.

We now estimate the second contribution in (8.36). The only di�erence between ϕ3n

(
η̂y,θ

)
and ϕ3n (η̂)2407

is the angle of the particle at site y. Recall that for any n, ϕn ∈ Tω, therefore the variation of ϕn when2408

an angle is changed can be precisely estimated. Fix n ≥ 0, and recall that ϕ3n∈ Tω3n. Then, there exists2409

angle-blind functions (ψn,x)x∈B3n , and ψn in S, such that2410

ϕ3n = ψn +
∑
x∈B3n

ηωxψn,x.

Since the only di�erence between η̂y,θ and η̂ is in the angle present at the site y, we can write2411

ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂) = (ω(θ)− ω(θy))ηyψn,y(η),

therefore the second contribution in (8.36) can be rewritten2412

(8.39)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(ω(θ)− ω(θy))2ψ2

n,y

)
=

4Vα̂(ω)

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηyψ

2
n,y

)
,

where we shortened Vα̂(ω) = V arα̂(ω(θ0) | η0 = 1), since the angles are independent of the con�guration2413

conditionally to the presence of a particle. Similarly to what we did in Section 8.1 rewrite2414

ϕ3n = ϕ1
n + ϕbn,

where2415

ϕ1
n =

∑
x∈B3n

(ω(θx)− Eα̂(ω))ηxψn,x and ϕbn = ψn + Eα̂(ω)
∑
x∈B3n

ηxψn,x,

where Eα̂(ω) stands for Eα̂(ω(θ0) | η0 = 1). As in Section 8.1,2416

Eα̂(ϕ2
3n) = Eα̂((ϕ1

n)2) + Eα̂((ϕbn)2),

and2417

Eα̂((ϕ1
n)2) = Vα̂(ω)

∑
x∈B3n

Eα̂(ηxψ
2
n,x).

The two previous identities �nally yield that2418

Vα̂(ω)
∑
x∈B3n

Eα̂(ηxψ
2
n,x) ≤ Eα̂(ϕ2

3n).

We now use this bound as well as (8.39) and Lemma 8.17 to obtain that for some constant C4 = C4(η̂, α′,u)2419

2420

(8.40)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy
[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2) ≤ C4n
2.

This is the estimate we wanted for the second line of (8.36).2421

Letting C = 3(C1 + C2 + C3 + C4), we now use the four bounds (8.33), (8.34), (8.38) and (8.40) in2422

equation (8.32), to obtain that2423

Eα̂
(

(1− ηx+ei)
(
Eα̂(ϕ3n| Fn)(η̂ + δθx+ei)− Eα̂(ϕ3n| Fn)(η̂)

)2) ≤ Cn2

as wanted, which concludes the proof of Lemma 8.19.2424

We have now �nished the second step, and proved that the sequences of boundary terms (R̃+
n,i)n∈N2425

and (R̃−n,i)n∈N are bounded in L2(µα̂). To conclude the proof of Lemma 8.16 we now prove that any weak2426

limit point R−i of (R̃−n,i) is in the linear span of the currents Jω. The main di�culty is to prove that any2427

limit point only depends on η̂0 and η̂ei , which we state as a separate lemma. We will once again only2428

consider the negative boundary terms, the positive boundary terms being treated in the same way.2429
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Third step : Proof that R−i only depends on η̂ through η̂0 and η̂ei2430

2431

Let us introduce2432

Z2
+,i = {xi > 0} ∩ Z2 \ {ei}.

We �rst prove the following intermediate result.2433

Lemma 8.20. � Any weak limit point R−i of the sequence (R̃−n,i) is measurable w.r.t. the sites in2434

Z2 ∩ {xi > 0} ∪ {0}. Furthermore, for any edge (y, y + z) with both ends in the set Z2
+,i, the gradient2435

∇y,y+zR
−
i vanishes in L2(µα̂).2436

Proof of Lemma 8.20. � In order to avoid taking subsequences, let us also assume that (R̃−n,i) weakly2437

converges towards R−i . We �rst prove the �rst statement, which is elementary. For any x in the negative2438

boundary, xi = −n−1, τ−xϕ̃n is measurable with respect to the half plane {xi > 0}, therefore ∇0,eiτ−xϕ̃2439

is measurable with respect to the sites in {xi > 0} ∪ {0}. We deduce from the last remark that for any2440

n, R̃−n,i is measurable for any n w.r.t. the sites in {xi > 0} ∪ {0}, therefore R−i also is.2441

We now show that for any edge {y, y + z} ⊂ Z2
+,i, the gradient ∇y,y+zR

−
i vanishes in L2(µα̂). Fix an

edge (y, y + z) with both ends in Z2
+,i. By de�nition,

∇y,y+zR̃
−
n,i =

1

(2n)2

∑
xi=−n−1

∇y,y+zτ−x∇x,x+ei ϕ̃n

=
1

(2n)2

∑
xi=−n−1

∇y,y+z∇0,eiτ−xϕ̃n.

Because y, y + z are di�erent from 0 and ei, the two gradients in the formula above commute, therefore

using once again (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i , as well as the crude bound Eα̂((∇af)2) ≤ 4Eα̂(f2), yields

Eα̂
[∣∣∇y,y+zR̃

−
n,i

∣∣2] ≤ 1

(2n)3

∑
xi=−n−1

Eα̂
[(
∇0,ei∇y,y+zτ−xϕ̃n

)2]
=

1

(2n)3

∑
xi=−n−1

Eα̂
[(
∇0,eiτ−x∇x+y,x+y+zϕ̃n

)2]
≤ 4

(2n)3

∑
xi=−n−1

Eα̂
[(
∇x+y,x+y+zϕ̃n

)2]
.(8.41)

There are three cases to consider to estimate Eα̂
[(
∇x+y,x+y+zϕ̃n

)2]
.2442

(1) The �rst one is the case where both x+ y and x+ y + z are in Bcn, the complementary set of Bn. In2443

this case,2444

Eα̂
[(
∇x+y,x+y+zϕ̃n

)2]
= 0,

because ϕ̃n is Fn- measurable.2445

(2) The second case when both x + y and x + y + z are in Bn. In this case, using (8.22) and Jensen's2446

inequality we can write2447

(8.42) Eα̂
((
∇x+y,x+y+zϕ̃n

)2) ≤ Eα̂
(
1{ρ3n≤α′}

(
ux+y,x+y+z

)2) ≤ C(u).

(3) The last case to consider is if x+ y and x+ y + z link Bn and Bcn. Then, as in the proof of Lemma2448

8.18 we obtain2449

Eα̂
[(
∇x+y,x+y+zϕ̃n

)2] ≤ C(α̂, α′,u)n2.

Fix an edge (y, y + z) with both ends in Z2
+,i and write z as ±ej , we treat separately the two cases2450

for j. If j = i, for any n large enough (more precisely as soon as 2n + 2 ≥ yi), for any x such that2451

x1 = −n − 1, either x + y and x + y ± ei are both in Bn or both are in its complementary set Bcn. We2452
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are therefore either in the �rst or in the second case above, and since the number of terms in the sum is2453

O(n), equation (8.41) yields2454

Eα̂
[(
∇y,y+zR̃

−
n,i

)2] ≤ C ′n−2 →
n→∞

0,

for some constant C ′ = C ′(α̂,u).2455

If now j 6= i, there can be only two terms in the sum over x for which x + y and x + y ± ei link Bn2456

and Bcn (third case above), whereas all the others are either in the �rst or the second case. In this case,2457

equation (8.41) yields2458

Eα̂
[(
∇y,y+zR̃

−
n,i

)2] ≤ C ′(α̂,u)n−2 + C ′′(α̂, α′,u)n−1 ||u||22,α̂ →
n→∞

0.

This proves that the sequence ∇y,y+zR̃
−
n,i vanishes as n→∞ in L2(µα̂) for any edge (y, y+ z) with both2459

ends in Z2
+,i. Since the gradient ∇y,y+z is a (Lipschitz, and therefore) continuous functional in L2(µα̂),2460

∇y,y+zR
−
i vanishes for any edge (y, y + z) with both ends in Z2

+,i. This concludes the proof of Lemma2461

8.20.2462

Lemma 8.21. � Any weak limit point R−i of the sequence (R̃−n,i)n∈N only depends on the con�guration2463

through η̂0 and η̂ei . The same is true for the limit points of the positive boundary terms (R̃+
n,i)n∈N.2464

Proof of Lemma 8.21. � This Lemma is a consequence of Lemma 8.20. Consider the localization R−i,n =2465

Eα̂(R−i | Fn), then R−i,n is measurable with respect to the sites in {xi > 0} ∪ {0} and for any edge2466

(y, y + z) with both ends in Z2
+,i its gradient vanishes in L

2(µα̂). These two properties are immediate2467

consequences of the properties of R−i and Jensen's inequality.2468

Let2469

B+
i,n = Bn ∩ Z2

+,i,

since the gradients of R−i vanish for any edge in B+
i,n, on the event on which there are at least two empty2470

sites in B+
i,n, R

−
i only depends on the η̂x, x ∈ B+

i,n through the empirical measure on B+
i,n2471

ρ̂B+
i,n

:=
1

|B+
i,n |

∑
B+
i,n

ηxδθx .

Indeed, for two con�gurations η̂ and η̂′ with the same number of particles, and with the same angles in2472

B+
i,n, we can reach one from the other with a combination of the previous gradients, hence the di�erence2473

R−i,n(η̂) −R−i,n(η̂′) vanishes. This is not true whenever there is one or less empty site in B+
i,n, but since2474

we are under the product measure, this happens with exponentially small probability and will not be an2475

issue.2476

Let us denote by E∗n the event �there are at least two empty sites in B+
i,n�, the previous statement2477

rewrites as2478

R−i,n1E∗n = Eα̂

(
R−i,n1E∗n

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

)
.

For any cylinder function f , we are going to prove that Eα̂(f.R−i ) = Eα̂
[
f. E(R−i | η̂0, η̂ei)

]
. Let2479

f+ = E (f | η̂x, x ∈ {xi > 0} ∪ {0})

be the conditional expectation with respect to the sites in {xi > 0} ∪ {0}. Since f is a cylinder function,

so is f+, therefore for any su�ciently large integer n, we can write

Eα̂(f.R−i 1E∗n) = Eα̂(f.R−i,n1E∗n)

= Eα̂

(
Eα̂

(
f.R−i,n1E∗n

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,n1E∗nEα̂

(
f

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
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= Eα̂

(
R−i,n1E∗nEα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,nEα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
+ Eα̂

(
R−i,n1E∗cn Eα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

=Eα̂
(
R−i Eα̂

(
f+
∣∣∣ η̂0, η̂ei

))
+ on(1),(8.43)

since2480

Eα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

)
L2(µα̂)−−−−→
n→∞

Eα̂
(
f+
∣∣∣ η̂0, η̂ei

)
,

because ρ̂B+
i,n

converges µα̂ a.s. as n→∞ towards α̂, and2481

Eα̂

(
R−i,n1E∗cn Eα̂

(
f+

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
−−−−→
n→∞

0,

because f+ is a bounded function, and R−i,n is in L2(µα̂). For the same reason, the left-hand side in2482

(8.43) converges as n goes to ∞ towards Eα̂(f.R−i ), and therefore for any cylinder function f2483

Eα̂
(
R−i Eα̂

(
f+
∣∣∣ η̂0, η̂ei

))
= Eα̂(f.R−i ),

so that2484

R−i = Eα̂
(
R−i

∣∣∣ η̂0, η̂ei

)
.

This concludes the proof of Lemma 8.21.2485

To complete the proof of Lemma 8.16, now that we have proved that all limit points of the boundary2486

terms are function of η̂0 and η̂ei , we still have to show that such limit points are in Jω. First notice that2487

any limit point of the negative boundary R−i veri�es2488

(8.44) ηeiR
−
i = (1− η0)R−i = 0.

Indeed,2489

ηeiR
−
i = lim

n→∞

1

(2n)2

∑
xi=−n−1
x∈Bn

ηeiτ−x∇x,x+ei ϕ̃n = lim
n→∞

1

(2n)2

∑
xi=−n−1
x∈Bn

ηei∇0,eiτ−xϕ̃n,

since τx∇af = ∇τxaτxf . Now the latter obviously vanishes since ηei∇0,ei = 0. The second identity is2490

proved in the same way.2491

Since the ϕ̃n's are in T
ω, so is R−i . Since R

−
i depends only on η̂0 and η̂ei , using (8.44) it can therefore2492

be expressed as2493

R−i (η̂) = η0(1− ηei)R−i (η̂0, η̂ei) = η0(1− ηei) [ψ(η0, ηei) + ηω0 ψ0(η0, ηei)] ,

for some angle blind functions ψ, ψ0. In particular, letting c1 = ψ0(1, 0), c2 = ψ(1, 0),2494

R−i (η̂) = (c1η
ω
0 + c2η0)(1− ηei).

Finally, any weak limit point of the boundary term is an element of Jω, which is what we wanted to2495

show. The proof of Lemma 8.16 is thus complete.2496

8.3. An integration by parts formula. � Considering the symmetric exclusion generator L as a2497

discrete Laplacian, to prove Theorem 6.11, we are going to need an integration by parts formula in order2498

to express the expectation of ψ.h in terms of the gradient of h and the �integral� ∇L−1ψ of ψ.2499

We �rst extend the de�nition of the canonical measures given in De�nition 3.6 to any domain B ⊂ T2
N .

For that purpose, consider an integer K ≤ |B|, and an orderless family {θ1, . . . , θK} ∈ SK . Recall that

we denote by K̂ the pair (K, {θ1, . . . , θK}), and we let µB,K̂ be the measure such that the K particles

with �xed angles θ1, . . . , θK are uniformly distributed in the domain B. If B = Bl is the ball of radius
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l, this notation is shortened as µl,K̂ in accord with De�nition 3.6. The expectation w.r.t both of these

measures is respectively denoted EB,K̂ and El,K̂ . We will, in a similar fashion, write

LBf(η̂) =
∑

x,x+z∈B
|z|=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

for the generator of the symmetric exclusion process restricted to B, shortened as Ll if B = Bl.2500

Recall that we de�ned

C0 =

{
ψ ∈ C

∣∣∣ Esψ,K̂(ψ) = 0 ∀K̂ ∈ K̃sψ and ψ|ΣK̂sψ
≡ 0 ∀K̂ ∈ Ksψ r K̃sψ

}
,

and that ∇a is the gradient representing a particle jump along a.2501

Lemma 8.22 (Integration by parts formula). � Let ψ ∈ C0 be a cylinder function, and a ⊂ Bsψ2502

an oriented edge in its domain. Then, ψ is in the range of the generator Lsψ , and we can de�ne the2503

"primitive" Ia(ψ) of ψ with respect to the gradient along the oriented edge a as2504

Ia(ψ) =
1

2
∇a(−Lsψ )−1ψ.

Furthermore, for any B ⊂ T2
N containing Bsψ , any K̂ = (K, (θ1, . . . , θK)) such that K ≤ |B| and h ∈ C2505

measurable w.r.t. sites in B, we have2506

(8.45) EB,K̂ (ψ.h) =
∑

a⊂Bsψ

EB,K̂ (Ia(ψ).∇ah) .

This result is also true if µB,K̂ is replaced by a grand-canonical measure µα̂. Note that if K = |B| − 1 or2507

K = |B| the result is trivial because ψ vanishes.2508

Proof of Lemma 8.22. � The proof of the previous result is quite elementary. Fix a function ψ ∈ C0, to2509

prove the integration by parts formula, we �rst show that ψ is in the range of Lsψ , by building for any K̂2510

a function ϕK̂ on Σ
sψ

K̂
, verifying LsψϕK̂ = ψ|Σ

sψ

K̂

. This result is well-known for the color-blind exclusion2511

process, but in our case where each particle has an angle, the canonical measures take an unusual form,2512

and we prove it for the sake of exhaustivity.2513

For any ϕ : Σ
sψ

K̂
→ R such that Lsψϕ = 0,2514

EBsψ ,K̂(ϕLsψϕ) = −1

2
EBsψ ,K̂

 ∑
x,x+z∈Bsψ

ηx(1− ηz)(ϕ(η̂x,z)− ϕ(η̂))2

 = 0,

therefore ϕ is invariant under the allowed jump of a particle along any edge in Bsψ . For any K̂ ∈ K̃sψ ,2515

the function ϕ is constant on Σ
sψ

K̂
, because Σ

sψ

K̂
is then irreducible w.r.t. the exclusion dynamics in Bsψ ,2516

according to Section 3.3. In particular Ker
Σ
sψ

K̂

Lsψ is the set of constant functions, and2517 {
ϕ : Σ

sψ

K̂
→ R

∣∣ EBsψ ,K̂(ϕ) = 0
}

=
{
Lsψψ, ψ : Σ

sψ

K̂
→ R

}
.

For any ψ ∈ C0, any K̂ ∈ K̃sψ , there exists a ϕK̂ : Σ
sψ

K̂
→ R, such that2518

LsψϕK̂ = ψ|Σ
sψ

K̂

.

Since ψ vanishes when Bsψ has one or less empty site, we also let ϕK̂ = 0 for any K̂ ∈ Ksψ \ K̃sψ . We2519

now de�ne the local function ϕ∗ ∈ C by ϕ∗
|Σ
sψ

K̂

= ϕK̂(η̂), which veri�es by construction2520

ψ = Lsψϕ∗,

therefore ψ ∈ LsψC.2521

Proving the integration by parts formula is now elementary : since ψ = LsψL−1
sψ
ψ,

EB,K̂(h.ψ) = EB,K̂
(
h.LsψL−1

sψ
ψ
)
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= −1

2

∑
a⊂Bψ

EB,K̂
(
∇aL−1

sψ
ψ.∇ah

)
=
∑
a⊂Bψ

EB,K̂ (Ia(ψ).∇ah)

which proves identity (8.45). By conditioning to the canonical state in B, one easily obtains that the2522

same is true when the canonical measure is replaced by a grand-canonical measure µα̂.2523

We �nish this section with a technical Lemma. Recall that for any cylinder function ψ, we denote by2524

sψ the size of its support and for any integer l, lψ = l − sψ − 1.2525

Lemma 8.23. � For any ψ ∈ C0 + J∗ + LC, there exists a constant C(ψ) such that for any l, K̂ ∈ K̃l,
h ∈ C only depending on sites in Bl, γ > 0, and A ⊂ Blψ

El,K̂

(
h
∑
x∈A

τxψ

)
≤ γC(ψ)|A|+ 1

2γ
D
Aψ

l,K̂
(h),

where we shortened Aψ = {x ∈ Bl, d(x,A) ≤ sψ}, DA
l,K̂

(h) = El,K̂(h(−LA)h) and LA is the SSEP2526

generator restricted to jumps with both ends in A.2527

Proof of Lemma 8.23. � Since for some constant C(sψ),
∑
x∈A D

Bsψ (x)

l,K̂
(h) ≤ C(sψ)D

Aψ

l,K̂
(h) to establish2528

this result, it is su�cient to prove that for any x ∈ A and for any positive γ′,2529

(8.46) El,K̂ (hτxψ) ≤ γ′C ′(ψ) +
1

2γ′
D
Bsψ (x)

l,K̂
(h).

We now establish this last bound for any ψ ∈ C0 ∪ J∗ ∪ LC, which proves the Lemma.2530

Assume �rst that ψ = jΦ
k for k ∈ {1, 2}, and Φ ∈ C1(S). Then, El,K̂ (hτxψ) = El,K̂

(
hjΦ
x,x+ek

)
,

where as before jΦ
x,x+ek

= Φ(θx)ηx(1 − ηx+ek) − Φ(θx+ek)ηx+ek(1 − ηx). Thanks to changes of variable

η̂ 7→ η̂x,x+ek , in the second term, we obtain, using the elementary bound ab ≤ γa2/2 + b2/2γ which holds

for any γ,

El,K̂ (hτxψ) = −El,K̂ (Φ(θx)∇x,x+ekh) ≤
γ ||Φ||2∞

2
+

1

2γ
El,K̂

(
(∇x,x+ekh)2

)
which proves (8.46).2531

We now consider ψ = Lf ∈ LC. Since f is a local function, �x sψ such that Lf = Lsψf . We rewrite

El,K̂ (hτxψ) = El,K̂
(
hLBsψ (x)(τxf)

)
= El,K̂

(
(τxf)LBsψ (x)h

)
=

∑
y,y+z∈Bsψ (x)

El,K̂((τxf)∇x,x+zh) ≤
γC(sψ) ||f ||2∞

2
+

1

2γ
D
Bsψ (x)

l,K̂
(h),

as wanted.2532

Only remains the case ψ ∈ C0, for which (8.46) is a consequence of the integration by parts formula2533

and is proved similarly to the case ψ = Lf . By de�nition of Ia(ψ),2534 ∑
y,y+z∈Bsψ (x)

El,K̂(Ix,x+z(τxψ)2) =
1

2
El,K̂((τxψ)(−L−1

Bsψ (x))(τxψ)) =
1

2
El,K̂

(
ψ(−L−1

Bsψ
)ψ
)
≤ C(ψ),

where C(ψ) can be chosen independently of K̂. Using (8.45), and this last bound, we obtain2535

El,K̂ (hτxψ) =
∑

y,y+z∈Bsψ (x)

El,K̂ (Iy,y+z(τxψ).∇y,y+zh) ≤ γC(ψ)

2
+

1

2γ
D
Bsψ (x)

l,K̂
(h),

which proves (8.46) and Lemma 8.23.2536
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8.4. Heuristics on � · �α̂ and Theorem 6.11. � The purpose of this section is to explain the2537

variational formula for the limiting covariance� ψ �α̂ introduced in De�nition 6.9. Given the generator2538

L of the SSEP on Z2, for any function f with mean 0 w.r.t. any canonical measure, consider the linear2539

application2540

(8.47) F : f 7→ ∇L−1Σf =

(
∇0,e1L−1Σf
∇0,e2L−1Σf

)
.

A priori, even if f is a local function, L−1f is no longer local, and ∇L−1Σf can therefore involve a2541

in�nite number of non-zero contribution, so that F is not a priori well de�ned. However, assuming that f2542

is such that ∇L−1Σf is well-de�ned, the de�nition above indicates thanks to the translation invariance2543

of Σf and L−1, that F(f) is the germ of a closed form as introduced in Section 8.2. To illustrate this last2544

remark, we describe the e�ect of this application on LC and J∗.2545

Recall that for Φ ∈ C1(S), jΦ
i = ηΦ

0 (1− ηei)− ηΦ
ei (1− η0). We �rst investigate the action of F on the2546

currents jΦ
i . Consider an in�nite con�guration η̂ with no particles outside of some large compact set K.2547

For the sake of concision, we will call such a con�guration bounded. Then, we can write2548

L

[∑
x∈Z2

xiη
Φ
x

]
=
∑
x∈Z2

xiLηΦ
x =

∑
x∈Z2

τxj
Φ
i = ΣjΦi .

Since the con�guration was assumed bounded, both of the sums above are �nite, and the identity above2549

is well posed. Coming back to our application F, the previous identity yields2550

F(jΦ
i ) =

(
∇0,e1L−1ΣjΦi
∇0,e2L−1ΣjΦi

)
=

(
∇0,e1

∑
x∈Z2 xiη

Φ
x

∇0,e2

∑
x∈Z2 xiη

Φ
x

)
.

Since the only positive contribution in the right-hand side above is for x = ei, elementary calculations2551

yield2552

F(jΦ
i ) = ji,Φ,

where the ji,Φ's are the germs of closed forms introduced in equation (8.15). The application F therefore2553

maps J∗ (cf. (6.44)) into2554

J∗ :=
{
j1,Φ1 + j2,Φ2 , Φ1,Φ2 ∈ C1(S)

}
.

Since one can also write F(f) = ∇ΣL−1f , we can de�ne F on LC as

F(Lf) = ∇
∑
x∈Z2

τxL−1Lf = ∇Σf ,

which is the germ of an exact form associated with f .2555

Denote by E∗ the set of germs of exact forms associated with functions in C, the construction above

allow us to de�ne the bijective application

F : J∗ + LC −→ J∗ + E∗

jΦ1
1 + jΦ2

2 + Lf 7→ j1,Φ1 + j2,Φ2 + ∇Σf
.

Recall that we de�ned the L2-norm of any closed form u as2556

||u||2,α̂ =
[
Eα̂
(
u2

1 + u2
2

)]1/2
.

According to Proposition 8.11, we can rewrite for any u ∈ Tω,2557

(8.48) ||u||22,α̂ = sup
g∈Tω
a,b∈R2

{
2Eα̂

(
u · (∇Σg + ja,b)

)
−
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

}
.

De�ne Kerα̂(F) the kernel of F w.r.t || . ||2,α̂, we can equip T ω0 /Kerα̂(F) with the norm� · �1/2
α̂ induced2558

by the mapping F, de�ned as2559

� f �α̂= ||F(f)||22,α̂ = sup
g∈Tω
a,b∈R2

{
2Eα̂

(
F(f) · (∇Σg + ja,b)

)
−
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

}
.
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By generalizing the integration by parts formula in the previous section, this formula is strictly analogous

to De�nition 6.8, and F is therefore an isomorphism

F : (T ω0 /Kerα̂(F) , � · �α̂) −→
(
Tω = Jω + Eω , ||·||22,α̂

)
,

which gives T ω0 /Kerα̂(F), as stated in Proposition 6.13, the same structure as Jω + LTω/Kerα̂(F).2560

We now brie�y carry on with our heuristics and explain why Theorem 6.11 holds, which is rigorously

proved in Section 8.5. The proof is based on the integration by parts obtained in Subsection 8.3. Applying

it to
∑
x∈Blψ

τxψ yields that the quantity in the right-hand side of (6.49) can be rewritten

lim
l→∞

1

(2l + 1)2
El,K̂l

1

2

∑
x,x+z∈Bl

∇x,x+zL−1
l

∑
x∈Blψ

τxψ

2
 .

Assuming that one is able to replace µl,K̂l by the translation invariant grand-canonical measure µα̂, and

all quantities being ultimately translation invariant, this limit should be the same as

lim
l→∞

1

(2l + 1)2
Eα̂

1

2

∑
x,x+z∈Bl

∇x,x+zL−1
l

∑
x∈Blψ

τxψ

2
 = lim

l→∞
Eα̂

∑
i=1,2

∇0,eiL−1
l

∑
x∈Blψ

τxψ

2


= ||F(ψ)||22,α̂
=� ψ �α̂ .

The rigorous proof of this result, given in the next section, is technical due to the delicate nature of L−1.2561

8.5. Proof of Theorem 6.11. � In order to prove Theorem 6.11, we need to prove that2562

(8.49) lim
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blϕ

τxϕ

 =� ψ,ϕ�α̂

in three cases :2563

(1) ϕ = ψ and ψ ∈ LC + J∗,2564

(2) ϕ ∈ T ω0 and ψ ∈ LC + J∗,2565

(3) ϕ = ψ and ψ ∈ T ω0 .2566

The �rst two cases correspond to De�nition 6.8, whereas the last one corresponds to De�nition 6.9. The2567

�rst two cases are easier, we treat them �rst as a separate Lemma. The uniformity of the convergence2568

will be proved at the end of the section as in [27].2569

Lemma 8.24. � Fix ϕ ∈ T ω0 and ψ = Lg + jΦ1
1 + jΦ2

2 ∈ LC + J∗. For any sequence (K̂l) such that

α̂K̂l → α̂,

lim
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blψ

τxψ ·
∑
x∈Blψ

τxψ

 =

2∑
i=1

Eα̂
(
η0(1− ηei)

[
Φi(θ0) + Σg(η̂

0,ei)− Σg
]2)

,

and2570

(8.50) lim
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blψ

τxψ ·
∑
x∈Blϕ

τxϕ

 = −Eα̂

(
ϕ

[
Σg +

∑
x∈Z2

(
x1η

Φ1
x + x1η

Φ1
x

)])
.

Proof of Lemma 8.24. � Fix ψ = Lg + jΦ1
1 + jΦ2

2 ∈ LC + J∗, and shorten B̃il = {x ∈ Bl, xi ≤ l− 1} one2571

easily obtains the identity2572 ∑
x∈B̃il

τxj
Φi
i = Ll

∑
x∈Bl

xiη
Φi
x .
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Shorten2573

F = F g,Φ1,Φ2

l :=
∑
x∈Blψ

τxg +
∑
i=1,2,
x∈Bl

xiη
Φi
x and G = −

∑
i=1,2,

x∈B̃il\Blψ

τxj
Φi
i ,

we can then rewrite
∑
x∈Blψ

τxψ = LlF +G, and therefore2574

(8.51) El,K̂

(−L−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = El,K̂ (F (−Ll)F )− 2El,K̂ (FG) + El,K̂
(
G(−Ll)−1G

)
.

Writing2575

El,K̂
(
G(−Ll)−1G

)
= sup

h
{El,K̂(Gh)−Dl,K̂(h)},

and using Lemma 8.23, we obtain that the last term in (8.51) is less than C(Φ1,Φ2)|B̃il \ Blψ | = O(l),2576

and therefore the corresponding contribution vanishes in the limit (8.49). Regarding the second term,2577

elementary computations yield2578

El,K̂l(η
Φi
y τxj

Φk
k ) = C(1{y=x} − 1{y=x+ek}),

where we shortened C = El,K̂l(ΦiΦk(θ0)η0(1− ηek)), which yields after elementary computations that2579

El,K̂

 ∑
i=1,2,
y∈Bl

yiη
Φi
y

∑
k=1,2,

x∈B̃kl \Blψ

τxj
Φk
k

 = O(l).

Similarly, for any y such that {x, x+ ek} ∩Bsg (y) = ∅, we have El,K̂l(τygτxj
Φk
k ) = 0, so that2580

El,K̂l (FG) ≤ C(g,Φ1,Φ2)|B̃il \Blψ | = O(l)

and thus vanishes as well in the limit (8.49).2581

Finally, the last two contributions in (8.51) vanish in the limit, and we now only need to compute2582

El,K̂l (F (−Ll)F ), that we split into three parts. We rewrite the �rst one2583

El,K̂

(−Ll)
∑
x∈Blψ

τxg ·
∑
x∈Blψ

τxg

 =
1

2

∑
y,y+z∈Bl

El,K̂


∇y,y+z

∑
x∈Blψ

τxg

2
 .

Since f only depends on sites in Bsg , for any y ∈ Bl−2sg−2, we can write ∇y,y+z

∑
x∈Blψ

τxg = ∇y,y+zΣg,2584

where as before Σg is the formal sum
∑
x∈Z2 τxg. Furthermore, for any y /∈ Bl−2sg−22585 ∇y,y+z

∑
x∈Blψ

τxg

2

=

∇y,y+z

∑
| x−y | ≤sg+2

τxg

2

≤ C(sg) ||g||2∞ .

Since all the ∇y,y+zΣg have the same distribution under µl,K̂ for y ∈ Bl−2sg−2, we can therefore write

using the two bounds above

(8.52)
1

(2l + 1)2
El,K̂

(−Ll)
∑
x∈Blψ

τxg ·
∑
x∈Blψ

τxg


=
|Bl−2sg−2|
2(2l + 1)2

∑
|z|=1

El,K̂
(

[∇0,zΣg]
2
)

+C(f)O

( |Bl \Bl−2sg−2|
(2l + 1)2

)
=

2∑
i=1

El,K̂
(

[∇0,eiΣg]
2
)

+C(f)O(1/l).

Since ∇0,eiΣg is a local function, the equivalence of ensembles (cf. Proposition (C.1)) �nally yields for2586

any sequence K̂l such that α̂K̂l → α̂2587

lim
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)
∑
x∈Blψ

τxg ·
∑
x∈Blψ

τxg

 =

2∑
i=1

Eα̂
(

[∇0,eiΣg]
2
)
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as wanted.2588

Similarly, one obtains straightforwardly after elementary computations2589

El,K̂

(−Ll)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
i=1,2,
x∈Bl

xiη
Φi
x

 =
1

2

∑
y,y+z∈Bl

El,K̂

([
∇y,y+zη

Φiz
y

]2)
,

where iz = k i� z = ±ek. Once again, under µl,K̂ , all the terms have the same distribution, and we can2590

rewrite2591

1

(2l + 1)2
El,K̂

(−Ll)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
i=1,2,
x∈Bl

xiη
Φi
x

 =

2∑
i=1

El,K̂
(

[Φi(θ0)η0(1− ηei)]
2
)

+ C(Φ1,Φ2)O(1/l),

therefore using once again the equivalence of ensembles also yields2592

lim
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
i=1,2,
x∈Bl

xiη
Φi
x

 =

2∑
i=1

Eα̂
(

[Φi(θ0)η0(1− ηei)]
2
)
.

Using the fact that El,K̂(fLlg) = −
∑
y,y+z∈Bl El,K̂([∇y,y+zf ][∇y,y+zg]), is is straightforward to adapt2593

the previous estimates to the cross term, and obtain2594

lim
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)
∑
i=1,2,
x∈Bl

xiη
Φi
x ·

∑
x∈Blψ

τxg

 =

2∑
i=1

Eα̂ (Φi(θ0)∇0,eiΣg) .

These three estimates �nally yield as wanted2595

(8.53) lim
l→∞

1

(2l + 1)2
El,K̂ (F (−Ll)F ) =

2∑
i=1

Eα̂
(
η0(1− ηei)[Φi(θ0) + Σg(η̂

0,ei)− Σg]
2
)
,

which proves the �rst statement of the Lemma.2596

The second identity in Lemma 8.24 is proved in a similar way. Using the same notations as for the2597

�rst identity, we have
∑
x∈Blψ

τxψ = LlF +G, and given f ∈ T ω0 , we rewrite the left-hand side in (8.50)2598

El,K̂l

(F + (−L−1
l )G) ·

∑
x∈Blf

τxf

 .

Using once again the equivalence of ensembles, it is easy to prove that2599

(8.54) lim
l→∞

1

(2l + 1)2
El,K̂l

F ∑
x∈Blf

τxf

 = −Eα̂

(
f

[
Σg +

∑
x∈Z2

(
x1η

Φ1
x + x1η

Φ1
x

)])
,

therefore we only need to prove that the contribution of G vanishes. This is straightforward, since the

contribution of G can be rewritten

1

(2l + 1)2
El,K̂l

(−L−1
l )G · (−Ll)(−L−1

l )
∑
x∈Blf

τxf


=

1

(2l + 1)2

1

2

∑
x,x+z∈Bl

El,K̂l

∇x,x+z(−L−1
l )G · ∇x,x+z(−L−1

l )
∑
x∈Blf

τxf

 .
We now use Holder's inequality, and that for any positive γ, |ab| ≤ γa2/2 + b2/2γ, to obtain that the

absolute value of the left-hand side above is less than
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∣∣∣∣∣∣ 1

(2l + 1)2
El,K̂l

(−L−1
l )G ·

∑
x∈Blf

τxf

 ∣∣∣∣∣∣
≤ γ

2(2l + 1)2
El,K̂l

(
G(−L−1

l )G
)

+
1

2γ(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blf

τxf ·
∑
x∈Blf

τxf

 .

We already proved that the �rst term in the right-hand side is O(γl−1), whereas in the limit l →∞ the2600

second is bounded by � f �α̂ /γ according to Lemma 8.26 below. We can therefore choose γ =
√
l, to2601

obtain that both terms vanish as l→∞, thus concluding the proof of Lemma 8.24.2602

We now consider the case ψ ∈ T ω0 , which is the main result of this section, and conclude by proving

that the convergence is uniform and that (6.50) holds. Thanks to the decomposition of the germs of

closed forms obtained in Proposition 8.11 and Lemma 8.24 above, these two steps follow closely Section

7.4 of [27], we repeat the proof here for the sake of exhaustivity. Recall that we denoted for any ψ ∈ T ω0

� ψ �α̂= sup
g∈Tω
a,b∈R2

2Eα̂

ψ.
Σg +

∑
y∈Z2

(y.a)ηωy + (y.b)ηy

− � Lg + ja,b �α̂

 .

We split the proof of the third case ψ ∈ T ω0 in two Lemmas, namely an upper and a lower bound. Using2603

the identities obtained in Lemma 8.23, the lower bound is easy to prove.2604

Lemma 8.25. � Under the assumption of Theorem 6.11,2605

(8.55) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≥ � ψ �α̂ .

Proof of Lemma 8.25. � Denote by Cl the set of local functions measurable w.r.t. sites in Bl. We start

by writing the variational formula

El,K̂l

(−L−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
h∈Cl

2El,K̂l

h ∑
x∈Blψ

τxψ

−Dl,K̂l
(h)


≥ sup
h∈T̃ ωl

2El,K̂l

h ∑
x∈Blψ

τxψ

−Dl,K̂l
(h)

 ,(8.56)

where T̃ ωl is the subspace of Cl2606

T̃ ωl =

F g,a,bl =
∑
x∈Blg

τxg +
∑
x∈Bl

((a.x)ηωx + (b.x)ηx), g ∈ Tω, a, b ∈ R2

 .

As stated in (8.54) the contribution of the �rst term in (8.56) is2607

lim
l→∞

1

(2l + 1)2
El,K̂l

 ∑
x∈Blψ

τxψ .F
g,a,b
l

 = −Eα̂

ψ ∑
y∈Z2

[
τyg +

2∑
i=1

((a.x)ηωy + (b.y)ηy)

] .

and we proved in (8.53) that2608

lim
l→∞

1

(2l + 1)2
Dl,K̂l

(F g,a,bl ) =� Lg + ja,b �α̂ .

These two identities prove (8.56), and concludes the proof of the Lemma.2609

We now state and prove the upper bound, which is more di�cult.2610
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Lemma 8.26. � Under the assumptions of Theorem 6.11, for any ψ ∈ T ω0 ,2611

(8.57) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≤ � ψ �α̂ .

Proof of Lemma 8.26. � We start by replacing the canonical measure µK̂l,l by the grand-canonical mea-2612

sure µα̂ thanks to the equivalence of ensembles stated in Proposition C.1. The main obstacle in doing so2613

is that the support of the function whose expectation we want to estimate grows with l.2614

By the variational formula for the variance, we can write for any K̂ ∈ K̃l2615

El,K̂

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
h∈Tωl

2El,K̂

 ∑
x∈Blψ

τxψ .h

−Dl,K̂(h)


where as before, Tωl = Cl∩Tω and Dl,K̂(h) = El,K̂l (h.(−Llh)). As in the proof of the one-block-estimate,2616

let k be an integer that will go to ∞ after l, and let us partition Bl into disjoint boxes Λ̃0, . . . , Λ̃p, where2617

p = b 2lψ+1
2k+1 c

2, Λ̃j = B2k+1(xj) for any 1 ≤ j ≤ p and some family of sites x1, . . . , xp, and where we let2618

Λ̃0 = Blψ \ (∪pj=1Λ̃j). Recall that sψ is the smallest integer such that ψ is measurable with respect to the2619

sites in Bsψ , we now de�ne2620

Λj = {x ∈ Λ̃j , d(x, Λ̃cj) > sψ} and Λ0 = Blψ \ (∪pj=1Λj).

One easily obtains that for some universal constant C, |Λ0| ≤ Csψ(l2/k + lk).2621

Let h be a function in Tωl , we can split2622

(8.58)
∑
x∈Blψ

El,K̂l (τxψ .h) =
∑

j=1,...,p
x∈Λj

El,K̂l (τxψ .h) +
∑
x∈Λ0

El,K̂l (τxψ .h) .

Letting γ =
√
k/2 in Lemma 8.23, for any l ≥ k2, the second term is less than k−1/2

[
C(ψ)l2+Dl,K̂(h)

]
.2623

Letting ck = 1−k−1/2, for some constant C(ψ), and for any l ≥ k2, the left-hand side of (8.57) is therefore2624

less than2625

ck
(2l + 1)2

sup
h∈Tωl


∑

j=1,...,p
x∈Λj

2

ck
El,K̂ (τxψ .h)−Dl,K̂(h)

+
C(ψ)√
k
.

For any h ∈ Tωl , 1 ≤ j ≤ p de�ne hj = El,K̂(h | η̂y, y ∈ Λ̃j), by convexity of the Dirichlet form, we have2626

Dl,K̂(h) ≥
p∑
j=1

D
Λ̃j

l,K̂
(h) ≥

p∑
j=1

D
Λ̃j

l,K̂
(hj),

where as before DA
l,K̂

(h) is the contribution to the Dirichlet form of edges in A. Denoting Tωk,j the set of2627

functions in Tω measurable w.r.t. sites in Λ̃j , we can therefore �nally bound from above the left-hand2628

side of (8.57) by2629

ck
(2l + 1)2

p∑
j=1

sup
h∈Tωk,j

∑
x∈Λj

2

ck
El,K̂l (τxψ .h)−D

Λ̃j

l,K̂l
(h)

+
C(ψ)√
k
.

All the terms in the sum over j are identically distributed, the quantity above is thus less than

ck
(2k + 1)2

sup
h∈Tωk

 ∑
x∈Bkψ

2

ck
El,K̂l (τxψ .h)−DBk

l,K̂l
(h)

+
C(ψ)√
k

=
1

ck(2k + 1)2
El,K̂l

(−L−1
k )

∑
x∈Bkψ

τxψ ·
∑

x∈Bkψ

τxψ

+
C(ψ)√
k
.
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The quantity inside the expectation is now a local function w.r.t. l, we can now let l → ∞ and as

α̂K̂l → α̂, replace µl,K̂l by µα̂ by the equivalence of ensembles stated in Proposition C.1. Letting then

k →∞, we �nally obtain

(8.59) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ


≤ lim sup

k→∞

1

(2k + 1)2
Eα̂

(−Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 .

By the variational formula for the variance, to prove the Lemma it is enough to show2630

(8.60) lim sup
k→∞

1

(2k + 1)2
sup
h∈Tωk

2Eα̂

h ∑
x∈Bkψ

τxψ

−Dα̂,k(h)

 ≤� ψ �α̂,

where we shortened Dα̂,k(h) = Eα̂(h(−Lk)h). According to Lemma 8.23, there exists a constant C(ψ)2631

such that the �rst term 2Eα̂
(∑

x∈Bkψ
τxψ .h

)
is less than C(ψ)(2k + 1)2 + Dα̂,k(h)/2. For any h such2632

that Dα̂,k(h) ≥ 2C(ψ)(2k + 1)2, the right-hand side above is therefore negative, and since it vanishes for2633

h = 0, we can therefore safely assume that the supremum is taken w.r.t. functions h ∈ Tωk satisfying2634

Dα̂,k(h) ≤ 2C(ψ)(2k + 1)2. Using the integration by parts formula of Lemma 8.22 yields2635

Eα̂ (τxψ .h) =
∑

x∈Bψ(x)

Eα̂(Ia(τxψ)∇ah),

where Ia(ψ) = (1/2)∇a(−Lsψ )−1ψ. For any edge a, let us denote by Bψ(a) the set of sites x ∈ Z2 such

that a is in Bψ(x), and B̃ψk (a) = Bψ(a) ∩ Bkψ . Note that for any edge a ∈ Bkψ−sψ , these two sets

coincide. The integration by parts formula then yields∑
x∈Bkψ

Eα̂ (hτxψ) =
∑
a∈Bk

∑
x∈B̃ψk (a)

Eα̂(Ia(τxψ)∇ah)

=
∑
a∈Bk

∑
x∈Bψ(a)

Eα̂(Ia(τxψ)∇ah)−
∑
a∈Bk

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇ah)

=
∑
a∈Bk

∑
x∈Bψ(a)

Eα̂(Ia(τxψ)∇ah)−
∑

a∈Bk\Bkψ−sψ

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇ah).

For any positive γ,2636

Eα̂(Ia(τxψ)∇ah) ≤ 1

2γ
Eα̂(Ia(τxψ)2) +

γ

2
Eα̂((∇ah)2),

since |Bk \Bkψ−sψ | ≤ C(ψ)k, and thanks to the bound on Dα̂,k(h), letting γ = 1/
√
k, it is then straight-2637

forward to obtain2638 ∑
a∈Bk\Bkψ−sψ

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇ah) ≤ C(ψ)k3/2.

therefore its contribution to the left-hand side of (8.60) vanishes in the limit k → ∞. Letting Ia(ψ) =∑
x∈Bψ(a) Ia(τxψ), the left-hand side of equation (8.60) is therefore less than

(8.61) lim sup
k→∞

1

(2k + 1)2
sup
h∈Tωk

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇ah)−Dα̂,k(h)

}

= lim
k→∞

1

(2k + 1)2

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇ahk)−Dα̂,k(hk)

}
.

for some sequence of functions hk ∈ Tωk ultimately realizing the limit k →∞ of the left-hand side.2639
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Thanks to the translation invariance of µα̂, and since τyIa(ψ) = Iτya(ψ), letting y = a1 be the �rst2640

site of the edge a = (a1, a2), we have2641

Eα̂(Ia(ψ)∇ahk) = Eα̂
(
I(0,a2−a1)(ψ)∇(0,a2−a1)τ−a1

hk
)
.

A seen before, a simple change of variable yields that Eα̂ (∇af.∇ag) = Eα̂ (∇−af.∇−ag), from which we2642

deduce2643

2
∑
a∈Bk

Eα̂(Ia(ψ)∇ahk) = 4
∑
i=1,2

Eα̂

I(0,ei)(ψ).∇(0,ei)

∑
x

x,x+ei∈Bk

τ−xhk

 .

De�ne2644

uki =
1

(2k + 1)2
∇(0,ei)

∑
x

x,x+ei∈Bk

τ−xhk ∈ Tω.

The elementary bound (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i yields∑

i=1,2

Eα̂((uki )2) ≤2k(2k + 1)

(2k + 1)4

∑
x

x,x+ei∈Bk

Eα̂
((
∇(x,x+ei)hk

)2)

≤ 1

(2k + 1)2
Dα̂,k(hk)

Thanks to this bound, equation (8.61) yields2645

1

(2k + 1)2
Eα̂

(−Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 ≤ lim
k→∞

4
∑
i=1,2

Eα̂(I(0,ei)(ψ).uki )−
∑
i=1,2

Eα̂((uki )2)

 ,

and since we already assumed that for some constant C(ψ), Dα̂,k(hk) ≤ C(ψ)(2k + 1)2, the sequence of2646

di�erential forms (uk)k∈N is bounded in L2(µα̂). It is straightforward to check that any of its limit point2647

u = (u1,u2) is the germ of a closed form in Tω in the sense of De�nition 8.8).2648

Indeed, given a limit point u and a �nite path γ de�ned by jumps xi, xi + zi, 0 ≤ i ≤ qγ − 1, we can2649

write for the closed form u associated to u2650

Eα̂(1γ∈Γc(η̂)|Iγ,u(η̂)|) = lim
k→∞

Eα̂(1γ∈Γc(η̂)|Iγ,uk(η̂)|),

where uk is the (non closed) di�erential form2651

ukx,x+z =
1

(2k + 1)2
∇(x,x+z)

∑
y

y,y+z∈Bk(x)

τ−yhk

Since γ is a �nite path, it depends on edges in a �nite box Bn, with n �xed. In particular, for any2652

y ∈ Bk−n, when computing Iγ,uk(η̂), the contribution of τ−yhk vanishes since it involves the complete2653

path. We can therefore write forsome constant Cγ and any k > n,2654

Eα̂(1γ∈Γc(η̂)|Iγ,uk(η̂)|) ≤ qγ
(2k + 1)2

∑
y, y+ei∈Bk

y or y+ei /∈Bk−n

Eα̂ (|∇0,eiτ−yhk|) ≤
qγ

(2k + 1)2
(Cn,kDα̂,k(hk))

1/2
,

where Cn,k ≤ cnk is the cardinal of the y's such that y and y + ei are in Bk and either y or y + ei are2655

not in Bk−n. Since Dα̂,k(hk) ≤ C(ψ)(2k + 1)2, the right-hand side above vanishes as k → ∞ for any2656

path γ. This proves that Eα̂(1γ∈Γc(η̂)|Iγ,u(η̂)|) = 0 for any path γ, and any limit point u of (uk)k, and2657

in particular 1γ∈Γc(η̂)|Iγ,u(η̂)| vanishes µα̂-a.s. for any �nite path γ.2658

We can therefore write2659

1

(2k + 1)2
Eα̂

(−Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 ≤ sup
u∈Tω

4
∑
i=1,2

Eα̂(I(0,ei)(ψ).ui)−
∑
i=1,2

Eα̂(u2
i )

 ,

where Tω is the set of germs of closed forms introduced in De�nition 8.8.2660
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According to Proposition 8.11, the estimate above becomes

1

(2k + 1)2
Eα̂

(
(−Lk)−1

∑
x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

)

≤ sup
g∈Tω
a,b∈R2

4
∑
i=1,2

Eα̂(I(0,ei)(ψ).(ja,bi +∇(0,ei)Σg))−
∑
i=1,2

Eα̂((ja,b + ∇Σg)
2)


= sup

g∈Tω
a,b∈R2

2Eα̂

ψ.
Σg +

∑
y∈Z2

(y.a)ηωy + (y.b)ηy

− � Lg + ja,b �α̂

 .

The last identity is derived as in the proof of Lemma 8.24. The right-hand-side above is � · �α̂ as2661

de�ned in De�nition 6.9, which concludes the proof of the upper bound.2662

In order to complete the proof of Theorem 6.11, we still need to prove that the convergence is uniform2663

in α̂, to prove (6.50). Let us denote2664

Vl,ψ,ϕ(α̂K̂l) =
1

(2l + 1)2
El,K̂l

−L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blϕ

τxϕ

 ,

and let us extend smoothly the domain of de�nition of Vl,ψ,ϕ to M1(S). The three previous Lemmas2665

yield that Vl,ψ,ϕ(K̂l(2l+ 1)−2)) converges as l goes to ∞ to � ψ,ϕ�α̂ as soon as K̂l converges towards2666

the pro�le α̂, hence in particular, Vl,ψ,ϕ(α̂l) converges as l goes to ∞ towards � ψ,ϕ �α̂ as soon as2667

α̂l goes to α̂. For that reason, � · �α̂ is continuous, and Vl,ψ,ϕ(α̂) converges uniformly in α̂ towards2668

� ψ,ϕ �α̂ as l goes to ∞. This, combined with the three lemmas 8.24, 8.26 and 8.25, completes the2669

proof of Theorem 6.11.2670

Appendix A2671

Possible application : Coarsening and global order in active Matter2672

We give some context on the modeling of collective dynamics and the rich phenomenology of active2673

matter.2674

A.1. Collective motion among biological organisms. � Collective motion is a widespread phe-2675

nomenon in nature, and has motivated in the last decades a fruitful and interdisciplinary �eld of study2676

[34]. Such behavior can be observed among many animal species, across many scales of the living spec-2677

trum, and in a broad range of environments. Animal swarming usually needs to balance out the bene�ts of2678

collective behavior (defense against predation, protection of the young ones, increased vigilance) against2679

the drawback of large groups (food hardships, predator multiplication, etc.).2680

Despite the numerous forms of interaction between individuals, all of these self-organization phe-2681

nomenons present spontaneous emergence of density �uctuations and long range correlations. This sim-2682

ilarity suggests some universality of collective dynamics models [25], [51]. Even though the biological2683

reasons for collective behavior are now well known, the underlying microscopic and macroscopic mecha-2684

nisms are not yet fully understood. To unveil these mechanisms, numerous aggregation models have been2685

put forward.2686

These models can be built on two distinct principles. The �rst approach speci�es the macroscopic2687

partial di�erential equation which rules the evolution of the local density of individuals. The main upside2688

is that one can use the numerous tools developed for solving PDE's. Several examples of such models2689

are presented in Okubo and Levin's book, [33]. Since it represents an average behavior, this approach to2690

collective dynamics is, however, mainly �tted to describe systems with large number of individuals, and2691

does not take into account the �uctuations to which smaller systems are subject.2692
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The second approach, called Individual-Based Models (IBM), speci�es the motion of each individual2693

organism. If the motion of each individual was described realistically (from a biological standpoint), the2694

theoretical study of these models with large number of degrees of freedom would be extremely di�cult.2695

For this reason, it is usually preferred to simplify the rules for the motion of each individual, as well2696

as its interaction with the group. A classical simpli�cation is to consider that the interaction of each2697

individual with the group is averaged out over a large number of its neighbors. This so-called local �eld2698

simpli�cation often allows to obtain explicit results, at the expense however of their biological accuracy2699

(cf. below).2700

A.2. Microscopic active matter models. � In order to represent the direction of the motion of2701

each individual, as well as spatial constraints (e.g. volume of each organism), collective dynamics are2702

often modeled by individual-based active matter models. Active matter is characterized by an energy2703

dissipation taking place at the level of each individual particle, which allows it to self-propel, thus yielding2704

an extra degree of freedom representing the direction of its motion. One can therefore obtain a phase2705

transition towards collective motion when these directions align on lengths large with respect to the size2706

of the particles. Active matter models exhibit various behaviors, and in the context of collective motion,2707

two phenomena are particularly important :2708

� when each particle tends to align the direction of its motion to that of its neighbors, one can2709

observe a phase transition between order and disorder depending on the strength of the alignment.2710

This alignment phase transition was �rst observed in an in�uential model for collective dynamics2711

introduced by Vicsek et al. [50]2712

� When the particle's velocity decreases with the local density, congestion e�ects appear : particles2713

spend more time where their speed is lower, and therefore tend to accumulate there. This phe-2714

nomenon, called Motility-Induced Phase Separation (MIPS), was extensively studied in the recent2715

years [9], [21], [11].2716

Vicsek model and phase transition in alignment models. � Interest for self-organization phenomenons2717

have grown signi�cantly in statistical physics, where the diversity of such behaviors opens numerous2718

modeling perspectives, and raises new questions regarding out-of-equilibrium systems. Many stochastic2719

models have been introduced to represent speci�c biological behavior using statistical physics methods2720

and have revealed a phase transition between high density collective motion, and disordered behavior2721

with short range correlations at low densities.2722

A pioneering model was proposed in 1995 by Vicsek et al. They introduce in [50] a general IBM2723

(cf. previous paragraph) to model collective dynamics. In the latter, a large number of particles move2724

in discrete time, and update the direction of their motion to the average direction of the particles in a2725

small neighborhood. The direction of their motion is also submitted to a small noise, which makes the2726

dynamics stochastic.2727

Despite its relative simplicity, the original model described in [50] is extremely rich, and has given rise2728

to a considerable literature (cf. the review by Viczek and Zafeiris, [51]). The �rst article on this model2729

unveiled a phase transition between a high-noise, low-density disordered phase and a low-noise high-2730

density ordered phase. Initially thought to be critical, this transition was later shown to be discontinuous2731

[12], with an intermediate region in which an ordered band cruises in a disordered background. It was2732

recently shown that this transition can be understood as a liquid-gas phase separation in which the2733

coexistence phase is organized in a smectic arrangement of �nite-width bands traveling collectively [42].2734

Numerous extensions and variations on Vicsek's model have been put forward, usually by considering a2735

continuous time dynamics, more pertinent to represent biological organisms.2736

Phase transitions are central to the study of collective dynamics, where coherent behavior arise when2737

the alignment becomes strong enough. This notion of phase transition for alignment dynamics is remi-2738

niscent of the Ising and XY models, two classical statistical physics models. The Ising model is known2739

to have a symmetry breaking phase transition leading to the emergence of a spontaneous magnetization.2740

Unlike the Ising model, the XY model (for which the spins are two-dimensional unit vectors parametrized2741
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(a) (b)

Figure 8. Schematic representation of the phase transition in Vicsek's model.

(a) low density and high noise intensity,

(b) high density and low noise intensity.

by angles θ ∈ [0, 2π[) does not present in two dimensions this type of symmetry breaking phase transition,2742

according to the Mermin-Wagner Theorem. This is one of the reasons for the popularity of the Vicsek2743

model [50], whose alignment dynamics is reminiscent of the XY model, but unlike the latter presents a2744

phase transition of the magnetization due to the particle motility [47]. Both the Ising and XY models are2745

now well understood. These are equilibrium models and they fall within the formalism of Gibbs measures,2746

which relates to the thermodynamical parameters of the system.2747

Active matter models like Vicsek's are out of equilibrium, and in the case of Vicsek's model, the phase2748

transition is a dynamical phenomenon. The concepts developed for equilibrium models, namely Gibbs2749

measures and free energy, can therefore no longer be used, and despite ample numerical evidence of2750

spontaneous magnetization, (cf. [41]) mathematically proving a phase transition becomes signi�cantly2751

harder.2752

Despite these issues, several exact results have been obtained for systems closely related to Vicsek's2753

model. In 2007, Degond and Motsch notably introduced a continuous time version of Vicsek's model,2754

and derived the macroscopic scaling limit of the system [18], as well as its microscopic corrections [19].2755

Their model, which was directly inspired by that of Vicsek et al., is a locally mean-�eld model, where par-2756

ticles interact with all other particles present in a small macroscopic neighborhood. This approximation2757

simpli�es a number of di�culties of out-of-equilibrium systems. In their initial article [18], Degond and2758

Motsch assume that a law of large number holds for the microscopic system. This was later rigorously2759

proved in [5]. The phase transition as a function of the noise level, between disordered system and global2760

alignment, was shown in [16] for this model. Similar results have since been extended to more general2761

forms of alignment, (e.g. [4], [7], [17]) and to density dependent parameters [22]. The evolution of the2762

macroscopic density was also obtained in the particular case where the interaction between individuals is2763

driven by a Morse potential, [8], where previously the shape of animal aggregates (e.g. �sh schools mills)2764

was only known empirically.2765

The Active Ising Model (AIM) is another alignment model, phenomenologically close to Vicsek's model2766

[41], put forward to better understand collective dynamics. It is less demanding from a computational2767

standpoint, and is extensively studied both numerically and theoretically by Solon and Tailleur in [43].2768

This model does not rely on the mean-�eld approximation of the Vicsek's model. The particles (with2769

either �+� or �-� spins) move independently in a discrete space domain, performing an asymmetric random2770

walk with drift directed according to the particle's spin. In addition to the displacement dynamics, the2771

particles align their spins with the other particles on the same site as in a fully connected Ising model.2772

It was numerically shown in [43] that the AIM presents, as does Vicsek's, a phase transition depending2773

both on the temperature and the particle density. At low temperature and density, one observes a2774
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magnetically neutral gas, whereas at strong temperature and densities, one obtains a strongly polarized2775

liquid. In an intermediary domain, these two phases coexist. The AIM being an out-of-equilibrium2776

model as well, its mathematical study is di�cult, mainly because of the lack of mean-�eld approximation2777

present in Vicsek's model. To our knowledge, there exists to this day no mathematical proof of the phase2778

transition of the AIM. The model considered in this paper is closely related to both the Vicsek and the2779

active Ising models.2780

Motility-Induced Phase Transition (MIPS). � As previously emphasized, a second interesting phe-2781

nomenon can occur in active matter : when the motility of the particles decreases as the local particle2782

density increases, one can observe a phase separation between a low density gaseous phase, and condensed2783

clusters. This separation is a direct consequence of particles slowing down in dense areas : since they2784

spend more time there, they tend to accumulate. This creates the congestion phenomenon called Motility2785

Induced Phase Transition, or MIPS, which was thoroughly studied in recent years (cf. the review by2786

Cates and Tailleur, [11]).2787

This congestion phenomenon can be observed across several types of dynamics, under the condition2788

that the particle's velocities and di�usion constants depend on the local density. One of the most studied2789

is the run-and-tumble dynamics [2], which models the behavior of bacteria : each individual goes in a2790

straight line for a while, and then reorients in another random direction. However, MIPS is not speci�c2791

to run and tumble dynamics : it is shown numerically in [10], [40] that MIPS also occurs for active2792

Brownian particles, for which each particles motion's direction di�uses, instead of updating at discrete2793

times like in the run-and-tumble dynamics. MIPS can also be observed in lattice models [46], or in2794

models with repulsive forces [21], for which the kinetic slowdown is a consequence of repulsive forces.2795

As already pointed out, one can expect that the active exclusion process investigated in this article2796

may exhibit both MIPS and alignment phase transition. However, mathematically proving this statement2797

is a di�cult task, and this claim is left as a conjecture at this point.2798

Appendix B2799

General tools2800

This appendix regroups a general de�nitions and results that have been used throughout the proof.2801

B.1. Topological setup. � This paragraph de�nes the topological setup we endow the trajectories2802

space for our process with. Denoting byM(T2×S) the space of non-negative measures on the continuous2803

con�guration space, and2804

M[0,T ] = D
(
[0, T ],M(T2 × S)

)
the space of right-continuous and left-limited trajectories of measures on T2 × S. Each trajectory η̂[0,T ]

2805

of our process admits a natural image inM[0,T ] through its empirical measure2806

(B.1) πNt

(
η̂[0,T ]

)
=

1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

Let (fk)k∈N be a dense family of functions in C∞(T2 × S), and assume that f0 ≡ 1. The weak topology2807

onM(T2 × S) is metrizable, by letting2808

(B.2) δ(π0, π
′
0) =

∞∑
k=0

1

2k
| < π0, fk > − < π′0, fk > |

1 + | < π0, fk > − < π′0, fk > |
.

Given this metric,M[0,T ] is endowed with Skorohod's metric, de�ned as2809

(B.3) d(π, π′) = inf
κ∈F

max

{
||κ|| , sup

[0,T ]

δ(πt, π
′
κt)

}
,
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where F is the set of strictly increasing continuous functions from [0, T ] into itself, such that κ0 = 0 and2810

κT = T , equipped with the norm2811

||κ|| = sup
s,t∈[0,T ]

{
log

[
κs − κt
s− t

]}
.

Now, (M[0,T ], d) is a metric space, and we endow the set P(M[0,T ]) of probability measures on M[0,T ]
2812

with the weak topology.2813

Given the empirical measure πNt of the process at time t, de�ned in equation (B.1), de�ne the appli-2814

cation2815

πN : Σ
[0,T ]
N −→ M[0,T ]

η̂[0,T ] 7→
(
πNt
(
η̂[0,T ]

))
t∈[0,T ]

,

we de�ne2816

(B.4) QN = Pλ,β
µN
◦
(
πN
)−1 ∈ P(M[0,T ])

the pushforward of Pλ,β
µN

by πN .2817

B.2. Self-di�usion coe�cient. � We regroup in this paragraph some useful results regarding the2818

self-di�usion coe�cient. Consider on Z2, an initial con�guration where each site is initially occupied w.p.2819

ρ ∈ [0, 1], and with a tagged particle at the origin. Each particle then follows a symmetric exclusion2820

process with �nite range transition matrix p(·), verifying
∑
z zp(z) = 0, and p(z) = 0 outside of a �nite2821

set of vertices B.2822

De�nition B.1 (Self-Di�usion Coe�cient). � Given Xt = (X1
t , . . . , X

d
t ) the position at time t of2823

the tagged particle, the d-dimensional self-di�usion matrix Ds = Ds(ρ) is de�ned as2824

(B.5) x†Dsx = lim
t→∞

E((x ·Xt)
2)

t
∀y ∈ Rd,

where x† is the transposed vector of x and ( . ) is the usual inner product in Rd.2825

This result follows from [28]. The following Lemma gives a variational formula forDs and was obtained2826

in Spohn [44].2827

Proposition B.2 (Variational formula for the self-di�usion coe�cient)2828

The self-di�usion matrix Ds = Ds(ρ) is characterized by the variational formula

x†Dsx = inf
f∈S

{ ∑
i=1,2

Eα̂ ((1− ηei)
[
xi + τeif

(
η0,ei

)
− f

]2)
+
∑
y 6=0,ei

Eα̂
(

[∇0,eiτyf ]
2
)}.

Our system being invariant through coordinates inversions, it is shown in [32] that the matrix Ds is2829

diagonal, and can therefore be written2830

Ds(ρ) = ds(ρ)I.

Finally, the regularity of the self-di�usion coe�cient follows from [31], and a lower and upper bound was2831

derived by Varadhan in all dimensions by Varadhan in [49].2832

Proposition B.3 (Regularity of the self-di�usion coe�cient). � In any dimension d ≥ 1, the2833

self-di�usion coe�cient ds is C
∞([0, 1]), and for some constant C > 0, we can write2834

1

C
(1− ρ) ≤ ds(ρ) ≤ C(1− ρ).

Finally, we prove a result that we postponed in during the proof of Proposition 6.14.2835

Proposition B.4 (Conductivity matrix). � Fix α̂ ∈M1(S), let jω̂ = (jω̂1 , j
ω̂
2 ), where as before2836

jω̂i = [ω(θ0)− Eα̂(ω)]η0(1− ηei)− [ω(θei)− Eα̂(ω)]ηei(1− η0).

Recall that we de�ned the conductivity matrix Q = Qω as

x†Qx = inf
g∈Tω

� x · jω̂ + Lg �α̂,
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then, we have the identity2837

(B.6) Q = αVα̂(ω)Ds(α) = αVα̂(ω)ds(α)I.

Proof of Proposition B.4. � The proof is analogous to that of Theorem 3.2 in [35]. We �rst consider the

trivial case α = 0, 1. Since ds(1) = 0, if α = 0, 1, Proposition B.4 is trivially true, because both sides of

the identity vanish. Furthermore, assuming that Vα̂(ω) = 0, we then have jω̂ = 0, therefore both sides

vanish as well. We now assume that α ∈]0, 1[ and Vα̂(ω) > 0. By de�nition 6.8,

� x · jω̂ + Lg �α̂ = Eα̂

∑
i=1,2

xiηω̂0 (1− ηei) +∇0,ei

∑
y∈Z2

τyg

2
 .

Since g ∈ Tω, it can be rewritten g = ϕ(η) +
∑
y η

ω̂
y ψy(η) for some angle-blind functions ϕ,ψy ∈ S. As

we saw in the proof of the spectral gap, any angle-blind function is orthogonal to any function ηω̂y ψ(η),

therefore

� x · jω̂ + Lg �α̂=
∑
i=1,2

Eα̂
([
xiη

ω̂
0 (1− ηei) +∇0,ei

∑
y,y′∈Z2

τy′ [η
ω̂
y ψy]

]2)
+ Eα̂

([
∇0,ei

∑
y∈Z2

ϕ
]2)

.

To minimize the left-hand side, we can choose ϕ = 0, so that g must take the form g =
∑
y η

ω̂
y ψy. Since2838

g is a local function, ψ′ =
∑
y τ−yψy is well de�ned, and satis�es

∑
y,y′∈Z2 τy′ [η

ω̂
y ψy] =

∑
y∈Z2 ηω̂y τyψ

′,2839

therefore2840

� x · jω̂ + Lg �α̂=
∑
i=1,2

Eα̂


xiηω̂0 (1− ηei) +∇0,ei

∑
y∈Z2

ηω̂y τyψ
′

2
 .

Elementary computations yield ∇0,eiη
ω̂
0 ψ
′ = −ηω̂0 (1 − ηei)ψ′, ∇0,eiη

ω̂
eiτeiψ

′ = ηω̂0 (1 − ηei)τeiψ′
(
η0,ei

)
,2841

and for any y 6= 0, ei, η
ω̂
y∇0,eiτyψ

′, therefore2842

� x · jω̂ + Lg �α̂=
∑
i=1,2

Eα̂


ηω̂0 (1− ηei)

[
xi + τeiψ

′ (η0,ei
)
− ψ′

]
+
∑
y 6=0,ei

ηω̂y∇0,eiτyψ
′

2
 .

For any angle-blind function ψ ∈ S, we have already established in Section 8.1 that

Eα̂(ηω̂y η
ω̂
y′ψ(η)) = 1{y=y′}Vα̂(ω)Eα̂(ηyψ(η)).

The previous quantity now rewrites

� x · jω̂ + Lg �α̂

= Vα̂(ω)
∑
i=1,2

Eα̂ (η0(1− ηei)
[
xi + τeiψ

′ (η0,ei
)
− ψ′

]2)
+
∑
y 6=0,ei

Eα̂
(
ηy [∇0,eiτyψ

′]
2
) .

Denote by f = Eα̂(ψ′|η0 = 1)= α−1Eα̂(η0ψ
′), we have2843

Eα̂(τeiψ
′ (η0,ei

)
|η0 = 1) = τeif

(
η0,ei

)
and Eα̂(∇0,eiτyψ

′|ηy = 1) = ∇0,eiτyf,

so that

� x·jω̂+Lg �α̂= αVα̂(ω)
∑
i=1,2

Eα̂ ((1− ηei)
[
xi + τeif

(
η0,ei

)
− f

]2)
+
∑
y 6=0,ei

Eα̂
(

[∇0,eiτyf ]
2
) .

Taking the in�mum over g ∈ Tω, f spans S which yields as wanted, according to Proposition B.22844

x†Qx =� x · jω̂ + Lg �α̂= αVα̂(ω)x†Dsx,

thus concluding the proof.2845
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B.3. Entropy. � Given two measures on a space E, let us denote2846

H(µ | ν) = Eν
(
dµ

dν
log

dµ

dν

)
the relative entropy of µ w.r.t ν.2847

Proposition B.5 (Entropy inequality). � Let π be a reference measure on some probability space2848

E. Let f be a function E → R, and γ ∈ R+. Then, for any non-negative measure µ on E, we have2849 ∫
fdµ ≤ 1

γ

[
log

(∫
eγfdπ

)
+H(µ|π)

]
,

where H(µ|π) is the relative entropy of µ with respect to π.2850

Proof of Proposition B.5. � The proof is omitted, it can be found in Appendix 1.8 of [27].2851

Remark B.6 (Utilization throughout the proof). � This inequality is used throughout this proof2852

with µNs the marginal at time s of the measure of the process started from an initial pro�le µN , and with2853

π = µα̂ the equilibrium measure of a symmetric simple exclusion process with grand-canonical parameter2854

α̂. Then, for any �xed time s and for any function f and any positive γ2855

EµNs (f) ≤ 1

γ

[
logEα̂

(
eγf
)

+H(µNs |µα̂)
]
.

This inequality will be our main tool to bound expectation w.r.t the measure of our process of vanishing2856

quantities .2857

B.4. Bound on the largest eigenvalue of a perturbed Markov generator. �2858

Proposition B.7 (Largest eigenvalue for a small perturbation of a Markov generator)2859

Let us consider a Markov Generator L with positive spectral gap γ and a bounded function V with2860

mean 0 with respect to the equilibrium measure µα̂ of the Markov process. Then, for any small ε > 0, the2861

Largest eigenvalue of the operator L+ εV can be bounded from above by2862

sup
f

{
εEα̂(V f2) + Eα̂(fLf)

}
≤ ε2

A− 2εγ ||V ||∞
Eα̂
(
V (−L)−1V

)
,

where the supremum in the variational formula is taken among the probability densities f w.r.t µα̂.2863

The proof of this result is omitted, it is given in Theorem A3.1.1, p.375 in [27].2864

Appendix C2865

Space of grand-canonical parameters2866

In this appendix, we prove some useful results regarding the space of parameters (M1(S), ||| · |||)2867

introduced in Section 3.1.2868

C.1. Equivalence of ensembles. �2869

Proposition C.1 (Equivalence of ensembles). � Let f be a cylinder function (in the sense of Def-2870

inition 2.1), we have2871

lim sup
l→∞

sup
K̂∈Kl

∣∣∣ El,K̂(f)− Eα̂
K̂

(f)
∣∣∣ → 0,

where the �rst measure is the projection along sets with K̂ particles in Bl, whereas the second is the2872

grand-canonical measure with parameter α̂ = α̂K̂ introduced in De�nition 3.7.2873
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Proof of Proposition C.1. � The proof of this result is quite elementary, and is a matter of carefully2874

writing expectations for a random sampling with (grand-canonical measures) and without (canonical2875

measures) replacement.2876

The proof of this problem can be reduced to the following : Consider two samplings of M occupation2877

variables, chosen among L �xed possible values2878

{η̂1, . . . , η̂L} ∈ ΣL1 := {(δ, θ) ∈ {0, 1} × S, θ = 0 if δ = 0}L.

The �rst sampling is made without replacement to represent the canonical measure µl,K̂ , and the sampled2879

items will be denoted X1, . . . , XM , where each Xi is of the form (δ, θ). The second sampling is made2880

with replacement to represent the grand-canonical measure µα̂
K̂
, and will be denoted Y1, . . . , YM . let us2881

denote by ξL the set2882

ξL = {η̂1, . . . , η̂L},

and denote by EξL the expectation w.r.t. the two samplings (Xi) and (Yi) given ξ
L. Further denote by2883

IL,M = {1, . . . , L}M , i = (i1, . . . , iM ) the elements of IL,M , and DL,M and CL,M its two subsets2884

DL,M = {(i1, . . . , iM ) ∈ IL,M
∣∣ i1 6= · · · 6= iM}, and CL,M = IL,M \DL,M

Then, for any function2885

g : ΣM1 → R,

we have∣∣ EξL(g(X1, . . . , XM ))− EξL(g(Y1, . . . , YM ))
∣∣

≤ ||g||∞
∑

i∈IL,M

∣∣∣ PξL[(X1, . . . , XM ) = (η̂i1 , . . . , η̂iM )
]
− PξL

[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

] ∣∣∣
= ||g||∞

∑
i∈DL,M

∣∣∣ PξL[(X1, . . . , XM ) = (η̂i1 , . . . , η̂iM )
]
− PξL

[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

] ∣∣∣
+ ||g||∞

∑
i∈CL,M

PξL
[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]
.

The sum on the last line is the probability that at least two indexes among the M we chosen uniformly2886

in {1, . . . , L} are equal. This probability is2887 ∑
i∈CL,M

PξL
[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]
= 1− L(L− 1) · · · (L−M + 1)

LM
,

which for M �xed vanishes uniformly in ξL as L→∞. We now take a look at the other term, for which

we write∑
i∈DL,M

∣∣∣∣PξL[(X1, . . . , XM ) = (η̂i1 , . . . , η̂iM )
]
− PξL

[
(Y1, . . . , YM ) = (η̂i1 , . . . , η̂iM )

]∣∣∣∣
=

∑
i∈DL,M

∣∣∣∣ 1

L(L− 1) · · · (L−M + 1)
− 1

LM

∣∣∣∣
= 1− L(L− 1) · · · (L−M + 1)

LM
,

which also vanishes uniformly in ξL as L → ∞. We can therefore write for any bounded function g2888

depending on M sites2889

sup
ξL∈ΣL1

∣∣ EξL(g(X1, . . . , XM ))− EξL(g(Y1, . . . , YM ))
∣∣ ≤ ||g||∞ C(M)oL(1),

thus proving Proposition C.1.2890
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C.2. Regularity of the grand-canonical measures in their parameter. �2891

Proposition C.2. � Consider the set of local pro�les M1(S) equipped with the norm ||| · ||| de�ned in2892

De�nition 3.2. Then, given a function g ∈ C, the application2893

Ψg : (M1(S), ||| · |||) −→ R
α̂ 7→ Eα̂(g)

is Lipschitz-continuous with Lipschitz constant depending on the function g.2894

Proof of Proposition C.2. � Let us consider a cylinder function g depending only on vertices x1, . . . , xM ,2895

and let us start by assuming that g vanishes as soon as one of the sites x1, . . . , xM is empty. We can then2896

rewrite g(η̂) as ηx1
. . . ηxM g(θx1

, . . . , θxM ), and2897

Eα̂(g) =

∫
θ1

. . .

∫
θM

g(θx1
, . . . , θxM )dα̂(θx1

) . . . dα̂(θxM ).

We can now proceed by recurrence on M . Given a function g depending only on a site x1, and for any

two grand-canonical parameters α̂ and α̂′ we can write

Eα̂(g)− Eα̂′(g) = ||g||∗
∫
θx1

g(θx1
)

||g||∗
d(α̂− α̂′)(θx1

) ≤ ||g||∗ ||| α̂− α̂′ |||

Assuming now that the proposition is true for any function depending on M − 1 sites, and considering a

function g depending on M vertices, we can write

Eα̂(g)− Eα̂′(g) = Eα̂ (Eα̂(g | η̂x2
, . . . , η̂xM ))− Eα̂′ (Eα̂′(g | η̂x2

, . . . , η̂xM )) .(C.1)

Fix any angle θ, and let gθ be the function gθ(η̂) = g(θ, θx2,...,θxM
), we can write thanks to the recurrence2898

hypothesis that2899 ∣∣ Eα̂(gθ)− Eα̂′(gθ)
∣∣ ≤ Cθ||| α̂− α̂′ |||,

which, integrated in θ against α̂′, yields2900

| Eα̂′ (Eα̂′(g | η̂x2
, . . . , η̂xM ))− Eα̂′ (Eα̂(g | η̂x2

, . . . , η̂xM )) | ≤ C1||| α̂− α̂′ |||,

On the other hand, we can also write2901

| Eα̂ (Eα̂(g | η̂x2
, . . . , η̂xM ))− Eα̂′ (Eα̂(g | η̂x2

, . . . , η̂xM )) | ≤ C2||| α̂− α̂′ |||,

therefore (C.1) yields that2902

| Eα̂(g)− Eα̂′(g) | ≤ (C1 + C2)||| α̂− α̂′ |||,

which is what we wanted to show.2903

To complete the proof of Proposition C.2, we now only need to extend the result to functions g which2904

do not necessarily vanish when one site in their domain is empty. This case is easily derived, since any2905

function g depending on vertices x1,. . . ,, xM can be rewritten2906

(C.2) g(η̂x1 , . . . , η̂xM ) =
∑

B⊂{1,...,M}

gB(θxi , i ∈ B),

where gB(θxi , i ∈ B) is de�ned in the following fashion : recall that η̂x = (ηx, θx), with θx = 0 if ηx = 0,2907

and let us assume that B is the set of increasing indexes i1, . . . , ip, then gB is de�ned as2908

gB(θxi1 , . . . , θxip ) = ηxi1 . . . ηxip g((0, 0), . . . , (0, 0), (1, θxi1 ), (0, 0), . . . , (0, 0), (1, θxip ), (0, 0), . . . , (0, 0)).

These functions all vanish whenever one of their depending sites is empty, therefore according to the2909

beginning of the proof, there exists a family of constants CB such that for any B ⊂ {1, . . . ,M} we have2910

| Eα̂(gB)− Eα̂′(gB) | ≤ CB ||| α̂− α̂′ |||.

We now only need to let C =
∑
B⊂{1,...,M} CB to obtain thanks to the decomposition (C.2) that2911

| Eα̂(g)− Eα̂′(g) | ≤ C||| α̂− α̂′ |||

as intended. This completes the proof of Proposition C.2.2912
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C.3. Compactness of the set of grand-canonical parameters. �2913

Proposition C.3 (Compactness of (M1(S), ||| · |||)). � The metric space (M1(S), ||| · |||) introduced2914

in De�nition 3.2 is totally bounded and Cauchy complete, and is therefore compact.2915

Proof of Proposition C.3. � The proof of the Cauchy-completeness is almost immediate, we treat it �rst.2916

Consider a Cauchy sequence (α̂k)k∈N ∈M1(S)N, then by de�nition of ||| · |||, for any g ∈ B∗, the sequence2917

(
∫
S
g(θ)α̂k(dθ))k is a real Cauchy sequence and therefore converges, and we can let2918 ∫

S

g(θ)α̂∗(dθ) = lim
k→∞

∫
S

g(θ)α̂k(dθ).

This de�nition can be extended to any C1(S) function g by letting2919 ∫
S

g(θ)α̂∗(dθ) = max(||g||∞ , ||g′||∞) lim
k→∞

∫
S

g(θ)

max(||g||∞ , ||g′||∞)
α̂k(dθ).

This de�nes a measure α̂∗ on S, whose total mass is given by2920 ∫
T2

α̂∗(dθ) = lim
k→∞

∫
T2

α̂k(dθ) ∈ [0, 1],

which proves the Cauchy completeness of (M1(S), ||| · |||).2921

We now prove that (M1(S), ||| · |||) is totally bounded. For any integer n, we are going to construct a2922

�nite set M1,n ⊂M1(S) such that2923

sup
α̂∈M1(S)

inf
α̂′∈M1,n

||| α̂− α̂′ ||| ≤ 1

n
.

For any n ∈ N and any j ∈ J0, n− 1K, we shorten θj,n = 2πj/n, and θn,n = θ0,n = 0. We can now de�ne2924

M1,n =


n−1∑
j=0

kj
n2
δθj,n

∣∣∣∣∣∣ kj ∈ J0, n2K,
∑
j

kj ≤ n2

 .

The inclusionM1,n ⊂M1(S) is trivial thanks to the condition
∑
j kj ≤ n2, andM1,n is �nite since the2925

kj 's can each take only a �nite number of values. we now prove that any α̂ ∈ M1(S) is at distance at2926

most 1/n of an element α̂n ∈M1,n.2927

Fix α̂ ∈M1(S), and let2928

kj = bn2α̂([θj,n, θj+1,n[)c.
Since α̂ ∈ M1(S), its total mass is in [0, 1], and the conditions kj ∈ J0, n2K and

∑
j kj ≤ n2 are trivially2929

veri�ed. We now let2930

α̂n =

n−1∑
j=0

kj
n2
δθj,n ,

and prove that ||| α̂− α̂n ||| ≤ 2/n. Fix a function g ∈ C1(S) such that max(||g||∞ , ||g′||∞) ≤ 1, we can

write∫
S

g(θ)(α̂− α̂n)(dθ) =

n−1∑
j=0

∫
[θj,nθj+1,n[

g(θ)α̂(dθ)− kj
n2
g(θj,n)

=

n−1∑
j=0

α̂([θj,n, θj+1,n[)g(θj,n)− kj
n2
g(θj,n) +

n−1∑
j=0

∫
[θj,nθj+1,n[

(g(θ)− g(θj,n))α̂(dθ)

≤
n−1∑
j=0

||g||∞

∣∣∣∣ α̂([θj,n, θj+1,n[)− kj
n2

∣∣∣∣︸ ︷︷ ︸
≤1/n2

+

n−1∑
j=0

||g′||∞ | θj+1,n − θj+1,n |︸ ︷︷ ︸
≤1/n

∫
[θj,nθj+1,n[

α̂(dθ)

≤
||g||∞ + ||g′||∞

n
≤ 2/n.

Finally, we have proved that2931

||| α̂− α̂n ||| ≤ 2/n,
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which proves thatM1(S) is totally bounded. This, together with the Cauchy completeness, immediately2932

yields the compactness, and concludes the proof of Proposition C.3.2933

2934
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